451
|
Abstract
Fibrosis is a dynamic process with the potential for reversibility and restoration of near-normal tissue architecture and organ function. Herein, we review mechanisms for resolution of organ fibrosis, in particular that involving the lung, with an emphasis on the critical roles of myofibroblast apoptosis and clearance of deposited matrix.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
452
|
Analysis of Keloid Response to 5-Fluorouracil Treatment and Long-Term Prevention of Keloid Recurrence. Plast Reconstr Surg 2019; 143:490-494. [PMID: 30531622 DOI: 10.1097/prs.0000000000005257] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Keloids are benign fibroproliferative skin tumors that can cause disfigurement and disability. Although they frequently recur after excision or medical management and can affect 6 to 16 percent of African Americans, there is no gold standard therapy. Keloids are challenging to study because there are no animal or in vitro models of this disorder. This makes it very difficult to validate data from treated tissue samples or cells and develop targeted therapies for this disease. In this study, the authors demonstrate that intralesional 5-fluorouracil injection after keloid excision prevents recurrence for 2 years, with no reported adverse events. The authors analyze the expression of treated and untreated biopsy specimens of the same keloids in their native context to capture insights that may be missed by in vitro cell culture models and correct for intrakeloid variability. Random forest analysis of the microarray data dramatically increased the statistical power of the authors' results, permitting hypothesis-free creation of a gene expression profile of 5-fluorouracil-treated keloids. Through this analysis, the authors found a set of genes, including YAP1 and CCL-2, whose expression changes predict 5-fluorouracil therapy status and include genes that have not previously been associated with keloid biology and are of unknown function. The authors further describe keloid heterogeneity for the first time using multidimensional analysis of their microarray results. The methods and tools the authors developed in this research may overcome some of the challenges in studying keloids and developing effective treatments for this disease. CLINICAL QUESTION/LEVEL OF EVIDENCE:: Therapeutic, V.
Collapse
|
453
|
White SM, Murakami S, Yi C. The complex entanglement of Hippo-Yap/Taz signaling in tumor immunity. Oncogene 2019; 38:2899-2909. [PMID: 30617303 PMCID: PMC7567008 DOI: 10.1038/s41388-018-0649-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
The Hippo-Yap/Taz pathway, originally identified as a central developmental regulator of organ size, has been found perturbed in many types of human tumors, and linked to tumor growth, survival, evasion, metastasis, stemness, and drug resistance. Beside these tumor-cell-intrinsic functions, Hippo signaling also plays important immune-regulatory roles. In this review, we will summarize and discuss recent breakthroughs in our understanding of how various components of the Hippo-Yap/Taz pathway influence the tumor immune microenvironment, including their effects on the tumor secretome and immune infiltrates, their roles in regulating crosstalk between tumor cells and T cells, and finally their intrinsic functions in various types of innate and adaptive immune cells. While further research is needed to integrate and reconcile existing findings and to discern the overall effects of Hippo signaling on tumor immunity, it is clear that Hippo signaling functions as a key bridge connecting tumor cells with both the adaptive and innate immune systems. Thus, all future therapeutic development against the Hippo-Yap/Taz pathway should take into account their multi-faceted roles in regulating tumor immunity in addition to their growth-regulatory functions. Given that immune therapies have become the mainstay of cancer treatment, it is also important to pursue how to manipulate Hippo signaling to boost response or overcome resistance to existing immune therapies.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shigekazu Murakami
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
454
|
Mason DE, Collins JM, Dawahare JH, Nguyen TD, Lin Y, Voytik-Harbin SL, Zorlutuna P, Yoder MC, Boerckel JD. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol 2019; 218:1369-1389. [PMID: 30737263 PMCID: PMC6446844 DOI: 10.1083/jcb.201806065] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/29/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Cell migration initiates by traction generation through reciprocal actomyosin tension and focal adhesion reinforcement, but continued motility requires adaptive cytoskeletal remodeling and adhesion release. Here, we asked whether de novo gene expression contributes to this cytoskeletal feedback. We found that global inhibition of transcription or translation does not impair initial cell polarization or migration initiation, but causes eventual migratory arrest through excessive cytoskeletal tension and over-maturation of focal adhesions, tethering cells to their matrix. The transcriptional coactivators YAP and TAZ mediate this feedback response, modulating cell mechanics by limiting cytoskeletal and focal adhesion maturation to enable persistent cell motility and 3D vasculogenesis. Motile arrest after YAP/TAZ ablation was partially rescued by depletion of the YAP/TAZ-dependent myosin phosphatase regulator, NUAK2, or by inhibition of Rho-ROCK-myosin II. Together, these data establish a transcriptional feedback axis necessary to maintain a responsive cytoskeletal equilibrium and persistent migration.
Collapse
Affiliation(s)
- Devon E Mason
- McKay Orthopaedic Research Laboratory, Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN
| | - Joseph M Collins
- McKay Orthopaedic Research Laboratory, Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN
| | - Trung Dung Nguyen
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, WA
| | - Yang Lin
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN
| | - Mervin C Yoder
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, IN
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
455
|
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379:119-128. [PMID: 30910400 DOI: 10.1016/j.yexcr.2019.03.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts promote physiological wound repair following tissue injury. However, dysregulation of fibroblast activation contributes to the development of fibrosis by enhanced production and contraction of collagen-rich extracellular matrix. At the peak of their activities, fibroblasts undergo phenotypic conversion into highly contractile myofibroblasts by developing muscle-like features, including formation of contractile actin-myosin bundles. The phenotype and function of fibroblasts and myofibroblasts are mechanically regulated by matrix stiffness using a feedback control system that is integrated with the progress of tissue remodelling. The actomyosin contraction machinery and cell-matrix adhesion receptors are critical elements that are needed for mechanosensing by fibroblasts and the translation of mechanical signals into biological responses. Here, we focus on mechanical and chemical regulation of collagen contraction by fibroblasts and the involvement of these factors in their phenotypic conversion to myofibroblasts.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | | | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
456
|
Bertolio R, Napoletano F, Mano M, Maurer-Stroh S, Fantuz M, Zannini A, Bicciato S, Sorrentino G, Del Sal G. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat Commun 2019; 10:1326. [PMID: 30902980 PMCID: PMC6430766 DOI: 10.1038/s41467-019-09152-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate lipid biosynthesis and adipogenesis by controlling the expression of several enzymes required for cholesterol, fatty acid, triacylglycerol and phospholipid synthesis. In vertebrates, SREBP activation is mainly controlled by a complex and well-characterized feedback mechanism mediated by cholesterol, a crucial bio-product of the SREBP-activated mevalonate pathway. In this work, we identified acto-myosin contractility and mechanical forces imposed by the extracellular matrix (ECM) as SREBP1 regulators. SREBP1 control by mechanical cues depends on geranylgeranyl pyrophosphate, another key bio-product of the mevalonate pathway, and impacts on stem cell fate in mouse and on fat storage in Drosophila. Mechanistically, we show that activation of AMP-activated protein kinase (AMPK) by ECM stiffening and geranylgeranylated RhoA-dependent acto-myosin contraction inhibits SREBP1 activation. Our results unveil an unpredicted and evolutionary conserved role of SREBP1 in rewiring cell metabolism in response to mechanical cues.
Collapse
Affiliation(s)
- Rebecca Bertolio
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Francesco Napoletano
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Miguel Mano
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore, 117543, Singapore
| | - Marco Fantuz
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Sorrentino
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy. .,Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy. .,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy. .,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello, 16-20139, Milan, Italy.
| |
Collapse
|
457
|
Profibrotic epithelial phenotype: a central role for MRTF and TAZ. Sci Rep 2019; 9:4323. [PMID: 30867502 PMCID: PMC6416270 DOI: 10.1038/s41598-019-40764-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/19/2019] [Indexed: 01/05/2023] Open
Abstract
Epithelial injury is a key initiator of fibrosis but - in contrast to the previous paradigm - the epithelium in situ does not undergo wide-spread epithelial-mesenchymal/myofibroblast transition (EMT/EMyT). Instead, it assumes a Profibrotic Epithelial Phenotype (PEP) characterized by fibrogenic cytokine production. The transcriptional mechanisms underlying PEP are undefined. As we have shown that two RhoA/cytoskeleton-regulated transcriptional coactivators, Myocardin-related transcription factor (MRTF) and TAZ, are indispensable for EMyT, we asked if they might mediate PEP as well. Here we show that mechanical stress (cyclic stretch) increased the expression of transforming growth factor-β1 (TGFβ1), connective tissue growth factor (CTGF), platelet-derived growth factor and Indian Hedgehog mRNA in LLC-PK1 tubular cells. These responses were mitigated by siRNA-mediated silencing or pharmacological inhibition of MRTF (CCG-1423) or TAZ (verteporfin). RhoA inhibition exerted similar effects. Unilateral ureteral obstruction, a murine model of mechanically-triggered kidney fibrosis, induced tubular RhoA activation along with overexpression/nuclear accumulation of MRTF and TAZ, and increased transcription of the above-mentioned cytokines. Laser capture microdissection revealed TAZ, TGFβ1 and CTGF induction specifically in the tubular epithelium. CCG-1423 suppressed total renal and tubular expression of these proteins. Thus, MRTF regulates epithelial TAZ expression, and both MRTF and TAZ are critical mediators of PEP-related epithelial cytokine production.
Collapse
|
458
|
Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metastasis 2019; 36:71-86. [PMID: 30847799 DOI: 10.1007/s10585-019-09959-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the tumor microenvironment. They are one of the most prominent cell types in the stroma and produce large amounts of extracellular matrix molecules, chemokines, cytokines and growth factors. Importantly, CAFs promote cancer progression and metastasis by multiple pathways. This, together with their genetic stability, makes them an interesting target for cancer therapy. However, CAF heterogeneity and limited knowledge about the function of the different CAF subpopulations in vivo, are currently major obstacles for identifying specific molecular targets that are of value for cancer treatment. In this review, we discuss recent major findings on CAF development and their metastasis-promoting functions, as well as open questions to be addressed in order to establish successful cancer therapies targeting CAFs.
Collapse
|
459
|
Abstract
Dupuytren's disease (DD) is a common fibrotic disorder of the hand and can significantly impair hand function. Although the exact pathogenesis of this disorder remains to be elucidated, immunological, genetic and cellular factors likely interact. In this review, we summarise recent advances in the understanding of DD pathogenesis and look to the future for potential novel therapeutic targets. In addition, we discuss the therapeutic options in DD with a focus on the need for more rigorous evidence to allow a meaningful comparison of different treatment modalities.
Collapse
Affiliation(s)
- Thomas Layton
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jagdeep Nanchahal
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
460
|
Hu P, Barker TH. Thy-1 in Integrin Mediated Mechanotransduction. Front Cell Dev Biol 2019; 7:22. [PMID: 30859101 PMCID: PMC6397864 DOI: 10.3389/fcell.2019.00022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI) anchored glycoprotein Thy-1 has been prevalently expressed on the surface of various cell types. The biological function of Thy-1 ranges from T cell activation, cell adhesion, neurite growth, differentiation, metastasis and fibrogenesis and has been extensively reviewed elsewhere. However, current discoveries implicate Thy-1 also functions as a key mechanotransduction mediator. In this review, we will be focusing on the role of Thy-1 in translating extracellular mechanic cues into intracellular biological cascades. The mechanotransduction capability of Thy-1 relies on trans and cis interaction between Thy-1 and RGD-binding integrins; and will be discussed in depth in the review.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
461
|
Truong NF, Lesher-Pérez SC, Kurt E, Segura T. Pathways Governing Polyethylenimine Polyplex Transfection in Microporous Annealed Particle Scaffolds. Bioconjug Chem 2019; 30:476-486. [PMID: 30513197 PMCID: PMC7290906 DOI: 10.1021/acs.bioconjchem.8b00696] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gene delivery using injectable hydrogels can serve as a potential method for regulated tissue regeneration in wound healing. Our microporous annealed particle (MAP) hydrogel has been shown to promote cellular infiltration in both skin and brain wounds, while reducing inflammation. Although the scaffold itself can promote healing, it is likely that other signals will be required to promote healing of hard-to-treat wounds. Gene delivery is one approach to introduce desired bioactive signals. In this study, we investigated how the properties of MAP hydrogels influence non-viral gene delivery of polyethylenimine-condensed plasmid to cells seeded within the MAP gel. From past studies, we found that gene transfer to cells seeded in tissue culture plastic differed from gene transfer to cells seeded inside hydrogel scaffolds. Since MAP scaffolds are generated from hydrogel microparticles that are approximately 100 μm in diameter, they display local characteristics that can be viewed as two-dimensional or three-dimensional to cells. Thus, we sought to study if gene transfer inside MAP scaffolds differed from gene transfer to cells seeded in tissue culture plastic. We sought to understand the roles of the endocytosis pathway, actin and microtubule dynamics, RhoGTPases, and YAP/TAZ on transfection of human fibroblasts.
Collapse
Affiliation(s)
- Norman F Truong
- Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States
| | - Sasha Cai Lesher-Pérez
- Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States
| | - Evan Kurt
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
462
|
Guo J, Hardie WD, Cleveland ZI, Davidson C, Xu X, Madala SK, Woods JC. Longitudinal free-breathing MRI measurement of murine lung physiology in a progressive model of lung fibrosis. J Appl Physiol (1985) 2019; 126:1138-1149. [PMID: 30730810 DOI: 10.1152/japplphysiol.00993.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To longitudinally monitor progressive fibrosis in the transforming growth factor-α (TGF-α) transgenic mouse model of lung fibrosis, we used retrospective self-gating ultrashort echo time (UTE) magnetic resonance imaging (MRI) to image mouse lung at baseline and after 4 and 8 wk of fibrosis initiation via doxycycline administration. Only bitransgenic mice were used in this study and divided into two cohorts: six mice were fed doxycycline food to induce lung fibrosis (referred to as Dox cohort), and five other mice were fed normal food (referred to as control cohort). Lung mechanics, histology, and hydroxyproline were assessed after the final MRI. A linear mixed-effects model was used to analyze MRI-derived longitudinal lung-function parameters. Tidal volume decreased at a rate of -0.016 ± 0.002 ml/week [χ2(1) = 16.48, P < 0.001] for Dox cohort and increased at a rate of 0.010 ± 0.003 ml/week [χ2(1) = 6.37, P = 0.01] for control cohort. Minute ventilation decreased at a rate of -1.71 ± 0.26 ml·min-1·wk-1 [χ2(1) = 14.04, P < 0.001] for Dox cohort but did not change significantly over time for control cohort. High-density lung volume percentage increased at a rate of 3.9 ± 0.7%/wk for Dox cohort [χ2(1) = 11.47, P < 0.001] but did not change significantly over time for control cohort. MRI-derived lung structure and function parameters were strongly correlated with pleural thickness, hydroxyproline content, lung compliance, airway resistance, and airway elastance. We conclude that self-gating UTE MRI could be used to longitudinally monitor lung fibrosis in the TGF-α transgenic mouse model. NEW & NOTEWORTHY Self-gating UTE MRI was used to monitor morphology and physiology in lung fibrosis in a transforming growth factor-α transgenic mouse model. Tidal volume was shown for the first time to correlate strongly with conventional metrics of fibrosis such as hydroxyproline and pleural thickness.
Collapse
Affiliation(s)
- Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Cynthia Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Xuefeng Xu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri.,Department of Physics, University of Cincinnati , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
463
|
Romani P, Brian I, Santinon G, Pocaterra A, Audano M, Pedretti S, Mathieu S, Forcato M, Bicciato S, Manneville JB, Mitro N, Dupont S. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nat Cell Biol 2019; 21:338-347. [DOI: 10.1038/s41556-018-0270-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022]
|
464
|
Bailey KE, Floren ML, D'Ovidio TJ, Lammers SR, Stenmark KR, Magin CM. Tissue-informed engineering strategies for modeling human pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 316:L303-L320. [PMID: 30461289 PMCID: PMC6397349 DOI: 10.1152/ajplung.00353.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.
Collapse
Affiliation(s)
- Kolene E Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael L Floren
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Tyler J D'Ovidio
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Lammers
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
465
|
YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR-15a loss in IPF. Cell Death Differ 2019; 26:1832-1844. [PMID: 30644438 DOI: 10.1038/s41418-018-0250-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic parenchymal lung disease of unknown etiology and lack effective interventions. Using a combination of in vitro and in vivo studies, we found that overexpression of YAP1, a key effector in the Hippo pathway, promoted cell proliferation, migration, and collagen production in lung fibroblasts. Furthermore, the pro-fibrotic action of YAP1 was mediated by transcriptional activation of Twist1 through interacting with its partner TEAD. In contrast, knockdown of YAP1 inhibited extracellular matrix (ECM) deposition, which ultimately ameliorated lung fibrosis in vitro and in vivo. Additionally, we constructed a dysregulated miRNA regulatory network that affects the expression of the Hippo pathway effectors in IPF and identified miR-15a, which is significantly down-regulated in IPF patients, as one of the most essential miRNAs regulating this pathway. Moreover, knockdown of miR-15a resulted in fibroblast activation and lung fibrosis through promoting Twist expression by targeting inhibition of YAP1. In contrast, therapeutic restoration of miR-15a inhibits fibrogenesis in lung fibroblast and abrogated BLM-induced lung fibrosis in mice. These results highlight a role for miR-15a/YAP1/Twist axis in IPF that offer novel strategies for the prevention and treatment of lung fibrosis.
Collapse
|
466
|
Lats1/2-Mediated Alteration of Hippo Signaling Pathway Regulates the Fate of Bone Marrow-Derived Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4387932. [PMID: 30671453 PMCID: PMC6323436 DOI: 10.1155/2018/4387932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) can be used to enhance lung repair in acute respiratory distress syndrome (ARDS); however, the repairing effect is limited by poor homing and retention of BMSCs. The purpose of this study was to investigate whether Lats1 and Lats2-mediated alteration of Hippo signaling pathway could promote the differentiation, proliferation, and migration of BMSCs. BMSCs were transduced by lentiviral vectors for high and low expression of Lats1 and Lats2. The expression levels of Lats1, Lats2, YAP, and 14-3-3, respectively, were assessed to clarify the regulatory effects of Lats1 and Lats2 on Hippo signaling. Osteogenic (Runx2 and OSX) and adipogenic (C/EBPα and PPAR-γ) transcription factors were determined to clarify the effects of Hippo signaling on BMSCs differentiation. The effects of Hippo signaling on BMSCs proliferation and horizontal and vertical migration were also measured by CCK-8, scratch assay, and Transwell migration assay, respectively. Lentiviral transduction efficiency could reach 93.11%-97.14%. High and low expression of Lats1 and Lats2 could activate and inhibit the Hippo signaling pathway, respectively. High and low expression of Lats1 and Lats2 could inhibit and promote BMSCs differentiation into osteoblasts and adipocytes. High and low expression of Lats1 and Lats2 could inhibit and promote BMSCs proliferation and horizontal and vertical migration, respectively. Our studies suggest that Lats1/2-meidiated inhibition of Hippo signaling in BMSCs may optimize their effects of tissue repair in ARDS, suggesting a novel strategy for enhancing disease therapeutics.
Collapse
|
467
|
Childers RC, Sunyecz I, West TA, Cismowski MJ, Lucchesi PA, Gooch KJ. Role of the cytoskeleton in the development of a hypofibrotic cardiac fibroblast phenotype in volume overload heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H596-H608. [PMID: 30575422 DOI: 10.1152/ajpheart.00095.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a "hypofibrotic" phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a "hypofibrotic" phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.
Collapse
Affiliation(s)
- Rachel C Childers
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| | - Ian Sunyecz
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - T Aaron West
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mary J Cismowski
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Pamela A Lucchesi
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| |
Collapse
|
468
|
Muppala S, Raghunathan VK, Jalilian I, Thomasy S, Murphy CJ. YAP and TAZ are distinct effectors of corneal myofibroblast transformation. Exp Eye Res 2018; 180:102-109. [PMID: 30578787 DOI: 10.1016/j.exer.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Transforming growth factor β1 (TGFβ1) is elevated in wounds after injury and promotes the transdifferentiation of quiescent cells in the stroma (keratocytes, to activated fibroblasts and subsequently myofibroblasts-KFM transformation). Coactivators of transcription, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif), are mechanotransducers that intersect with the TGFβ pathway via interactions with Smad proteins. Here, we examined the distinct role of YAP and TAZ on TGFβ1 induced myofibroblast transformation of primary human corneal fibroblasts (HCFs). METHODS A knockdown approach was used to silence YAP and TAZ individually in HCFs. Forty-eight hours post siRNA transfection, cells were cultured in the presence or absence of 2 ng/ml TGFβ1 for 24h. The cells were subjected to nuclear and cytoplasmic fractionation. The expression of α-smooth muscle actin (αSMA), Smad 2, 3 and 4, CTGF and phospho-Smad2, 3, and 4 were assessed by qPCR and Western blotting. RESULTS TGFβ1 stimulation resulted in the decreased phosphorylation of YAP in the cytosol, and increased levels of phosphorylated TAZ and Smad2/3/4 in the nucleus. Knockdown of TAZ resulted in elevated YAP expression but not vice versa. Additionally, knockdown of TAZ but not YAP resulted in upregulation of αSMA expression in the presence and absence of TGFβ1. In the presence of TGFβ1 YAP knockdown increased Smad2/3/4 expression and Smad4 phosphorylation, while TAZ knockdown had no effect on Smad2/3/4 expression and phosphorylation. YAP knockdown inhibited CTGF expression while TAZ knockdown resulted in its increased expression. Finally, simultaneous knockdown of YAP and TAZ resulted in cell death. CONCLUSION Our findings suggest that YAP and TAZ function as distinct modulators of TGFβ1 induced myofibroblast transformation and have different roles in signalling. Specifically, TAZ limits YAP's ability to mediate KFM transformation via Smad proteins. The data also suggest that while having distinct effects, YAP and TAZ have redundant or combinatorial functions critical to cell survival. These results suggest that a loss of TAZ may help drive corneal haze and fibrosis and that the balance between YAP/TAZ is essential in controlling myofibroblast differentiation.
Collapse
Affiliation(s)
- Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, TX, USA
| | - Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Sara Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA; Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA; Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
469
|
Komatsu N, Kajiya M, Motoike S, Takewaki M, Horikoshi S, Iwata T, Ouhara K, Takeda K, Matsuda S, Fujita T, Kurihara H. Type I collagen deposition via osteoinduction ameliorates YAP/TAZ activity in 3D floating culture clumps of mesenchymal stem cell/extracellular matrix complexes. Stem Cell Res Ther 2018; 9:342. [PMID: 30526677 PMCID: PMC6286508 DOI: 10.1186/s13287-018-1085-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023] Open
Abstract
Background Three-dimensional (3D) floating culture clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. Previous studies have demonstrated that C-MSCs can be transplanted into bony lesions without an artificial scaffold to induce bone regeneration. Moreover, osteoinductive medium (OIM)-treated C-MSCs (OIM-C-MSCs) have shown rapid and increased new bone formation in vivo. To apply OIM-C-MSCs for novel bone regenerative cell therapy, their cellular properties at the molecular level must be elucidated. The transcriptional co-activators yes-associated protein/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have been recognized as key players in the mechanotransduction cascade, controlling cell lineage commitment in MSCs. It is plausible that 3D C-MSCs/OIM-C-MSCs cultured in floating conditions could provide distinct microenvironments compared to conventional 2D culture systems and thereby induce unique mechanotransduction cascades. Therefore, this study investigated the YAP/TAZ activity in 3D-cultured C-MSCs/OIM-C-MSCs in floating conditions. Methods Human bone marrow-derived MSCs were cultured in growth medium supplemented with ascorbic acid. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The sheet was rolled to make round clumps of cells. Then, YAP/TAZ activity, filamentous actin (F-actin) integrity, collagen type I (COL1) production, and the differentiation potency in 3D floating culture C-MSCs/OIM-C-MSCs were analyzed. Results C-MSCs cultured in floating conditions lost their actin cytoskeleton to downregulate YAP/TAZ activity, which directed cells to undergo adipogenesis/chondrogenesis. OIM treatment induced abundant COL1 deposition, which facilitated Intβ1-dependent actin fiber formation and YAP/TAZ activity to elevate the expression levels of osteogenic master transcriptional factor runt-related transcription factor 2 (RUNX2) mRNA in C-MSCs. Importantly, elevation of YAP/TAZ activity via OIM was associated with COL1 deposition and F-actin integrity, suggesting a positive feedback loop in OIM-C-MSCs. Conclusion These findings suggest that OIM-C-MSCs, which form a unique microenvironment that maintains high YAP/TAZ activity, can serve as better candidates for bone regenerative cell therapy than C-MSCs. Electronic supplementary material The online version of this article (10.1186/s13287-018-1085-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nao Komatsu
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Souta Motoike
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Manabu Takewaki
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, Hiroshima, 734-8553, Japan
| |
Collapse
|
470
|
Sharma S, Goswami R, Rahaman SO. The TRPV4-TAZ mechanotransduction signaling axis in matrix stiffness- and TGFβ1-induced epithelial-mesenchymal transition. Cell Mol Bioeng 2018; 12:139-152. [PMID: 31681446 DOI: 10.1007/s12195-018-00565-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction The implantation of biomaterials into soft tissue leads to the development of foreign body response, a non-specific inflammatory condition that is characterized by the presence of fibrotic tissue. Epithelial-mesenchymal transition (EMT) is a key event in development, fibrosis, and oncogenesis. Emerging data support a role for both a mechanical signal and a biochemical signal in EMT. We hypothesized that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is a mediator of EMT. Methods Normal human primary epidermal keratinocytes (NHEKs) were seeded on collagen-coated plastic plates or varied stiffness polyacrylamide gels in the presence or absence of TGFβ1, Immunofluorescence, immunoblot, and polymerase chain reaction analysis were performed to determine expression level of EMT markers and signaling proteins. Knock-down of TRPV4 function was achieved by siRNA transfection or by GSK2193874 treatment. Results We found that knock-down of TRPV4 blocked both matrix stiffness- and TGFβ1-induced EMT in NHEKs. In a murine skin fibrosis model, TRPV4 deletion resulted in decreased expression of the mesenchymal marker, α-SMA, and increased expression of epithelial marker, E-cadherin. Mechanistically, our data showed that: i) TRPV4 was essential for the nuclear translocation of TAZ in response to matrix stiffness and TGFβ1; ii) Antagonism of TRPV4 inhibited both matrix stiffness-induced and TGFβ1-induced expression of TAZ proteins; and iii) TRPV4 antagonism suppressed both matrix stiffness-induced and TGFβ1-induced activation of Smad2/3, but not of AKT. Conclusions These data identify a novel role for TRPV4-TAZ mechanotransduction signaling axis in regulating EMT in NHEKs in response to both matrix stiffness and TGFβ1.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
471
|
Crawford JJ, Bronner SM, Zbieg JR. Hippo pathway inhibition by blocking the YAP/TAZ–TEAD interface: a patent review. Expert Opin Ther Pat 2018; 28:867-873. [DOI: 10.1080/13543776.2018.1549226] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Sarah M. Bronner
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Jason R. Zbieg
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
472
|
Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. NATURE MATERIALS 2018; 17:1063-1075. [PMID: 30374202 PMCID: PMC6992423 DOI: 10.1038/s41563-018-0180-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 05/11/2023]
Abstract
Mechanical signals are increasingly recognized as overarching regulators of cell behaviour, controlling stemness, organoid biology, tissue development and regeneration. Moreover, aberrant mechanotransduction is a driver of disease, including cancer, fibrosis and cardiovascular defects. A central question remains how cells compute a host of biomechanical signals into meaningful biological behaviours. Biomaterials and microfabrication technologies are essential to address this issue. Here we review a large body of evidence that connects diverse biomaterial-based systems to the functions of YAP/TAZ, two highly related mechanosensitive transcriptional regulators. YAP/TAZ orchestrate the response to a suite of engineered microenviroments, emerging as a universal control system for cells in two and three dimensions, in static or dynamic fashions, over a range of elastic and viscoelastic stimuli, from solid to fluid states. This approach may guide the rational design of technological and material-based platforms with dramatically improved functionalities and inform the generation of new biomaterials for regenerative medicine applications.
Collapse
Affiliation(s)
- Giovanna Brusatin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
| | - Tito Panciera
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Anna Citron
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, .
| |
Collapse
|
473
|
Abstract
Regulated cell death is a major mechanism to eliminate damaged, infected, or superfluous cells. Previously, apoptosis was thought to be the only regulated cell death mechanism; however, new modalities of caspase-independent regulated cell death have been identified, including necroptosis, pyroptosis, and autophagic cell death. As an understanding of the cellular mechanisms that mediate regulated cell death continues to grow, there is increasing evidence that these pathways are implicated in the pathogenesis of many pulmonary disorders. This review summarizes our understanding of regulated cell death as it pertains to the pathogenesis of chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Maor Sauler
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Isabel S Bazan
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Patty J Lee
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
474
|
Mohagheghi S, Khajehahmadi Z, Tavilani H. Signaling in Simple Steatosis and Non-alcoholic Steatohepatitis Cirrhosis: TGF-β1, YAP/TAZ, and Hedgehog Pathway Activity. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2018. [DOI: 10.15171/ajmb.2018.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of fat in the liver tissue that is usually associated with metabolic disorders. Traditionally, the disease is regarded as a spectrum of pathological conditions ranging from simple steatosis (SS) to non-alcoholic steatohepatitis (NASH) and hepatic fibrosis with progression to cirrhosis. However, so far, there is no available explanation for the disease progression. Several signaling pathways such as transforming growth factor (TGF)-β, hedgehog (HH), and yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling are attributed to the NAFLD pathogenesis. TGF-β1 pathway component expression aligns with HH pathway ligands expression elevate in NASH cirrhosis while they decrease in SS. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway. Similarly, the TAZ level (but not YAP1) is higher in NASH cirrhosis compared to SS. In addition, these three signaling pathways have little molecular similarity but their changes are totally similar in SS and NASH cirrhosis. The present review discusses the main changes in the expression of TGF-β, HH, and YAP/TAZ pathway components in SS and NASH cirrhosis. It is hoped that these data provide a better understanding of the mechanisms that underlie the pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Sina Mohagheghi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Khajehahmadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
475
|
Mediated nuclear import and export of TAZ and the underlying molecular requirements. Nat Commun 2018; 9:4966. [PMID: 30470756 PMCID: PMC6251892 DOI: 10.1038/s41467-018-07450-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Nucleocytoplasmic distribution of Yap/TAZ is regulated by the Hippo pathway and the cytoskeleton. While interactions with cytosolic and nuclear “retention factors” (14–3–3 and TEAD) are known to control their localization, fundamental aspects of Yap/TAZ shuttling remain undefined. It is unclear if translocation occurs only by passive diffusion or via mediated transport, and neither the potential nuclear localization and efflux signals (NLS, NES) nor their putative regulation have been identified. Here we show that TAZ cycling is a mediated process and identify the underlying NLS and NES. The C-terminal NLS, representing a new class of import motifs, is necessary and sufficient for efficient nuclear uptake via a RAN-independent mechanism. RhoA activity directly stimulates this import. The NES lies within the TEAD-binding domain and can be masked by TEAD, thereby preventing efflux. Thus, we describe a RhoA-regulated NLS, a TEAD-regulated NES and propose an improved model of nucleocytoplasmic TAZ shuttling beyond "retention". The transcriptional co-factors Yap and TAZ are regulated by Hippo signalling and mechanical forces via their nucleocytoplasmic shuttling. Here the authors identify a RhoA-regulated C-terminal nuclear localization signal and a TEAD-regulated N-terminal nuclear export signal of TAZ in an epithelial cell line.
Collapse
|
476
|
Jin B, Zhu J, Shi HM, Wen ZC, Wu BW. YAP activation promotes the transdifferentiation of cardiac fibroblasts to myofibroblasts in matrix remodeling of dilated cardiomyopathy. ACTA ACUST UNITED AC 2018; 52:e7914. [PMID: 30484494 PMCID: PMC6262745 DOI: 10.1590/1414-431x20187914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
Yes-associated protein (YAP) is an important regulator of cellular proliferation and transdifferentiation. However, little is known about the mechanisms underlying myofibroblast transdifferentiation in dilated cardiomyopathy (DCM). We investigated the role of YAP in the pathological process of cardiac matrix remodeling. A classic model of DCM was established in BALB/c mice by immunization with porcine cardiac myosin. Cardiac fibroblasts were isolated from neonatal Sprague-Dawley rats by density gradient centrifugation. The expression levels of α-smooth muscle actin (α-SMA) and collagen volume fraction (CVF) were significantly increased in DCM mice. Angiotensin II (Ang II)-mediated YAP activation promoted the proliferation and transdifferentiation of neonatal rat cardiac fibroblasts, and this effect was significantly suppressed in the shRNA YAP + Ang II group compared with the shRNA Control + Ang II group in vitro (2.98±0.34 ×105vs 5.52±0.82 ×105, P<0.01). Inhibition of endogenous Ang II-stimulated YAP improved the cardiac function by targeting myofibroblast transdifferentiation to attenuate matrix remodeling in vivo. In the valsartan group, left ventricular ejection fraction and fractional shortening were significantly increased compared with the DCM group (52.72±5.51% vs 44.46±3.01%, P<0.05; 34.84±3.85% vs 26.65±3.12%, P<0.01). Our study demonstrated that YAP was a regulator of cardiac myofibroblast differentiation, and regulation of YAP signaling pathway contributed to improve cardiac function of DCM mice, possibly in part by decreasing myofibroblast transdifferentiation to inhibit matrix remodeling.
Collapse
Affiliation(s)
- Bo Jin
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hai-Ming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Chao Wen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bang-Wei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
477
|
Abstract
Hippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in Drosophila. Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells' physical environment and an integrator of growth control signals. Several components of this pathway localize to cell-cell junctions and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Downregulation of Hippo signaling promotes uncontrolled cell proliferation, impairs differentiation, and is associated with cancer. We review the current understanding of Hippo signaling and highlight progress in the elucidation of its regulatory mechanisms and biological functions.
Collapse
Affiliation(s)
- Jyoti R Misra
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA;
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA;
| |
Collapse
|
478
|
Wang Y, Zhang T, Guo L, Ren T, Yang Y. Stromal extracellular matrix is a microenvironmental cue promoting resistance to EGFR tyrosine kinase inhibitors in lung cancer cells. Int J Biochem Cell Biol 2018; 106:96-106. [PMID: 30471423 DOI: 10.1016/j.biocel.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
The acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a critical problem in lung cancer clinic, but the underlying mechanisms have remained incompletely understood. Although the TKI-induced or -selected genetic changes are known to drive resistance, resistance also occurs in tumor cells without genetic changes through poorly-characterized processes. Here, we show that the extracellular matrix (ECM) from various components of the tumor microenvironment, including neighboring tumor cells and fibroblasts, may be the driver of resistance in the absence of genetic changes. Unlike genetic changes, which may evolve during relatively long time of chronic EGFR TKI treatment to drive resistance, briefly culturing on de-cellularized ECM, or co-culturing with the ECM donor cells, immediately confers resistance to tumor cells that are otherwise sensitive to EGFR TKIs. We show evidence that collagen in the ECM may be its primary constituent driving resistance, at least partly through the collagen receptor Integrin-β1. Intriguingly, such effect of ECM and collagen is dose-dependent and reversible, suggesting a potential clinic-relevant application for targeting this effect. Collectively, our results reveal that the stromal ECM acts as a microenvironmental cue promoting EGFR TKI resistance in lung cancer cells, and targeting collagen and Integrin-β1 may be useful for treating resistance, especially the resistance without clearly-defined genetic changes, for which effective therapeutics are lacking.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ting Zhang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lixia Guo
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.
| |
Collapse
|
479
|
YAP/TAZ Signaling as a Molecular Link between Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19113674. [PMID: 30463366 PMCID: PMC6274979 DOI: 10.3390/ijms19113674] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Tissue fibrosis is a pathological condition that is associated with impaired epithelial repair and excessive deposition of extracellular matrix (ECM). Fibrotic lesions increase the risk of cancer in various tissues, but the mechanism linking fibrosis and cancer is unclear. Yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are core components of the Hippo pathway, which have multiple biological functions in the development, homeostasis, and regeneration of tissues and organs. YAP/TAZ act as sensors of the structural and mechanical features of the cell microenvironment. Recent studies have shown aberrant YAP/TAZ activation in both fibrosis and cancer in animal models and human tissues. In fibroblasts, ECM stiffness mechanoactivates YAP/TAZ, which promote the production of profibrotic mediators and ECM proteins. This results in tissue stiffness, thus establishing a feed-forward loop of fibroblast activation and tissue fibrosis. In contrast, in epithelial cells, YAP/TAZ are activated by the disruption of cell polarity and increased ECM stiffness in fibrotic tissues, which promotes the proliferation and survival of epithelial cells. YAP/TAZ are also involved in the epithelial–mesenchymal transition (EMT), which contributes to tumor progression and cancer stemness. Importantly, the crosstalk with transforming growth factor (TGF)-β signaling and Wnt signaling is essential for the profibrotic and tumorigenic roles of YAP/TAZ. In this article, we review the latest advances in the pathobiological roles of YAP/TAZ signaling and their function as a molecular link between fibrosis and cancer.
Collapse
|
480
|
Sharma S, Goswami R, Zhang DX, Rahaman SO. TRPV4 regulates matrix stiffness and TGFβ1-induced epithelial-mesenchymal transition. J Cell Mol Med 2018; 23:761-774. [PMID: 30450767 PMCID: PMC6349341 DOI: 10.1111/jcmm.13972] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| |
Collapse
|
481
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
482
|
Increased Cthrc1 Activates Normal Fibroblasts and Suppresses Keloid Fibroblasts by Inhibiting TGF-β/Smad Signal Pathway and Modulating YAP Subcellular Location. Curr Med Sci 2018; 38:894-902. [PMID: 30341526 DOI: 10.1007/s11596-018-1959-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/07/2018] [Indexed: 02/05/2023]
Abstract
Keloid may induce severe impairment of life quality for the patients, although keloid is a cutaneous benign tumor. Collagen triple helix repeat containing protein 1 (Cthrc1) was identified as a novel gene that was originally found in adventitial fibroblasts after arterial injury. To address the role of Cthrc1 in keloid, the expression level of Cthrc1 was assessed in normal skin and keloid tissue, as well as in normal fibroblasts (NFs) and keloid fibroblasts (KFs) by using quantitative PCR, Western blotting and immunohistochemical analysis. The results showed that Cthrc1 was increased in keloid tissue and KFs as compared with normal skin and NFs. Meanwhile, CCK8 and Transwell assays found the cellular proliferation and migration of KFs were increased as compared with NFs. Further, to verify the function of Cthrc1 in NFs and KFs, we increased Cthrc1 expression by transfecting lentivirus (LV) vectors LV-Cthrc1. The cellular proliferation and migration, collagen synthesis and the influence on TGF-β and YAP signaling were tested. The cellular proliferation and migration were increased in NFs-Cthrc1 as compared with NFs-control. Meanwhile, YAP expression and nuclear-location was increased in NFs-Cthrc1. On the contrary, when Cthrc1 was overexpressed in KFs, the cellular migration was suppressed and YAP expression was reduced and transferred to cytoplasm in KFs-Cthrc1 as compared with KFs-control. But the expression level of collagen I was decreased and pSmad2/3 nucleus transfer was suppressed in both NFs-Cthrc1 and KFs-Cthrc1 by using Western blotting and immunofluorescence. Increased Cthrc1 activated NFs by promoting YAP nucleus translocation, whereas suppressed KFs by inhibiting YAP nucleus translocation. Enhanced Cthrc1 decreased collagen I in both NFs and KFs by inhibiting TGF-β/Smad pathway. In conclusion, Cthrc1 may play a role in the pathogenesis of keloid by inhibiting collagen synthesis and fibroblasts migration via suppressing TGF-β/Smad pathway and YAP nucleus translocation.
Collapse
|
483
|
Feng Y, Liang Y, Zhu X, Wang M, Gui Y, Lu Q, Gu M, Xue X, Sun X, He W, Yang J, Johnson RL, Dai C. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J Biol Chem 2018; 293:19290-19302. [PMID: 30333225 DOI: 10.1074/jbc.ra118.005457] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
M2 macrophage polarization is known to underlie kidney fibrosis. We previously reported that most of the members of the Wnt family of signaling proteins are induced in fibrotic kidneys. Dysregulation of the signaling protein Wnt5a is associated with fibrosis, but little is known about the role of Wnt5a in regulating M2 macrophage activation that results in kidney fibrosis. Here, using murine Raw 264.7 cells and bone marrow-derived macrophages, we found that Wnt5a enhanced transforming growth factor β1 (TGFβ1)-induced macrophage M2 polarization as well as expression of the transcriptional regulators Yes-associated protein (Yap)/transcriptional coactivator with PDZ-binding motif (Taz). Verteporfin blockade of Yap/Taz inhibited both Wnt5a- and TGFβ1-induced macrophage M2 polarization. In mouse models of kidney fibrosis, shRNA-mediated knockdown of Wnt5a expression diminished kidney fibrosis, macrophage Yap/Taz expression, and M2 polarization. Moreover, genetic ablation of Taz in macrophages attenuated kidney fibrosis and macrophage M2 polarization in mice. Collectively, these results indicate that Wnt5a promotes kidney fibrosis by stimulating Yap/Taz-mediated macrophage M2 polarization.
Collapse
Affiliation(s)
- Ye Feng
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Yan Liang
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Xingwen Zhu
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Mingjie Wang
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Yuan Gui
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Qingmiao Lu
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Mengru Gu
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Xian Xue
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Xiaoli Sun
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Weichun He
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Junwei Yang
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| | - Randy L Johnson
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Chunsun Dai
- From the Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 Jiangsu, China and
| |
Collapse
|
484
|
Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72:112-127. [PMID: 29625182 PMCID: PMC6146058 DOI: 10.1016/j.matbio.2018.03.021] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic disease of the lung that is marked by progressive decline in pulmonary function and ultimately respiratory failure. Genetic and environmental risk factors have been identified that indicate injury to, and dysfunction of the lung epithelium is central to initiating the pathogenic process. Following injury to the lung epithelium, growth factors, matrikines and extracellular matrix driven signaling together activate a variety of repair pathways that lead to inflammatory cell recruitment, fibroblast proliferation and expansion of the extracellular matrix, culminating in tissue fibrosis. This tissue fibrosis then leads to changes in the biochemical and biomechanical properties of the extracellular matrix, which potentiate profibrotic mechanisms through a "feed-forward cycle." This review provides an overview of the interactions of the pathogenic mechanisms of IPF with a focus on epithelial-mesenchymal crosstalk and the extracellular matrix as a therapeutic target for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin C Hewlett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States.
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs Medical Center, Nashville, TN, United States; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
485
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
486
|
Grune J, Kuebler WM. Is there a role for endothelin-1 receptor antagonists in the treatment of lung fibrosis associated with pulmonary hypertension? Eur Respir J 2018; 52:52/2/1801287. [PMID: 30166496 DOI: 10.1183/13993003.01287-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Jana Grune
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany.,The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
487
|
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med 2018; 65:56-69. [PMID: 30130563 DOI: 10.1016/j.mam.2018.08.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and terminal lung disease with no known cure. IPF is a disease of aging, with median age of diagnosis over 65 years. Median survival is between 3 and 5 years after diagnosis. IPF is characterized primarily by excessive deposition of extracellular matrix (ECM) proteins by activated lung fibroblasts and myofibroblasts, resulting in reduced gas exchange and impaired pulmonary function. Growing evidence supports the concept of a pro-fibrotic environment orchestrated by underlying factors such as genetic predisposition, chronic injury and aging, oxidative stress, and impaired regenerative responses may account for disease development and persistence. Currently, two FDA approved drugs have limited efficacy in the treatment of IPF. Many of the genes and gene networks associated with lung development are induced or activated in IPF. In this review, we analyze current knowledge in the field, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Eva Otoupalova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Samuel R Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Volckaert
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stijn P De Langhe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
488
|
Denton CP, Wells AU, Coghlan JG. Major lung complications of systemic sclerosis. Nat Rev Rheumatol 2018; 14:511-527. [DOI: 10.1038/s41584-018-0062-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
489
|
Horowitz JC. Investigating Matrix-Fibroblast Regulation of MicroRNAs. A Dice(r)y Proposition. Am J Respir Crit Care Med 2018; 198:418-419. [PMID: 29624411 DOI: 10.1164/rccm.201803-0532ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jeffrey C Horowitz
- 1 Department of Internal Medicine University of Michigan Medical School Ann Arbor, Michigan
| |
Collapse
|
490
|
Chambers DM, Moretti L, Zhang JJ, Cooper SW, Chambers DM, Santangelo PJ, Barker TH. LEM domain-containing protein 3 antagonizes TGFβ-SMAD2/3 signaling in a stiffness-dependent manner in both the nucleus and cytosol. J Biol Chem 2018; 293:15867-15886. [PMID: 30108174 DOI: 10.1074/jbc.ra118.003658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Transforming growth factor-β (TGFβ) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFβ signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFβ, and TGFβ signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFβ through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFβ signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFβ-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFβ-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted in vitro Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFβ by LEMD3, providing a novel target to antagonize pathological TGFβ signaling.
Collapse
Affiliation(s)
- Dwight M Chambers
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Leandro Moretti
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| | - Jennifer J Zhang
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Spencer W Cooper
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Davis M Chambers
- the College of Arts and Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Philip J Santangelo
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Thomas H Barker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| |
Collapse
|
491
|
He Y, Tsou PS, Khanna D, Sawalha AH. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann Rheum Dis 2018; 77:1208-1218. [PMID: 29760157 PMCID: PMC7297461 DOI: 10.1136/annrheumdis-2018-213022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Emerging evidence supports a role for epigenetic regulation in the pathogenesis of scleroderma (SSc). We aimed to assess the role of methyl-CpG-binding protein 2 (MeCP2), a key epigenetic regulator, in fibroblast activation and fibrosis in SSc. METHODS Dermal fibroblasts were isolated from patients with diffuse cutaneous SSc (dcSSc) and from healthy controls. MeCP2 expression was measured by qPCR and western blot. Myofibroblast differentiation was evaluated by gel contraction assay in vitro. Fibroblast proliferation was analysed by ki67 immunofluorescence staining. A wound healing assay in vitro was used to determine fibroblast migration rates. RNA-seq was performed with and without MeCP2 knockdown in dcSSc to identify MeCP2-regulated genes. The expression of MeCP2 and its targets were modulated by siRNA or plasmid. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) using anti-MeCP2 antibody was performed to assess MeCP2 binding sites within MeCP2-regulated genes. RESULTS Elevated expression of MeCP2 was detected in dcSSc fibroblasts compared with normal fibroblasts. Overexpressing MeCP2 in normal fibroblasts suppressed myofibroblast differentiation, fibroblast proliferation and fibroblast migration. RNA-seq in MeCP2-deficient dcSSc fibroblasts identified MeCP2-regulated genes involved in fibrosis, including PLAU, NID2 and ADA. Plasminogen activator urokinase (PLAU) overexpression in dcSSc fibroblasts reduced myofibroblast differentiation and fibroblast migration, while nidogen-2 (NID2) knockdown promoted myofibroblast differentiation and fibroblast migration. Adenosine deaminase (ADA) depletion in dcSSc fibroblasts inhibited cell migration rates. Taken together, antifibrotic effects of MeCP2 were mediated, at least partly, through modulating PLAU, NID2 and ADA. ChIP-seq further showed that MeCP2 directly binds regulatory sequences in NID2 and PLAU gene loci. CONCLUSIONS This study demonstrates a novel role for MeCP2 in skin fibrosis and identifies MeCP2-regulated genes associated with fibroblast migration, myofibroblast differentiation and extracellular matrix degradation, which can be potentially targeted for therapy in SSc.
Collapse
Affiliation(s)
- Ye He
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
492
|
Smithmyer ME, Spohn JB, Kloxin AM. Probing fibroblast activation in response to extracellular cues with whole protein- or peptide-functionalized step-growth hydrogels. ACS Biomater Sci Eng 2018; 4:3304-3316. [PMID: 32494587 DOI: 10.1021/acsbiomaterials.8b00491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic hydrogels with well-defined mechanical properties have become invaluable tools for probing cell response to extracellular cues including matrix stiffness and integrin binding. These synthetic matrices are often decorated with either proteins or integrin-binding peptides to promote cell adhesion and to direct or probe cell behavior. For example, both collagen I-functionalized polyacrylamide and peptide-functionalized poly(ethylene glycol) hydrogels have been instrumental in elucidating the role of the elasticity or 'stiffness' of the matrix in promoting fibroblast activation in wound healing and fibrosis. However, the two methods of promoting integrin binding are not often directly compared in the same system, partly owing to differences in material designs, despite the potential differences in the way cells interact with whole proteins and protein mimetic peptides. We hypothesized that such a comparison could provide insight into the ways integrin binding affects fibroblast activation within commonly utilized in vitro cell culture models, and more broadly, to inform the design of materials to modulate fibroblast activation in studies of wound healing and disease. To enable this comparison, we developed a method to conjugate whole proteins to step-growth poly(ethylene glycol) (PEG) hydrogels and investigated fibroblast response to protein-peptide pairs: fibronectin and PHSRN(G)10RGDS or collagen I and (POG)3POGFOGER(POG)4, which are important in matrix remodeling and relevant to fibroblast activation. With this approach, we observed that human pulmonary fibroblasts adopted a similar morphology on fibronectin and PHSRN(G)10RGDS, although with a slight increase in the percentage of alpha smooth muscle actin (αSMA) expressing cells on PHSRN(G)10RGDS. Interestingly, we observed that fibroblasts formed activated clusters on the collagen mimic (POG)3POGFOGER(POG)4 while exhibiting less activation on collagen I. This cell activation and clustering is reminiscent of fibroblast foci that are observed in lung fibrosis, suggesting the relevance of these well-defined polymer-peptide hydrogels for investigating fibrosis and decoupling biochemical and biophysical cues.
Collapse
Affiliation(s)
- Megan E Smithmyer
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph B Spohn
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
493
|
Dieffenbach PB, Maracle M, Tschumperlin DJ, Fredenburgh LE. Mechanobiological Feedback in Pulmonary Vascular Disease. Front Physiol 2018; 9:951. [PMID: 30090065 PMCID: PMC6068271 DOI: 10.3389/fphys.2018.00951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023] Open
Abstract
Vascular stiffening in the pulmonary arterial bed is increasingly recognized as an early disease marker and contributor to right ventricular workload in pulmonary hypertension. Changes in pulmonary artery stiffness throughout the pulmonary vascular tree lead to physiologic alterations in pressure and flow characteristics that may contribute to disease progression. These findings have led to a greater focus on the potential contributions of extracellular matrix remodeling and mechanical signaling to pulmonary hypertension pathogenesis. Several recent studies have demonstrated that the cellular response to vascular stiffness includes upregulation of signaling pathways that precipitate further vascular remodeling, a process known as mechanobiological feedback. The extracellular matrix modifiers, mechanosensors, and mechanotransducers responsible for this process have become increasingly well-recognized. In this review, we discuss the impact of vascular stiffening on pulmonary hypertension morbidity and mortality, evidence in favor of mechanobiological feedback in pulmonary hypertension pathogenesis, and the major contributors to mechanical signaling in the pulmonary vasculature.
Collapse
Affiliation(s)
- Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Marcy Maracle
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
494
|
Lamar JM, Motilal Nehru V, Weinberg G. Epithelioid Hemangioendothelioma as a Model of YAP/TAZ-Driven Cancer: Insights from a Rare Fusion Sarcoma. Cancers (Basel) 2018; 10:cancers10070229. [PMID: 29996478 PMCID: PMC6070876 DOI: 10.3390/cancers10070229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Epithelioid hemangioendothelioma (EHE) is a rare soft-tissue sarcoma involving cells with histologic markers that suggest an endothelial origin. Around 90% of EHEs are caused by the fusion of Transcriptional Co-activator with a PDZ-motif (TAZ) with Calmodulin Binding Transcription Activator 1 (CAMTA1), a central nervous system-specific transcription activator. The 10% of EHEs that lack the TAZ–CAMTA1 fusion instead have a fusion of Yes-associated Protein (YAP) and Transcription Factor E3 (TFE3) genes (YAP-TFE3). YAP and TAZ are well-defined downstream effectors in the Hippo pathway that promote cell growth when translocated to the nucleus. The TAZ–CAMTA1 fusion transcript is insensitive to the Hippo inhibitory signals that normally prevent this process and thus constitutively activates the TAZ transcriptome. In EHE, this causes tumors to form in a variety of organs and tissue types, most commonly the liver, lung, and bone. Its clinical course is unpredictable and highly variable. TAZ activation is known to contribute to key aspects of the cancer phenotype, including metastasis and fibrosis, and increased expression of TAZ is thought to be causally related to the progression of many cancers, including breast, lung, and liver. Therefore, understanding TAZ biology and the molecular mechanisms by which it promotes unregulated cell proliferation will yield insights and possibly improved treatments for both EHE as well as much more common cancers.
Collapse
Affiliation(s)
- John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | | | - Guy Weinberg
- Department of Anesthesiology, University of Illinois College of Medicine, and Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
495
|
Jones MG, Andriotis OG, Roberts JJ, Lunn K, Tear VJ, Cao L, Ask K, Smart DE, Bonfanti A, Johnson P, Alzetani A, Conforti F, Doherty R, Lai CY, Johnson B, Bourdakos KN, Fletcher SV, Marshall BG, Jogai S, Brereton CJ, Chee SJ, Ottensmeier CH, Sime P, Gauldie J, Kolb M, Mahajan S, Fabre A, Bhaskar A, Jarolimek W, Richeldi L, O'Reilly KM, Monk PD, Thurner PJ, Davies DE. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. eLife 2018; 7:36354. [PMID: 29966587 PMCID: PMC6029847 DOI: 10.7554/elife.36354] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
Matrix stiffening with downstream activation of mechanosensitive pathways is strongly implicated in progressive fibrosis; however, pathologic changes in extracellular matrix (ECM) that initiate mechano-homeostasis dysregulation are not defined in human disease. By integrated multiscale biomechanical and biological analyses of idiopathic pulmonary fibrosis lung tissue, we identify that increased tissue stiffness is a function of dysregulated post-translational collagen cross-linking rather than any collagen concentration increase whilst at the nanometre-scale collagen fibrils are structurally and functionally abnormal with increased stiffness, reduced swelling ratio, and reduced diameter. In ex vivo and animal models of lung fibrosis, dual inhibition of lysyl oxidase-like (LOXL) 2 and LOXL3 was sufficient to normalise collagen fibrillogenesis, reduce tissue stiffness, and improve lung function in vivo. Thus, in human fibrosis, altered collagen architecture is a key determinant of abnormal ECM structure-function, and inhibition of pyridinoline cross-linking can maintain mechano-homeostasis to limit the self-sustaining effects of ECM on progressive fibrosis. Idiopathic pulmonary fibrosis (IPF) is a devastating disease of the lung, which scars the tissue and gradually destroys the organ, ultimately leading to death. It is still unclear what exactly causes this scarring, but it is thought that increasing amounts of proteins in the space surrounding the cells of the lungs, the extracellular matrix, could play a role. These proteins, including collagen, normally form a ‘scaffold’ to stabilize cells, but if they accumulate uncontrollably, they can render tissues rigid. It has been assumed that these changes are a consequence of the disease. However, recent evidence suggests that the increased stiffness itself could stimulate cells to produce even more extracellular matrix, driving the progression of the disease. A better understanding of what exactly causes the tissue to become gradually stiffer may identify new ways to block the progression of IPF. Now, Jones et al. compared measurements of the tissue stiffness and the collagen structure taken from samples of patients with IPF. The results showed that the collagen fibres were faulty and had an abnormal shape. This suggests that these problems, rather than an increased amount of collagen, alter the flexibility of the lung tissue. Jones et al. also found that a specific family of proteins, which helps to connect the collagen fibres, was increased in the tissue of patients with IPF. When these proteins were blocked with a newly developed drug, the collagen structure returned to normal and the stiffness of the tissue decreased. As a consequence, the lung capacity improved. This suggests that treatment approaches that help to maintain a normal collagen structure, may in future prevent the stiffening of the lung tissue and so limit feed-forward mechanisms that drive progressive IPF. Moreover, it indicates that measurements of the structure of collagen rather than the its total concentration could serve as a more suitable indicator for the disease.
Collapse
Affiliation(s)
- Mark G Jones
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Orestis G Andriotis
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt, Austria
| | | | - Kerry Lunn
- Synairgen Research Ltd, Southampton, United Kingdom
| | | | - Lucy Cao
- Pharmaxis Ltd, Frenchs Forest, Australia
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Canada
| | - David E Smart
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alessandra Bonfanti
- Aeronautics, Astronautics and Computational Engineering, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Peter Johnson
- Department of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,University Hospital Southampton, Southampton, United Kingdom
| | - Franco Conforti
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Regan Doherty
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chester Y Lai
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Benjamin Johnson
- CRUK and NIHR Experimental Cancer Medicine Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Konstantinos N Bourdakos
- Department of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,University Hospital Southampton, Southampton, United Kingdom
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,University Hospital Southampton, Southampton, United Kingdom
| | - Sanjay Jogai
- University Hospital Southampton, Southampton, United Kingdom
| | - Christopher J Brereton
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Serena J Chee
- University Hospital Southampton, Southampton, United Kingdom.,CRUK and NIHR Experimental Cancer Medicine Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christian H Ottensmeier
- CRUK and NIHR Experimental Cancer Medicine Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patricia Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | - Jack Gauldie
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Canada
| | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Canada
| | - Sumeet Mahajan
- Department of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Atul Bhaskar
- Aeronautics, Astronautics and Computational Engineering, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | | | - Luca Richeldi
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Katherine Ma O'Reilly
- Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Philipp J Thurner
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt, Austria
| | - Donna E Davies
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
496
|
Zhu HY, Ge TX, Pan YB, Zhang SY. Advanced Role of Hippo Signaling in Endometrial Fibrosis: Implications for Intrauterine Adhesion. Chin Med J (Engl) 2018; 130:2732-2737. [PMID: 29133764 PMCID: PMC5695061 DOI: 10.4103/0366-6999.218013] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Intrauterine adhesion (IUA) is a major health problem that causes infertility, menstrual irregularities, and recurrent pregnancy losses in women. Unfortunately, treatments for IUA are limited, and there are currently no effective strategies for preventing IUA recurrence. In this review, we introduced the role of Hippo signaling in the normal endometrium and IUA and described the mechanisms by which the Hippo pathway integrates with the Wnt and transforming growth factor-β (TGF-β) signaling pathways to form an intricate network governing the development of fibrosis. Data Sources: Original research articles in English that were published until July 2017 were collected from the PubMed database. Study Selection: Literature search was conducted using the search terms “endometrial fibrosis OR fibrosis AND or OR intrauterine adhesion OR Asherman syndrome OR IUA,” “Hippo AND or OR Hippo/TAZ,” “TGF-β,” and “Wnt.” Related original research articles were included in the comprehensive analysis. Results: Endometrial fibrosis is recognized as a key pathological event in the development of IUA, which is characterized by epithelial/fibroblast–myofibroblast transition. Myofibroblasts play crucial roles in the pathogenesis of fibrous scarring, and myofibroblast differentiation can be triggered by multiple signaling pathways. Hippo signaling is a critical regulator of the epithelial/fibroblast–myofibroblast transition and α-smooth muscle actin, which exhibits a specific spatiotemporal expression in the endometrium. Conclusions: Hippo signaling plays a critical role in fibrous diseases and participates in cross talks with Wnt and TGF-β signaling. Our findings not only contributed to knowledge on the pathogenesis of endometrial fibrosis, but can also serve as a useful resource for developing specific molecular inhibitors for IUA treatment and prevention.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Tian-Xiang Ge
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yi-Bin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Song-Ying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
497
|
Guenat OT, Berthiaume F. Incorporating mechanical strain in organs-on-a-chip: Lung and skin. BIOMICROFLUIDICS 2018; 12:042207. [PMID: 29861818 PMCID: PMC5962443 DOI: 10.1063/1.5024895] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/17/2018] [Indexed: 05/08/2023]
Abstract
In the last decade, the advent of microfabrication and microfluidics and an increased interest in cellular mechanobiology have triggered the development of novel microfluidic-based platforms. They aim to incorporate the mechanical strain environment that acts upon tissues and in-vivo barriers of the human body. This article reviews those platforms, highlighting the different strains applied, and the actuation mechanisms and provides representative applications. A focus is placed on the skin and the lung barriers as examples, with a section that discusses the signaling pathways involved in the epithelium and the connective tissues.
Collapse
Affiliation(s)
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
498
|
Upagupta C, Shimbori C, Alsilmi R, Kolb M. Matrix abnormalities in pulmonary fibrosis. Eur Respir Rev 2018; 27:27/148/180033. [PMID: 29950306 DOI: 10.1183/16000617.0033-2018] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 11/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease, marked by excessive scarring, which leads to increased tissue stiffness, loss in lung function and ultimately death. IPF is characterised by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Myofibroblasts play a key role in ECM deposition. Transforming growth factor (TGF)-β1 is a major growth factor involved in myofibroblast differentiation, and the creation of a profibrotic microenvironment. There is a strong link between increased ECM stiffness and profibrotic changes in cell phenotype and differentiation. The activation of TGF-β1 in response to mechanical stress from a stiff ECM explains some of the influence of the tissue microenvironment on cell phenotype and function. Understanding the close relationship between cells and their surrounding microenvironment will ultimately facilitate better management strategies for IPF.
Collapse
Affiliation(s)
- Chandak Upagupta
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Chiko Shimbori
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rahmah Alsilmi
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
499
|
Zhao X, Sun J, Chen Y, Su W, Shan H, Li Y, Wang Y, Zheng N, Shan H, Liang H. lncRNA PFAR Promotes Lung Fibroblast Activation and Fibrosis by Targeting miR-138 to Regulate the YAP1-Twist Axis. Mol Ther 2018; 26:2206-2217. [PMID: 30025992 DOI: 10.1016/j.ymthe.2018.06.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in various pathophysiological processes in many diseases. However, the role and mechanism of lncRNAs in idiopathic pulmonary fibrosis (IPF) have not been explicitly delineated. In the present study, we reported that lncRNA NONMMUT065582, designated pulmonary fibrosis-associated RNA (PFAR), is upregulated in the lungs of mice with lung fibrosis as well as in fibrotic lung fibroblasts. Overexpression of PFAR promoted fibrogenesis through modulation of miR-138, whereas knockdown of PFAR attenuated TGF-β1-induced fibrogenesis in lung fibroblasts. In addition, knockdown of miR-138 promoted fibrogenesis by targeting regulation of yes-associated protein 1 (YAP1), whereas enhanced expression of miR-138 attenuated fibrogenesis in lung fibroblasts. Mechanistically, PFAR acted as competing endogenous RNA (ceRNA) of miR-138: forced expression of PFAR reduced the expression and activity of miR-138 to activate YAP1 and promote fibrogenesis in lung fibroblasts, whereas loss of YAP1 abrogated the pro-fibrotic effect of PFAR. More importantly, PFAR silencing alleviated BLM-induced lung fibrosis in mice. Taken together, the results of our study identified lncRNA PFAR as a new pro-fibrotic molecule that acts as a ceRNA of miR-138 during lung fibrosis and demonstrated PFAR as a novel therapeutic target for the prevention and treatment of lung fibrosis.
Collapse
Affiliation(s)
- Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yingzhun Chen
- Department of Pathology, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Huitong Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yining Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Nan Zheng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
500
|
Futakuchi A, Inoue T, Wei FY, Inoue-Mochita M, Fujimoto T, Tomizawa K, Tanihara H. YAP/TAZ Are Essential for TGF-β2–Mediated Conjunctival Fibrosis. ACTA ACUST UNITED AC 2018; 59:3069-3078. [DOI: 10.1167/iovs.18-24258] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Akiko Futakuchi
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miyuki Inoue-Mochita
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomokazu Fujimoto
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|