451
|
Huertas A, Montani D, Savale L, Pichon J, Tu L, Parent F, Guignabert C, Humbert M. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Respir J 2020; 56:13993003.01634-2020. [PMID: 32554538 PMCID: PMC7301835 DOI: 10.1183/13993003.01634-2020] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alice Huertas
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France .,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Jérémie Pichon
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Ly Tu
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Florence Parent
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
452
|
Cadegiani FA, Wambier CG, Goren A. Spironolactone: An Anti-androgenic and Anti-hypertensive Drug That May Provide Protection Against the Novel Coronavirus (SARS-CoV-2) Induced Acute Respiratory Distress Syndrome (ARDS) in COVID-19. Front Med (Lausanne) 2020; 7:453. [PMID: 32850920 PMCID: PMC7399048 DOI: 10.3389/fmed.2020.00453] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Flavio A Cadegiani
- Department of Endocrinology, Federal University of São Paulo, São Paulo, Brazil.,Corpometria Institute, Brasília, Brazil
| | - Carlos G Wambier
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Andy Goren
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Applied Biology Inc., Irvine, CA, United States
| |
Collapse
|
453
|
Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of 'happy' hypoxemia in COVID-19. Respir Res 2020; 21:198. [PMID: 32723327 PMCID: PMC7385717 DOI: 10.1186/s12931-020-01462-5] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic is a global crisis, challenging healthcare systems worldwide. Many patients present with a remarkable disconnect in rest between profound hypoxemia yet without proportional signs of respiratory distress (i.e. happy hypoxemia) and rapid deterioration can occur. This particular clinical presentation in COVID-19 patients contrasts with the experience of physicians usually treating critically ill patients in respiratory failure and ensuring timely referral to the intensive care unit can, therefore, be challenging. A thorough understanding of the pathophysiological determinants of respiratory drive and hypoxemia may promote a more complete comprehension of a patient's clinical presentation and management. Preserved oxygen saturation despite low partial pressure of oxygen in arterial blood samples occur, due to leftward shift of the oxyhemoglobin dissociation curve induced by hypoxemia-driven hyperventilation as well as possible direct viral interactions with hemoglobin. Ventilation-perfusion mismatch, ranging from shunts to alveolar dead space ventilation, is the central hallmark and offers various therapeutic targets.
Collapse
Affiliation(s)
- Sebastiaan Dhont
- Department of Internal Medicine and Paediatrics, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Eric Derom
- Department of Internal Medicine and Paediatrics, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Department of Internal Medicine and Paediatrics, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Pieter Depuydt
- Department of Internal Medicine and Paediatrics, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Paediatrics, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
454
|
Gavriatopoulou M, Korompoki E, Fotiou D, Ntanasis-Stathopoulos I, Psaltopoulou T, Kastritis E, Terpos E, Dimopoulos MA. Organ-specific manifestations of COVID-19 infection. Clin Exp Med 2020; 20:493-506. [PMID: 32720223 PMCID: PMC7383117 DOI: 10.1007/s10238-020-00648-x] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Although COVID-19 presents primarily as a lower respiratory tract infection transmitted via air droplets, increasing data suggest multiorgan involvement in patients that are infected. This systemic involvement is postulated to be mainly related to the SARS-CoV-2 virus binding on angiotensin-converting enzyme 2 (ACE2) receptors located on several different human cells. Lung involvement is the most common serious manifestation of the disease, ranging from asymptomatic disease or mild pneumonia, to severe disease associated with hypoxia, critical disease associated with shock, respiratory failure and multiorgan failure or death. Among patients with COVID-19, underlying cardiovascular comorbidities including hypertension, diabetes and especially cardiovascular disease, has been associated with adverse outcomes, whereas the emergence of cardiovascular complications, including myocardial injury, heart failure and arrhythmias, has been associated with poor survival. Gastrointestinal symptoms are also frequently encountered and may persist for several days. Haematological complications are frequent as well and have been associated with poor prognosis. Furthermore, recent studies have reported that over a third of infected patients develop a broad spectrum of neurological symptoms affecting the central nervous system, peripheral nervous system and skeletal muscles, including anosmia and ageusia. The skin, the kidneys, the liver, the endocrine organs and the eyes are also affected by the systemic COVID-19 disease. Herein, we provide a comprehensive overview of the organ-specific systemic manifestations of COVID-19.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece.,Division of Brain Sciences, Imperial College London, London, UK
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Theodora Psaltopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, 80 Vas. Sofias Avenue, 11528, Athens, Greece.
| |
Collapse
|
455
|
Knights H, Mayor N, Millar K, Cox M, Bunova E, Hughes M, Baker J, Mathew S, Russell-Jones D, Kotwica A. Characteristics and outcomes of patients with COVID-19 at a district general hospital in Surrey, UK. Clin Med (Lond) 2020; 20:e148-e153. [PMID: 32709637 DOI: 10.7861/clinmed.2020-0303] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND This retrospective cohort study aims to define the clinical findings and outcomes of every patient admitted to a district general hospital in Surrey with COVID-19 in March 2020, providing a snapshot of the first wave of infection in the UK. This study is the first detailed insight into the impact of frailty markers on patient outcomes and provides the infection rate among healthcare workers. METHODS Data were obtained from medical records. Outcome measures were level of oxygen therapy, discharge and death. Patients were followed up until 21 April 2020. RESULTS 108 patients were included. 34 (31%) died in hospital or were discharged for palliative care. 43% of patients aged over 65 died. The commonest comorbidities were hypertension (49; 45%) and diabetes (25; 23%). Patients who died were older (mean difference ±SEM, 13.76±3.12 years; p<0.0001) with a higher NEWS2 score (median 6, IQR 2.5-7.5 vs median 2, IQR 2-6) and worse renal function (median differences: urea 2.7 mmol/L, p<0.01; creatinine 4 μmol/L, p<0.05; eGFR 14 mL/min, p<0.05) on admission compared with survivors. Frailty markers were identified as risk factors for death. Clinical Frailty Scale (CFS) was higher in patients over 65 who died than in survivors (median 5, IQR 4-6 vs 3.5, IQR 2-5; p<0.01). Troponin and creatine kinase levels were higher in patients who died than in those who recovered (p<0.0001). Lymphopenia was common (median 0.8, IQR 0.6-1.2; p<0.005). Every patient with heart failure died (8). 26 (24%) were treated with continuous positive airway pressure (CPAP; median 3 days, IQR 2-7.3) and 9 (8%) were intubated (median 14 days, IQR 7-21). All patients who died after discharge (4; 6%) were care home residents. 276 of 699 hospital staff tested were positive for COVID-19. CONCLUSIONS This study identifies older patients with frailty as being particularly vulnerable and reinforces government policy to protect this group at all costs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jack Baker
- Royal Surrey County Hospital, Guildford, UK
| | | | - David Russell-Jones
- Royal Surrey County Hospital, Guildford, UK and University of Surrey, Guildford, UK. Harry Knights and Nikhil Mayor contributed equally to this work
| | | |
Collapse
|
456
|
Sandoval J, Del Valle-Mondragón L, Masso F, Zayas N, Pulido T, Teijeiro R, Gonzalez-Pacheco H, Olmedo-Ocampo R, Sisniega C, Paez-Arenas A, Pastelin-Hernandez G, Gomez-Arroyo J, Voelkel NF. Angiotensin converting enzyme 2 and angiotensin (1-7) axis in pulmonary arterial hypertension. Eur Respir J 2020; 56:13993003.02416-2019. [PMID: 32241831 DOI: 10.1183/13993003.02416-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND In animal models of pulmonary arterial hypertension (PAH), angiotensin-converting enzyme (ACE)2 and angiotensin (Ang)-(1-7) have been shown to have vasodilatory, antiproliferative, antifibrotic and antihypertrophic properties. However, the status and role of the ACE2-Ang(1-7) axis in human PAH is incompletely understood. METHODS We studied 85 patients with a diagnosis of PAH of distinct aetiologies. 55 healthy blood donors paired for age and sex served as controls. Blood samples were obtained from the pulmonary artery in patients with PAH during right heart catheterisation. Peripheral blood was obtained for both groups. Ang(1-7) and -II were measured using zone capillary electrophoresis. Aldosterone, Ang(1-9), AngA and ACE2 were measured using ELISA, and ACE2 activity was determined enzymatically. RESULTS Of the 85 patients, 47 had idiopathic PAH, 25 had PAH associated with congenital heart disease and 13 had PAH associated with collagen vascular disease. Compared to controls, patients with PAH had a higher concentration of AngII (median 1.03, interquartile range 0.72-1.88 pmol·mL-1 versus 0.19, 0.10-0.37 pmol·mL-1; p<0.001) and of aldosterone (88.7, 58.7-132 ng·dL-1 versus 12.9, 9.55-19.9 ng·dL-1; p<0.001). Conversely, PAH patients had a lower concentration of Ang(1-7) than controls (0.69, 0.474-0.91 pmol·mL-1 versus 4.07, 2.82-6.73 pmol·mL-1; p<0.001), and a lower concentration of Ang(1-9) and AngA. Similarly, the ACE2 concentration was higher than in controls (8.7, 5.35-13.2 ng·mL-1 versus 4.53, 1.47-14.3 ng·mL-1; p=0.011), whereas the ACE2 activity was significantly reduced (1.88, 1.08-2.81 nmol·mL-1 versus 5.97, 3.1-17.8 nmol·mL-1; p<0.001). No significant differences were found among the three different aetiological forms of PAH. CONCLUSIONS The AngII-ACE2-Ang(1-7) axis appears to be altered in human PAH and we propose that this imbalance, in favour of AngII, plays a role in the pathogenesis of the severe PAH. Further mechanistic studies are warranted.
Collapse
Affiliation(s)
- Julio Sandoval
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | | | - Felipe Masso
- Physiology and Molecular Biology Dept of the "Ignacio Chávez", National Institute of Cardiology, Mexico City, Mexico
| | - Nayeli Zayas
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Tomás Pulido
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Ricardo Teijeiro
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | | | | | - Carlos Sisniega
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Araceli Paez-Arenas
- Physiology and Molecular Biology Dept of the "Ignacio Chávez", National Institute of Cardiology, Mexico City, Mexico
| | | | - Jose Gomez-Arroyo
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico.,Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Norbert F Voelkel
- Dept of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
457
|
Henry BM, Benoit S, Lippi G, Benoit J. Letter to the Editor - Circulating plasma levels of angiotensin II and aldosterone in patients with coronavirus disease 2019 (COVID-19): A preliminary report. Prog Cardiovasc Dis 2020; 63:702-703. [PMID: 32659343 PMCID: PMC7348599 DOI: 10.1016/j.pcad.2020.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brandon Michael Henry
- Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Stefanie Benoit
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, OH, USA
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Justin Benoit
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
458
|
Bendjelid K. Should we use angiotensin II infusion in COVID-19-associated vasoplegic shock? Crit Care 2020; 24:407. [PMID: 32646518 PMCID: PMC7347253 DOI: 10.1186/s13054-020-03144-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Karim Bendjelid
- Cardiovascular Unit, Intensive Care Division, University Hospitals, Geneva, Switzerland.
- Geneva Hemodynamic Research Group, Geneva, Switzerland.
- Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
459
|
Cancer Patients Have a Higher Risk Regarding COVID-19 - and Vice Versa? Pharmaceuticals (Basel) 2020; 13:ph13070143. [PMID: 32640723 PMCID: PMC7408191 DOI: 10.3390/ph13070143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The world is currently suffering from a pandemic which has claimed the lives of over 230,000 people to date. The responsible virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causes the coronavirus disease 2019 (COVID-19), which is mainly characterized by fever, cough and shortness of breath. In severe cases, the disease can lead to respiratory distress syndrome and septic shock, which are mostly fatal for the patient. The severity of disease progression was hypothesized to be related to an overshooting immune response and was correlated with age and comorbidities, including cancer. A lot of research has lately been focused on the pathogenesis and acute consequences of COVID-19. However, the possibility of long-term consequences caused by viral infections which has been shown for other viruses are not to be neglected. In this regard, this opinion discusses the interplay of SARS-CoV-2 infection and cancer with special focus on the inflammatory immune response and tissue damage caused by infection. We summarize the available literature on COVID-19 suggesting an increased risk for severe disease progression in cancer patients, and we discuss the possibility that SARS-CoV-2 could contribute to cancer development. We offer lines of thought to provide ideas for urgently needed studies on the potential long-term effects of SARS-CoV-2 infection.
Collapse
|
460
|
Tadic M, Cuspidi C, Grassi G, Mancia G. COVID-19 and arterial hypertension: Hypothesis or evidence? J Clin Hypertens (Greenwich) 2020; 22:1120-1126. [PMID: 32627330 PMCID: PMC7362072 DOI: 10.1111/jch.13925] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
Investigations reported that hypertension, diabetes, and cardiovascular diseases were the most prevalent comorbidities among the patients with coronavirus disease 2019 (COVID-19). Hypertension appeared consistently as the most prevalent risk factors in COVID-19 patients. Some investigations speculated about the association between renin-angiotensin-aldosterone system (RAAS) and susceptibility to COVID-19, as well as the relationship between RAAS inhibitors and increased mortality in these patients. This raised concern about the potential association between hypertension (and its treatment) and propensity for COVID-19. There are only a few follow-up studies that investigated the impact of comorbidities on outcome in these patients with conflicting findings. Hypertension has been proven to be more prevalent in patients with an adverse outcome (admission in intensive care unit, use of mechanical ventilation, or death). So far, there is no study that demonstrated independent predictive value of hypertension on mortality in COVID-19 patients. There are many speculations about this coronavirus and its relation with different risk factors and underlying diseases. The aim of this review was to summarize the current knowledge about the relationship between hypertension and COVID-19 and the role of hypertension on outcome in these patients.
Collapse
Affiliation(s)
- Marijana Tadic
- Department of CardiologyUniversity Hospital “Dr. Dragisa Misovic–Dedinje”BelgradeSerbia
| | - Cesare Cuspidi
- University of Milan‐BicoccaMilanItaly
- Clinical Research UnitIstituto Auxologico ItalianoMedaItaly
| | | | - Giuseppe Mancia
- University of Milan‐BicoccaMilanItaly
- Policlinico di MonzaMonzaItaly
| |
Collapse
|
461
|
Saavedra JM. COVID-19, Angiotensin Receptor Blockers, and the Brain. Cell Mol Neurobiol 2020; 40:667-674. [PMID: 32385549 PMCID: PMC7207082 DOI: 10.1007/s10571-020-00861-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, DC, 20057, USA.
| |
Collapse
|
462
|
South AM, Brady TM, Flynn JT. ACE2 (Angiotensin-Converting Enzyme 2), COVID-19, and ACE Inhibitor and Ang II (Angiotensin II) Receptor Blocker Use During the Pandemic: The Pediatric Perspective. Hypertension 2020; 76:16-22. [PMID: 32367746 PMCID: PMC7289676 DOI: 10.1161/hypertensionaha.120.15291] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Potential but unconfirmed risk factors for coronavirus disease 2019 (COVID-19) in adults and children may include hypertension, cardiovascular disease, and chronic kidney disease, as well as the medications commonly prescribed for these conditions, ACE (angiotensin-converting enzyme) inhibitors, and Ang II (angiotensin II) receptor blockers. Coronavirus binding to ACE2 (angiotensin-converting enzyme 2), a crucial component of the renin-angiotensin-aldosterone system, underlies much of this concern. Children are uniquely impacted by the coronavirus, but the reasons are unclear. This review will highlight the relationship of COVID-19 with hypertension, use of ACE inhibitors and Ang II receptor blockers, and lifetime risk of cardiovascular disease from the pediatric perspective. We briefly summarize the renin-angiotensin-aldosterone system and comprehensively review the literature pertaining to the ACE 2/Ang-(1-7) pathway in children and the clinical evidence for how ACE inhibitors and Ang II receptor blockers affect this important pathway. Given the importance of the ACE 2/Ang-(1-7) pathway and the potential differences between adults and children, it is crucial that children are included in coronavirus-related research, as this may shed light on potential mechanisms for why children are at decreased risk of severe COVID-19.
Collapse
Affiliation(s)
- Andrew M. South
- Section of Nephrology, Department of Pediatrics, Wake Forest School of Medicine and Brenner Children’s Hospital
- Department of Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston Salem, NC
| | - Tammy M. Brady
- Division of Nephrology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph T. Flynn
- Department of Pediatrics, University of Washington School of Medicine and Division of Nephrology, Seattle Children’s Hospital, Seattle, WA, USA
| |
Collapse
|
463
|
Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P. SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart. Heart Lung Circ 2020; 29:973-987. [PMID: 32601020 PMCID: PMC7274628 DOI: 10.1016/j.hlc.2020.05.101] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease (COVID-19) is a serious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The symptoms of the disease range from asymptomatic to mild respiratory symptoms and even potentially life-threatening cardiovascular and pulmonary complications. Cardiac complications include acute myocardial injury, arrhythmias, cardiogenic shock and even sudden death. Furthermore, drug interactions with COVID-19 therapies may place the patient at risk for arrhythmias, cardiomyopathy and sudden death. In this review, we summarise the cardiac manifestations of COVID-19 infection and propose a simplified algorithm for patient management during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | - Julia H Indik
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Deepak Acharya
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Preethi William
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
464
|
Ata F, Montoro-Lopez MN, Awouda S, Elsukkar AMA, Badr AMH, Patel AAAH. COVID-19 and Heart Failure: The Big Challenge. Heart Views 2020; 21:187-192. [PMID: 33688410 PMCID: PMC7898990 DOI: 10.4103/heartviews.heartviews_122_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with chronic heart failure (HF) are among the most vulnerable populations in the COVID era. HF patients infected with COVID-19 are at a significant risk of severe illness and death. They usually present with shortness of breath and radiologic signs of an acute decompensation, which can mask the manifestations of COVID-19. Delay in the diagnosis increases the risk of individual poor outcomes and jeopardizes healthcare workers if protective and isolation measures are not established promptly. Furthermore, the COVID-19 pandemic is forcing health-care systems to modify the delivery of care to patients. Outpatient services are being done virtually, and elective procedures postponed. These may have an impact on the quality of life and survival of chronic HF patients. We present two cases of patients with the previous history of HF who developed an acute exacerbation secondary to COVID-19 infection. In this review, we focused on the main challenges physicians face when dealing with COVID-19 in chronic HF patients at the individual and system levels.
Collapse
Affiliation(s)
- Fateen Ata
- Department of Internal Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Maria Nieves Montoro-Lopez
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Samah Awouda
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Abdallah M Abu Elsukkar
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Amr Mohamed Hamed Badr
- Department of Cardiology and Cardiovascular Surgery, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
465
|
Lim S, Shin SM, Nam GE, Jung CH, Koo BK. Proper Management of People with Obesity during the COVID-19 Pandemic. J Obes Metab Syndr 2020; 29:84-98. [PMID: 32544885 PMCID: PMC7338495 DOI: 10.7570/jomes20056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, countries around the world have been struggling with a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Case series have reported that people with obesity experience more severe coronavirus disease 2019 (COVID-19). During the COVID-19 pandemic, people have tended to gain weight because of environmental factors imposed by quarantine policies, such as decreased physical activity and increased consumption of unhealthy food. Mechanisms have been postulated to explain the association between COVID-19 and obesity. COVID-19 aggravates inflammation and hypoxia in people with obesity, which can lead to severe illness and the need for intensive care. The immune system is compromised in people with obesity and COVID-19 affects the immune system, which can lead to complications. Interleukin-6 and other cytokines play an important role in the progression of COVID-19. The inflammatory response, critical illness, and underlying risk factors may all predispose to complications of obesity such as diabetes mellitus and cardiovascular diseases. The common medications used to treat people with obesity, such as glucagon-like peptide-1 analogues, statins, and antiplatelets agents, should be continued because these agents have anti-inflammatory properties and play protective roles against cardiovascular and all-cause mortality. It is also recommended that renin–angiotensin system blockers are not stopped during the COVID-19 pandemic because no definitive data about the harm or benefits of these agents have been reported. During the COVID-19 pandemic, social activities have been discouraged and exercise facilities have been closed. Under these restrictions, tailored lifestyle modifications such as home exercise training and cooking of healthy food are encouraged.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Myoung Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University College of Medicine, Seoul, Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
466
|
Abstract
PURPOSE OF THE REVIEW Angiotensin-converting enzyme 2 (ACE2) is a key counter-regulatory component of the renin-angiotensin system. Here, we briefly review the mechanistic and target organ effects related to ACE2 activity, and the importance of ACE2 in SARS-CoV-2 infection. RECENT FINDINGS ACE2 converts angiotensin (Ang) II to Ang-(1-7), which directly opposes the vasoconstrictive, proinflammatory, and prothrombotic effects of Ang II. ACE2 also facilitates SARS-CoV-2 viral entry into host cells. Drugs that interact with the renin-angiotensin system may impact ACE2 expression and COVID-19 pathogenesis; however, the magnitude and direction of these effects are unknown at this time. High quality research is needed to improve our understanding of how agents that act on the renin-angiotensin system impact ACE2 and COVID-19-related disease outcomes.
Collapse
Affiliation(s)
- Jordana B Cohen
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Thomas C Hanff
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam P Bress
- Division of Health System Innovation and Research, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew M South
- Section of Nephrology, Department of Pediatrics, Wake Forest School of Medicine and Brenner Children's Hospital, Winston Salem, USA
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston Salem, USA
- Department of Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
467
|
Fabregues F, Peñarrubia J. Assisted reproduction and thromboembolic risk in the COVID-19 pandemic. Reprod Biomed Online 2020; 41:361-364. [PMID: 32660814 PMCID: PMC7316047 DOI: 10.1016/j.rbmo.2020.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has significantly increased mortality in many countries, with the number of infected cases increasing exponentially worldwide. One of the main determining factors of the poor prognosis in these patients is the development of coagulopathy. Moreover, it is well known that assisted reproductive technology procedures confer a risk of thromboembolic complications. This commentary analyses specific aspects coexisting between the thrombotic risk described during virus infection and that reported in the context of assisted reproduction treatments. Based on known pathophysiological aspects of virus infection and of ovarian stimulation, there are common elements that deserve to be taken into account. In the present context, any risk of hyperstimulation should be avoided. Gonadotrophin-releasing hormone agonist triggering should be mandatory in high-responder patients and/or those with COVID-19 infection. In both cases, the cycle should be segmented. A proposal is made for the use of prophylactic low molecular weight heparin not only in those cases in which oocyte retrieval has been performed, but also in those in which cancellation has been decided. In addition, endometrial preparation for frozen-thawed embryo transfers should use the transdermal route in order to minimize the higher thrombotic risk associated with the oral route.
Collapse
Affiliation(s)
- Francesc Fabregues
- Hospital Clinic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | |
Collapse
|
468
|
Schnaubelt S, Breyer MK, Siller-Matula J, Domanovits H. Atrial fibrillation: a risk factor for unfavourable outcome in COVID-19? A case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2020; 4:1-6. [PMID: 33089045 PMCID: PMC7337643 DOI: 10.1093/ehjcr/ytaa166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Background Fulminant cardiac involvement in COVID-19 patients has been reported; the underlying suspected mechanisms include myocarditis, arrhythmia, and cardiac tamponade. In parallel, atrial fibrillation is common in the elderly population which is at particularly high risk for COVID-19 morbidity and mortality. Case summary A 72-year-old male SARS-CoV2-positive patient was admitted to the intensive care unit due to delirium and acute respiratory failure. Atrial fibrillation known from history was exacerbated, and made complex rate and rhythm control necessary. Progressive heart failure with haemodynamic deterioration and acute kidney injury with the need for continuous renal replacement therapy were further aggravated by pericardial tamponade. Discussion Treatment of acute heart failure in COVID-19 patients with a cytokine storm complicated by tachycardic atrial fibrillation should include adequate rate or rhythm control, and potentially immunomodulation.
Collapse
Affiliation(s)
| | | | - Jolanta Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Hans Domanovits
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
469
|
Tomasoni D, Italia L, Adamo M, Inciardi RM, Lombardi CM, Solomon SD, Metra M. COVID-19 and heart failure: from infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur J Heart Fail 2020; 22:957-966. [PMID: 32412156 PMCID: PMC7273093 DOI: 10.1002/ejhf.1871] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with cardiovascular disease and, namely, heart failure are more susceptible to coronavirus disease 2019 (COVID‐19) and have a more severe clinical course once infected. Heart failure and myocardial damage, shown by increased troponin plasma levels, occur in at least 10% of patients hospitalized for COVID‐19 with higher percentages, 25% to 35% or more, when patients critically ill or with concomitant cardiac disease are considered. Myocardial injury may be elicited by multiple mechanisms, including those occurring with all severe infections, such as fever, tachycardia, adrenergic stimulation, as well as those caused by an exaggerated inflammatory response, endotheliitis and, in some cases, myocarditis that have been shown in patients with COVID‐19. A key role may be that of the renin–angiotensin–aldosterone system. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infects human cells binding to angiotensin‐converting enzyme 2 (ACE2), an enzyme responsible for the cleavage of angiotensin II into angiotensin 1–7, which has vasodilating and anti‐inflammatory effects. Virus‐mediated down‐regulation of ACE2 may increase angiotensin II stimulation and contribute to the deleterious hyper‐inflammatory reaction of COVID‐19. On the other hand, ACE2 may be up‐regulated in patients with cardiac disease and treated with ACE inhibitors or angiotensin receptor blockers. ACE2 up‐regulation may increase the susceptibility to COVID‐19 but may be also protective vs. angiotensin II‐mediated vasoconstriction and inflammatory activation. Recent data show the lack of untoward effects of ACE inhibitors or angiotensin receptor blockers for COVID‐19 infection and severity. Prospective trials are needed to ascertain whether these drugs may have protective effects.
Collapse
Affiliation(s)
- Daniela Tomasoni
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Leonardo Italia
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Riccardo M Inciardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Carlo M Lombardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
470
|
Lehrer S, Rheinstein PH. Human Gene Sequences in SARS-CoV-2 and Other Viruses. In Vivo 2020; 34:1633-1636. [PMID: 32503822 DOI: 10.21873/invivo.11954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
In a previous study, we identified a 117 base severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence in the human genome with 94.6% identity. The sequence was in chromosome 1p within an intronic region of the netrin G1 (NTNG1) gene. The sequence matched a sequence in the SARS-CoV-2 Orf1b gene in non-structural protein 14 (NSP14), which is an exonuclease and NSP15, an endoribonuclease. In the current study we compared the human genome with other viral genomes to determine some of the characteristics of human sequences found in the latter. Most of the viruses had human sequences, but they were short. Hepatitis A and St Louis encephalitis had human sequences that were longer than the 117 base SARS-Cov-2 sequence, but they were in non-coding regions of the human genome. The SARS-Cov-2 sequence was the only long sequence found in a human gene (NTNG1). The related coronaviruses SARS-Cov had a 41 BP human sequence on chromosome 3 that was not part of a human gene, and MERS had no human sequence. The 117 base SARS-CoV-2 human sequence is relatively close to the viral spike sequence, separated only by NSP16, a 904 base sequence. The mechanism for SARS-CoV-2 infection is the binding of the virus spike protein to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. We have no explanation for the NSP14 and NSP15 SARS-Cov-2 sequences we observed here or how they might relate to infectiousness. Further studies are warranted.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.
| | | |
Collapse
|
471
|
Ji H, de Souza AMA, Bajaj B, Zheng W, Wu X, Speth RC, Sandberg K. Sex-Specific Modulation of Blood Pressure and the Renin-Angiotensin System by ACE (Angiotensin-Converting Enzyme) 2. Hypertension 2020; 76:478-487. [PMID: 32564694 DOI: 10.1161/hypertensionaha.120.15276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We showed ACE (angiotensin-converting enzyme) 2 is higher in the kidney of male compared with female mice. To further investigate this sex difference, we examined the role of ACE2 in Ang-[1-8] (angiotensin [1-8])-induced hypertension and regulation of the renin-angiotensin system in the kidney of WT (wild type) and Ace2 KO (knockout) mice. Mean arterial pressure rose faster in WT male than WT female mice after Ang-[1-8] infusion. This sex difference was attenuated in ACE2 KO mice. Ang-[1-8] infusion reduced glomerular AT1R (angiotensin type 1 receptor) binding in WT female mice by 30%, and deletion of Ace2 abolished this effect. In contrast, Ang-[1-8] infusion increased glomerular AT1R binding in WT male mice by 1.2-fold, and this effect of Ang-[1-8] persisted in Ace2 KO male mice (1.3-fold). ACE2 also had an effect on renal protein expression of the neutral endopeptidase NEP (neprilysin), the enzyme that catabolizes Ang-[1-10] (angiotensin [1-10]), the precursor of Ang-[1-8]. Ang-[1-8] infusion downregulated NEP protein expression by 20% in WT male, whereas there was a slight increase in NEP expression in WT female mice. Deletion of Ace2 resulted in lowered NEP expression after Ang-[1-8] infusion in both sexes. These findings suggest sex-specific ACE2 regulation of the renin-angiotensin system contributes to female protection from Ang-[1-8]-induced hypertension. These findings have ramifications for the current coronavirus disease 2019 (COVID-19) pandemic, especially in hypertension since ACE2 is the SARS-CoV-2 receptor and hypertension is a major risk factor for poor outcomes.
Collapse
Affiliation(s)
- Hong Ji
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Aline M A de Souza
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Bilkish Bajaj
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Wei Zheng
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Xie Wu
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| | - Robert C Speth
- Department of Pharmaceutical Science, School of Pharmacy, Nova South Eastern University, Fort Lauderdale, FL (R.C.S.)
| | - Kathryn Sandberg
- From the Division of Nephrology and Hypertension, Department of Medicine (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease (H.J., A.M.A.d.S., B.B., W.Z., X.W., K.S.), Georgetown University, Washington, DC
| |
Collapse
|
472
|
Pfeifer M, Ewig S, Voshaar T, Randerath WJ, Bauer T, Geiseler J, Dellweg D, Westhoff M, Windisch W, Schönhofer B, Kluge S, Lepper PM. Position Paper for the State-of-the-Art Application of Respiratory Support in Patients with COVID-19. Respiration 2020; 99:521-542. [PMID: 32564028 PMCID: PMC7360514 DOI: 10.1159/000509104] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/25/2023] Open
Abstract
Against the background of the pandemic caused by infection with the SARS-CoV-2 virus, the German Respiratory Society has appointed experts to develop therapy strategies for COVID-19 patients with acute respiratory failure (ARF). Here we present key position statements including observations about the pathophysiology of (ARF). In terms of the pathophysiology of pulmonary infection with SARS-CoV-2, COVID-19 can be divided into 3 phases. Pulmonary damage in advanced COVID-19 often differs from the known changes in acute respiratory distress syndrome (ARDS). Two types (type L and type H) are differentiated, corresponding to early- and late-stage lung damage. This differentiation should be taken into consideration in the respiratory support of ARF. The assessment of the extent of ARF should be based on arterial or capillary blood gas analysis under room air conditions, and it needs to include the calculation of oxygen supply (measured from the variables of oxygen saturation, hemoglobin level, the corrected values of Hüfner's factor, and cardiac output). Aerosols can cause transmission of infectious, virus-laden particles. Open systems or vented systems can increase the release of respirable particles. Procedures in which the invasive ventilation system must be opened and endotracheal intubation carried out are associated with an increased risk of infection. Personal protective equipment (PPE) should have top priority because fear of contagion should not be a primary reason for intubation. Based on the current knowledge, inhalation therapy, nasal high-flow therapy (NHF), continuous positive airway pressure (CPAP), or noninvasive ventilation (NIV) can be performed without an increased risk of infection to staff if PPE is provided. A significant proportion of patients with ARF present with relevant hypoxemia, which often cannot be fully corrected, even with a high inspired oxygen fraction (FiO2) under NHF. In this situation, the oxygen therapy can be escalated to CPAP or NIV when the criteria for endotracheal intubation are not met. In ARF, NIV should be carried out in an intensive care unit or a comparable setting by experienced staff. Under CPAP/NIV, a patient can deteriorate rapidly. For this reason, continuous monitoring and readiness for intubation are to be ensured at all times. If the ARF progresses under CPAP/NIV, intubation should be implemented without delay in patients who do not have a "do not intubate" order.
Collapse
Affiliation(s)
- Michael Pfeifer
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinik Regensburg, Regensburg, Germany
- Abteilung für Pneumologie, Fachklinik für Lungenerkrankungen Donaustauf, Donaustauf, Germany
- Krankenhaus Barmherzige Brüder, Klinik für Pneumologie und konservative Intensivmedizin, Regensburg, Germany
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Krankenanstalt Bochum, Bochum, Germany
| | - Thomas Voshaar
- Schwerpunkt Pneumologie, Allergologie, Klinische Immunologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Moers, Germany
| | - Winfried Johannes Randerath
- Institut für Pneumologie an der Universität zu Köln, Cologne, Germany
- Klinik für Pneumologie, Krankenhaus Bethanien, Solingen, Germany
| | - Torsten Bauer
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring GmbH, Berlin, Germany,
| | - Jens Geiseler
- Medizinische Klinik IV: Klinik für Pneumologie, Beatmungs- und Schlafmedizin, Klinikum Vest GmbH, Paracelsus-Klinik, Marl, Germany
| | - Dominic Dellweg
- Fachkrankenhaus Kloster Grafschaft GmbH, Akademisches Lehrkrankenhaus der Philipps-Universität Marburg, Schmallenberg, Germany
| | - Michael Westhoff
- Klinik für Pneumologie, Lungenklinik Hemer, Hemer, Germany
- Universität Witten-Herdecke, Witten, Germany
| | - Wolfram Windisch
- Universität Witten-Herdecke, Witten, Germany
- Klinik für Pneumologie, Klinikum Köln-Merheim, Kliniken der Stadt Köln, Lehrstuhl für Pneumologie der Universität Witten-Herdecke, Cologne, Germany
| | - Bernd Schönhofer
- Pneumologische Praxis und pneumologischer Konsildienst im Klinikum Agnes Karll Laatzen, Klinikum Region Hannover, Laatzen, Germany
| | - Stefan Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp M Lepper
- Innere Medizin V: Pneumologie, Allergologie, Beatmungs- und Umweltmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
473
|
Sfera A, Osorio C, Jafri N, Diaz EL, Campo Maldonado JE. Intoxication With Endogenous Angiotensin II: A COVID-19 Hypothesis. Front Immunol 2020; 11:1472. [PMID: 32655579 PMCID: PMC7325923 DOI: 10.3389/fimmu.2020.01472] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 has spread rapidly around the globe. However, despite its high pathogenicity and transmissibility, the severity of the associated disease, COVID-19, varies widely. While the prognosis is favorable in most patients, critical illness, manifested by respiratory distress, thromboembolism, shock, and multi-organ failure, has been reported in about 5% of cases. Several studies have associated poor COVID-19 outcomes with the exhaustion of natural killer cells and cytotoxic T cells, lymphopenia, and elevated serum levels of D-dimer. In this article, we propose a common pathophysiological denominator for these negative prognostic markers, endogenous, angiotensin II toxicity. We hypothesize that, like in avian influenza, the outlook of COVID-19 is negatively correlated with the intracellular accumulation of angiotensin II promoted by the viral blockade of its degrading enzyme receptors. In this model, upregulated angiotensin II causes premature vascular senescence, leading to dysfunctional coagulation, and immunity. We further hypothesize that angiotensin II blockers and immune checkpoint inhibitors may be salutary for COVID-19 patients with critical illness by reversing both the clotting and immune defects (Graphical Abstract).
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Lee Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose E Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
474
|
Radenkovic D, Chawla S, Pirro M, Sahebkar A, Banach M. Cholesterol in Relation to COVID-19: Should We Care about It? J Clin Med 2020; 9:1909. [PMID: 32570882 PMCID: PMC7356583 DOI: 10.3390/jcm9061909] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Current data suggest that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing corona virus disease-19 (COVID-19) seems to follow a more severe clinical course in patients with cardiovascular disease (CVD), hypertension, and overweight/obesity. It appears that lipid-lowering pharmacological interventions, in particular statins, might reduce the risk of cardiovascular complications caused by COVID-19 and might potentially have an additional antiviral activity. It has been shown that high cholesterol levels are associated with more lipid rafts, subdomains of the plasma membrane that can harbour angiotensin-converting enzyme 2 (ACE2) receptors for the S-protein of SARS-CoV-2. Evidence of the importance of cholesterol for viral entry into host cells could suggest a role for cholesterol-lowering therapies in reducing viral infectivity. In addition to their lipid-lowering and plaque-stabilisation effects, statins possess pleiotropic effects including anti-inflammatory, immunomodulatory, and antithrombotic activities. Lower rates of mortality and intubation have been reported in studies investigating statin therapy in influenza infection, and statin therapy was shown to increase viral clearance from the blood during chronic hepatitis C infection. Statins may also serve as potential SARS-CoV-2 main protease inhibitors, thereby contributing to the control of viral infection. In this review, we elaborate on the role of cholesterol level in the process of the coronavirus infection and provide a critical appraisal on the potential of statins in reducing the severity, duration, and complications of COVID-19.
Collapse
Affiliation(s)
- Dina Radenkovic
- Guy’s and St Thomas’ Hospital, London SE1 7EH, UK;
- Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK;
| | - Shreya Chawla
- Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK;
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran 314715311, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz (MUL), Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| |
Collapse
|
475
|
Dawson D, Dominic P, Sheth A, Modi M. Prognostic value of Cardiac Biomarkers in COVID-19 Infection: A Meta-analysis. RESEARCH SQUARE 2020. [PMID: 32702736 PMCID: PMC7336705 DOI: 10.21203/rs.3.rs-34729/v1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Multiple Biomarkers have recently been shown to be elevated in COVID-19, a respiratory infection with multi-organ dysfunction; however, information regarding the prognostic value of cardiac biomarkers as it relates to disease severity and cardiac injury are inconsistent. Research Question The goal of this meta-analysis was to summarize the evidence regarding the prognostic relevance of cardiac biomarkers from data available in published reports. Study Design and Methods PubMed was searched from inception through April 2020 for studies comparing median values of cardiac biomarkers in critically ill versus non-critically ill COVID-19 patients, or patients who died versus those who survived. The weighted mean differences (WMD) and 95% confidence interval (CI) between the groups were calculated for each study and combined using a random effects meta-analysis model. The odds ratio (OR) for mortality based on cardiac injury was combined from studies reporting it. Results Troponin levels were significantly higher in COVID-19 patients who died or were critically ill versus those who were alive or not critically ill (WMD 0.58, 95% CI 0.42–0.71, p<0.001). Cardiac injury was independently associated with significantly increased odds of mortality (OR 6.641, 95% CI 1.26 – 35.1, p=0.03). No difference in BNP was seen between the two groups. A significant difference in levels of D-dimer was seen in those who died or were critically ill. CK levels were only significantly higher in those who died versus those who were alive (WMD 0.47 95% CI 0.09–0.84, p=0.014). Interpretation Cardiac biomarkers add prognostic value to the determination of the severity of COVID-19 and can predict mortality.
Collapse
Affiliation(s)
- Desiree Dawson
- The Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S)
| | - Paari Dominic
- The Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S)
| | - Aakash Sheth
- The Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S)
| | - Malak Modi
- The Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport (LSUHSC-S)
| |
Collapse
|
476
|
Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165878. [PMID: 32544429 PMCID: PMC7293463 DOI: 10.1016/j.bbadis.2020.165878] [Citation(s) in RCA: 647] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective. The recent exposure to SARS-CoV-2 has affected entire world, resulted >0.4 million deaths. Potential drug targets of SARS-CoV-2 are highly conserved. A slight structural difference makes available drugs ineffective against SARS-CoV-2. Cytokine storm during SARS-CoV-2 infection may be targeted to handle COVID-19 patients. Many FDA approved drugs are showing positive effects in clinical trials but further validation in large subject groups is required.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Urooj Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110 019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | | | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
477
|
Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 2020; 10:7448-7464. [PMID: 32642005 PMCID: PMC7330865 DOI: 10.7150/thno.48076] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic is an emerging threat to global public health. While our current understanding of COVID-19 pathogenesis is limited, a better understanding will help us develop efficacious treatment and prevention strategies for COVID-19. One potential therapeutic target is angiotensin converting enzyme 2 (ACE2). ACE2 primarily catalyzes the conversion of angiotensin I (Ang I) to a nonapeptide angiotensin or the conversion of angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) and has direct effects on cardiac function and multiple organs via counter-regulation of the renin-angiotensin system (RAS). Significant to COVID-19, ACE2 is postulated to serve as a major entry receptor for SARS-CoV-2 in human cells, as it does for SARS-CoV. Many infected individuals develop COVID-19 with fever, cough, and shortness of breath that can progress to pneumonia. Disease progression promotes the activation of immune cells, platelets, and coagulation pathways that can lead to multiple organ failure and death. ACE2 is expressed by epithelial cells of the lungs at high level, a major target of the disease, as seen in post-mortem lung tissue of patients who died with COVID-19, which reveals diffuse alveolar damage with cellular fibromyxoid exudates bilaterally. Comparatively, ACE2 is expressed at low level by vascular endothelial cells of the heart and kidney but may also be targeted by the virus in severe COVID-19 cases. Interestingly, SARS-CoV-2 infection downregulates ACE2 expression, which may also play a critical pathogenic role in COVID-19. Importantly, targeting ACE2/Ang 1-7 axis and blocking ACE2 interaction with the S protein of SARS-CoV-2 to curtail SARS-CoV-2 infection are becoming very attractive therapeutics potential for treatment and prevention of COVID-19. Here, we will discuss the following subtopics: 1) ACE2 as a receptor of SARS-CoV-2; 2) clinical and pathological features of COVID-19; 3) role of ACE2 in the infection and pathogenesis of SARS; 4) potential pathogenic role of ACE2 in COVID-19; 5) animal models for pathological studies and therapeutics; and 6) therapeutics development for COVID-19.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Animals
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/therapeutic use
- Antiviral Agents/therapeutic use
- Betacoronavirus/chemistry
- Betacoronavirus/pathogenicity
- Betacoronavirus/physiology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/metabolism
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Disease Models, Animal
- Host Microbial Interactions/physiology
- Humans
- Mice
- Models, Biological
- Pandemics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/therapy
- Pneumonia, Viral/virology
- Receptors, Virus/metabolism
- Renin-Angiotensin System/physiology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Theranostic Nanomedicine
- Viral Vaccines/isolation & purification
- Virus Internalization
Collapse
Affiliation(s)
- Prasun K. Datta
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fengming Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
478
|
Khan SH, Zaidi SK. Review of evidence on using ACEi and ARBs in patients with hypertension and COVID-19. DRUGS & THERAPY PERSPECTIVES 2020; 36:347-350. [PMID: 32837189 PMCID: PMC7281700 DOI: 10.1007/s40267-020-00750-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
COVID-19 has recently become a major pandemic with associated socioeconomic dimensions. Mortality statistics suggest that COVID-19 is more lethal in aged patients with comorbid conditions including hypertension. There is ongoing debate about whether the use of angiotensin converting enzyme (ACE) inhibitors (ACEi) and angiotensin receptor blockers (ARBs) are useful or hazardous in patients with COVID-19, with both narratives supported by researchers with different hypotheses. The researchers supporting the use of these medications believe ACE2 functional blockers may block cellular entry of the SARS-CoV-2 virus and thus improve patient outcomes. The counter viewpoint argues that continuous use of these drugs results in hyperexpression of ACE2 receptors on respiratory epithelium allowing easier SARS-CoV-2 intracellular entry, resulting in enhanced viral replication and tissue damage. This short review discusses the available research on the subject with the objective to consolidate data to allow formulation of recommendations on their use or otherwise. Moreover, the authors also suggest areas for future research on the subject.
Collapse
|
479
|
Pericàs JM, Hernandez-Meneses M, Sheahan TP, Quintana E, Ambrosioni J, Sandoval E, Falces C, Marcos MA, Tuset M, Vilella A, Moreno A, Miro JM. COVID-19: from epidemiology to treatment. Eur Heart J 2020; 41:2092-2112. [PMID: 32511724 PMCID: PMC7279517 DOI: 10.1093/eurheartj/ehaa462] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has greatly impacted the daily clinical practice of cardiologists and cardiovascular surgeons. Preparedness of health workers and health services is crucial to tackle the enormous challenge posed by SARS-CoV-2 in wards, operating theatres, intensive care units, and interventionist laboratories. This Clinical Review provides an overview of COVID-19 and focuses on relevant aspects on prevention and management for specialists within the cardiovascular field.
Collapse
Affiliation(s)
- J M Pericàs
- Infectious Diseases Department, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - M Hernandez-Meneses
- Infectious Diseases Department, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - T P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - E Quintana
- Cardiovascular Surgery Department, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - J Ambrosioni
- Infectious Diseases Department, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - E Sandoval
- Cardiovascular Surgery Department, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - C Falces
- Cardiology Department, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - M A Marcos
- Microbiology Service, Hospital Clinic-ISGlobal, University of Barcelona, Barcelona, Spain
| | - M Tuset
- Farmacy Department, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - A Vilella
- Preventive Medicine Service, Hospital Clinic-ISGlobal, University of Barcelona, Barcelona, Spain
| | - A Moreno
- Infectious Diseases Department, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - J M Miro
- Infectious Diseases Department, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
480
|
Baj J, Karakuła-Juchnowicz H, Teresiński G, Buszewicz G, Ciesielka M, Sitarz R, Forma A, Karakuła K, Flieger W, Portincasa P, Maciejewski R. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J Clin Med 2020; 9:E1753. [PMID: 32516940 PMCID: PMC7356953 DOI: 10.3390/jcm9061753] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become an epidemiological threat and a worldwide concern. SARS-CoV-2 has spread to 210 countries worldwide and more than 6,500,000 confirmed cases and 384,643 deaths have been reported, while the number of both confirmed and fatal cases is continually increasing. COVID-19 is a viral disease that can affect every age group-from infants to the elderly-resulting in a wide spectrum of various clinical manifestations. COVID-19 might present different degrees of severity-from mild or even asymptomatic carriers, even to fatal cases. The most common complications include pneumonia and acute respiratory distress syndrome. Fever, dry cough, muscle weakness, and chest pain are the most prevalent and typical symptoms of COVID-19. However, patients might also present atypical symptoms that can occur alone, which might indicate the possible SARS-CoV-2 infection. The aim of this paper is to review and summarize all of the findings regarding clinical manifestations of COVID-19 patients, which include respiratory, neurological, olfactory and gustatory, gastrointestinal, ophthalmic, dermatological, cardiac, and rheumatologic manifestations, as well as specific symptoms in pediatric patients.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Hanna Karakuła-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (H.K.-J.); (R.S.); (K.K.)
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (G.T.); (G.B.); (M.C.); (A.F.)
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (G.T.); (G.B.); (M.C.); (A.F.)
| | - Marzanna Ciesielka
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (G.T.); (G.B.); (M.C.); (A.F.)
| | - Ryszard Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (H.K.-J.); (R.S.); (K.K.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (G.T.); (G.B.); (M.C.); (A.F.)
| | - Kaja Karakuła
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland; (H.K.-J.); (R.S.); (K.K.)
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, 70126 Bari, Italy;
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
481
|
Cohen JB, Hanff TC, South AM, Sparks MA, Hiremath S, Bress AP, Byrd JB, Chirinos JA. Response by Cohen et al to Letter Regarding Article, "Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19". Circ Res 2020; 126:e140-e141. [PMID: 32496917 PMCID: PMC7265880 DOI: 10.1161/circresaha.120.317205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordana B Cohen
- From the Renal-Electrolyte and Hypertension Division (J.B.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Biostatistics, Epidemiology, and Informatics (J.B.C., T.C.H.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Thomas C Hanff
- Department of Biostatistics, Epidemiology, and Informatics (J.B.C., T.C.H.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania (T.C.H., J.A.C.)
| | - Andrew M South
- Section of Nephrology, Department of Pediatrics, Wake Forest School of Medicine and Brenner Children's Hospital, Winston-Salem, NC (A.M.S.)
- Division of Public Health Sciences, Department of Epidemiology and Prevention, and Department of Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC (A.M.S.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke School of Medicine, Durham, NC (M.A.S.)
- Renal Section, Durham Veterans Affairs Medical Center, NC (M.A.S.)
| | - Swapnil Hiremath
- Division of Nephrology, Department of Medicine, University of Ottawa, Canada (S.H.)
| | - Adam P Bress
- Division of Health System Innovation and Research, Department of Population Health Sciences, University of Utah, Salt Lake City (A.P.B.)
| | - J Brian Byrd
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor (J.B.B.)
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine, University of Pennsylvania (T.C.H., J.A.C.)
| |
Collapse
|
482
|
Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa FG, Adler Y, De Ferrari GM. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart 2020; 106:1127-1131. [PMID: 32499236 DOI: 10.1136/heartjnl-2020-317186] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
The initial mechanism for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the binding of the virus to the membrane-bound form of ACE2, which is mainly expressed in the lung. Since the heart and the vessels also express ACE2, they both could become targets of the virus. However, at present the extent and importance of this potential involvement are unknown. Cardiac troponin levels are significantly higher in patients with more severe infections, patients admitted to intensive care units or in those who have died. In the setting of COVID-19, myocardial injury, defined by an increased troponin level, occurs especially due to non-ischaemic myocardial processes, including severe respiratory infection with hypoxia, sepsis, systemic inflammation, pulmonary thrombosis and embolism, cardiac adrenergic hyperstimulation during cytokine storm syndrome, and myocarditis. At present, there are limited reports on definite diagnosis of myocarditis caused by SARS-CoV-2 in humans and limited demonstration of the virus in the myocardium. In conclusion, although the heart and the vessels are potential targets in COVID-19, there is currently limited evidence on the direct infection of the myocardium by SARS-CoV-2. Additional pathological studies and autopsy series will be very helpful to clarify the potentiality of COVID-19 to directly infect the myocardium and cause myocarditis.
Collapse
Affiliation(s)
- Massimo Imazio
- University Cardiology, AOU Città della Salute e della Scienza di Torino, Torino, Italy .,Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Karin Klingel
- Cardiopathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Ingrid Kindermann
- Department of Internal Medicine III (Cardiology, Angiology and Intensive Care), Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | - Antonio Brucato
- Department of biomedical and clinical sciences, Fatebenefratelli Hospital and University of Milano, Milano, Italy
| | | | - Yehuda Adler
- College of Law and Business, Ramat Gan, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gaetano Maria De Ferrari
- University Cardiology, AOU Città della Salute e della Scienza di Torino and Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
483
|
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci 2020; 256:117905. [PMID: 32504757 PMCID: PMC7832382 DOI: 10.1016/j.lfs.2020.117905] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific community has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2, is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review, we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang II-induced deleterious effects rather than attenuating the virus replication. Protective role of ACE2 in the organs and system Downregulation of ACE2 expression by SARS-CoV-2 leads to Ang II-induced organ damage. The appearance of MAS in COVID-19 patient Suggested treatment to diminish the deleterious effect of Ang II or appearance of MAS
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| | - Lizbeth Riera Leal
- Hospital General Regional número 45, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC DAVIS Institute for Regenerative Cure, Department of Dermatology, University of California, 2921 Stockton Blvd, Rm 1630, 95817 Sacramento, CA, USA.
| |
Collapse
|
484
|
Drucker DJ. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr Rev 2020; 41:5820492. [PMID: 32294179 PMCID: PMC7184382 DOI: 10.1210/endrev/bnaa011] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Individuals with diabetes are at increased risk for bacterial, mycotic, parasitic, and viral infections. The severe acute respiratory syndrome (SARS)-CoV-2 (also referred to as COVID-19) coronavirus pandemic highlights the importance of understanding shared disease pathophysiology potentially informing therapeutic choices in individuals with type 2 diabetes (T2D). Two coronavirus receptor proteins, angiotensin-converting enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4) are also established transducers of metabolic signals and pathways regulating inflammation, renal and cardiovascular physiology, and glucose homeostasis. Moreover, glucose-lowering agents such as the DPP4 inhibitors, widely used in subjects with T2D, are known to modify the biological activities of multiple immunomodulatory substrates. Here, we review the basic and clinical science spanning the intersections of diabetes, coronavirus infections, ACE2, and DPP4 biology, highlighting clinical relevance and evolving areas of uncertainty underlying the pathophysiology and treatment of T2D in the context of coronavirus infection.
Collapse
Affiliation(s)
- Daniel J Drucker
- From the Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, University of Toronto, Toronto Ontario, Canada
| |
Collapse
|
485
|
Baryah ANS, Midha V, Mahajan R, Sood A. Impact of Corona Virus Disease-19 (COVID-19) pandemic on gastrointestinal disorders. Indian J Gastroenterol 2020; 39:214-219. [PMID: 32749642 PMCID: PMC7399026 DOI: 10.1007/s12664-020-01071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023]
Abstract
Worldwide, several hospitals in different regions and countries have been affected with Corona Virus Disease-19 (COVID-19). All medical specialties including gastroenterology are impacted by COVID-19. Here, we review the bidirectional comorbidity of chronic gastrointestinal (GI) disorders and COVID-19, including the incidence and outcome of COVID-19 in individuals with various GI disorders and the impact of COVID-19 on the course and outcome of the underlying (or comorbid) GI disorders. Currently, there is no evidence that COVID-19 is more (or less) frequent in comorbid GI disorders. It is also reassuring that the outcome of COVID-19 is unaffected by the underlying GI disorder or its treatment, though potential concerns remain in regard to the use of immunomodulatory treatments in inflammatory bowel disease (IBD) and liver transplant recipients. Despite these concerns, there is now agreement among experts that ongoing immunomodulatory treatments may not be interrupted in individuals with IBD during the COVID-19 pandemic. Caution, however, may be exercised with the use of corticosteroids in the management of IBD. In addition, COVID-19 does not appear to impact the manifestations, course, outcome, and treatment of comorbid GI disorders, e.g. IBD. Decompensation of liver cirrhosis is, however, possible during COVID-19 episodes. A direct concern, however, might relate to the potential transmission of the virus through fecal microbiota transplants.
Collapse
Affiliation(s)
| | - Vandana Midha
- Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ramit Mahajan
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India.
| |
Collapse
|
486
|
Pfeifer M, Ewig S, Voshaar T, Randerath W, Bauer T, Geiseler J, Dellweg D, Westhoff M, Windisch W, Schönhofer B, Kluge S, Lepper PM. [Position Paper for the State of the Art Application of Respiratory Support in Patients with COVID-19 - German Respiratory Society]. Pneumologie 2020; 74:337-357. [PMID: 32323287 PMCID: PMC7378547 DOI: 10.1055/a-1157-9976] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Against the background of the pandemic caused by infection with the SARS-CoV-2, the German Society for Pneumology and Respiratory Medicine (DGP e.V.), in cooperation with other associations, has designated a team of experts in order to answer the currently pressing questions about therapy strategies in dealing with COVID-19 patients suffering from acute respiratory insufficiency (ARI).The position paper is based on the current knowledge that is evolving daily. Many of the published and cited studies require further review, also because many of them did not undergo standard review processes.Therefore, this position paper is also subject to a continuous review process and will be further developed in cooperation with the other professional societies.This position paper is structured into the following five topics:1. Pathophysiology of acute respiratory insufficiency in patients without immunity infected with SARS-CoV-22. Temporal course and prognosis of acute respiratory insufficiency during the course of the disease3. Oxygen insufflation, high-flow oxygen, non-invasive ventilation and invasive ventilation with special consideration of infectious aerosol formation4. Non-invasive ventilation in ARI5. Supply continuum for the treatment of ARIKey points have been highlighted as core statements and significant observations. Regarding the pathophysiological aspects of acute respiratory insufficiency (ARI), the pulmonary infection with SARS-CoV-2 COVID-19 runs through three phases: early infection, pulmonary manifestation and severe hyperinflammatory phase.There are differences between advanced COVID-19-induced lung damage and those changes seen in Acute Respiratory Distress Syndromes (ARDS) as defined by the Berlin criteria. In a pathophysiologically plausible - but currently not yet histopathologically substantiated - model, two types (L-type and H-type) are distinguished, which correspond to an early and late phase. This distinction can be taken into consideration in the differential instrumentation in the therapy of ARI.The assessment of the extent of ARI should be carried out by an arterial or capillary blood gas analysis under room air conditions and must include the calculation of the oxygen supply (measured from the variables of oxygen saturation, the Hb value, the corrected values of the Hüfner number and the cardiac output). In principle, aerosols can cause transmission of infectious viral particles. Open systems or leakage systems (so-called vented masks) can prevent the release of respirable particles. Procedures in which the invasive ventilation system must be opened, and endotracheal intubation must be carried out are associated with an increased risk of infection.The protection of personnel with personal protective equipment should have very high priority because fear of contagion must not be a primary reason for intubation. If the specifications for protective equipment (eye protection, FFP2 or FFP-3 mask, gown) are adhered to, inhalation therapy, nasal high-flow (NHF) therapy, CPAP therapy or NIV can be carried out according to the current state of knowledge without increased risk of infection to the staff. A significant proportion of patients with respiratory failure presents with relevant hypoxemia, often also caused by a high inspiratory oxygen fraction (FiO2) including NHF, and this hypoxemia cannot be not completely corrected. In this situation, CPAP/NIV therapy can be administered under use of a mouth and nose mask or a respiratory helmet as therapy escalation, as long as the criteria for endotracheal intubation are not fulfilled.In acute hypoxemic respiratory insufficiency, NIV should be performed in an intensive care unit or in a comparable unit by personnel with appropriate expertise. Under CPAP/NIV, a patient can deteriorate rapidly. For this reason, continuous monitoring with readiness to carry out intubation must be ensured at all times. If CPAP/NIV leads to further progression of ARI, intubation and subsequent invasive ventilation should be carried out without delay if no DNI order is in place.In the case of patients in whom invasive ventilation, after exhausting all guideline-based measures, is not sufficient, extracorporeal membrane oxygenation procedure (ECMO) should be considered to ensure sufficient oxygen supply and to remove CO2.
Collapse
Affiliation(s)
- M Pfeifer
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinik Regensburg, Regensburg
- Abteilung für Pneumologie, Fachklinik für Lungenerkrankungen Donaustauf
- Krankenhaus Barmherzige Brüder, Klinik für Pneumologie und konservative Intensivmedizin, Regensburg
| | - S Ewig
- Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Krankenanstalt Bochum, Bochum
| | - T Voshaar
- Schwerpunkt Pneumologie, Allergologie, Klinische Immunologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Moers
| | - W Randerath
- Institut für Pneumologie an der Universität zu Köln, Köln
- Klinik für Pneumologie, Krankenhaus Bethanien, Solingen
| | - T Bauer
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring GmbH, Berlin
| | - J Geiseler
- Medizinische Klinik IV: Klinik für Pneumologie, Beatmungs- und Schlafmedizin, Klinikum Vest GmbH, Paracelsus-Klinik, Marl
| | - D Dellweg
- Fachkrankenhaus Kloster Grafschaft GmbH, Akademisches Lehrkrankenhaus der Philipps-Universität Marburg, Schmallenberg Grafschaft
| | - M Westhoff
- Klinik für Pneumologie, Lungenklinik Hemer, Hemer
- Universität Witten-Herdecke, Witten
| | - W Windisch
- Universität Witten-Herdecke, Witten
- Klinik für Pneumologie, Klinikum Köln-Merheim, Kliniken der Stadt Köln, Lehrstuhl für Pneumologie der Universität Witten-Herdecke, Köln
| | - B Schönhofer
- Pneumologische Praxis und pneumologischer Konsildienst im Klinikum Agnes Karll Laatzen, Klinikum Region Hannover, Laatzen
| | - S Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - P M Lepper
- Innere Medizin V - Pneumologie, Allergologie, Beatmungs- und Umweltmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar
| |
Collapse
|
487
|
Abstract
The current novel coronavirus disease 2019 (COVID-19) pandemic is revealing profound differences between men and women in disease outcomes worldwide. In the United States, there has been inconsistent reporting and analyses of male-female differences in COVID-19 cases, hospitalizations, and deaths. We seek to raise awareness about the male-biased severe outcomes from COVID-19, highlighting the mechanistic differences including in the expression and activity of angiotensin-converting enzyme 2 (ACE2) as well as in antiviral immunity. We also highlight how sex differences in comorbidities, which can be associated with both age and race, impact male-biased outcomes from COVID-19.
Collapse
Affiliation(s)
- Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rebecca L. Ursin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sharvari Deshpande
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kathryn Sandberg
- Departments of Medicine and Nephrology & Hypertension, Georgetown University, Washington, DC, United States of America
| | - Franck Mauvais-Jarvis
- Diabetes Discovery & Sex-Based Medicine Laboratory, Section of Endocrinology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
488
|
Yung CSY, Fok KCH, Leung CN, Wong YW. What every orthopaedic surgeon should know about COVID-19: A review of the current literature. J Orthop Surg (Hong Kong) 2020; 28:2309499020923499. [PMID: 32406305 DOI: 10.1177/2309499020923499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coronavirus (COVID-19) pandemic has severely affected the medical community and stopped the world in its tracks. This review aims to provide the basic information necessary for us, orthopaedic surgeons to prepare ourselves to face this pandemic together. Herein, we cover the background of COVID-19, presentation, investigations, transmission, infection control and touch upon emerging treatments. It is of paramount importance that we should stay vigilant for our patients, our families and ourselves. Adequate infection control measures are necessary during day-to-day clinical work.
Collapse
Affiliation(s)
- Colin Shing-Yat Yung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Kevin Chi Him Fok
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Ching Ngai Leung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Yat Wa Wong
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
489
|
Fedson DS, Opal SM, Rordam OM. Reply to Siniorakis et al., "COVID-19 Interference with Renin-Angiotensin System in the Context of Heart Failure". mBio 2020; 11:e01243-20. [PMID: 32471831 PMCID: PMC7267890 DOI: 10.1128/mbio.01243-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Steven M Opal
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
490
|
Lee WH, Chen YC, Chen SC, Chen CJ, Hsu PC, Tsai WC, Chu CY, Lee CS, Lin TH, Voon WC, Kuo CH, Su HM. Cardiovascular disease management during the coronavirus disease 2019 pandemic. Int J Med Sci 2020; 17:1340-1344. [PMID: 32624690 PMCID: PMC7330658 DOI: 10.7150/ijms.46484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Based on clinical presentation, pathophysiology, high infectivity, high cardiovascular involvement, and therapeutic agents with cardiovascular toxicity of coronavirus disease 2019 (COVID-19), regular cardiovascular treatment is being changing greatly. Despite angiotensin-converting enzyme 2 serving as the portal for infection, the continuation of clinically indicated renin-angiotensin-aldosterone blockers is recommended according to the present evidence. Fibrinolytic therapy can be considered a reasonable option for the relatively stable ST segment elevation myocardial infarction (STEMI) patient with suspected or known COVID-19. However, primary percutaneous coronary intervention is still the standard of care in patients with definite STEMI if personal protective equipment is available and cardiac catheterization laboratory has a good infection control. In patients with elevated cardiac enzymes, it is very important to differentiate patients with Type 2 myocardial infarction or myocarditis from those with true acute coronary syndromes because invasive percutaneous intervention management in the former may be unnecessary, especially if they are hemodynamically stable. Finally, patients with baseline QT prolongation or those taking QT prolonging drugs must be cautious when treating with lopinavir/ritonavir and hydroxychloroquine for COVID-19.
Collapse
Affiliation(s)
- Wen-Hsien Lee
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chih Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Po-Chao Hsu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chung Tsai
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Yuan Chu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chee-Siong Lee
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Lin
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Chol Voon
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Ming Su
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
491
|
Alternative splicing of ACE2 possibly generates variants that may limit the entry of SARS-CoV-2: a potential therapeutic approach using SSOs. Clin Sci (Lond) 2020; 134:1143-1150. [PMID: 32442315 DOI: 10.1042/cs20200419] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) plays an essential role in maintaining the balance of the renin-angiotensin system and also serves as a receptor for the SARS-CoV-2, SARS-CoV, and HCoV-NL63. Following the recent outbreak of SARS-CoV-2 infection, there has been an urgent need to develop therapeutic interventions. ACE2 is a potential target for many treatment approaches for the SARS-CoV-2. With the help of bioinformatics, we have predicted several novel exons of the human ACE2 gene. The inclusion of novel exons located in the 5'UTR/intronic region in the mature transcript may remove the critical ACE2 residues responsible for the interaction with the receptor-binding domain (RBD) of SARS-CoV-2, thus preventing their binding and entry into the cell. Additionally, inclusion of a novel predicted exons located in the 3'UTR by alternative splicing may remove the C-terminal transmembrane domain of ACE2 and generate soluble ACE2 isoforms. Splice-switching antisense oligonucleotides (SSOs) have been employed effectively as a therapeutic strategy in several disease conditions. Alternative splicing of the ACE2 gene could similarly be modulated using SSOs to exclude critical domains required for the entry of SARS-CoV-2. Strategies can also be designed to deliver these SSOs directly to the lungs in order to minimize the damage caused by SARS-CoV-2 pathogenesis.
Collapse
|
492
|
Kell DB, Heyden EL, Pretorius E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front Immunol 2020; 11:1221. [PMID: 32574271 PMCID: PMC7271924 DOI: 10.3389/fimmu.2020.01221] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred via a variety of receptors into and between cells, serum, bile, and cerebrospinal fluid. It has important immunological properties, and is both antibacterial and antiviral. In particular, there is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby block their entry. Of importance are Heparan Sulfate Proteoglycans (HSPGs) and the host receptor angiotensin-converting enzyme 2 (ACE2), as based on other activities lactoferrin might prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from attaching to the host cells. Lactoferrin (and more specifically enteric-coated LF because of increased bioavailability) may consequently be of preventive and therapeutic value during the present COVID-19 pandemic.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Faculty of Health and Life Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
493
|
Alpalhão M, Ferreira JA, Filipe P. Persistent SARS-CoV-2 infection and the risk for cancer. Med Hypotheses 2020; 143:109882. [PMID: 32485314 PMCID: PMC7831646 DOI: 10.1016/j.mehy.2020.109882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
The current SARS-CoV-2 has put significant strain on healthcare services worldwide due to acute COVID-19. However, the potential long-term effects of this infection haven’t been extensively discussed. We hypothesize that SARS-CoV-2 may be able to cause persistent infection in some individuals, and should this be the case, that in a few years we may see a rise in cancer incidence due to carcinogenic effects of this coronavirus. Non-retroviral RNA viruses such as Coronaviridae have been shown to cause persistent infection in hosts. Empirical evidence of viral genomic material shedding weeks after apparent clinical and laboratorial resolution of COVID-19 may be an indirect proof for persistent viral infection. Furthermore, tropism towards certain immune-privileged territories may facilitate immune evasion by this virus. Structural homology with SARS-CoV-1 indicates that SARS-CoV-2 may be able to directly impair pRb and p53, which are key gatekeepers with tumor suppressor functions. Additionally, COVID-19 features preeminent inflammatory response with marked oxidative stress, which acts as both as initiator and promotor of carcinogenesis. Should there be a carcinogenic risk associated with SARS-CoV-2, the implications for public health are plenty, as infected patients should be closely watched during long periods of follow-up. Additional investigation to establish or exclude the possibility for persistent infection is paramount to identify and prevent possible complications in the future.
Collapse
Affiliation(s)
- Miguel Alpalhão
- Dermatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal; Dermatology Universitary Clinic, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Dermatology Research Unit, iMM João Lobo Antunes, University of Lisbon, Lisbon, Portugal.
| | - João Augusto Ferreira
- Dermatology Universitary Clinic, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Dermatology Research Unit, iMM João Lobo Antunes, University of Lisbon, Lisbon, Portugal
| | - Paulo Filipe
- Dermatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal; Dermatology Universitary Clinic, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Dermatology Research Unit, iMM João Lobo Antunes, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
494
|
|
495
|
Molecular Characterization and Amino Acid Homology of Nucleocapsid (N) Protein in SARS-CoV-1, SARS-CoV-2, MERS-CoV, and Bat Coronavirus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.spl1.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Coronavirus disease – 2019 (COVID-19) pandemic, due to severe acute respiratory syndrome–coronavirus-2 (SARS-CoV-2), is posing a severe bio threat to the entire world. Nucleocapsids of SARS-CoV-2 and the related viruses were studied for gene and amino acid sequence homologies. In this study, we established similarities and differences in nucleocapsids in SARS-CoV-2, severe acute respiratory syndrome – coronavirus-1 (SARS-CoV-1), bat coronavirus (bat-CoV) and Middle East respiratory syndrome – coronavirus (MERS-CoV). We conducted a detailed analysis of the nucleocapsid protein amino acid and gene sequence encoding it, found in various coronavirus strains. After thoroughly screening the different nucleocapsids, we observed a close molecular homology between SARS-CoV-1 and SARS-CoV-2. More than 95% sequence similarity was observed between the two SARS-CoV strains. Bat-CoV and SARS-CoV-2 showed 92% sequence similarity. MERS-CoV and SARS-CoV-2 nucleocapsid analysis indicated only 65% identity. Molecular characterization of nucleocapsids from various coronaviruses revealed that SARS-CoV 2 is more related to SARS-CoV 1 and bat-CoV. SARS-CoV 2 exhibited less resemblance with MERS-CoV. SARS-CoV 2 showed less similarity to MERS-CoV. Thus, either SARS-CoV-1 or bat-CoV may be the source of SARS-CoV-2 evolution. Moreover, the existing differences in nucleocapsid molecular structures in SARS-CoV-2 make this virus more virulent and highly infectious, which means that the non-identical SARS-CoV-2 genes (which are absent in SARS-CoV-1 and bat-CoV) are responsible for COVID-19 severity. We observed that SARS-CoV-2 nucleocapsid from different locations varied in amino acid sequences. This revealed that there are many SARS-CoV-2 subtypes/subsets currently circulating globally. This study will help to develop antiviral vaccine and drugs, study viral replication and immunopathogenesis, and synthesize monoclonal antibodies that can be used for precise COVID-19 diagnosis, without false-positive/false-negative results.
Collapse
|
496
|
The Role of Exercise as a Treatment and Preventive Strategy during Covid-19 Pandemic. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2020. [DOI: 10.21673/anadoluklin.731902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
497
|
Prestes PR, Maier MC, Woods BA, Charchar FJ. A Guide to the Short, Long and Circular RNAs in Hypertension and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21103666. [PMID: 32455975 PMCID: PMC7279167 DOI: 10.3390/ijms21103666] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults in developed countries. CVD encompasses many diseased states, including hypertension, coronary artery disease and atherosclerosis. Studies in animal models and human studies have elucidated the contribution of many genetic factors, including non-coding RNAs. Non-coding RNAs are RNAs not translated into protein, involved in gene expression regulation post-transcriptionally and implicated in CVD. Of these, circular RNAs (circRNAs) and microRNAs are relevant. CircRNAs are created by the back-splicing of pre-messenger RNA and have been underexplored as contributors to CVD. These circRNAs may also act as biomarkers of human disease, as they can be extracted from whole blood, plasma, saliva and seminal fluid. CircRNAs have recently been implicated in various disease processes, including hypertension and other cardiovascular disease. This review article will explore the promising and emerging roles of circRNAs as potential biomarkers and therapeutic targets in CVD, in particular hypertension.
Collapse
|
498
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
- Department of Medical Sciences, International University of Health and Medical Sciences “Saint Camillus”, 00131 Rome, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (C.S.); (R.M.)
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, International Translational Research and Medical Education Academic Research Unit (ITME), “Federico II” University, 80131 Naples, Italy;
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, New York, NY 10461, USA; (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Montefiore University Hospital, New York, NY 10461, USA
| |
Collapse
|
499
|
Banach M, Penson PE, Fras Z, Vrablik M, Pella D, Reiner Ž, Nabavi SM, Sahebkar A, Kayikcioglu M, Daccord M. Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacol Res 2020; 158:104891. [PMID: 32389859 PMCID: PMC7204727 DOI: 10.1016/j.phrs.2020.104891] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/15/2023]
Abstract
Individuals with Familial Hypercholesterolaemia (FH) are at very high risk of cardiovascular disease, which is associated with poor outcomes from coronavirus infections. COVID-19 puts strain on healthcare systems and may impair access to routine FH services. On behalf of the International Lipid Expert Panel (ILEP) and the European FH Patient Network (FH Europe), we present brief recommendations on the management of adult patients with FH during the COVID-19 pandemic. We discuss the implications of COVID-19 infections for FH patients, the importance of continuing lipid-lowering therapy where possible, issues relating to safety monitoring and service delivery. We summarise the evidence for additional benefits of statins and other lipid-lowering drugs during viral infections. The recommendations do not override in any way the individual responsibility of physicians to make appropriate and accurate decisions taking into account the condition of a given patient and the doses, rules, and regulations applicable to drugs and devices at the time of their prescription/use.
Collapse
Affiliation(s)
- Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Zlatko Fras
- Division of Medicine, Centre for Preventive Cardiology, University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michal Vrablik
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General Faculty Hospital in Prague, Prague, Czech Republic
| | - Daniel Pella
- Department of Cardiology of the East Slovak Institute of Cardiovascular Disease and Faculty of Medicine PJ Safarik University, Kosice, Slovak Republic
| | - Željko Reiner
- Department of Internal Diseases University Hospital Center Zagreb School of Medicine, Zagreb University, Zagreb, Croatia
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meral Kayikcioglu
- Department of Cardiology, Ege Üniversitesi School of Medicine, Izmir, Turkey
| | | |
Collapse
|
500
|
Welling PA, Batlle D, Byrd JB, Burrell LM, South AM, Sparks MA. Rigor before speculation in COVID-19 therapy. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1027-L1028. [PMID: 32364442 DOI: 10.1152/ajplung.00152.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Paul A Welling
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Batlle
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - James Brian Byrd
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Louise M Burrell
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Andrew M South
- Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Matthew A Sparks
- Department of Medicine, Duke University School of Medicine, and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| |
Collapse
|