451
|
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of abnormal lymphocyte homeostasis, resulting from mutations in the Fas apoptotic pathway. Clinical manifestations include noninfectious and nonmalignant lymphadenopathy, splenomegaly, and autoimmune pathology-most commonly, autoimmune cytopenias. Rarely, and in association with specific genetic mutations, patients with ALPS may go on to develop secondary lymphoid malignancies. Though ALPS is a rare disorder, it should be suspected and ruled out in children presenting with chronic and refractory multilineage cytopenias associated with nonmalignant lymphoproliferation. Revised diagnostic criteria and insights into disease biology have improved both diagnosis and treatment. Sirolimus and mycophenolate mofetil are the best-studied and most effective corticosteroid-sparing therapies for ALPS, and they should be considered first-line therapy for patients who need chronic treatment. This review highlights practical clinical considerations for diagnosis and management of ALPS.
Collapse
|
452
|
Hematopoietic stem cell transplantation for CTLA4 deficiency. J Allergy Clin Immunol 2016; 138:615-619.e1. [DOI: 10.1016/j.jaci.2016.01.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 01/22/2023]
|
453
|
CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood 2016; 128:1037-42. [PMID: 27418640 DOI: 10.1182/blood-2016-04-712612] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
CTLA-4 is a critical inhibitory "checkpoint" molecule of immune activation. Several recent reports have described patients with immune dysregulation and lymphoproliferative disease resulting from 2 different genetic diseases that directly or indirectly cause CTLA-4 deficiency. Numerous articles have also been published describing CTLA-4 blockade in cancer immunotherapy and its side effects, which are ultimately the consequence of treatment-induced CTLA-4 deficiency. Here, we review these 2 diseases and CTLA-4 blockade therapy, emphasizing the crucial role of CTLA-4 in immune checkpoint regulation.
Collapse
|
454
|
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.
Collapse
Affiliation(s)
- Fayhan J Alroqi
- Division of Immunology, Boston Children's Hospital, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
455
|
Maffucci P, Filion CA, Boisson B, Itan Y, Shang L, Casanova JL, Cunningham-Rundles C. Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency. Front Immunol 2016; 7:220. [PMID: 27379089 PMCID: PMC4903998 DOI: 10.3389/fimmu.2016.00220] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023] Open
Abstract
Whole exome sequencing (WES) has proven an effective tool for the discovery of genetic defects in patients with primary immunodeficiencies (PIDs). However, success in dissecting the genetic etiology of common variable immunodeficiency (CVID) has been limited. We outline a practical framework for using WES to identify causative genetic defects in these subjects. WES was performed on 50 subjects diagnosed with CVID who had at least one of the following criteria: early onset, autoimmune/inflammatory manifestations, low B lymphocytes, and/or familial history of hypogammaglobulinemia. Following alignment and variant calling, exomes were screened for mutations in 269 PID-causing genes. Variants were filtered based on the mode of inheritance and reported frequency in the general population. Each variant was assessed by study of familial segregation and computational predictions of deleteriousness. Out of 433 variations in PID-associated genes, we identified 17 probable disease-causing mutations in 15 patients (30%). These variations were rare or private and included monoallelic mutations in NFKB1, STAT3, CTLA4, PIK3CD, and IKZF1, and biallelic mutations in LRBA and STXBP2. Forty-two other damaging variants were found but were not considered likely disease-causing based on the mode of inheritance and/or patient phenotype. WES combined with analysis of PID-associated genes is a cost-effective approach to identify disease-causing mutations in CVID patients with severe phenotypes and was successful in 30% of our cohort. As targeted therapeutics are becoming the mainstay of treatment for non-infectious manifestations in CVID, this approach will improve management of patients with more severe phenotypes.
Collapse
Affiliation(s)
- Patrick Maffucci
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles A Filion
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Bertrand Boisson
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Descartes University, Paris, France
| | - Yuval Itan
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Lei Shang
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Jean-Laurent Casanova
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Descartes University, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Charlotte Cunningham-Rundles
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
456
|
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53:575-90. [PMID: 27250108 DOI: 10.1136/jmedgenet-2015-103690] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary antibody deficiency characterised by hypogammaglobulinaemia, impaired production of specific antibodies after immunisation and increased susceptibility to infections. CVID shows a considerable phenotypical and genetic heterogeneity. In contrast to many other primary immunodeficiencies, monogenic forms count for only 2-10% of patients with CVID. Genes that have been implicated in monogenic CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2 With the increasing number of disease genes identified in CVID, it has become clear that CVID is an umbrella diagnosis and that many of these genetic defects cause distinct disease entities. Moreover, there is accumulating evidence that at least a subgroup of patients with CVID has a complex rather than a monogenic inheritance. This review aims to discuss current knowledge regarding the molecular genetic basis of CVID with an emphasis on the relationship with the clinical and immunological phenotype.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karim Y Vermaelen
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
457
|
Allenspach E, Torgerson TR. Autoimmunity and Primary Immunodeficiency Disorders. J Clin Immunol 2016; 36 Suppl 1:57-67. [PMID: 27210535 DOI: 10.1007/s10875-016-0294-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Advances in DNA sequencing technologies have led to a quickening in the pace at which new genetic immunodeficiency disorders have been identified. Among the newly identified defects are a number of disorders that present primarily with autoimmunity as opposed to recurrent infections. These "immune dysregulation" disorders have begun to cluster together to form an increased understanding of some of the basic molecular mechanisms that underlie the establishment and maintenance of immune tolerance and the development of autoimmunity. This review will present three major themes that have emerged in our understanding of the mechanisms that underlie autoimmunity and immune dysregulation in humans.
Collapse
Affiliation(s)
- Eric Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA.
| |
Collapse
|
458
|
Gámez-Díaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG, Noriko M, Morio T, Worth AJJ, Blessing J, Van de Veerdonk F, Feuchtinger T, Kanariou M, Schmitt-Graeff A, Jung S, Seneviratne S, Burns S, Belohradsky BH, Rezaei N, Bakhtiar S, Speckmann C, Jordan M, Grimbacher B. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol 2016; 137:223-230. [PMID: 26768763 DOI: 10.1016/j.jaci.2015.09.025] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency caused by biallelic mutations in LRBA that abolish LRBA protein expression. OBJECTIVE We sought to report the extended phenotype of LRBA deficiency in a cohort of 22 LRBA-deficient patients. METHODS Clinical criteria, protein detection, and genetic sequencing were applied to diagnose LRBA deficiency. RESULTS Ninety-three patients met the inclusion criteria and were considered to have possible LRBA deficiency. Twenty-four patients did not express LRBA protein and were labeled as having probable LRBA deficiency, whereas 22 were genetically confirmed as having definitive LRBA deficiency, with biallelic mutations in LRBA. Seventeen of these were novel and included homozygous or compound heterozygous mutations. Immune dysregulation (95%), organomegaly (86%), recurrent infections (71%), and hypogammaglobulinemia (57%) were the main clinical complications observed in LRBA-deficient patients. Although 81% of LRBA-deficient patients had normal T-cell counts, 73% had reduced regulatory T (Treg) cell numbers. Most LRBA-deficient patients had low B-cell subset counts, mainly in switched memory B cells (80%) and plasmablasts (92%), with a defective specific antibody response in 67%. Of the 22 patients, 3 are deceased, 2 were treated successfully with hematopoietic stem cell transplantation, 7 are receiving immunoglobulin replacement, and 15 are receiving immunosuppressive treatment with systemic corticosteroids alone or in combination with steroid-sparing agents. CONCLUSION This report describes the largest cohort of patients with LRBA deficiency and offers guidelines for physicians to identify LRBA deficiency, supporting appropriate clinical management.
Collapse
Affiliation(s)
- Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Dietrich August
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Markus G Seidel
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Medical University Graz, Graz, Austria
| | - Mitsuiki Noriko
- Department of Pediatrics and Developmental Biology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, Tokyo, Japan
| | - Austen J J Worth
- Department of Immunology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Jacob Blessing
- Cincinnati Children's Hospital Medical Center, University of Cincinnati Medical School, Cincinnati, Ohio
| | - Frank Van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Tobias Feuchtinger
- Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maria Kanariou
- Department of Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | - Sophie Jung
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Suranjith Seneviratne
- UCL Centre for Immunodeficiency, Royal Free Hospital Foundation Trust, London, United Kingdom
| | - Siobhan Burns
- UCL Centre for Immunodeficiency, Royal Free Hospital Foundation Trust, London, United Kingdom
| | - Bernd H Belohradsky
- Division of Immunology and Infectious Disease, University Childrens Hospital Munich, Munich, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, and the Department of Immunology, School of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Michael Jordan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati Medical School, Cincinnati, Ohio
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; UCL Centre for Immunodeficiency, Royal Free Hospital Foundation Trust, London, United Kingdom.
| |
Collapse
|
459
|
Tesi B, Priftakis P, Lindgren F, Chiang SCC, Kartalis N, Löfstedt A, Lörinc E, Henter JI, Winiarski J, Bryceson YT, Meeths M. Successful Hematopoietic Stem Cell Transplantation in a Patient with LPS-Responsive Beige-Like Anchor (LRBA) Gene Mutation. J Clin Immunol 2016; 36:480-9. [PMID: 27146671 DOI: 10.1007/s10875-016-0289-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/21/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Autosomal recessive mutations in LRBA, encoding for LPS-responsive beige-like anchor protein, were described in patients with a common variable immunodeficiency (CVID)-like disease characterized by hypogammaglobulinemia, autoimmune cytopenias, and enteropathy. Here, we detail the clinical, immunological, and genetic features of a patient with severe autoimmune manifestations. METHODS Whole exome sequencing was performed to establish a molecular diagnosis. Evaluation of lymphocyte subsets was performed for immunological characterization. Medical files were reviewed to collect clinical and immunological data. RESULTS A 7-year-old boy, born to consanguineous parents, presented with autoimmune hemolytic anemia, hepatosplenomegaly, autoimmune thyroiditis, and severe autoimmune gastrointestinal manifestations. Immunological investigations revealed low immunoglobulin levels and low numbers of B and NK cells. Treatment included immunoglobulin replacement and immunosuppressive therapy. Seven years after disease onset, the patient developed severe neurological symptoms resembling acute disseminated encephalomyelitis, prompting allogeneic hematopoietic stem cell transplantation (HSCT) with the HLA-identical mother as donor. Whole exome sequencing of the patient uncovered a homozygous 1 bp deletion in LRBA (c.7162delA:p.T2388Pfs*7). Importantly, during 2 years of follow-up post-HSCT, marked clinical improvement and recovery of immune function was observed. CONCLUSIONS Our data suggest a beneficial effect of HSCT in patients with LRBA deficiency.
Collapse
Affiliation(s)
- Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden. .,Clinical Genetics Unit, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Peter Priftakis
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fredrik Lindgren
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Science Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Samuel C C Chiang
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nikolaos Kartalis
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Alexandra Löfstedt
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Clinical Genetics Unit, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Esther Lörinc
- Department of Pathology, University Hospital Karolinska Huddinge, Solna, Sweden.,Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jacek Winiarski
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Science Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden. .,Clinical Genetics Unit, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
460
|
Vece TJ, Watkin LB, Nicholas S, Canter D, Braun MC, Guillerman RP, Eldin KW, Bertolet G, McKinley S, de Guzman M, Forbes L, Chinn I, Orange JS. Copa Syndrome: a Novel Autosomal Dominant Immune Dysregulatory Disease. J Clin Immunol 2016; 36:377-387. [PMID: 27048656 PMCID: PMC4842120 DOI: 10.1007/s10875-016-0271-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
Inherently defective immunity typically results in either ineffective host defense, immune regulation, or both. As a category of primary immunodeficiency diseases, those that impair immune regulation can lead to autoimmunity and/or autoinflammation. In this review we focus on one of the most recently discovered primary immunodeficiencies that leads to immune dysregulation: "Copa syndrome". Copa syndrome is named for the gene mutated in the disease, which encodes the alpha subunit of the coatomer complex-I that, in aggregate, is devoted to transiting molecular cargo from the Golgi complex to the endoplasmic reticulum (ER). Copa syndrome is autosomal dominant with variable expressivity and results from mutations affecting a narrow amino acid stretch in the COPA gene-encoding COPα protein. Patients with these mutations typically develop arthritis and interstitial lung disease with pulmonary hemorrhage representing a striking feature. Immunologically Copa syndrome is associated with autoantibody development, increased Th17 cells and pro-inflammatory cytokine expression including IL-1β and IL-6. Insights have also been gained into the underlying mechanism of Copa syndrome, which include excessive ER stress owing to the impaired return of proteins from the Golgi, and presumably resulting aberrant cellular autophagy. As such it represents a novel cellular disorder of intracellular trafficking associated with a specific clinical presentation and phenotype.
Collapse
Affiliation(s)
- Timothy J. Vece
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Levi B. Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Sarah Nicholas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Debra Canter
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | - Karen W. Eldin
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Grant Bertolet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Scott McKinley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Marietta de Guzman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Lisa Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Ivan Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| |
Collapse
|
461
|
LRBA deficiency with autoimmunity and early onset chronic erosive polyarthritis. Clin Immunol 2016; 168:88-93. [PMID: 27057999 DOI: 10.1016/j.clim.2016.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/21/2022]
Abstract
LRBA (lipopolysaccharide-responsive and beige-like anchor protein) deficiency associates immune deficiency, lymphoproliferation, and various organ-specific autoimmunity. To date, prevalent symptoms are autoimmune cytopenias and enteropathy, and lymphocytic interstitial lung disease. In 2 siblings from a consanguineous family presenting with early onset polyautoimmunity, we presumed autosomal recessive inheritance and performed whole exome sequencing. We herein report the first case of early-onset, severe, chronic polyarthritis associated with LRBA deficiency. A novel 1bp insertion in the LRBA gene, abolishing protein expression, was identified in this family. Among the 2 brothers homozygous for LRBA mutation, one developed Evans syndrome and deceased at age 8.5 from complications of severe autoimmune thrombocytopenia. His brother, who carried the same homozygous LRBA mutation, early-onset erosive polyarthritis associated with chronic, bilateral, anterior uveitis and early onset type 1 diabetes mellitus. This report widens the clinical spectrum of LRBA deficiency and, in lights of the variable phenotypes described so far, prompts us to screen for this disease in patients with multiple autoimmune symptoms in the family, including severe, erosive, polyarticular juvenile arthritis.
Collapse
|
462
|
Flow Cytometry, a Versatile Tool for Diagnosis and Monitoring of Primary Immunodeficiencies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:254-71. [PMID: 26912782 DOI: 10.1128/cvi.00001-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetic defects of the immune system are referred to as primary immunodeficiencies (PIDs). These immunodeficiencies are clinically and immunologically heterogeneous and, therefore, pose a challenge not only for the clinician but also for the diagnostic immunologist. There are several methodological tools available for evaluation and monitoring of patients with PIDs, and of these tools, flow cytometry has gained prominence, both for phenotyping and functional assays. Flow cytometry allows real-time analysis of cellular composition, cell signaling, and other relevant immunological pathways, providing an accessible tool for rapid diagnostic and prognostic assessment. This minireview provides an overview of the use of flow cytometry in disease-specific diagnosis of PIDs, in addition to other broader applications, which include immune phenotyping and cellular functional measurements.
Collapse
|
463
|
Schreiner F, Plamper M, Dueker G, Schoenberger S, Gámez-Díaz L, Grimbacher B, Hilger AC, Gohlke B, Reutter H, Woelfle J. Infancy-Onset T1DM, Short Stature, and Severe Immunodysregulation in Two Siblings With a Homozygous LRBA Mutation. J Clin Endocrinol Metab 2016; 101:898-904. [PMID: 26745254 DOI: 10.1210/jc.2015-3382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Type 1 diabetes mellitus (T1DM) is caused by autoimmunity against pancreatic β-cells. Although a significant number of T1DM patients have or will develop further autoimmune disorders during their lifetime, coexisting severe immunodysregulation is rare. OBJECTIVE Presuming autosomal-recessive inheritance in a complex immunodysregulation disorder including T1DM and short stature in two siblings, we performed whole-exome sequencing. CASE PRESENTATION Two Libyan siblings born to consanguineous parents were presented to our diabetology department at ages 12 and 5 years, respectively. Apart from T1DM diagnosed at age 2 years, patient 1 suffered from chronic restrictive lung disease, mild enteropathy, hypogammaglobulinemia, and GH deficiency. Fluorescence-activated cell sorting analysis revealed B-cell deficiency. In addition, CD4(+)/CD25(+) and CD25(high)/FoxP3(+) cells were diminished, whereas an unusual CD25(-)/FoxP3(+) population was detectable. The younger brother, patient 2, also developed T1DM during infancy. Although his enteropathy was more severe and electrolyte derangements repeatedly led to hospitalization, he did not have significant pulmonary problems. IgG levels and B-lymphocytes were within normal ranges. RESULTS By whole-exome sequencing we identified a homozygous truncating mutation (c.2445_2447del(C)3ins(C)2, p.P816Lfs*4) in the lipopolysaccharide-responsive beige-like anchor (LRBA) gene in both siblings. The diagnosis of LRBA deficiency was confirmed by a fluorescence-activated cell sorting-based immunoassay showing the absence of LRBA protein in phytohemagglutinin-stimulated peripheral blood mononuclear cells. CONCLUSION We identified a novel truncating LRBA mutation in two siblings with T1DM, short stature, and severe immunodysregulation. LRBA mutations have previously been reported to cause multiorgan autoimmunity and immunodysfunction. In light of the variable phenotypes reported so far in LRBA-mutant individuals, LRBA deficiency should be considered in all patients presenting with T1DM and signs of severe immunodysregulation.
Collapse
Affiliation(s)
- Felix Schreiner
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Michaela Plamper
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Gesche Dueker
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Stefan Schoenberger
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Laura Gámez-Díaz
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Bodo Grimbacher
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Alina C Hilger
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Bettina Gohlke
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Heiko Reutter
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology (F.S., M.P., B.Go., J.W.), Pediatric Gastroenterology and Hepatology (G.D.), and Pediatric Hematology and Oncology (S.S.), Children's Hospital, University of Bonn, 53113 Bonn, Germany; Center for Chronic Immunodeficiency (L.G.-D., B.Gr.), University Medical Center and University of Freiburg, 79085 Freiburg, Germany; Institute for Human Genetics (A.C.H., H.R.), University of Bonn, 53113 Bonn, Germany; and Department of Neonatology and Pediatric Intensive Care (H.R.), Children's Hospital, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
464
|
Abstract
The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Susanne H Baumeister
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, Massachusetts 02115.,Harvard Medical School, Boston, Massachusetts 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Harvard Medical School, Boston, Massachusetts 02115
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Novartis Institutes for BioMedical Research, Exploratory Immuno-oncology, Cambridge, Massachusetts 02139
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
465
|
Barrett A, Hermann GJ. A Caenorhabditis elegans Homologue of LYST Functions in Endosome and Lysosome-Related Organelle Biogenesis. Traffic 2016; 17:515-35. [PMID: 26822177 DOI: 10.1111/tra.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 01/20/2023]
Abstract
LYST-1 is a Caenorhabditis elegans BEACH domain containing protein (BDCP) homologous to LYST and NBEAL2, BDCPs controlling organelle biogenesis that are implicated in human disease. Unlike the three other BDCPs encoded by C. elegans, mutations in lyst-1 lead to smaller lysosome-related organelles (LROs), smaller lysosomes, increased numbers of LROs and decreased numbers of early endosomes. lyst-1(-) mutations do not obviously disrupt protein trafficking to lysosomes or LROs, however, the formation of gut granules is diminished.
Collapse
Affiliation(s)
- Alec Barrett
- Department of Biology, Lewis & Clark College, 0615 SW Palatine Hill Rd., Portland, OR, 97219, USA
| | - Greg J Hermann
- Department of Biology, Lewis & Clark College, 0615 SW Palatine Hill Rd., Portland, OR, 97219, USA
| |
Collapse
|
466
|
Nussbaum G. From bedside to the bench: uncovering the role of a T-cell protein in protecting CTLA-4. Oral Dis 2016; 22:249-50. [PMID: 26847262 DOI: 10.1111/odi.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel Nussbaum
- The Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
467
|
Brzostek J, Gascoigne NRJ, Rybakin V. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition. Front Immunol 2016; 7:24. [PMID: 26870040 PMCID: PMC4740375 DOI: 10.3389/fimmu.2016.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 01/07/2023] Open
Abstract
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore, Singapore; Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
468
|
Genomics is rapidly advancing precision medicine for immunological disorders. Nat Immunol 2016; 16:1001-4. [PMID: 26382860 DOI: 10.1038/ni.3275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
469
|
Vece TJ, Young LR. Update on Diffuse Lung Disease in Children. Chest 2016; 149:836-45. [PMID: 26502226 DOI: 10.1378/chest.15-1986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 12/31/2022] Open
Abstract
Diffuse lung diseases in children, also called children's interstitial lung disease, are a diverse group of rare disorders that cause disturbances of gas exchange in the lungs. Although individually rare, there are many different forms of diffuse lung disease in children, and collectively these disorders are associated with significant morbidity and mortality, as well as health-care resource utilization. Over the past several years, there have been many significant advances in the field, including genetic discoveries and the development of clinical practice guidelines. This review summarizes recent advances in the understanding, diagnosis, and treatment of diffuse lung diseases in children.
Collapse
Affiliation(s)
- Timothy J Vece
- Section of Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, TX.
| | - Lisa R Young
- Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN; Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
470
|
The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. J Allergy Clin Immunol 2016; 137:3-17. [DOI: 10.1016/j.jaci.2015.11.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023]
|
471
|
Bakhtiar S, Ruemmele F, Charbit-Henrion F, Lévy E, Rieux-Laucat F, Cerf-Bensussan N, Bader P, Paetow U. Atypical Manifestation of LPS-Responsive Beige-Like Anchor Deficiency Syndrome as an Autoimmune Endocrine Disorder without Enteropathy and Immunodeficiency. Front Pediatr 2016; 4:98. [PMID: 27683652 PMCID: PMC5022363 DOI: 10.3389/fped.2016.00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 01/07/2023] Open
Abstract
Monogenic primary immunodeficiency syndromes can affect one or more endocrine organs by autoimmunity during childhood. Clinical manifestations include type 1 diabetes mellitus, hypothyroidism, adrenal insufficiency, and vitiligo. Lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA) deficiency was described in 2012 as a novel primary immunodeficiency, predominantly causing immune dysregulation and early onset enteropathy. We describe the heterogeneous clinical course of LRBA deficiency in two siblings, mimicking an autoimmune polyendocrine disorder in one of them in presence of the same underlying genetic mutation. The third child of consanguineous Egyptian parents (Patient 1) presented at 6 months of age with intractable enteropathy and failure to thrive. Later on, he developed symptoms of adrenal insufficiency, autoimmune hemolytic anemia, thrombocytopenia, and infectious complications due to immunosuppressive treatment. The severe enteropathy was non-responsive to the standard treatment and led to death at the age of 22 years. His younger sister (Patient 2) presented at the age of 12 to the endocrinology department with decompensated hypothyroidism, perioral vitiligo, delayed pubertal development, and growth failure without enteropathy and immunodeficiency. Using whole exome sequencing, we identified a homozygous frameshift mutation (c.6862delT, p.Y2288MfsX29) in the LRBA gene in both siblings. To our knowledge, our patient (Patient 2) is the first case of LRBA deficiency described with predominant endocrine phenotype without immunodeficiency and enteropathy. LRBA deficiency should be considered as underlying disease in pediatric patients presenting with autoimmune endocrine symptoms. The same genetic mutation can manifest with a broad phenotypic spectrum without genotype-phenotype correlation. The awareness for disease symptoms among non-immunologists might be a key to early diagnosis. Further functional studies in LRBA deficiency are necessary to provide detailed information on the origin of autoimmunity in order to develop reliable predictive biomarkers for affected patients.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt , Frankfurt , Germany
| | - Frank Ruemmele
- UMR 1163, Laboratory of Intestinal Immunity, INSERM, Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France; GENIUS Group (GENetically ImmUne mediated enteropathieS) from ESPGHAN (European Society for Pediatric Gastroenterology, Hepatology and Nutrition), Paris, France; Department of Pediatric Gastroenterology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Fabienne Charbit-Henrion
- UMR 1163, Laboratory of Intestinal Immunity, INSERM, Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France; GENIUS Group (GENetically ImmUne mediated enteropathieS) from ESPGHAN (European Society for Pediatric Gastroenterology, Hepatology and Nutrition), Paris, France; Department of Pediatric Gastroenterology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Eva Lévy
- Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France; UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM, Paris, France
| | - Frédéric Rieux-Laucat
- Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France; UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM, Paris, France
| | - Nadine Cerf-Bensussan
- UMR 1163, Laboratory of Intestinal Immunity, INSERM, Paris, France; Université Paris Descartes-Sorbonne Paris Cité and Institut Imagine, Paris, France; Department of Pediatric Gastroenterology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Peter Bader
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt , Frankfurt , Germany
| | - Ulrich Paetow
- Division for Pediatric Endocrinology, University Hospital Frankfurt , Frankfurt , Germany
| |
Collapse
|
472
|
Spectrum of Phenotypes Associated with Mutations in LRBA. J Clin Immunol 2015; 36:33-45. [DOI: 10.1007/s10875-015-0224-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
|
473
|
Abstract
Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.
Collapse
Affiliation(s)
- Michael Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Bernice Lo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
474
|
A Successful HSCT in a Girl with Novel LRBA Mutation with Refractory Celiac Disease. J Clin Immunol 2015; 36:8-11. [PMID: 26686526 DOI: 10.1007/s10875-015-0220-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
|
475
|
|
476
|
Lucas CL, Lenardo MJ. Identifying genetic determinants of autoimmunity and immune dysregulation. Curr Opin Immunol 2015; 37:28-33. [PMID: 26433354 DOI: 10.1016/j.coi.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Common autoimmune diseases are relatively heterogeneous with both genetic and environmental factors influencing disease susceptibility and progression. As the populations in developed countries age, these chronic diseases will become an increasing burden in human suffering and health care costs. By contrast, rare immune diseases that are severe and develop early in childhood are frequently monogenic and fully penetrant, often with a Mendelian inheritance pattern. Although these may be incompatible with survival or cured by hematopoietic stem cell transplantation, we will argue that they constitute a rich source of genetic insights into immunological diseases. Here, we discuss five examples of well-studied Mendelian disease-causing genes and their known or predicted roles in conferring susceptibility to common, polygenic diseases of autoimmunity. Mendelian disease mutations, as experiments of nature, reveal human loci that are indispensable for immune regulation and, therefore, most promising as therapeutic targets.
Collapse
Affiliation(s)
- Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
477
|
Children’s Interstitial and Diffuse Lung Disease. Progress and Future Horizons. Ann Am Thorac Soc 2015; 12:1451-7. [DOI: 10.1513/annalsats.201508-558ps] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
478
|
Beck-Engeser GB, Ahrends T, Knittel G, Wabl R, Metzner M, Eilat D, Wabl M. Infectivity and insertional mutagenesis of endogenous retrovirus in autoimmune NZB and B/W mice. J Gen Virol 2015; 96:3396-3410. [PMID: 26315139 DOI: 10.1099/jgv.0.000271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Murine leukaemia virus has been suggested to contribute to both autoimmune disease and leukaemia in the NZB mouse and in the (NZB × NZW) F1 (abbreviated B/W) mouse. However, with apparently only xenotropic but no ecotropic virus constitutively expressed in these mice, few mechanisms could explain the aetiology of either disease in either mouse strain. Because pseudotyped and/or inducible ecotropic virus may play a role, we surveyed the ability of murine leukaemia virus in NZB, NZW and B/W mice to infect and form a provirus. From the spleen of NZB mice, we isolated circular cDNA of xenotropic and polytropic virus, which indicates ongoing infection by these viruses. From a B/W lymphoma, we isolated and determined the complete sequence of a putative ecotropic NZW virus. From B/W mice, we recovered de novo endogenous retroviral integration sites (tags) from the hyperproliferating cells of the spleen and the peritoneum. The tagged genes seemed to be selected to aid cellular proliferation, as several of them are known cancer genes. The insertions are consistent with the idea that endogenous retrovirus contributes to B-cell hyperproliferation and progression to lymphoma in B/W mice.
Collapse
Affiliation(s)
- Gabriele B Beck-Engeser
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Tomasz Ahrends
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Gero Knittel
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Rafael Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Mirjam Metzner
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| | - Dan Eilat
- Department of Medicine, Hadassah University Hospital and The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA
| |
Collapse
|
479
|
Affiliation(s)
- David M Sansom
- Institute of Immunity and Transplantation, University College London, Royal Free Hospital, London, UK.
| |
Collapse
|