451
|
Ariizumi T, Lawrence PK, Steber CM. The role of two f-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. PLANT PHYSIOLOGY 2011; 155:765-75. [PMID: 21163960 PMCID: PMC3032465 DOI: 10.1104/pp.110.166272] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/07/2010] [Indexed: 05/19/2023]
Abstract
The SLEEPY1 (SLY1) F-box gene is a positive regulator of gibberellin (GA) signaling in Arabidopsis (Arabidopsis thaliana). Loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes are partially rescued by overexpression of the SLY1 homolog SNEEZY (SNE)/SLY2, suggesting that SNE can functionally replace SLY1. GA responses are repressed by DELLA family proteins. GA relieves DELLA repression when the SCF(SLY1) (for Skp1, Cullin, F-box) E3 ubiquitin ligase ubiquitinates DELLA protein, thereby targeting it for proteolysis. Coimmunoprecipitation experiments using constitutively expressed 35S:hemagglutinin (HA)-SLY1 and 35S:HA-SNE translational fusions in the sly1-10 background suggest that SNE can function similarly to SLY1 in GA signaling. Like HA-SLY1, HA-SNE interacted with the CULLIN1 subunit of the SCF complex, and this interaction required the F-box domain. Like HA-SLY1, HA-SNE coimmunoprecipitated with the DELLA REPRESSOR OF GA1-3 (RGA), and this interaction required the SLY1 or SNE carboxyl-terminal domain. Whereas HA-SLY1 overexpression resulted in a decrease in both DELLA RGA and RGA-LIKE2 (RGL2) protein levels, HA-SNE caused a decrease in DELLA RGA but not in RGL2 levels. This suggests that one reason HA-SLY1 is able to effect a stronger rescue of sly1-10 phenotypes than HA-SNE is because SLY1 regulates a broader spectrum of DELLA proteins. The FLAG-SLY1 fusion protein was found to coimmunoprecipitate with the GA receptor HA-GA-INSENSITIVE DWARF1b (GID1b), supporting the model that SLY1 regulates DELLA through interaction with the DELLA-GA-GID1 complex.
Collapse
|
452
|
Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulières C. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:50-63. [PMID: 20492548 DOI: 10.1111/j.1467-7652.2010.00530.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two C-repeat binding factor genes (EguCBF1a/b), isolated from E. gunnii and differentially cold-regulated, were constitutively overexpressed in a cold-sensitive Eucalyptus hybrid. In addition to the expected improvement on freezing tolerance, some resulting transgenic lines (EguCBF1a-OE and EguCBF1b-OE) exhibited a decrease in stomata density and an over-accumulation of anthocyanins also observed to a lesser extent in a cold-acclimated control plant. Given that the induction of five putative CBF target genes was observed in CBF-overexpressing lines as well as in the cold-acclimated control line, these phenotypes might be related to cold acclimation. In comparison with the control plant, the most altered transgenic line (EguCBF1a-OE A1 line), exhibited reduced growth and better water retention capacity. This modified phenotype includes reduced leaf area and thickness associated with a decrease in cell size, as well as a higher oil gland density and a wax deposition on the cuticle. Surprisingly, the EguCBF1b-OE B9 line, with a level of transgene expression equivalent to the A1 line, showed a less marked phenotype, suggesting a difference in transactivation efficiency between EguCBF1A and B factors. The features of these transgenic lines provide the first signs of adaptive mechanisms controlled by CBF transcription factors in an evergreen broad-leaved tree. These data also open new prospects towards genetic improvement on Eucalyptus for freezing tolerance.
Collapse
Affiliation(s)
- Marie Navarro
- Université de Toulouse (UT3): ERT 1045, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
453
|
Cattivelli L. More cold tolerant plants for a warmer world. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:1-2. [PMID: 21421340 DOI: 10.1016/j.plantsci.2010.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
454
|
Medina J, Catalá R, Salinas J. The CBFs: three arabidopsis transcription factors to cold acclimate. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:3-11. [PMID: 21421341 DOI: 10.1016/j.plantsci.2010.06.019] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 05/02/2023]
Abstract
Low temperature is one of the adverse environmental factors that most affects plant growth and development. Temperate plants have evolved the capacity to acquire chilling and freezing tolerance after being exposed to low-nonfreezing temperatures. This adaptive response, named cold acclimation, involves many physiological and biochemical changes that mainly rely on reprogramming gene expression. Currently, the best documented genetic pathway leading to gene induction under low temperature conditions is the one mediated by the Arabidopsis C-repeat/dehydration-responsive element binding factors (CBFs), a small family of three transcriptional activators (CBF1-3) that bind to the C-repeat/dehydration-responsive element, which is present in the promoters of many cold-responsive genes, and induce transcription. The CBF genes are themselves induced by cold. Different evidences indicate that the CBF transcriptional network plays a critical role in cold acclimation in Arabidopsis. In this review, recent advances on the regulation and function of CBF factors are provided and discussed.
Collapse
Affiliation(s)
- Joaquín Medina
- Departamento de Biotecnología INIA, Centro de Biotecnología y Genómica de Plantas, Campus de Montegancedo, 28223 Madrid, Spain
| | | | | |
Collapse
|
455
|
Thomashow MF. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. PLANT PHYSIOLOGY 2010; 154:571-7. [PMID: 20921187 PMCID: PMC2948992 DOI: 10.1104/pp.110.161794] [Citation(s) in RCA: 418] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Michael F Thomashow
- Michigan State University, Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824, USA.
| |
Collapse
|
456
|
Sidaway-Lee K, Josse EM, Brown A, Gan Y, Halliday KJ, Graham IA, Penfield S. SPATULA links daytime temperature and plant growth rate. Curr Biol 2010; 20:1493-7. [PMID: 20705468 DOI: 10.1016/j.cub.2010.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 12/18/2022]
Abstract
Plants exhibit a wide variety of growth rates that are known to be determined by genetic and environmental factors, and different plants grow optimally at different temperatures, indicating that this is a genetically determined character. Moderate decreases in ambient temperature inhibit vegetative growth, but the mechanism is poorly understood, although a decrease in gibberellin (GA) levels is known to be required. Here we demonstrate that the basic helix-loop-helix transcription factor SPATULA (SPT), previously known to be a regulator of low temperature-responsive germination, mediates the repression of growth by cool daytime temperatures but has little or no growth-regulating role under warmer conditions. We show that only daytime temperatures affect vegetative growth and that SPT couples morning temperature to growth rate. In seedlings, warm temperatures inhibit the accumulation of the SPT protein, and SPT autoregulates its own transcript abundance in conjunction with diurnal effects. Genetic data show that repression of growth by SPT is independent of GA signaling and phytochrome B, as previously shown for PIF4. Our data suggest that SPT integrates time of day and temperature signaling to control vegetative growth rate.
Collapse
Affiliation(s)
- Kate Sidaway-Lee
- Department of Biology, University of York, P.O. Box 373, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
457
|
Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Vashegyi I, Vágújfalvi A, Galiba G, Dubcovsky J. Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. PLANT PHYSIOLOGY 2010; 153:1846-58. [PMID: 20571115 PMCID: PMC2923912 DOI: 10.1104/pp.110.159079] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 06/18/2010] [Indexed: 05/18/2023]
Abstract
In winter wheat (Triticum spp.) and barley (Hordeum vulgare) varieties, long exposures to nonfreezing cold temperatures accelerate flowering time (vernalization) and improve freezing tolerance (cold acclimation). However, when plants initiate their reproductive development, freezing tolerance decreases, suggesting a connection between the two processes. To better understand this connection, we used two diploid wheat (Triticum monococcum) mutants, maintained vegetative phase (mvp), that carry deletions encompassing VRN-1, the major vernalization gene in temperate cereals. Homozygous mvp/mvp plants never flower, whereas plants carrying at least one functional VRN-1 copy (Mvp/-) exhibit normal flowering and high transcript levels of VRN-1 under long days. The Mvp/- plants showed reduced freezing tolerance and reduced transcript levels of several cold-induced C-REPEAT BINDING FACTOR transcription factors and COLD REGULATED genes (COR) relative to the mvp/mvp plants. Diploid wheat accessions with mutations in the VRN-1 promoter, resulting in high transcript levels under both long and short days, showed a significant down-regulation of COR14b under long days but not under short days. Taken together, these studies suggest that VRN-1 is required for the initiation of the regulatory cascade that down-regulates the cold acclimation pathway but that additional genes regulated by long days are required for the down-regulation of the COR genes. In addition, our results show that allelic variation in VRN-1 is sufficient to determine differences in freezing tolerance, suggesting that quantitative trait loci for freezing tolerance previously mapped on this chromosome region are likely a pleiotropic effect of VRN-1 rather than the effect of a separate closely linked locus (FROST RESISTANCE-1), as proposed in early freezing tolerance studies.
Collapse
|
458
|
Sharabi-Schwager M, Samach A, Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis suppresses the responsiveness of leaf tissue to the stress hormone ethylene. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:630-8. [PMID: 20636906 DOI: 10.1111/j.1438-8677.2009.00255.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The plant hormone ethylene affects myriad developmental processes ranging from seed germination to organ senescence, and plays a crucial role in plant resistance to environmental stresses. The C-repeat/dehydration-responsive element binding factor genes (CBF1-3) are transcriptional activators involved in plant low-temperatures responses; their overexpression enhances frost tolerance, but also has various pleiotropic effects on growth and development, mainly growth retardation and delay of flowering and senescence. We found that overexpression of CBF2 in Arabidopsis suppressed leaf tissue responsiveness to ethylene as compared with wild-type plants, as manifested in significantly delayed senescence and chlorophyll degradation. In wild-type plants, exposure to ethylene at 0.1 microl.l(-1) for 48 h caused 50% reduction in chlorophyll levels as compared to leaves held in air alone, whereas CBF2-overexpressing plants required an ethylene concentration of 10.0 microl.l(-1) to cause the same effect. Furthermore, continuous exposure to ethylene at 1.0 microl.l(-1) reduced chlorophyll content in wild-type leaves by 50% after 42 h but took 72 h in CBF2-overexpressing plants. Transcript profiling of ethylene receptors and signal transduction genes in leaves of wild-type and CBF2-overexpressing plants, by means of the Affymetrix ATH1 genome array, revealed only minor differences in gene expression patterns - insufficient to explain the observed responsiveness differences. Nevertheless, we found that overexpression of CBF2 significantly increased transcript levels of 17 ABA biosynthetic and responsive genes and, thus, may have affected leaf responsiveness to ethylene via contrasting interactions with other hormones, mainly ABA. Overall, the current findings suggest that overexpression of the CBF2 transcriptional activator in Arabidopsis may, at least in part, contribute to the observed delay of leaf senescence and enhanced plant fitness by suppressing leaf responsiveness to stress-regulated ethylene.
Collapse
Affiliation(s)
- M Sharabi-Schwager
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, Israel
| | | | | |
Collapse
|
459
|
Abstract
The past two decades revealed a plethora of Ca2+-responsive proteins and downstream targets in plants, of which several are unique to plants. More recent high-throughput 'omics' approaches and bioinformatics are exposing Ca2+-responsive cis-elements and the corresponding Ca2+-responsive genes. Here, we review the current knowledge on Ca2+-signaling pathways that regulate gene expression in plants, and we link these to mechanisms by which plants respond to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yael Galon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|
460
|
Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. PLANT MOLECULAR BIOLOGY 2010; 73:241-9. [PMID: 20135196 DOI: 10.1007/s11103-010-9609-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/22/2010] [Indexed: 05/19/2023]
Abstract
Increasing numbers of investigations indicate that ethylene response factor (ERF) proteins play important roles in plant stress responses via interacting with GCC box and/dehydration-responsive element/C-repeat to modulate expression of downstream genes, but the detailed regulatory mechanism is not well elucidated. Revealing the modulation pathway of ERF proteins in response to stresses is vital. Previously, we showed that tomato ERF protein TERF2/LeERF2 is ethylene inducible, and ethylene production is suppressed in antisense TERF2/LeERF2 tomatoes, suggesting that TERF2/LeERF2 functions as a positive regulator in ethylene biosynthesis. In this paper, we report that regulation of TERF2/LeERF2 in ethylene biosynthesis is associated with enhanced freezing tolerance of tobacco and tomato. Analysis of gene expression showed that cold slowly induces expression of TERF2/LeERF2 in tomato, implying that TERF2/LeERF2 may be involved in cold response through ethylene modulation. To test the hypothesis, we first observed that overexpressing TERF2/LeERF2 tobaccos not only enhances freezing tolerance via activating expression of cold-related genes, but also significantly reduces electrolyte leakage. In addition, with treatment of ethylene biosynthesis inhibitor or ethylene receptor antagonist, we then showed that blockage of ethylene biosynthesis or the ethylene signaling pathway decreases freezing tolerance of overexpressing TERF2/LeERF2 tobaccos. Moreover, the results from tomatoes showed that overexpressing TERF2/LeERF2 tomatoes enhances while antisense TERF2/LeERF2 transgenic lines decreases freezing tolerance, and application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid restored freezing tolerance of antisense lines. Therefore our results establish that TERF2/LeERF2 enhances freezing tolerance of plants through ethylene biosynthesis and the ethylene signaling pathway.
Collapse
Affiliation(s)
- Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | |
Collapse
|
461
|
Janská A, Marsík P, Zelenková S, Ovesná J. Cold stress and acclimation - what is important for metabolic adjustment? PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:395-405. [PMID: 20522175 DOI: 10.1111/j.1438-8677.2009.00299.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are unable to escape from the many abiotic and biotic factors that cause a departure from optimal conditions of growth and development. Low temperature represents one of the most harmful abiotic stresses affecting temperate plants. These species have adapted to seasonal variations in temperature by adjusting their metabolism during autumn, increasing their content of a range of cryo-protective compounds to maximise their cold tolerance. Some of these molecules are synthesised de novo. The down-regulation of some gene products represents an additional important regulatory mechanism. Ways in which plants cope with cold stress are described, and the current state of the art with respect to both the model plant Arabidopsis thaliana and crop plants in the area of gene expression and metabolic pathways during low-temperature stress are discussed.
Collapse
Affiliation(s)
- A Janská
- Crop Research Institute, v.v.i., Prague, Czech Republic.
| | | | | | | |
Collapse
|
462
|
Doğramaci M, Horvath DP, Chao WS, Foley ME, Christoffers MJ, Anderson JV. Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. PLANT MOLECULAR BIOLOGY 2010; 73:207-26. [PMID: 20340040 DOI: 10.1007/s11103-010-9621-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/24/2010] [Indexed: 05/20/2023]
Abstract
Leafy spurge (Euphorbia esula) is an herbaceous perennial weed that produces vegetatively from an abundance of underground adventitious buds. In this study, we report the effects of different environmental conditions on vegetative production and flowering competence, and determine molecular mechanisms associated with dormancy transitions under controlled conditions. Reduction in temperature (27-10 degrees C) and photoperiod (16-8 h) over a 3-month period induced a para- to endo-dormant transition in crown buds. An additional 11 weeks of cold (5-7 degrees C) and short-photoperiod resulted in accelerated shoot growth from crown buds, and 99% floral competence when plants were returned to growth-promoting conditions. Exposure of paradormant plants to short-photoperiod and prolonged cold treatment alone had minimal affect on growth potential and resulted in ~1% flowering. Likewise, endodormant crown buds without prolonged cold treatment displayed delayed shoot growth and ~2% flowering when returned to growth-promoting conditions. Transcriptome analysis revealed that 373 and 260 genes were differentially expressed (P < 0.005) during para- to endo-dormant and endo- to eco-dormant transitions, respectively. Transcripts from flower competent vs. non-flower competent crown buds identified 607 differentially expressed genes. Further, sub-network analysis identified expression targets and binding partners associated with circadian clock, dehydration/cold signaling, phosphorylation cascades, and response to abscisic acid, ethylene, gibberellic acid, and jasmonic acid, suggesting these central regulators affect well-defined phases of dormancy and flowering. Potential genetic pathways associated with these dormancy transitions and flowering were used to develop a proposed conceptual model.
Collapse
Affiliation(s)
- Münevver Doğramaci
- Department of Plant Sciences, North Dakota State University, 166 Loftsgard Hall, Fargo, ND 58105-6050, USA
| | | | | | | | | | | |
Collapse
|
463
|
Skirycz A, Inzé D. More from less: plant growth under limited water. Curr Opin Biotechnol 2010; 21:197-203. [PMID: 20363612 DOI: 10.1016/j.copbio.2010.03.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 11/29/2022]
Abstract
When subjected to abiotic stresses, plants actively re-program their growth by modulating both cell division and cell expansion. Growth decreases rapidly upon stress onset but it recovers and adapts once stress conditions become stable. Here, we review recent advances in understanding the mechanisms underlying both stress-induced growth repression and adaptation with an emphasis on drought and leaf growth and we briefly discuss how this knowledge can be translated into crops. It is now clear that stress response of growing and mature leaves is distinct and should be studied separately. Both cell proliferation and expansion are regulated by common signaling pathways involving gibberellins and DELLA proteins while down stream effector genes are stage specific.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
| | | |
Collapse
|
464
|
Abstract
Cold stress adversely affects plant growth and development and thus limits crop productivity. Diverse plant species tolerate cold stress to a varying degree, which depends on reprogramming gene expression to modify their physiology, metabolism, and growth. Cold signal in plants is transmitted to activate CBF-dependent (C-repeat/drought-responsive element binding factor-dependent) and CBF-independent transcriptional pathway, of which CBF-dependent pathway activates CBF regulon. CBF transcription factor genes are induced by the constitutively expressed ICE1 (inducer of CBF expression 1) by binding to the CBF promoter. ICE1-CBF cold response pathway is conserved in diverse plant species. Transgenic analysis in different plant species revealed that cold tolerance can be significantly enhanced by genetic engineering CBF pathway. Posttranscriptional regulation at pre-mRNA processing and export from nucleus plays a role in cold acclimation. Small noncoding RNAs, namely micro-RNAs (miRNAs) and small interfering RNAs (siRNAs), are emerging as key players of posttranscriptional gene silencing. Cold stress-regulated miRNAs have been identified in Arabidopsis and rice. In this chapter, recent advances on cold stress signaling and tolerance are highlighted.
Collapse
|
465
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
466
|
Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R. Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:261-73. [PMID: 19854800 PMCID: PMC2791123 DOI: 10.1093/jxb/erp300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a programmed developmental process governed by various endogenous and exogenous factors, such as the plant developmental stage, leaf age, phytohormone levels, darkness, and exposure to stresses. It was found that, in addition to its well-documented role in the enhancement of plant frost tolerance, overexpression of the C-repeat/dehydration responsive element binding factor 2 (CBF2) gene in Arabidopsis delayed the onset of leaf senescence and extended the life span of the plants by approximately 2 weeks. This phenomenon was exhibited both during developmental leaf senescence and during senescence of detached leaves artificially induced by either darkness or phytohormones. Transcriptome analysis using the Affymetrix ATH1 genome array revealed that overexpression of CBF2 significantly influenced the expression of 286 genes in mature leaf tissue. In addition to 30 stress-related genes, overexpression of CBF2 also affected the expression of 24 transcription factor (TF) genes, and 20 genes involved in protein metabolism, degradation, and post-translational modification. These results indicate that overexpression of CBF2 not only increases frost tolerance, but also affects other developmental processes, most likely through interactions with additional TFs and protein modification genes. The present findings shed new light on the crucial relationship between plant stress tolerance and longevity, as reported for other eukaryotic organisms.
Collapse
Affiliation(s)
- Michal Sharabi-Schwager
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Alon Samach
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, the Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Charles L. Guy
- Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA
| | - Ron Porat
- Department of Postharvest Science of Fresh Produce, ARO, the Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- To whom correspondence should addressed: E-mail:
| |
Collapse
|
467
|
|
468
|
Hua J. From freezing to scorching, transcriptional responses to temperature variations in plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:568-73. [PMID: 19716335 DOI: 10.1016/j.pbi.2009.07.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/06/2009] [Accepted: 07/28/2009] [Indexed: 05/04/2023]
Abstract
Plants are capable of adapting to a wide range of temperatures by reprogramming their transcriptome, proteome, and metabolome. Early investigations uncovered a regulatory network containing the CBF-COR pathway in freezing tolerance and the HSF-HSP pathway in thermotolerance. Recent studies have identified additional signaling components for extreme temperature tolerance and new regulators of plant form in response to temperature variation within the nonextreme range. Some common regulators are shared between temperature responses and other environmental and developmental responses. These discoveries further reveal the complexity and sophistication of molecular mechanisms underlying plants' adaptation to their environment.
Collapse
Affiliation(s)
- Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
469
|
Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C, Gao J. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 71:115-29. [PMID: 19544047 DOI: 10.1007/s11103-009-9513-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 05/31/2009] [Indexed: 05/23/2023]
Abstract
We isolated 13 DREB1 (dehydration responsive element binding factor 1) genes from chrysanthemum and further divided them into three groups, DgDREB1A, DgDREB1B and DgDREB1C, based on the phylogenetic analysis. Each group showed their unique expression patterns under cold, dehydration and salt stress conditions. Arabidopsis plants overexpressing DgDREB1A (1A plants) exhibited significantly stronger tolerance to freezing and drought than those overexpressing DgDREB1B (1B plants) and the control plants. In addition, 1A plants showed delayed flowering, but not dwarfism; while 1B plants showed dwarfism, but not delayed flowering. In 1A plants, the expression of three stress-related DREB1-downstream genes, COR47, COR15A, and RD29A, was strongly induced while the expression of CO and FT, two photoperiod responsive flowering-time genes, was inhibited. In 1B plants, the expression of GA2ox7, a GA-deactivation enzyme gene, was dramatically enhanced. The results above strongly suggest that members from different DgDREB1 groups may have distinct effects on plant development: DgDREB1A may be involved in photoperiod-related flowering-time determination and DgDREB1B in GA-mediated plant development.
Collapse
Affiliation(s)
- Zheng Tong
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
470
|
Huang JG, Yang M, Liu P, Yang GD, Wu CA, Zheng CC. GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:1132-1145. [PMID: 19422608 DOI: 10.1111/j.1365-3040.2009.01995.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants vary significantly in their ability to tolerate low temperatures. The CBF/DREB1 cold response pathway has been identified in many plant species and plays a pivotal role in low temperature tolerance. Here, we show that GhDREB1 is a functional homologue and elevates the freezing, salt and osmotic stress tolerance of transgenic Arabidopsis. The constitutive expression of GhDREB1 in Arabidopsis caused dwarfism and late flowering phenotypes, which could be rescued by exogenous application of GA(3). Endogenous bioactive GA contents were significantly lower in GhDREB1 overexpressing Arabidopsis than in wild-type plants. RT-PCR analyses revealed that the transcript levels of the GA synthase genes were higher in transgenics than in wild-type plants, whereas the GA deactivating genes were lower. Flowering related genes in different regulatory pathways were also affected by GhDREB1, which may account for the flowering delay phenotype. Moreover, the GhDREB1 overexpressing Arabidopsis exhibited decreased sensitivity to cytokinin (CK) which is associated with repression of expression of type-B and type-A ARRs, two key components in the CK-signalling pathway.
Collapse
Affiliation(s)
- Jin-Guang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | | | | | | | | | | |
Collapse
|
471
|
Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q, Fu X, Fan LM, Deng XW. Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. THE PLANT CELL 2009; 21:2378-90. [PMID: 19717618 PMCID: PMC2751948 DOI: 10.1105/tpc.108.065433] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 07/02/2009] [Accepted: 08/12/2009] [Indexed: 05/17/2023]
Abstract
The phytohormone gibberellic acid (GA) regulates diverse aspects of plant growth and development. GA responses are triggered by the degradation of DELLA proteins, which function as repressors in GA signaling pathways. Recent studies in Arabidopsis thaliana and rice (Oryza sativa) have implied that the degradation of DELLA proteins occurred via the ubiquitin-proteasome system. Here, we developed an Arabidopsis cell-free system to recapitulate DELLA protein degradation in vitro. Using this cell-free system, we documented that Lys-29 of ubiquitin is the major site for ubiquitin chain formation to mediate DELLA protein degradation. We also confirmed the specific roles of GA receptors and multisubunit E3 ligase components in regulating DELLA protein degradation. In addition, blocking DELLA degradation with a PP1/PP2A phosphatase inhibitor in our cell-free assay suggested that degradation of DELLA proteins required protein Ser/Thr dephosphorylation activity. Furthermore, our data revealed that the LZ domain of Arabidopsis DELLA proteins is essential for both their stability and activity. Thus, our in vitro degradation system provides biochemical insights into the regulation of DELLA protein degradation. This in vitro assay system could be widely adapted for dissecting cellular signaling pathways in which regulated proteolysis is a key recurrent theme.
Collapse
Affiliation(s)
- Feng Wang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | | | | | |
Collapse
|
472
|
Patel D, Franklin KA. Temperature-regulation of plant architecture. PLANT SIGNALING & BEHAVIOR 2009; 4:577-9. [PMID: 19820338 PMCID: PMC2710546 DOI: 10.4161/psb.4.7.8849] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 05/20/2023]
Abstract
As sessile organisms, plants have evolved great plasticity to adapt to their surrounding environment. Temperature signals regulate the timing of multiple developmental processes and have dramatic effects on plant architecture and biomass. The modulation of plant architecture by temperature is of increasing relevance with regard to crop productivity and global climate change. Unlike many other organisms, the mechanisms through which plants sense changes in ambient temperature remain elusive. Multiple studies have identified crosstalk between ambient temperature sensing, light signaling, cold acclimation and pathogen response pathways. The regulation of plant architecture by temperature appears to involve the complex integration of multiple hormone signaling networks. Gibberellin (GA), Salicylic Acid (SA) and cytokinin have been implicated in the regulation of plant growth during chilling, whilst a predominant role for auxin is observed at high temperatures. This mini-review summarizes current knowledge of plant growth regulation by temperature and crosstalk with other abiotic and biotic stress signaling pathways.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
473
|
Harberd NP, Belfield E, Yasumura Y. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. THE PLANT CELL 2009; 21:1328-39. [PMID: 19470587 PMCID: PMC2700538 DOI: 10.1105/tpc.109.066969] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 05/18/2023]
Abstract
The phytohormone gibberellin (GA) has long been known to regulate the growth, development, and life cycle progression of flowering plants. However, the molecular GA-GID1-DELLA mechanism that enables plants to respond to GA has only recently been discovered. In addition, studies published in the last few years have highlighted previously unsuspected roles for the GA-GID1-DELLA mechanism in regulating growth response to environmental variables. Here, we review these advances within a general plant biology context and speculate on the answers to some remaining questions. We also discuss the hypothesis that the GA-GID1-DELLA mechanism enables flowering plants to maintain transient growth arrest, giving them the flexibility to survive periods of adversity.
Collapse
Affiliation(s)
- Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
| | | | | |
Collapse
|
474
|
Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. PLANT & CELL PHYSIOLOGY 2009; 50:447-62. [PMID: 19131357 DOI: 10.1093/pcp/pcp004] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis PSEUDO RESPONSE REGULATOR (PRR) genes are components of the circadian clock mechanism. In order to understand the scope of genome-wide transcriptional regulation by PRR genes, a comparison survey of gene expression in wild-type Arabidopsis and a prr9-11 prr7-10 prr5-10 triple mutant (d975) using mRNA collected during late daytime was conducted using an Affymetrix ATH-1 GeneChip. The expression of 'night genes' increased and the expression of 'day genes' decreased toward the end of the diurnal light phase, but expression of these genes was essentially constant in d975. The expression levels of 'night genes' were lower, whereas the expression of 'day genes' was higher in d975 than in the wild type. Bioinformatics approaches have indicated that the set of up-regulated genes in d975 and the set of cold-responsive genes have significant overlap. We found that d975 is more tolerant to cold, high salinity and drought stresses than the wild type. In addition, dehydration-responsive element B1/C-repeat-binding factor (DREB1/CBF), which is expressed around mid-day, is more highly expressed in d975. Raffinose and L-proline accumulated at higher levels in d975 even when plants were grown under normal conditions. These results suggest that PRR9, PRR7 and PRR5 are involved in a mechanism that anticipates diurnal cold stress and which initiates a stress response by mediating cyclic expression of stress response genes, including DREB1/CBF.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Achard P, Genschik P. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1085-92. [PMID: 19043067 DOI: 10.1093/jxb/ern301] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bioactive gibberellins (GAs) are tetracyclic diterpenoid plant hormones that promote important processes of plant growth and development, such as seed germination, growth through elongation, and floral transition. Thus, mutant plants that are affected in GA biosynthesis or signalling exhibit altered seed germination and, at the adult stage, are dwarf and dark green and also show delayed flowering. The components of the GA metabolism and signalling pathways are reviewed here and recent findings regarding the regulation and possible mode of action of DELLA proteins are discussed.
Collapse
Affiliation(s)
- P Achard
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur, F-67084 Strasbourg, France
| | | |
Collapse
|
476
|
Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. THE PLANT CELL 2008; 20:2420-36. [PMID: 18805991 PMCID: PMC2570722 DOI: 10.1105/tpc.108.058818] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 08/22/2008] [Accepted: 09/05/2008] [Indexed: 05/18/2023]
Abstract
Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.
Collapse
Affiliation(s)
- Ivo Rieu
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|