451
|
Bridges PJ, Jeoung M, Shim S, Park JY, Lee JE, Sapsford LA, Trudgen K, Ko C, Gye MC, Jo M. Hematopoetic prostaglandin D synthase: an ESR1-dependent oviductal epithelial cell synthase. Endocrinology 2012; 153:1925-35. [PMID: 22374975 PMCID: PMC3320253 DOI: 10.1210/en.2011-1900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oviductal disease is a primary cause of infertility, a problem that largely stems from excessive inflammation of this key reproductive organ. Our poor understanding of the mechanisms regulating oviductal inflammation restricts our ability to diagnose, treat, and/or prevent oviductal disease. Using mice, our objective was to determine the spatial localization, regulatory mechanism, and functional attributes of a hypothesized regulator of oviductal inflammation, the hematopoietic form of prostaglandin D synthase (HPGDS). Immunohistochemistry revealed specific localization of HPGDS to the oviduct's epithelium. In the isthmus, expression of HPGDS was consistent. In the ampulla, expression of HPGDS appeared dependent upon stage of the estrous cycle. HPGDS was expressed in the epithelium of immature and cycling mice but not in the oviducts of estrogen receptor α knockouts. Two receptor subtypes bind PGD₂: PGD₂ receptor and G protein-coupled receptor 44. Expression of mRNA for Ptgdr was higher in the epithelial cells (EPI) than in the stroma (P < 0.05), whereas mRNA for Gpr44 was higher in the stroma than epithelium (P < 0.05). Treatment of human oviductal EPI with HQL-79, an inhibitor of HPGDS, decreased cell viability (P < 0.05). Treatment of mice with HQL-79 increased mRNA for chemokine (C-C motif) ligands 3, 4, and 19; chemokine (C-X-C motif) ligands 11 and 12; IL-13 and IL-17B; and TNF receptor superfamily, member 1b (P < 0.02 for each mRNA). Overall, these results suggest that HPGDS may play a role in the regulation of inflammation and EPI health within the oviduct.
Collapse
Affiliation(s)
- Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
452
|
|
453
|
L-citrulline Prevents Alveolar and Vascular Derangement in a Rat Model of Moderate Hyperoxia-induced Lung Injury. Lung 2012; 190:419-30. [DOI: 10.1007/s00408-012-9382-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
454
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
455
|
Ghosh MC, Makena PS, Gorantla V, Sinclair SE, Waters CM. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2. Am J Physiol Lung Cell Mol Physiol 2012; 302:L846-56. [PMID: 22345572 DOI: 10.1152/ajplung.00321.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury.
Collapse
Affiliation(s)
- Manik C Ghosh
- Department of Physiology, Univ. of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
456
|
Engineering airway epithelium. J Biomed Biotechnol 2012; 2012:982971. [PMID: 22523471 PMCID: PMC3304574 DOI: 10.1155/2012/982971] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 12/11/2022] Open
Abstract
Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990). In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium.
Collapse
|
457
|
Xie T, Liang J, Liu N, Wang Q, Li Y, Noble PW, Jiang D. MicroRNA-127 inhibits lung inflammation by targeting IgG Fcγ receptor I. THE JOURNAL OF IMMUNOLOGY 2012; 188:2437-44. [PMID: 22287715 DOI: 10.4049/jimmunol.1101070] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms of acute lung injury are incompletely understood. MicroRNAs (miRNAs) are crucial biological regulators that act by suppressing their target genes and are involved in a variety of pathophysiologic processes. miR-127 appears to be downregulated during lung injury. We set out to investigate the role of miR-127 in lung injury and inflammation. Expression of miR-127 significantly reduced cytokine release by macrophages. Looking into the mechanisms of regulation of inflammation by miR-127, we found that IgG FcγRI (CD64) was a target of miR-127, as evidenced by reduced CD64 protein expression in macrophages overexpressing miR-127. Furthermore, miR-127 significantly reduced the luciferase activity with a reporter construct containing the native 3' untranslated region of CD64. Importantly, we demonstrated that miR-127 attenuated lung inflammation in an IgG immune complex model in vivo. Collectively, these data show that miR-127 targets macrophage CD64 expression and promotes the reduction of lung inflammation. Understanding how miRNAs regulate lung inflammation may represent an attractive way to control inflammation induced by infectious or noninfectious lung injury.
Collapse
Affiliation(s)
- Ting Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
458
|
Abstract
OBJECTIVE To establish a tissue engineering therapy for the treatment of large tympanic membrane perforation (TMP) without the need for conventional surgical therapy. STUDY DESIGN Randomized control trial. SETTING General hospital. PATIENTS AND METHODS A total of 63 chronic TMPs were randomly selected from outpatients. INTERVENTION Of the total 63 chronic TMPs, 53 were randomly assigned to the basic fibroblast growth factor (b-FGF) group and the remaining 10 were randomly assigned to the control group. Materials used for the TM repair were gelatin sponge and fibrin glue with/without b-FGF. After creating a mechanical disruption of the edge of the TMP, a gelatin sponge was immersed in b-FGF or saline (for the control group) and placed over the perforation. Fibrin glue was dripped over the sponge as a sealant. MAIN OUTCOME MEASURES The effectiveness of this therapy was evaluated by closure rates, hearing level, and sequelae 3 weeks after treatment. The treatment was repeated up to 4 times for cases in which complete closure of the TMP was not achieved after 1 round of treatment. RESULTS Complete closure of the TMP was achieved in more than 98.1% (52/53) of the patients in the b-FGF group and 10% (1/10) of the patients in the control group. The average hearing level of all patients with successful TM repair was improved. Serious sequelae were not observed in any patient. CONCLUSION This study demonstrates that a combination of gelatin sponge, b-FGF, and fibrin glue enables the regeneration of the TM without conventional operative procedures. This innovative regenerative therapy is an easy, safe, cost-effective, and minimally invasive outpatient treatment.
Collapse
|
459
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
460
|
Christie JD, Wurfel MM, Feng R, O'Keefe GE, Bradfield J, Ware LB, Christiani DC, Calfee CS, Cohen MJ, Matthay M, Meyer NJ, Kim C, Li M, Akey J, Barnes KC, Sevransky J, Lanken PN, May AK, Aplenc R, Maloney JP, Hakonarson H. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS One 2012; 7:e28268. [PMID: 22295056 PMCID: PMC3266233 DOI: 10.1371/journal.pone.0028268] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 11/04/2011] [Indexed: 12/29/2022] Open
Abstract
Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research.
Collapse
Affiliation(s)
- Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Mark M. Wurfel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Rui Feng
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Grant E. O'Keefe
- Department of Surgery, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Jonathan Bradfield
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health and Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Carolyn S. Calfee
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Mitchell J. Cohen
- Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Michael Matthay
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kathleen C. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan Sevransky
- Division of Pulmonary, Allergy, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul N. Lanken
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Addison K. May
- Department of Surgical Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Richard Aplenc
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James P. Maloney
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Hakon Hakonarson
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
461
|
Nygaard RM, Golden JW, Schiff LA. Impact of host proteases on reovirus infection in the respiratory tract. J Virol 2012; 86:1238-43. [PMID: 22072772 PMCID: PMC3255841 DOI: 10.1128/jvi.06429-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022] Open
Abstract
Virion uncoating is an essential early event in reovirus infection. In natural enteric infections, rapid proteolytic uncoating of virions is mediated by pancreatic serine proteases. The proteases that promote reovirus disassembly and cell entry in the respiratory tract remain unknown. In this report, we show that endogenous respiratory and inflammatory proteases can promote reovirus infection in vitro and that preexisting inflammation augments in vivo infection in the murine respiratory tract.
Collapse
Affiliation(s)
- Rachel M Nygaard
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
462
|
Novel outcomes and end points: biomarkers in chronic obstructive pulmonary disease clinical trials. Ann Am Thorac Soc 2011; 8:350-5. [PMID: 21816991 DOI: 10.1513/pats.201101-015rm] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biomarker development in chronic obstructive pulmonary disease (COPD) is a nascent field, in part because of the complexity underlying COPD pathogenesis. The objective of this review is to provide examples of how biomarkers may be effectively applied in clinical trials of COPD by limiting their use to specific contexts and using them to answer well delineated questions. Types of novel outcomes or "biomarkers" that may be useful in clinical trials in COPD include analyses performed on bronchoscopically obtained samples, sputum, exhaled gases, blood, and urine and "ex vivo" assays performed using biological samples obtained from trial participants. These novel biological outcomes are rarely useful as primary end points in phase III clinical trials in COPD, because they are not typically recognized by the U.S. Food and Drug Administration or other regulatory agencies. More commonly, the applications of these outcomes include "proof-of-concept" decisions, demonstration that the intervention had the intended pharmacologic or biological effect, identification of patient subgroups that benefit most, and safety monitoring. Examples given in this review include outcomes used in a phase IIA study of an inhaled small molecule inhibitor of epidermal growth factor receptor. Large observational studies of COPD, including the ECLIPSE, COPDGene, and SPIROMICS studies will further inform our use of biomarkers in COPD clinical trials. To encourage the application of novel biomarkers in clinical trials, the Food and Drug Administration has developed a new process for biomarker "qualification." This process has been designed to be more efficient and to promote consensus building and sharing of preclinical data.
Collapse
|
463
|
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011. [PMID: 21946417 DOI: 10.1038/ni.2131] [Citation(s) in RCA: 1092] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.
Collapse
Affiliation(s)
- Laurel A Monticelli
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Proudfoot AG, Hind M, Griffiths MJD. Biomarkers of acute lung injury: worth their salt? BMC Med 2011; 9:132. [PMID: 22152131 PMCID: PMC3261814 DOI: 10.1186/1741-7015-9-132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/12/2011] [Indexed: 12/21/2022] Open
Abstract
The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI) and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy.
Collapse
Affiliation(s)
- Alastair G Proudfoot
- Royal Brompton & Harefield NHS Foundation Trust, Adult Intensive Care Unit, Sydney Street, London SW3 6NP, UK
| | | | | |
Collapse
|
465
|
Abstract
Idiopathic pulmonary fibrosis is a devastating, age-related lung disease of unknown cause that has few treatment options. This disease was once thought to be a chronic inflammatory process, but current evidence indicates that the fibrotic response is driven by abnormally activated alveolar epithelial cells (AECs). These cells produce mediators that induce the formation of fibroblast and myofibroblast foci through the proliferation of resident mesenchymal cells, attraction of circulating fibrocytes, and stimulation of the epithelial to mesenchymal transition. The fibroblast and myofibroblast foci secrete excessive amounts of extracellular matrix, mainly collagens, resulting in scarring and destruction of the lung architecture. The mechanisms that link idiopathic pulmonary fibrosis with ageing and aberrant epithelial activation are unknown; evidence suggests that the abnormal recapitulation of developmental pathways and epigenetic changes have a role. In this Seminar, we review recent data on the clinical course, therapeutic options, and underlying mechanisms thought to be involved in the pathogenesis of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Talmadge E King
- Department of Medicine, University of California, San Francisco, CA 94143-0120, USA.
| | | | | |
Collapse
|
466
|
Kato T, Fujino H, Oyama S, Kawashima T, Murayama T. Indomethacin induces cellular morphological change and migration via epithelial-mesenchymal transition in A549 human lung cancer cells: A novel cyclooxygenase-inhibition-independent effect. Biochem Pharmacol 2011; 82:1781-91. [DOI: 10.1016/j.bcp.2011.07.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 11/25/2022]
|
467
|
Nathan N, Thouvenin G, Fauroux B, Corvol H, Clement A. Interstitial lung disease: physiopathology in the context of lung growth. Paediatr Respir Rev 2011; 12:216-22. [PMID: 22018034 DOI: 10.1016/j.prrv.2011.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interstitial lung diseases (ILDs) in children represent a heterogeneous group of respiratory disorders characterized by derangements of the alveolar walls. The key pathologic feature of ILDs is the altered repair of the alveolar surface after injury with a marked disruption in the integrity of the epithelium and, consequently, a dysregulated communication between epithelial and mesenchymal pulmonary components. Concomitant to the loss of cell-cell contact, epithelial cells undergo a process called epithelial to mesenchymal transition and acquire a mesenchymal identity. Among the factors involved in disease progression, transforming growth factor-β has been identified as a master switch in the induction of fibrosis. This article reviews recent advances in the understanding of the mechanisms involved in the pathogenesis of ILDs, and provides information on their adaptation in the context of lung growth.
Collapse
|
468
|
Abstract
BACKGROUND Asthma is a disorder of the conducting airways that contract too easily and too much to cause variable airflow obstruction with symptoms of wheeze, cough, chest tightness and shortness of breath. Based on this knowledge, initial treatments were directed to dilating the contracted airways with anticholinergic and adrenergic drugs. The recognition that allergic-type inflammation underlay the hyperresponsive airways in asthma led to the introduction of anti-inflammatory drugs such as sodium cromoglicate and corticosteroids. Over the 2 decades that followed, these drugs have been progressively improved by increasing their therapeutic index and duration of action. METHODS A review of the recent literature indicates that since the 1980s, the explosive increase in knowledge of the cell and mediator mechanisms of asthma has only led to modest improvements in therapy including the introduction of leukotriene modifiers and a blocking monoclonal antibody against IgE. Indeed, biologics targeting allergic cytokines and effector cells have on the whole proven disappointing despite initial promise being shown in animal models. RESULTS Part of the difficulty lies in the oversimplified concept that asthma is only driven by allergic processes when in reality there are many environmental causes and triggers and the view that it is a homogeneous disorder only varying in severity. CONCLUSIONS The more recent views that asthma is a complex disorder made up of different subtypes with differing causes, treatment responses and natural histories creates a new opportunity for stratified medicine in which therapies acting upstream selectively target specific disease subtypes identified by specific diagnostic biomarkers.
Collapse
|
469
|
Herold S, Mayer K, Lohmeyer J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol 2011; 2:65. [PMID: 22566854 PMCID: PMC3342347 DOI: 10.3389/fimmu.2011.00065] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/08/2011] [Indexed: 12/24/2022] Open
Abstract
Lung macrophages are long living cells with broad differentiation potential, which reside in the lung interstitium and alveoli or are organ-recruited upon inflammatory stimuli. A role of resident and recruited macrophages in initiating and maintaining pulmonary inflammation in lung infection or injury has been convincingly demonstrated. More recent reports suggest that lung macrophages are main orchestrators of termination and resolution of inflammation. They are also initiators of parenchymal repair processes that are essential for return to homeostasis with normal gas exchange. In this review we will discuss cellular cross-talk mechanisms and molecular pathways of macrophage plasticity which define their role in inflammation resolution and in initiation of lung barrier repair following lung injury.
Collapse
Affiliation(s)
- Susanne Herold
- Department of Internal Medicine II, University of Giessen Lung Center Giessen, Germany.
| | | | | |
Collapse
|
470
|
Sivak JM, Ostriker AC, Woolfenden A, Demirs J, Cepeda R, Long D, Anderson K, Jaffee B. Pharmacologic uncoupling of angiogenesis and inflammation during initiation of pathological corneal neovascularization. J Biol Chem 2011; 286:44965-75. [PMID: 22072717 DOI: 10.1074/jbc.m111.294967] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pathological neovascularization occurs when a balance of pro- and anti-angiogenic factors is disrupted, accompanied by an amplifying inflammatory cascade. However, the interdependence of these responses and the mechanism triggering the initial angiogenic switch have remained unclear. We present data from an epithelial debridement model of corneal neovascularization describing an initial 3-day period when a substantial component of neovascular growth occurs. Administration of selective inhibitors shows that this initial growth requires signaling through VEGFR-2 (vascular endothelial growth factor receptor-2), independent of the accompanying inflammatory response. Instead, increased VEGF production is found prominently in repair epithelial cells and is increased prior to recruitment of neutrophil/granulocytes and macrophage/monocytes. Consequently, early granulocyte and monocyte depletion has little effect on corneal neovascularization outgrowth. These data indicate that it is possible to pharmacologically uncouple these mechanisms during early injury-driven neovascularization in the cornea and suggest that initial tissue responses are coordinated by repair epithelial cells.
Collapse
Affiliation(s)
- Jeremy M Sivak
- Department of Vision Sciences, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
471
|
Roth M. Is there a regulatory role of immunoglobulins on tissue forming cells relevant in chronic inflammatory lung diseases? J Allergy (Cairo) 2011; 2011:721517. [PMID: 22121383 PMCID: PMC3216316 DOI: 10.1155/2011/721517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/29/2011] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells, fibroblasts and smooth muscle cells together form and give structure to the airway wall. These three tissue forming cell types are structure giving elements and participate in the immune response to inhaled particles including allergens and dust. All three cell types actively contribute to the pathogenesis of chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). Tissue forming cells respond directly to allergens through activated immunoglobulins which then bind to their corresponding cell surface receptors. It was only recently reported that allergens and particles traffic through epithelial cells without modification and bind to the immunoglobulin receptors on the surface of sub-epithelial mesenchymal cells. In consequence, these cells secrete pro-inflammatory cytokines, thereby extending the local inflammation. Furthermore, activation of the immunoglobulin receptors can induce proliferation and tissue remodeling of the tissue forming cells. New studies using anti-IgE antibody therapy indicate that the inhibition of immunoglobulins reduces the response of tissue forming cells. The unmeasured questions are: (i) why do tissue forming cells express immunoglobulin receptors and (ii) do tissue forming cells process immunoglobulin receptor bound particles? The focus of this review is to provide an overview of the expression and function of various immunoglobulin receptors.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Department of Research and Pneumology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
472
|
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12:1045-54. [PMID: 21946417 PMCID: PMC3320042 DOI: 10.1031/ni.2131] [Citation(s) in RCA: 711] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/01/2011] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor a-chain (CD25), IL-7 receptor a-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.
Collapse
Affiliation(s)
- Laurel A Monticelli
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Mihai C, Bao S, Lai JP, Ghadiali SN, Knoell DL. PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol 2011; 302:L287-99. [PMID: 22037358 DOI: 10.1152/ajplung.00037.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The phosphoinositide-3 kinase/Akt pathway is a vital survival axis in lung epithelia. We previously reported that inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a major suppressor of this pathway, results in enhanced wound repair following injury. However, the precise cellular and biomechanical mechanisms responsible for increased wound repair during PTEN inhibition are not yet well established. Using primary human lung epithelia and a related lung epithelial cell line, we first determined whether changes in migration or proliferation account for wound closure. Strikingly, we observed that cell migration accounts for the majority of wound recovery following PTEN inhibition in conjunction with activation of the Akt and ERK signaling pathways. We then used fluorescence and atomic force microscopy to investigate how PTEN inhibition alters the cytoskeletal and mechanical properties of the epithelial cell. PTEN inhibition did not significantly alter cytoskeletal structure but did result in large spatial variations in cell stiffness and in particular a decrease in cell stiffness near the wound edge. Biomechanical changes, as well as migration rates, were mediated by both the Akt and ERK pathways. Our results indicate that PTEN inhibition rapidly alters biochemical signaling events that in turn provoke alterations in biomechanical properties that enhance cell migration. Specifically, the reduced stiffness of PTEN-inhibited cells promotes larger deformations, resulting in a more migratory phenotype. We therefore conclude that increased wound closure consequent to PTEN inhibition occurs through enhancement of cell migration that is due to specific changes in the biomechanical properties of the cell.
Collapse
Affiliation(s)
- Cosmin Mihai
- Department of Biomedical Engineering, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
474
|
Fujino N, Kubo H, Ota C, Suzuki T, Suzuki S, Yamada M, Takahashi T, He M, Suzuki T, Kondo T, Yamaya M. A novel method for isolating individual cellular components from the adult human distal lung. Am J Respir Cell Mol Biol 2011; 46:422-30. [PMID: 22033268 DOI: 10.1165/rcmb.2011-0172oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A variety of lung diseases, such as pulmonary emphysema and idiopathic pulmonary fibrosis, develop in the lung alveoli. Multiple cell types are localized in the alveoli, including epithelial, mesenchymal, and endothelial cells. These resident cells participate in the pathogenesis of lung disease in various ways. To elaborate clearly on the mechanisms of these pathologic processes, cell type-specific analyses of lung disease are required. However, no method exists for individually isolating the different types of cells found in the alveoli. We report on the development of a FACS-based method for the direct isolation of individual cell types from the adult human distal lung. We obtained human lung tissue from lung resections, and prepared single-cell suspension. After depleting CD45-positive cells, a combination of antibodies against epithelial cell adhesion molecule (EpCAM), T1α, and vascular endothelial (VE)-cadherin as used to delineate alveolar cell types. Alveolar Type II cells were highly purified in the EpCAM(hi)/T1α(-) subset, whereas the EpCAM(+)/T1α(-/low) subset contained a mixed epithelial population consisting of alveolar Type I and bronchiolar epithelial cells. The EpCAM(-)/T1α(-) subset included both microvascular endothelial and mesenchymal cells, and these were separated by immunoreactivity to VE-cadherin. Lymphatic endothelial cells existed in the EpCAM(-)/T1α(hi) subset. Isolated cells were viable, and further cell culture studies could be performed. These results suggest that this novel method enables the isolation of different cellular components from normal and diseased lungs, and is capable of elucidating phenotypes specific to certain alveolar cell types indicative of lung disease.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Albrecht H, Durbin-Johnson B, Yunis R, Kalanetra KM, Wu S, Chen R, Stevenson TR, Rocke DM. Transcriptional response of ex vivo human skin to ionizing radiation: comparison between low- and high-dose effects. Radiat Res 2011; 177:69-83. [PMID: 22029842 DOI: 10.1667/rr2524.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although human exposure to low-dose ionizing radiation can occur through a variety of sources, including natural, medical, occupational and accidental, the true risks of low-dose ionizing radiation are still poorly understood in humans. Here, the global transcriptional responses of human skin after ex vivo exposure to low (0.05 Gy) and high (5 Gy) doses of X rays and of time in culture (0 Gy) at 0, 2, 8 and 30 h postirradiation were analyzed and compared. Responses to low and high doses differed quantitatively and qualitatively. Differentially expressed genes fell into three groups: (1) unique genes defined as responsive to either 0.05 or 5 Gy but not both and also responsive to time in culture, (2) specific genes defined as responsive to either 0.05 or 5 Gy but not both and not responsive to time in culture, and (3) dose-independent responsive genes. Major differences observed in ex vivo irradiated skin between transcriptional responses to low or high doses were twofold. First, gene expression modulated by 0.05 Gy was transient, while in response to 5 Gy persistence of modified gene expression was observed for a limited number of genes. Second, neither TP53 nor TGFβ target genes were modulated after exposure to an acute low dose, suggesting that the TP53-dependent DNA damage response either was not triggered or was triggered only briefly.
Collapse
Affiliation(s)
- Huguette Albrecht
- Department of Public Health Sciences, University of California Davis, School of Medicine, Sacramento, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
476
|
Oh S, Kwon D, Lee E. Cytoprotective activity of elevated static pressure against oxidative stress in normal human fibroblasts. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0038-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
477
|
Badri L, Walker NM, Ohtsuka T, Wang Z, Delmar M, Flint A, Peters-Golden M, Toews GB, Pinsky DJ, Krebsbach PH, Lama VN. Epithelial interactions and local engraftment of lung-resident mesenchymal stem cells. Am J Respir Cell Mol Biol 2011; 45:809-16. [PMID: 21378261 PMCID: PMC3208618 DOI: 10.1165/rcmb.2010-0446oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/25/2011] [Indexed: 01/08/2023] Open
Abstract
Multipotent mesenchymal progenitor cells, termed "mesenchymal stem cells" (MSCs), have been demonstrated to reside in human adult lungs. However, there is little information regarding the associations of these local mesenchymal progenitors with other resident somatic cells and their potential for therapeutic use. Here we provide in vivo and in vitro evidence for the ability of human adult lung-resident MSCs (LR-MSCs) to interact with the local epithelial cells. The in vivo retention and localization of human LR-MSCs in an alveolar microenvironment was investigated by placing PKH-26 or DsRed lentivirus-labeled human LR-MSCs in the lungs of immunodeficient (SCID) mice. At 3 weeks after intratracheal administration, 19.3 ± 3.21% of LR-MSCs were recovered, compared with 3.47 ± 0.51% of control fibroblasts, as determined by flow cytometry. LR-MSCs were found to persist in murine lungs for up to 6 months and demonstrated preferential localization to the corners of the alveoli in close proximity to type II alveolar epithelial cells, the progenitor cells of the alveolar epithelium. In vitro, LR-MSCs established gap junction communications with lung alveolar and bronchial epithelial cells and demonstrated an ability to secrete keratinocyte growth factor, an important modulator of epithelial cell proliferation and differentiation. Gap junction communications were also demonstrable between LR-MSCs and resident murine cells in vivo. This study demonstrates, for the first time, an ability of tissue-specific MSCs to engraft in their organ of origin and establishes a pathway of bidirectional interaction between these mesenchymal progenitors and adult somatic epithelial cells in the lung.
Collapse
Affiliation(s)
| | | | | | - Zhuo Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | | | - Andrew Flint
- Divisions of Pulmonary and Critical Care Medicine and Cardiovascular Medicine, and Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan; and
| | | | | | | | - Paul H. Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | | |
Collapse
|
478
|
Lethal synergism of 2009 pandemic H1N1 influenza virus and Streptococcus pneumoniae coinfection is associated with loss of murine lung repair responses. mBio 2011; 2:mBio.00172-11. [PMID: 21933918 PMCID: PMC3175626 DOI: 10.1128/mbio.00172-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Secondary bacterial infections increase disease severity of influenza virus infections and contribute greatly to increased morbidity and mortality during pandemics. To study secondary bacterial infection following influenza virus infection, mice were inoculated with sublethal doses of 2009 seasonal H1N1 virus (NIH50) or pandemic H1N1 virus (Mex09) followed by inoculation with Streptococcus pneumoniae 48 h later. Disease was characterized by assessment of weight loss and survival, titration of virus and bacteria by quantitative reverse transcription-PCR (qRT-PCR), histopathology, expression microarray, and immunohistochemistry. Mice inoculated with virus alone showed 100% survival for all groups. Mice inoculated with Mex09 plus S. pneumoniae showed severe weight loss and 100% mortality with severe alveolitis, denuded bronchiolar epithelium, and widespread expression of apoptosis marker cleaved caspase 3. In contrast, mice inoculated with NIH50 plus S. pneumoniae showed increased weight loss, 100% survival, and slightly enhanced lung pathology. Mex09-S. pneumoniae coinfection also resulted in increased S. pneumoniae replication in lung and bacteremia late in infection. Global gene expression profiling revealed that Mex09-S. pneumoniae coinfection did not induce significantly more severe inflammatory responses but featured significant loss of epithelial cell reproliferation and repair responses. Histopathological examination for cell proliferation marker MCM7 showed significant staining of airway epithelial cells in all groups except Mex09-S. pneumoniae-infected mice. This study demonstrates that secondary bacterial infection during 2009 H1N1 pandemic virus infection resulted in more severe disease and loss of lung repair responses than did seasonal influenza viral and bacterial coinfection. Moreover, this study provides novel insights into influenza virus and bacterial coinfection by showing correlation of lethal outcome with loss of airway basal epithelial cells and associated lung repair responses. Secondary bacterial pneumonias lead to increased disease severity and have resulted in a significant percentage of deaths during influenza pandemics. To understand the biological basis for the interaction of bacterial and viral infections, mice were infected with sublethal doses of 2009 seasonal H1N1 and pandemic H1N1 viruses followed by infection with Streptococcus pneumoniae 48 h later. Only infection with 2009 pandemic H1N1 virus and S. pneumoniae resulted in severe disease with a 100% fatality rate. Analysis of the host response to infection during lethal coinfection showed a significant loss of responses associated with lung repair that was not observed in any of the other experimental groups. This group of mice also showed enhanced bacterial replication in the lung. This study reveals that the extent of lung damage during viral infection influences the severity of secondary bacterial infections and may help explain some differences in mortality during influenza pandemics.
Collapse
|
479
|
Villar J, Cabrera NE, Valladares F, Casula M, Flores C, Blanch L, Quilez ME, Santana-Rodríguez N, Kacmarek RM, Slutsky AS. Activation of the Wnt/β-catenin signaling pathway by mechanical ventilation is associated with ventilator-induced pulmonary fibrosis in healthy lungs. PLoS One 2011; 6:e23914. [PMID: 21935365 PMCID: PMC3174135 DOI: 10.1371/journal.pone.0023914] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/27/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mechanical ventilation (MV) with high tidal volumes (V(T)) can cause or aggravate lung damage, so-called ventilator induced lung injury (VILI). The relationship between specific mechanical events in the lung and the cellular responses that result in VILI remains incomplete. Since activation of Wnt/β-catenin signaling has been suggested to be central to mechanisms of lung healing and fibrosis, we hypothesized that the Wnt/β-catenin signaling plays a role during VILI. METHODOLOGY/PRINCIPAL FINDINGS Prospective, randomized, controlled animal study using adult, healthy, male Sprague-Dawley rats. Animals (n = 6/group) were randomized to spontaneous breathing or two strategies of MV for 4 hours: low tidal volume (V(T)) (6 mL/kg) or high V(T) (20 mL/kg). Histological evaluation of lung tissue, measurements of WNT5A, total β-catenin, non-phospho (Ser33/37/Thr41) β-catenin, matrix metalloproteinase-7 (MMP-7), cyclin D1, vascular endothelial growth factor (VEGF), and axis inhibition protein 2 (AXIN2) protein levels by Western blot, and WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, and AXIN2 immunohistochemical localization in the lungs were analyzed. High-V(T) MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 in the lungs were increased in all ventilated animals although high-V(T) MV was associated with significantly higher levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, MMP-7, cyclin D1, VEGF, and AXIN2 levels. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that the Wnt/β-catenin signaling pathway is modulated very early by MV in lungs without preexistent lung disease, suggesting that activation of this pathway could play an important role in both VILI and lung repair. Modulation of this pathway might represent a therapeutic option for prevention and/or management of VILI.
Collapse
Affiliation(s)
- Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
480
|
Gao N, Yin J, Yoon GS, Mi QS, Yu FSX. Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial wound repair. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2243-53. [PMID: 21924232 DOI: 10.1016/j.ajpath.2011.07.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 12/21/2022]
Abstract
The functions of intraepithelial dendritic cells (DCs) are critical for mucosal innate and adaptive immunity, but little is known about the role of tissue-specific DCs in epithelial homeostasis and tissue repair. By using the epithelial debridement wound model and CD11c-diphtheria toxin receptor mice that express a CD11c promoter-driven diphtheria toxin receptor, we showed that DCs migrate along with the epithelial sheet to cover the wound and that local depletion of DCs resulted in a significant delay in epithelial wound closure. In response to wounding, migratory epithelia produce CXCL10, thymic stromal lymphopoietin, and IL-1β and its antagonist soluble IL-1 receptor antagonist (sIL-1Ra); depletion of corneal DCs reversed their elevated expressions to a different extent, suggesting a DC-mediated positive feedback loop in epithelial gene expression. Furthermore, both CXCL10 and thymic stromal lymphopoietin were localized in migratory epithelia, suggesting that epithelial cells play a key role in DC infiltration and activation in injured corneas. On the other hand, DC depletion resulted in suppressed epithelial AKT activation, increased cell apoptosis, and decreased polymorphonuclear leukocyte infiltration in the healing cornea. These results indicate that DCs and epithelium form a functional entity at mucosal surfaces for maintaining corneal homeostasis and for tissue repair.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
481
|
Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. Proc Natl Acad Sci U S A 2011; 108:15990-5. [PMID: 21880956 DOI: 10.1073/pnas.1110144108] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injury to the epithelium is integral to the pathogenesis of many inflammatory lung diseases, and epithelial repair is a critical determinant of clinical outcome. However, the signaling pathways regulating such repair are incompletely understood. We used in vitro and in vivo models to define these pathways. Human neutrophils were induced to transmigrate across monolayers of human lung epithelial cells in the physiological basolateral-to-apical direction. This allowed study of the neutrophil contribution not only to the initial epithelial injury, but also to its repair, as manifested by restoration of transepithelial resistance and reepithelialization of the denuded epithelium. Microarray analysis of epithelial gene expression revealed that neutrophil transmigration activated β-catenin signaling, and this was verified by real-time PCR, nuclear translocation of β-catenin, and TOPFlash reporter activity. Leukocyte elastase, likely via cleavage of E-cadherin, was required for activation of β-catenin signaling in response to neutrophil transmigration. Knockdown of β-catenin using shRNA delayed epithelial repair. In mice treated with intratracheal LPS or keratinocyte chemokine, neutrophil emigration resulted in activation of β-catenin signaling in alveolar type II epithelial cells, as demonstrated by cyclin D1 expression and/or reporter activity in TOPGAL mice. Attenuation of β-catenin signaling by IQ-1 inhibited alveolar type II epithelial cell proliferation in response to neutrophil migration induced by intratracheal keratinocyte chemokine. We conclude that β-catenin signaling is activated in lung epithelial cells during neutrophil transmigration, likely via elastase-mediated cleavage of E-cadherin, and regulates epithelial repair. This pathway represents a potential therapeutic target to accelerate physiological recovery in inflammatory lung diseases.
Collapse
|
482
|
Abstract
During wound healing, contractile fibroblasts called myofibroblasts regulate the formation and contraction of granulation tissue; however, pathological and persistent myofibroblast activation, which occurs in hypertrophic scars or tissue fibrosis, results in a loss of function. Many reviews outline the cellular and molecular features of myofibroblasts and their roles in a variety of diseases. This review focuses on the origins of myofibroblasts and the factors that control their differentiation and prolonged survival in fibrotic tissues. Pulmonary fibrosis is used to illustrate many key points, but examples from other tissues and models are also included. Myofibroblasts originate mostly from tissue-resident fibroblasts, and also from epithelial and endothelial cells or other mesenchymal precursors. Their differentiation is influenced by cytokines, growth factors, extracellular matrix composition and stiffness, and cell surface molecules such as proteoglycans and THY1, among other factors. Many of these effects are modulated by cell contraction. Myofibroblasts resist programmed cell death, which promotes their accumulation in fibrotic tissues. The cause of resistance to apoptosis in myofibroblasts is under ongoing investigation, but many of the same stimuli that regulate their differentiation are involved. The contributions of oxidative stress, the WNT-β-catenin pathway and PPARγ to myofibroblast differentiation and survival are increasingly appreciated.
Collapse
|
483
|
Koch S, Nusrat A. The life and death of epithelia during inflammation: lessons learned from the gut. ANNUAL REVIEW OF PATHOLOGY 2011; 7:35-60. [PMID: 21838548 DOI: 10.1146/annurev-pathol-011811-120905] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial cells form protective barriers that physically separate an organism from the outside world. Rather than being merely static, impregnable shields, epithelia are highly dynamic structures that can adjust their proliferation, differentiation, and death in response to intrinsic and extrinsic signals. The advantages as well as pitfalls of this flexibility are highlighted in inflammatory disorders such as inflammatory bowel diseases and psoriasis, which are characterized by a chronically dysregulated homeostasis of the epithelium. In recent years, it has become increasingly apparent that epithelial cells communicate with their surroundings through converging, integrated signaling cascades and that even minor alterations in these pathways can have dramatic pathologic consequences. In this review, we discuss how inflammatory cytokines and other signaling molecules, directly or through cross talk, regulate epithelial homeostasis in the intestine, and we highlight parallels and differences in a few other organs.
Collapse
Affiliation(s)
- Stefan Koch
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
484
|
Rowe RG, Keena D, Sabeh F, Willis AL, Weiss SJ. Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol 2011; 301:L683-92. [PMID: 21840960 DOI: 10.1152/ajplung.00187.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In acute and chronic lung disease, widespread disruption of tissue architecture underlies compromised pulmonary function. Pulmonary fibroblasts have been implicated as critical effectors of tissue-destructive extracellular matrix (ECM) remodeling by mobilizing a spectrum of proteolytic enzymes. Although efforts to date have focused on the catabolism of type I collagen, the predominant component of the lung interstitial matrix, the key collagenolytic enzymes employed by pulmonary fibroblasts remain unidentified. Herein, membrane type-1 matrix metalloprotease (MT1-MMP) is identified as the dominant and direct-acting protease responsible for the type I collagenolytic activity mediated by both mouse and human pulmonary fibroblasts. Furthermore, MT1-MMP is shown to be essential for pulmonary fibroblast migration within three-dimensional (3-D) hydrogels of cross-linked type I collagen that recapitulate ECM barriers encountered in the in vivo environment. Together, these findings demonstrate that MT1-MMP serves as a key effector of type I collagenolytic activity in pulmonary fibroblasts and earmark this pericellular collagenase as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- R Grant Rowe
- Divisions of Molecular Medicine & Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | |
Collapse
|
485
|
Eldred JA, Dawes LJ, Wormstone IM. The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci 2011; 366:1301-19. [PMID: 21402588 DOI: 10.1098/rstb.2010.0341] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibrosis affects multiple organs and is associated with hyperproliferation, cell transdifferentiation, matrix modification and contraction. It is therefore essential to discover the key drivers of fibrotic events, which in turn will facilitate the development of appropriate therapeutic strategies. The lens is an elegant experimental model to study the processes that give rise to fibrosis. The molecular and cellular organization of the lens is well defined and consequently modifications associated with fibrosis can be clearly assessed. Moreover, the avascular and non-innervated properties of the lens allow effective in vitro studies to be employed that complement in vivo systems and relate to clinical data. Using the lens as a model for fibrosis has direct relevance to millions affected by lens disorders, but also serves as a valuable experimental tool to understand fibrosis per se.
Collapse
Affiliation(s)
- J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
486
|
Construction of a computable cell proliferation network focused on non-diseased lung cells. BMC SYSTEMS BIOLOGY 2011; 5:105. [PMID: 21722388 PMCID: PMC3160372 DOI: 10.1186/1752-0509-5-105] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 07/02/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.). Ideally, these networks will be specifically designed to capture the normal, non-diseased biology of the tissue or cell types under investigation, and can be used with experimentally generated systems biology data to assess the biological impact of perturbations like xenobiotics and other cellular stresses. Lung cell proliferation is a key biological process to capture in such a network model, given the pivotal role that proliferation plays in lung diseases including cancer, chronic obstructive pulmonary disease (COPD), and fibrosis. Unfortunately, no such network has been available prior to this work. RESULTS To further a systems-level assessment of the biological impact of perturbations on non-diseased mammalian lung cells, we constructed a lung-focused network for cell proliferation. The network encompasses diverse biological areas that lead to the regulation of normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and Extracellular Signaling, and Epigenetics), and contains a total of 848 nodes (biological entities) and 1597 edges (relationships between biological entities). The network was verified using four published gene expression profiling data sets associated with measured cell proliferation endpoints in lung and lung-related cell types. Predicted changes in the activity of core machinery involved in cell cycle regulation (RB1, CDKN1A, and MYC/MYCN) are statistically supported across multiple data sets, underscoring the general applicability of this approach for a network-wide biological impact assessment using systems biology data. CONCLUSIONS To the best of our knowledge, this lung-focused Cell Proliferation Network provides the most comprehensive connectivity map in existence of the molecular mechanisms regulating cell proliferation in the lung. The network is based on fully referenced causal relationships obtained from extensive evaluation of the literature. The computable structure of the network enables its application to the qualitative and quantitative evaluation of cell proliferation using systems biology data sets. The network is available for public use.
Collapse
|
487
|
Villar J, Cabrera NE, Casula M, Valladares F, Flores C, López-Aguilar J, Blanch L, Zhang H, Kacmarek RM, Slutsky AS. WNT/β-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury. Intensive Care Med 2011; 37:1201-9. [PMID: 21567117 DOI: 10.1007/s00134-011-2234-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 03/11/2011] [Indexed: 01/11/2023]
Abstract
PURPOSE The mechanisms involved in lung injury progression during acute lung injury (ALI) are still poorly understood. Because WNT/β-catenin signaling has been shown to be involved in epithelial cell injury and hyperplasia during inflammation and sepsis, we hypothesized that it would be modulated by mechanical ventilation (MV) in an experimental model of sepsis-induced ALI. METHODS This study was a prospective, randomized, controlled animal study performed using adult male Sprague-Dawley rats. Sepsis was induced by cecal ligation and perforation. At 18 h, surviving animals were randomized to spontaneous breathing or two strategies of MV for 4 h: low tidal volume (V (T)) (6 ml/kg) plus 10 cmH2O of positive end-expiratory pressure (PEEP) versus high (20 ml/kg) tidal volume (V (T)) with zero PEEP. Histological evaluation, measurements of WNT5A, total β-catenin, and matrix metalloproteinase-7 (MMP7) protein levels by Western blot, and their immunohistochemical localization in the lungs were analyzed. RESULTS Sepsis and high-V (T) MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, β-catenin, and MMP7 in the lungs were increased in animals with sepsis-induced ALI. High-V (T) MV was associated with higher levels of WNT5A, β-catenin, and MMP7 protein levels (p < 0.001), compared to healthy control animals. By contrast, low-V (T) MV markedly reduced WNT5A, β-catenin, and MMP7 protein levels (p < 0.001). CONCLUSIONS Our findings demonstrate that the WNT/β-catenin signaling pathway is modulated early during sepsis and ventilator-induced lung injury, suggesting that activation of this pathway could play an important role in both lung injury progression and repair.
Collapse
Affiliation(s)
- Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain, jesus.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Sun YH, Reid B, Fontaine JH, Miller LA, Hyde DM, Mogilner A, Zhao M. Airway epithelial wounds in rhesus monkey generate ionic currents that guide cell migration to promote healing. J Appl Physiol (1985) 2011; 111:1031-41. [PMID: 21719726 DOI: 10.1152/japplphysiol.00915.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Damage to the respiratory epithelium is one of the most critical steps to many life-threatening diseases, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. The mechanisms underlying repair of the damaged epithelium have not yet been fully elucidated. Here we provide experimental evidence suggesting a novel mechanism for wound repair: endogenous electric currents. It is known that the airway epithelium maintains a voltage difference referred to as the transepithelial potential. Using a noninvasive vibrating probe, we demonstrate that wounds in the epithelium of trachea from rhesus monkeys generate significant outward electric currents. A small slit wound produced an outward current (1.59 μA/cm(2)), which could be enhanced (nearly doubled) by the ion transport stimulator aminophylline. In addition, inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) with CFTR(Inh)-172 significantly reduced wound currents (0.17 μA/cm(2)), implicating an important role of ion transporters in wound induced electric potentials. Time-lapse video microscopy showed that applied electric fields (EFs) induced robust directional migration of primary tracheobronchial epithelial cells from rhesus monkeys, towards the cathode, with a threshold of <23 mV/mm. Reversal of the field polarity induced cell migration towards the new cathode. We further demonstrate that application of an EF promoted wound healing in a monolayer wound healing assay. Our results suggest that endogenous electric currents at sites of tracheal epithelial injury may direct cell migration, which could benefit restitution of damaged airway mucosa. Manipulation of ion transport may lead to novel therapeutic approaches to repair damaged respiratory epithelium.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Dermatology, School of Medicine, Univ. of California at Davis CA, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|
489
|
Li Y, Wang J, He HY, Ma LJ, Zeng J, Deng GC, Liu X, Engelhardt JF, Wang Y. Immunohistochemical demonstration of airway epithelial cell markers of guinea pig. Tissue Cell 2011; 43:283-90. [PMID: 21705035 DOI: 10.1016/j.tice.2011.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 05/15/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
The guinea pig (Cavea porcellus) is a mammalian non-rodent species in the Caviidae family. The sensitivity of the respiratory system and the susceptibility to infectious diseases allows the guinea pig to be a useful model for both infectious and non-infectious lung diseases such as asthma and tuberculosis. In this report, we demonstrated for the first time, the major cell types and composition in the guinea pig airway epithelium, using cell type-specific markers by immunohistochemical staining using the commercial available immunological reagents that cross-react with guinea pig. Our results revealed the availability of antibodies cross-reacting with airway epithelial cell types of basal, non-ciliated columnar, ciliated, Clara, goblet and alveolar type II cells, as well as those cells expressing Mucin 5AC, Mucin 2, Aquaporin 4 and Calcitonin Gene Related Peptide. The distribution of these various cell types were quantified in the guinea pig airway by immunohistochemical staining and were comparable with morphometric studies using an electron microscopy assay. Moreover, this study also demonstrated that goblet cells are the main secretory cell type in the guinea pig's airway, distinguishing this species from rats and mice. These results provide useful information for the understanding of airway epithelial cell biology and mechanisms of epithelial-immune integration in guinea pig models.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, Yinchuan, Ningxia 750021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Sonnemann KJ, Bement WM. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu Rev Cell Dev Biol 2011; 27:237-63. [PMID: 21721944 DOI: 10.1146/annurev-cellbio-092910-154251] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The importance of wound healing to medicine and biology has long been evident, and consequently, wound healing has been the subject of intense investigation for many years. However, several relatively recent developments have added new impetus to wound repair research: the increasing application of model systems; the growing recognition that single cells have a robust, complex, and medically relevant wound healing response; and the emerging recognition that different modes of wound repair bear an uncanny resemblance to other basic biological processes such as morphogenesis and cytokinesis. In this review, each of these developments is described, and their significance for wound healing research is considered. In addition, overlapping mechanisms of single-cell and multicellular wound healing are highlighted, and it is argued that they are more similar than is often recognized. Based on this and other information, a simple model to explain the evolutionary relationships of cytokinesis, single-cell wound repair, multicellular wound repair, and developmental morphogenesis is proposed. Finally, a series of important, but as yet unanswered, questions is posed.
Collapse
Affiliation(s)
- Kevin J Sonnemann
- Department of Zoology and Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706;
| | | |
Collapse
|
491
|
|
492
|
Proudfoot AG, McAuley DF, Griffiths MJD, Hind M. Human models of acute lung injury. Dis Model Mech 2011; 4:145-53. [PMID: 21357760 PMCID: PMC3046086 DOI: 10.1242/dmm.006213] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI) is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.
Collapse
Affiliation(s)
- Alastair G Proudfoot
- Royal Brompton & Harefield NHS Foundation Trust, Adult Intensive Care Unit, London, UK
| | | | | | | |
Collapse
|
493
|
Basu RK, Donaworth E, Wheeler DS, Devarajan P, Wong HR. Antecedent acute kidney injury worsens subsequent endotoxin-induced lung inflammation in a two-hit mouse model. Am J Physiol Renal Physiol 2011; 301:F597-604. [PMID: 21677147 DOI: 10.1152/ajprenal.00194.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) contributes greatly to morbidity and mortality in critically ill adults and children. Patients with AKI who subsequently develop lung injury are known to suffer worse outcomes compared with patients with lung injury alone. Isolated experimental kidney ischemia alters distal lung water balance and capillary permeability, but the effects of such an aberration on subsequent lung injury are unknown. We present a clinically relevant two-hit murine model wherein a proximal AKI through bilateral renal ischemia (30 min) is followed by a subsequent acute lung injury (ALI) via intratracheal LPS endotoxin (50 μg at 24 h after surgery). Mice demonstrated AKI by elevation of serum creatinine and renal histopathological damage. Mice with ALI and preexisting AKI had increased lung neutrophilia in bronchoalveolar lavage fluid and by myeloperoxidase activity over Sham-ALI mice. Additionally, lung histopathological damage was greater in ALI mice with preexisting AKI than Sham-ALI mice. There was uniform elevation of monocyte chemoattractant protein-1 in kidney, serum, and lung tissue in animals with both AKI and ALI over those with either injury alone. The additive lung inflammation after ALI with antecedent AKI was abrogated in MCP-1-deficient mice. Taken together, our two-hit model demonstrates that kidney injury may prime the lung for a heightened inflammatory response to subsequent injury and MCP-1 may be involved in this model of kidney-lung cross talk. The model holds clinical relevance for patients at risk of lung injury after ischemic injury to the kidney.
Collapse
Affiliation(s)
- Rajit K Basu
- Divisions of Critical Care, Cincinnati Children’s Hospital and Medical Center, Ohio, USA.
| | | | | | | | | |
Collapse
|
494
|
Sands MF. Localization of matrix metalloproteinase (MMP)-9 in lung tissue of a murine model of allergic asthma. Immunol Invest 2011; 41:87-96. [PMID: 21644819 DOI: 10.3109/08820139.2011.584600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MMP-9 (gelatinase B) is recognized in chronic obstructive pulmonary disease (COPD) and now asthma as playing a central role in matrix degradation in injury, as well as contributing to the remodeling process. The increasing focus on MMP-9 in human and animal research supports the need for a reliable immunostain in lung tissue. However, MMP-9 immunostaining in murine systems is hampered by several factors. First, many of the anti-human antibodies do not readily cross-react with murine MMP-9 despite the high degree of conservation between human and murine MMP-9. Secondly, the availability of detailed protocols is limited. Lung MMP-9 immunostaining is further complicated by technical issues such as edge effect, availability of positive and negative controls, antigen retrieval, staining specificity, and the need to achieve a delicate balance of primary and secondary antibody concentrations, and colorimetric reagents which will allow visualization of specific cell expression in highly delicate lung tissue, while also demonstrating adequate uptake in (extra-pulmonary) tissue controls. We describe a detailed method for immunostaining MMP-9 in mouse lung paraffin-embedded tissue utilizing human ovary as a control since MMP-9 is known to be over-expressed in human ovarian carcinomas.
Collapse
Affiliation(s)
- Mark F Sands
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University at Buffalo, State University of New York, and Veterans Administration Healthcare System of Western New York, Buffalo, USA.
| |
Collapse
|
495
|
Beers MF, Morrisey EE. The three R's of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 2011; 121:2065-73. [PMID: 21633173 DOI: 10.1172/jci45961] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
All tissues and organs can be classified according to their ability to repair and regenerate during adult homeostasis and after injury. Some exhibit a high rate of constant cell turnover, while others, such as the lung, exhibit only low-level cell regeneration during normal adult homeostasis but have the ability to rapidly regenerate new cells after injury. Lung regeneration likely involves both activation of progenitor cells as well as cell replacement through proliferation of remaining undamaged cells. The pathways and factors that control this process and its role in disease are only now being explored. In this Review, we will discuss the connection between pathways required for lung development and how the lung responds to injury and disease, with a particular emphasis on recent studies describing the role for the epithelium in repair and regeneration.
Collapse
Affiliation(s)
- Michael F Beers
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4539, USA.
| | | |
Collapse
|
496
|
Abstract
Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, School of Medicine, University of Eastern Finland, Cancer Center of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
497
|
Jonigk D, Merk M, Hussein K, Maegel L, Theophile K, Muth M, Lehmann U, Bockmeyer CL, Mengel M, Gottlieb J, Welte T, Haverich A, Golpon H, Kreipe H, Laenger F. Obliterative airway remodeling: molecular evidence for shared pathways in transplanted and native lungs. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:599-608. [PMID: 21281792 DOI: 10.1016/j.ajpath.2010.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/21/2010] [Indexed: 02/06/2023]
Abstract
Obliteration of the small airways is a largely unresolved challenge in pulmonary medicine. It represents either the irreversible cause of functional impairment or a morphologic disorder of limited importance in a multitude of diseases. Bronchiolitis obliterans is a key complication of lung transplantation. No predictive markers for the onset of obliterative remodeling are currently available. To further elucidate the molecular mechanisms of airway remodeling, compartment-specific expression patterns were analyzed in patients. For this purpose, remodeled and nonremodeled bronchioli were isolated from transplanted and nontransplanted lung explants using laser-assisted microdissection (n = 24). mRNA expression of 45 fibrosis-associated genes was measured using quantitative real-time RT-PCR. For 20 genes, protein expression was also analyzed by immunohistochemistry. Infiltrating cells were characterized at conventional histology and immunohistochemistry. Obliterative remodeling of the small airways in transplanted and nontransplanted lungs shared similar grades of chronic inflammation and pivotal fibrotic pathways such as transforming growth factor β signaling and increased collagen expression. Bone morphogenetic protein and thrombospondin signaling, and also matrix metalloproteinases and tissue inhibitor of metalloproteinases, were primarily up-regulated in obliterative airway remodeling in nontransplanted lungs. In transplanted lungs, clinical remodeled bone morphogenetic protein but nonremodeled bronchioli were characterized by a concordant up-regulation of matrix metalloproteinase-9, RANTES, and tissue inhibitor of metalloproteinase-1. These distinct expression patterns warrant further investigation as potential markers of impending airway remodeling, especially for prospective longitudinal molecular profiling.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Ye H, Cai PC, Zhou Q, Ma WL. Transforming growth factor-β1 suppresses the up-regulation of matrix metalloproteinase-2 by lung fibroblasts in response to tumor necrosis factor-α. Wound Repair Regen 2011; 19:392-9. [PMID: 21518085 DOI: 10.1111/j.1524-475x.2011.00680.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exposed to inflammatory factors or cytokines, fibroblasts appear to play additional roles beyond the deposition of extracellular matrix. It has been reported that tumor necrosis factor-α (TNF-α) induces the production of matrix metalloproteinase-2 (MMP-2) and transforming growth factor-β1 (TGF-β1) in fibroblasts. In this study, we demonstrated that the active MMP-2 secreted by lung fibroblasts reached the peak level at 12 hours after TNF-α treatment, whereas, by adding anti-TGF-β1 antibody in the culture medium, the MMP-2 production in response to TNF-α was maintained at high levels after 24 hours of treatment. We also confirmed that TNF-α induced up-regulation of active TGF-β1 and exogenous TGF-β1 induced down-regulation of MMP-2 synthesis in lung fibroblasts. Moreover, an increased MMP-2 level was observed in a rat model with pulmonary inflammation and fibrosis induced by bleomycin-A5. This revealed that MMP-2 in the lung reached the peak level when TNF-α reached the peak level at the 7th day, and then MMP-2 decreased along with an increase in the TGF-β1 level. Taken together, our results demonstrate that TNF-α induced an increase of MMP-2 and TGF-β1 in lung fibroblasts, and the TGF-β1 attenuated the up-regulation of MMP-2. This suggests that MMP-2 secreted from fibroblasts modulated by TNF-α/TGF-β1 might play an important role in pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Hong Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | |
Collapse
|
499
|
Cross LJM, Matthay MA. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin 2011; 27:355-77. [PMID: 21440206 PMCID: PMC3073651 DOI: 10.1016/j.ccc.2010.12.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of potential biomarkers of acute lung injury (ALI) have provided information relating to the pathophysiology of the mechanisms of lung injury and repair. The utility of biomarkers remains solely among research tools to investigate lung injury and repair mechanisms. Because of lack of sensitivity and specificity, they cannot be used in decision making in patients with ALI or acute respiratory distress syndrome. The authors reviewed known biomarkers in context of their major biologic activity. The continued interest in identifying and studying biomarkers is relevant, as it provides information regarding the mechanisms involved in lung injury and repair and how this may be helpful in identifying and designing future therapeutic targets and strategies and possibly identifying a sensitive and specific biomarker.
Collapse
Affiliation(s)
- L J Mark Cross
- Centre for Infection and Immunity, The Queen's University of Belfast, Room 01/014, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL, N Ireland
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Ave, M-917, San Francisco, CA 94143-0624, California, USA
- Department of Medicine, Division of Pulmonary and Critical Care, and Department of Anaesthesia, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-2202, California, USA
| |
Collapse
|
500
|
Ingram JL, Huggins MJ, Church TD, Li Y, Francisco DC, Degan S, Firszt R, Beaver DM, Lugogo NL, Wang Y, Sunday ME, Noble PW, Kraft M. Airway fibroblasts in asthma manifest an invasive phenotype. Am J Respir Crit Care Med 2011; 183:1625-32. [PMID: 21471104 DOI: 10.1164/rccm.201009-1452oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RATIONALE Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs. OBJECTIVES We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls. METHODS Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels. MEASUREMENTS AND MAIN RESULTS IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects. CONCLUSIONS IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.
Collapse
Affiliation(s)
- Jennifer L Ingram
- Department of Medicine, Duke University Medical Center, 201 MSRB 1, Research Drive, Box 2641, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|