451
|
Pulito C, Donzelli S, Muti P, Puzzo L, Strano S, Blandino G. microRNAs and cancer metabolism reprogramming: the paradigm of metformin. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:58. [PMID: 25333033 PMCID: PMC4200659 DOI: 10.3978/j.issn.2305-5839.2014.06.03] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022]
Abstract
Increasing evidence witnesses that cancer metabolism alterations represent a critical hallmark for many types of human tumors. There is a strong need to understand and dissect the molecular mechanisms underlying cancer metabolism to envisage specific biomarkers and underpin critical molecular components that might represent novel therapeutic targets. One challenge, that is the focus of this review, is the reprogramming of the altered metabolism of a cancer cell toward that of un-transformed cell. The anti-hyperglicemic agent, metformin has proven to be effective in reprogramming the metabolism of cancer cells even from those subpopulations endowed with cancer stem like features and very high chemoresistenace to conventional anticancer treatments. A functional interplay involving selective modulation of microRNAs (miRNAs) takes place along the anticancer metabolic effects exerted by metformin. The implications of this interplay will be also discussed in this review.
Collapse
|
452
|
Abstract
Knowledge gained over the past 10 years about the mechanisms that underpin autophagy has provided a universal framework for studies of diverse physiological and pathological processes. Of particular interest is the emerging role of autophagy in the maintenance of energy homeostasis, both at the cellular level and within the organism as a whole. Dysregulation of autophagy might contribute to the development of metabolic disorders, including insulin resistance, diabetes mellitus, obesity, atherosclerosis and osteoporosis. The authors of this Review highlight research findings on the regulation of cellular autophagy by nutrients. They also describe the role of autophagy in various tissues in the regulation of energy metabolism and the development of diseases related to altered metabolism. Finally, the potential of pharmacological modulation of autophagy as a treatment for human metabolic disorders is discussed.
Collapse
Affiliation(s)
- Kook Hwan Kim
- Department of Medicine and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul 135-710, Korea
| | - Myung-Shik Lee
- Department of Medicine and Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro Gangnam-gu, Seoul 135-710, Korea
| |
Collapse
|
453
|
Sui X, Xu Y, Yang J, Fang Y, Lou H, Han W, Zhang M, Chen W, Wang K, Li D, Jin W, Lou F, Zheng Y, Hu H, Gong L, Zhou X, Pan Q, Pan H, Wang X, He C. Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fluorouracil through AMPK activation. PLoS One 2014; 9:e97781. [PMID: 24849329 PMCID: PMC4029793 DOI: 10.1371/journal.pone.0097781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/23/2014] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is still the third most common cancer and the second most common causes of cancer-related death around the world. Metformin, a biguanide, which is widely used for treating diabetes mellitus, has recently been shown to have a suppressive effect on CRC risk and mortality, but not all laboratory studies suggest that metformin has antineoplastic activity. Here, we investigated the effect of metformin and AMPK activator AICAR on CRC cells proliferation. As a result, metformin did not inhibit cell proliferation or induce apoptosis for CRC cell lines in vitro and in vivo. Different from metformin, AICAR emerged antitumor activity and sensitized anticancer effect of 5-FU on CRC cells in vitro and in vivo. In further analysis, we show that AMPK activation may be a key molecular mechanism for the additive effect of AICAR. Taken together, our results suggest that metformin has not antineoplastic activity for CRC cells as a single agent but AMPK activator AICAR can induce apoptosis and enhance the cytotoxic effect of 5-FU through AMPK activation.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yinghua Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jie Yang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Maolin Zhang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Kaifeng Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wei Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Fang Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yu Zheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hong Hu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Liu Gong
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyun Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- * E-mail: (HP); (XW); (CH)
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- * E-mail: (HP); (XW); (CH)
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- * E-mail: (HP); (XW); (CH)
| |
Collapse
|
454
|
Zhang T, Zhang L, Zhang T, Fan J, Wu K, Guan Z, Wang X, Li L, Hsieh JT, He D, Guo P. Metformin sensitizes prostate cancer cells to radiation through EGFR/p-DNA-PKCS in vitro and in vivo. Radiat Res 2014; 181:641-9. [PMID: 24844651 DOI: 10.1667/rr13561.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although neo-adjuvant radiotherapy is generally successful in treatment of advanced prostate cancer, radioresistance is still a major therapeutic problem in many patients. In the current study, we investigated the effects of metformin (1,1-dimethylbiguanide hydrochloride), a widely used antidiabetic drug, on tumor cell radiosensitivity in prostate cancer. Through clonogenic survival assays, we found that metformin treatment enhanced radiosensitivity of prostate cancer cells with a dose enhancement factor. Moreover, irradiation of subcutaneous C4-2 tumors in mice treated with metformin resulted in an increase in radiation-induced tumor growth delay (17.3 days to 29.5 days, P < 0.01), which indicates that the tumor radiosensitivity increased by metformin in vivo. We also measured the sublethal damage repair and analyzed double-strand breaks (DSBs) in X-irradiated cells. γ-H2AX, as an indicator of DSBs, had significantly more foci per cell in the group treated with metformin and radiation compared to groups treated with metformin or irradiation, respectively. Moreover, mice with subcutaneous tumor implants lived longer after a combined treatment of metformin and radiation. In addition, the reduced phosphorylation of DNA-PKcs caused by EGFR/PI3K/Akt down-regulation is essential for metformin to induce radiosensitivity in prostate cancer cells. Our results indicate that metformin enhances prostate cancer cell radiosensitivity in vitro and in vivo. Exposure to metformin before radiation therapy could be a beneficial option for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Tingting Zhang
- a Department of Urology, The Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
DU Y, Zheng H, Wang J, Ren Y, Li M, Gong C, Xu F, Yang C. Metformin inhibits histone H2B monoubiquitination and downstream gene transcription in human breast cancer cells. Oncol Lett 2014; 8:809-812. [PMID: 25009658 PMCID: PMC4081422 DOI: 10.3892/ol.2014.2158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 04/29/2014] [Indexed: 01/15/2023] Open
Abstract
Metformin, one of the most widely prescribed antihyperglycemic drugs, has recently received increasing attention for its potential effects with regard to cancer prevention and treatment. However, the mechanisms behind the suppression of cancer cell growth by metformin remain far from completely understood. The aim of the present study was to investigate whether metformin could regulate histone modification and its downstream gene transcription, and its potential function in inhibiting breast cancer cell proliferation. A T47D cell proliferation curve was determined by cell counting following metformin treatment with differing doses or time courses. The cell cycle was analyzed by flow cytometry with propidium iodide staining. Histone H2B monoubiquitination was evaluated by western blotting subsequent to histone extraction. The histone H2B monoubiquitination downstream gene expression level was determined by quantitative PCR. The results showed that metformin changed the cell-cycle check-point and inhibited breast cancer cell proliferation in a dose-dependent manner. AMPK was activated and histone H2B monoubiquitination and downstream gene transcription were inhibited following metformin treatment in the T47D cells. The effect of metformin on T47D cell proliferation was dependent on AMPK activity. It was concluded that metformin can suppress breast cancer cell growth by the activation of AMPK and the inhibition of histone H2B monoubiquitination and downstream gene transcription. This study reveals a novel potential mechanism of cancer cell growth suppression by metformin.
Collapse
Affiliation(s)
- Yu DU
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Haiyan Zheng
- Department of Rheumatology, Wuhan Integrated TCM and Western Medicine Hospital (Wuhan No. 1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiang Wang
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ye Ren
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chen Gong
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fei Xu
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Caihong Yang
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
456
|
Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis 2014; 5:e1209. [PMID: 24810045 PMCID: PMC4047877 DOI: 10.1038/cddis.2014.175] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Phospho-Ser129 α-synuclein is the modified form of α-synuclein that occurs most frequently within Parkinson's disease pathological inclusions. Here we demonstrate that the antidiabetic drug metformin significantly reduces levels of phospho-Ser129 α-synuclein and the ratio of phospho-Ser129 α-synuclein to total α-synuclein. This effect was documented in vitro in SH-SY5Y and HeLa cells as well as in primary cultures of hippocampal neurons. In vitro work also elucidated the mechanisms underlying metformin's action. Following metformin exposure, decreased phospho-Ser129 α-synuclein was not strictly dependent on induction of AMP-activated protein kinase, a primary target of the drug. On the other hand, metformin-induced phospho-Ser129 α-synuclein reduction was consistently associated with inhibition of mammalian target of rapamycin (mTOR) and activation of protein phosphatase 2A (PP2A). Evidence supporting a key role of mTOR/PP2A signaling included the finding that, similar to metformin, the canonical mTOR inhibitor rapamycin was capable of lowering the ratio of phospho-Ser129 α-synuclein to total α-synuclein. Furthermore, no decrease in phosphorylated α-synuclein occurred with either metformin or rapamycin when phosphatase activity was inhibited, supporting a direct relationship between mTOR inhibition, PP2A activation and protein dephosphorylation. A final set of experiments confirmed the effectiveness of metformin in vivo in wild-type C57BL/6 mice. Addition of the drug to food or drinking water lowered levels of phospho-Ser129 α-synuclein in the brain of treated animals. These data reveal a new mechanism leading to α-synuclein dephosphorylation that could be targeted for therapeutic intervention by drugs like metformin and rapamycin.
Collapse
|
457
|
Sen S, He Y, Koya D, Kanasaki K. Cancer biology in diabetes. J Diabetes Investig 2014; 5:251-64. [PMID: 24843770 PMCID: PMC4020326 DOI: 10.1111/jdi.12208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a serious metabolic disease that causes multiple organ dysfunctions. Recent evidence suggests that diabetes could contribute to the initiation and progression of certain cancers in addition to the classic diabetic complications. Furthermore, some of the drugs used clinically to treat patients with diabetes might affect cancer initiation, progression and mortality. The recent discovery of the possible anticancer effects of metformin, a classic antidiabetic drug, has led physicians and scientists to reconsider the interaction between diabetes and cancer. In the present review, we analyze recent reports in this field, and explore possible mechanistic links between diabetes and cancer biology.
Collapse
Affiliation(s)
- Shi Sen
- Division of Diabetes & EndocrinologyKanazawa Medical UniversityIshikawaJapan
- The Department of Vascular and Thyroid SurgeryThe Affiliated Hospital of Luzhou Medical CollegeLuzhouChina
| | - Yanzheng He
- The Department of Vascular and Thyroid SurgeryThe Affiliated Hospital of Luzhou Medical CollegeLuzhouChina
| | - Daisuke Koya
- Division of Diabetes & EndocrinologyKanazawa Medical UniversityIshikawaJapan
| | - Keizo Kanasaki
- Division of Diabetes & EndocrinologyKanazawa Medical UniversityIshikawaJapan
| |
Collapse
|
458
|
FANG ZHIQING, XU XIULIAN, ZHOU ZUNLIN, XU ZHONGHUA, LIU ZHAOXU. Effect of metformin on apoptosis, cell cycle arrest migration and invasion of A498 cells. Mol Med Rep 2014; 9:2251-6. [DOI: 10.3892/mmr.2014.2097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/05/2014] [Indexed: 12/20/2022] Open
|
459
|
Thompson AM. Molecular pathways: preclinical models and clinical trials with metformin in breast cancer. Clin Cancer Res 2014; 20:2508-15. [PMID: 24682417 DOI: 10.1158/1078-0432.ccr-13-0354] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metformin, an oral biguanide widely used to treat diabetes, has considerable potential and is in clinical trials as an experimental preventive or therapeutic agent for a range of cancers. Direct actions targeting cellular pathways, particularly via AMP-activated protein kinase and through inhibiting mitochondrial ATP synthesis, or systemic mechanisms involving insulin and insulin-like growth factors have been much studied in vitro and in preclinical models. Epidemiologic and retrospective studies also provide clinical evidence in support of metformin as an antitumor agent. Preoperative window-of-opportunity trials confirm the safety of metformin in women with primary breast cancer, and demonstrate reduction in tumor cell proliferation and complex pathways of gene suppression or overexpression attributable to metformin. Confirmation of insulin-mediated effects, independent of body mass index, also supports the potential benefit of adjuvant metformin therapy. Neoadjuvant, adjuvant, and advanced disease trials combining metformin with established anticancer agents are under way or proposed. Companion biomarker studies will utilize in vitro and preclinical understanding of the relevant molecular pathways to, in future, refine patient and tumor selection for metformin therapy.
Collapse
Affiliation(s)
- Alastair M Thompson
- Author's Affiliation: Department of Surgical Oncology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
460
|
Rehman G, Shehzad A, Khan AL, Hamayun M. Role of AMP-activated protein kinase in cancer therapy. Arch Pharm (Weinheim) 2014; 347:457-68. [PMID: 24677093 DOI: 10.1002/ardp.201300402] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 11/07/2022]
Abstract
Recent advances in AMP-activated protein kinase (AMPK) as a target in cancer waxed and waned over the past decade of cancer research. AMPK is a cellular energy sensor, present in almost all eukaryotic cells. An elevated AMP/ATP ratio activates the AMPK, which in turn inhibits energy-consuming processes and induces catabolic events that generate ATP to restore the energy homeostasis inside the cell. Several reports have indicated that AMPK regulates several metabolic pathways and may be a potential therapeutic target for the treatment of cancer. Cancer cells have specific metabolic changes that differ from normal cells, and AMPK prevents the deregulated processes in cancer. AMPK may also act to inhibit tumor formation through modulation of cell growth, cell proliferation, autophagy, stress responses, and cell polarity. AMPK has been shown to inhibit mammalian target of rapamycin (mTOR) through tuberous sclerosis complex 2 (TSC2) phosphorylation and phosphatase and tensin homolog (PTEN), considered as central cell growth controller signals in diseases. In response to glucose deprivation, AMPK phosphorylates and activates p53, which induces cell cycle arrest in the G1/S phase of the cell cycle. AMPK has also been reported to block cyclin-dependent kinases through phosphorylation of p27(kip1) , promoting its stabilization and allowing cells to survive metabolic stress via induction of autophagy. Additionally, AMPK induces autophagy by phosphorylation and activation of eEF-2 kinase, and prevents the formation of new proteins. AMPK activators are also used for the treatment of type II diabetes and cancer. This review focuses on AMPK activation and its possible therapeutic role in the treatment of cancer.
Collapse
Affiliation(s)
- Gauhar Rehman
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu, South Korea; Department of Zoology, Abdul Wali Khan University, Mardan, K. P. K. Pakistan
| | | | | | | |
Collapse
|
461
|
p21(WAF1/CIP1) Expression is Differentially Regulated by Metformin and Rapamycin. Int J Chronic Dis 2014; 2014:327640. [PMID: 26464852 PMCID: PMC4590942 DOI: 10.1155/2014/327640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway plays an important role in the development of diabetic nephropathy and other age-related diseases. One of the features of DN is the elevated expression of p21WAF1/CIP1. However, the importance of the mTOR signalling pathway in p21 regulation is poorly understood. Here we investigated the effect of metformin and rapamycin on mTOR-related phenotypes in cell lines of epithelial origin. This study reports that metformin inhibits high glucose-induced p21 expression. High glucose opposed metformin in regulating cell size, proliferation, and protein synthesis. These effects were associated with reduced AMPK activation, affecting downstream mTOR signalling. However, the inhibition of the mTOR pathway by rapamycin did not have a negative effect on p21 expression, suggesting that metformin regulates p21 upstream of mTOR. These findings provide support for the hypothesis that AMPK activation may regulate p21 expression, which may have implications for diabetic nephropathy and other age-related pathologies.
Collapse
|
462
|
Bouchekioua-Bouzaghou K, Poulard C, Rambaud J, Lavergne E, Hussein N, Billaud M, Bachelot T, Chabaud S, Mader S, Dayan G, Treilleux I, Corbo L, Le Romancer M. LKB1 when associated with methylatedERα is a marker of bad prognosis in breast cancer. Int J Cancer 2014; 135:1307-18. [PMID: 24615515 DOI: 10.1002/ijc.28781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 01/09/2023]
Abstract
Although the presence of nuclear estrogen receptor is widely used to guide breast cancer therapy, less attention has been paid to the receptor cytoplasmic signaling. Recently, we have shown that this pathway is operative in vivo and is activated in aggressive tumors representing a new potential target for breast cancer therapy. Here, we identified LKB1 as a partner of ERα and we explored its potential role in estrogen nongenomic signaling. The associations between LKB1 expression and the actors of this pathway, namely the methylated form of ERα (metERα), Src and PI3K, have been analyzed both in cultured cells and in 154 primary breast tumor samples. We found that LKB1 is a component of the cytoplasmic signaling complex in breast cell lines as well as in primary breast tumors. Moreover, an inverse correlation between the localization of LKB1 in nuclear and cytoplasmic compartments is observed. Importantly, high expression of cytoplasmic LKB1 is an independent marker of poor prognosis, associated with reduced overall survival (OS) and disease free survival (DFS). Conversely, the presence of nuclear LKB1 associates with increased OS and DFS. In conclusion, our results highlight that LKB1 expression in breast cancer appears to have opposite effects depending on its subcellular localization and may be used as a new prognostic biomarker.
Collapse
Affiliation(s)
- Katia Bouchekioua-Bouzaghou
- Université de Lyon, France; Université Lyon 1, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France; Equipe Labellisée "La Ligue", Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
463
|
Casado P, Bilanges B, Rajeeve V, Vanhaesebroeck B, Cutillas PR. Environmental stress affects the activity of metabolic and growth factor signaling networks and induces autophagy markers in MCF7 breast cancer cells. Mol Cell Proteomics 2014; 13:836-48. [PMID: 24425749 PMCID: PMC3945912 DOI: 10.1074/mcp.m113.034751] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/13/2013] [Indexed: 11/06/2022] Open
Abstract
Phosphoproteomic techniques are contributing to our understanding of how signaling pathways interact and regulate biological processes. This technology is also being used to characterize how signaling networks are remodeled during disease progression and to identify biomarkers of signaling pathway activity and of responses to cancer therapy. A potential caveat in these studies is that phosphorylation is a very dynamic modification that can substantially change during the course of an experiment or the retrieval and processing of cellular samples. Here, we investigated how exposure of cells to ambient conditions modulates phosphorylation and signaling pathway activity in the MCF7 breast cancer cell line. About 1.5% of 3,500 sites measured showed a significant change in phosphorylation extent upon exposure of cells to ambient conditions for 15 min. The effects of this perturbation in modifying phosphorylation patterns did not involve random changes due to stochastic activation of kinases and phosphatases. Instead, exposure of cells to ambient conditions elicited an environmental stress reaction that involved a coordinated response to a metabolic stress situation, which included: (1) the activation of AMPK; (2) the inhibition of PI3K, AKT, and ERK; (3) an increase in markers of protein synthesis inhibition at the level of translation elongation; and (4) an increase in autophagy markers. We also observed that maintaining cells in ice modified but did not completely abolish this metabolic stress response. In summary, exposure of cells to ambient conditions affects the activity of signaling networks previously implicated in metabolic and growth factor signaling. Mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD000472.
Collapse
Affiliation(s)
- Pedro Casado
- From the ‡Analytical Signalling Group and
- ¶ Current affiliation: Integrative Cell Signaling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry
| | - Benoit Bilanges
- §Cell Signalling Group, Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London EC1B 6BQ, UK
| | - Vinothini Rajeeve
- From the ‡Analytical Signalling Group and
- ¶ Current affiliation: Integrative Cell Signaling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry
| | - Bart Vanhaesebroeck
- §Cell Signalling Group, Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London EC1B 6BQ, UK
| | - Pedro R. Cutillas
- From the ‡Analytical Signalling Group and
- ¶ Current affiliation: Integrative Cell Signaling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts and the London School of Medicine and Dentistry
| |
Collapse
|
464
|
Lettieri Barbato D, Vegliante R, Desideri E, Ciriolo MR. Managing lipid metabolism in proliferating cells: new perspective for metformin usage in cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1845:317-24. [PMID: 24569230 DOI: 10.1016/j.bbcan.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/18/2014] [Indexed: 01/01/2023]
Abstract
Cancer cells metabolically adapt to undergo cellular proliferation. Lipids, besides their well-known role as energy storage, represent the major building blocks for the synthesis of neo-generated membranes. There is increasing evidence that cancer cells show specific alterations in different aspects of lipid metabolism. The changes of expression and activity of lipid metabolising enzymes are directly regulated by the activity of oncogenic signals. The dependence of tumour cells on the deregulated lipid metabolism suggests that proteins involved in this process could be excellent chemotherapeutic targets for cancer treatment. Due to its rare side effects in non-cancerous cells, metformin has been recently revaluated as a potential anti-tumourigenic drug, which negatively affects lipid biosynthetic pathways. In this review we summarised the emerging molecular events linking the anti-proliferative effect of metformin with lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Daniele Lettieri Barbato
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rolando Vegliante
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Enrico Desideri
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Rosa Ciriolo
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; IRCCS San Raffaele, Biochemistry of Ageing, Via di Val Cannuta, 00166 Rome, Italy.
| |
Collapse
|
465
|
Kasuga M, Ueki K, Tajima N, Noda M, Ohashi K, Noto H, Goto A, Ogawa W, Sakai R, Tsugane S, Hamajima N, Nakagama H, Tajima K, Miyazono K, Imai K. Report of the Japan Diabetes Society/Japanese Cancer Association Joint Committee on Diabetes and Cancer. Cancer Sci 2014; 104:965-76. [PMID: 23879470 DOI: 10.1111/cas.12203] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023] Open
Abstract
In recent years, diabetes has been shown to be associated with cancer risk, and this has led to a joint committee being formed, enlisting experts from the Japan Diabetes Society and the Japanese Cancer Association to address this issue. Epidemiological data in Japan provides evidence to demonstrate that diabetes is associated with increased risk for cancers, especially colorectal, liver, and pancreatic cancers. The mechanisms through which diabetes is assumed to promote oncogenesis include insulin resistance and associated hyperinsulinemia, hyperglycemia, and inflammation. Common risk factors for type 2 diabetes and cancer include aging, male sex, obesity, physical inactivity, inappropriate diet (excessive red/processed meat intake, inadequate vegetable/fruit/dietary fiber intake), excessive alcohol drinking, and smoking. Given that inappropriate diet/exercise, smoking and excessive alcohol drinking are common risk factors for diabetes and cancer, diet/exercise therapy, smoking cessation and alcohol moderation may be associated with decreased risk for cancer in diabetic patients. There is as yet limited evidence as to whether any particular antidiabetic agents may influence cancer risk.
Collapse
Affiliation(s)
- Masato Kasuga
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Lee H, Park HJ, Park CS, Oh ET, Choi BH, Williams B, Lee CK, Song CW. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One 2014; 9:e87979. [PMID: 24505341 PMCID: PMC3914884 DOI: 10.1371/journal.pone.0087979] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/01/2014] [Indexed: 12/31/2022] Open
Abstract
Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high)/CD24(low) cells of MCF-7 cells and, CD44(high)/CD24(high) cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs) of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Heon Joo Park
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
- * E-mail: (HJP); (CSP)
| | - Chang-Shin Park
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Korea
- * E-mail: (HJP); (CSP)
| | - Eun-Taex Oh
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Bo-Hwa Choi
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Brent Williams
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Chung K. Lee
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Chang W. Song
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
467
|
Garg SK, Maurer H, Reed K, Selagamsetty R. Diabetes and cancer: two diseases with obesity as a common risk factor. Diabetes Obes Metab 2014; 16:97-110. [PMID: 23668396 PMCID: PMC3904746 DOI: 10.1111/dom.12124] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/13/2013] [Accepted: 04/30/2013] [Indexed: 12/24/2022]
Abstract
There is a growing body of evidence to support a connection between diabetes (predominantly type 2), obesity and cancer. Multiple meta-analyses of epidemiological data show that people with diabetes are at increased risk of developing many different types of cancers, along with an increased risk of cancer mortality. Several pathophysiological mechanisms for this relationship have been postulated, including insulin resistance and hyperinsulinaemia, enhanced inflammatory processes, dysregulation of sex hormone production and hyperglycaemia. In addition to these potential mechanisms, a number of common risk factors, including obesity, may be behind the association between diabetes and cancer. Indeed, obesity is associated with an increased risk of cancer and diabetes. Abdominal adiposity has been shown to play a role in creating a systemic pro-inflammatory environment, which could result in the development of both diabetes and cancer. Here, we examine the relationship between diabetes, obesity and cancer, and investigate the potential underlying causes of increased cancer risk in individuals with diabetes. Current treatment recommendations for reducing the overall disease burden are also explored and possible areas for future research are considered.
Collapse
Affiliation(s)
- S K Garg
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA; Diabetes Technology and Therapeutics, New Rochelle, NY, USA; Medicine and Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | | | | | | |
Collapse
|
468
|
Zordoky BNM, Bark D, Soltys CL, Sung MM, Dyck JRB. The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta Gen Subj 2014; 1840:1943-57. [PMID: 24462945 DOI: 10.1016/j.bbagen.2014.01.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Metformin has been shown to have a strong anti-proliferative effect in many breast cancer cell lines, mainly due to the activation of the energy sensing kinase, AMP-activated protein kinase (AMPK). MDA-MB-231 cells are aggressive and invasive breast cancer cells that are known to be resistant to several anti-cancer agents as well as to the anti-proliferative effect of metformin. As metformin is a glucose lowering drug, we hypothesized that normoglycemia will sensitize MDA-MB-231 cells to the anti-proliferative effect of metformin. METHODS MDA-MB-231 cells were treated with increasing metformin concentrations in hyperglycemic or normoglycemic conditions. The growth inhibitory effect of metformin was assessed by MTT assay. The expression of several proteins involved in cell proliferation was measured by Western blotting. RESULTS In agreement with previous studies, treatment with metformin did not inhibit the growth of MDA-MB-231 cells cultured in hyperglycemic conditions. However, metformin significantly inhibited MDA-MB-231 growth when the cells were cultured in normoglycemic conditions. In addition, we show that metformin-treatment of MDA-MB-231 cells cultured in normoglycemic conditions and not in hyperglycemic conditions caused a striking activation of AMPK, and an AMPK-dependent inhibition of multiple molecular signaling pathways known to control protein synthesis and cell proliferation. CONCLUSION Our data show that normoglycemia sensitizes the triple negative MDA-MB-231 breast cancer cells to the anti-proliferative effect of metformin through an AMPK-dependent mechanism. GENERAL SIGNIFICANCE These findings suggest that tight normoglycemic control may enhance the anti-proliferative effect of metformin in diabetic cancer patients.
Collapse
Affiliation(s)
- Beshay N M Zordoky
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Diana Bark
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carrie L Soltys
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Miranda M Sung
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
469
|
Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung YS, Choi JY. Synergistic anti-cancer effect of phenformin and oxamate. PLoS One 2014; 9:e85576. [PMID: 24465604 PMCID: PMC3897486 DOI: 10.1371/journal.pone.0085576] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/29/2013] [Indexed: 11/18/2022] Open
Abstract
Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18)F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.
Collapse
Affiliation(s)
- W. Keith Miskimins
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
- Department of Obstetrics and Gynecology and Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Hyun Joo Ahn
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Yeon Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Ryu
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yuh-Seog Jung
- Head and Neck Oncology Clinic, Center of Specific Organs Cancer, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
470
|
Metformin: a potential therapeutic agent for recurrent colon cancer. PLoS One 2014; 9:e84369. [PMID: 24465408 PMCID: PMC3896365 DOI: 10.1371/journal.pone.0084369] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/22/2013] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties. However, most of the studies to evaluate therapeutic efficacy of metformin have been on primary cancer. No information is available whether metformin could be effectively used for recurrent cancer, specifically colorectal cancer (CRC) that affects up to 50% of patients treated by conventional chemotherapies. Although the reasons for recurrence are not fully understood, it is thought to be due to re-emergence of chemotherapy-resistant cancer stem/stem-like cells (CSCs/CSLCs). Therefore, development of non-toxic treatment strategies targeting CSCs would be of significant therapeutic benefit. In the current investigation, we have examined the effectiveness of metformin, in combination with 5-fluorouracil and oxaliplatin (FuOx), the mainstay of colon cancer therapeutics, on survival of chemo-resistant colon cancer cells that are highly enriched in CSCs/CSLCs. Our data show that metformin acts synergistically with FuOx to (a) induce cell death in chemo resistant (CR) HT-29 and HCT-116 colon cancer cells, (b) inhibit colonospheres formation and (c) enhance colonospheres disintegration. In vitro cell culture studies have further demonstrated that the combinatorial treatment inhibits migration of CR colon cancer cells. These changes were associated with increased miRNA 145 and reduction in miRNA 21. Wnt/β-catenin signaling pathway was also down-regulated indicating its pivotal role in regulating the growth of CR colon cancer cells. Data from SCID mice xenograft model of CR HCT-116 and CR HT-29 cells show that the combination of metformin and FuOX is highly effective in inhibiting the growth of colon tumors as evidenced by ∼ 50% inhibition in growth following 5 weeks of combination treatment, when compared with the vehicle treated controls. Our current data suggest that metformin together with conventional chemotherapy could be an effective treatment regimen for recurring colorectal cancer (CRC).
Collapse
|
471
|
El-Khoury V, Pierson S, Szwarcbart E, Brons NHC, Roland O, Cherrier-De Wilde S, Plawny L, Van Dyck E, Berchem G. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia 2014; 28:1636-46. [PMID: 24418989 PMCID: PMC4131250 DOI: 10.1038/leu.2014.19] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/31/2013] [Indexed: 12/19/2022]
Abstract
Evading apoptosis is a hallmark of B-cell chronic lymphocytic leukemia (CLL) cells and an obstacle to current chemotherapeutic approaches. Inhibiting histone deacetylase (HDAC) has emerged as a promising strategy to induce cell death in malignant cells. We have previously reported that the HDAC inhibitor MGCD0103 induces CLL cell death by activating the intrinsic pathway of apoptosis. Here, we show that MGCD0103 decreases the autophagic flux in primary CLL cells. Activation of the PI3K/AKT/mTOR pathway, together with the activation of caspases, and to a minor extent CAPN1, resulting in cleavage of autophagy components, were involved in MGCD0103-mediated inhibition of autophagy. In addition, MGCD0103 directly modulated the expression of critical autophagy genes at the transcriptional level that may contribute to autophagy impairment. Besides, we demonstrate that autophagy is a pro-survival mechanism in CLL whose disruption potentiates cell death induced by anticancer molecules including HDAC and cyclin-dependent kinase inhibitors. In particular, our data highlight the therapeutic potential of MGCD0103 as not only an inducer of apoptosis but also an autophagy suppressor in both combination regimens with molecules like flavopiridol, known to induce protective autophagy in CLL cells, or as an alternative to circumvent undesired immunomodulatory effects seen in the clinic with conventional autophagy inhibitors.
Collapse
Affiliation(s)
- V El-Khoury
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - S Pierson
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - E Szwarcbart
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - N H C Brons
- Flow Cytometry Core Facility, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - O Roland
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | | | - L Plawny
- Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - E Van Dyck
- Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - G Berchem
- 1] Laboratory of Experimental Hemato-Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg [2] Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
472
|
Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A 2014; 111:E435-44. [PMID: 24474794 DOI: 10.1073/pnas.1311121111] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The multifunctional AMPK-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor that plays an important role in cell proliferation, growth, and survival. It remains unclear whether AMPK functions as a tumor suppressor or a contextual oncogene. This is because although on one hand active AMPK inhibits mammalian target of rapamycin (mTOR) and lipogenesis--two crucial arms of cancer growth--AMPK also ensures viability by metabolic reprogramming in cancer cells. AMPK activation by two indirect AMPK agonists AICAR and metformin (now in over 50 clinical trials on cancer) has been correlated with reduced cancer cell proliferation and viability. Surprisingly, we found that compared with normal tissue, AMPK is constitutively activated in both human and mouse gliomas. Therefore, we questioned whether the antiproliferative actions of AICAR and metformin are AMPK independent. Both AMPK agonists inhibited proliferation, but through unique AMPK-independent mechanisms and both reduced tumor growth in vivo independent of AMPK. Importantly, A769662, a direct AMPK activator, had no effect on proliferation, uncoupling high AMPK activity from inhibition of proliferation. Metformin directly inhibited mTOR by enhancing PRAS40's association with RAPTOR, whereas AICAR blocked the cell cycle through proteasomal degradation of the G2M phosphatase cdc25c. Together, our results suggest that although AICAR and metformin are potent AMPK-independent antiproliferative agents, physiological AMPK activation in glioma may be a response mechanism to metabolic stress and anticancer agents.
Collapse
|
473
|
Rothermundt C, Hayoz S, Templeton AJ, Winterhalder R, Strebel RT, Bärtschi D, Pollak M, Lui L, Endt K, Schiess R, Rüschoff JH, Cathomas R, Gillessen S. Metformin in chemotherapy-naive castration-resistant prostate cancer: a multicenter phase 2 trial (SAKK 08/09). Eur Urol 2014; 66:468-74. [PMID: 24412228 DOI: 10.1016/j.eururo.2013.12.057] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is evidence linking metformin to improved prostate cancer (PCa)-related outcomes. OBJECTIVE To evaluate treatment with metformin in patients with castration-resistant PCa (CRPC) and the effect of the treatment on progression-free survival (PFS) and PSA doubling time (PSA DT). DESIGN, SETTING, AND PARTICIPANTS Forty-four men with progressive metastatic CRPC from 10 Swiss centers were included in this single-arm phase 2 trial between December 2010 and December 2011. INTERVENTION Patients received metformin 1000 mg twice daily until disease progression. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary end point was the absence of disease progression at 12 wk. Simon two-stage optimal design was applied. With a 5% significance level and 90% power, 44 patients were required to test PFS at 12 wk ≤ 15% (H0) compared with ≥ 35% (H1). RESULTS AND LIMITATIONS Thirty-six percent of patients were progression-free at 12 wk, 9.1% were progression-free at 24 wk, and in two patients a confirmed ≥ 50% prostate-specific antigen (PSA) decline was demonstrated. In 23 patients (52.3%) we observed a prolongation of PSA DT after starting metformin. The homeostatic model assessment index fell by 26% from baseline to 12 wk, indicating an improvement in insulin sensitivity. There was a significant change in insulin-like growth factor-1 and insulin-like growth factor binding protein 3 from baseline to 12 wk. Sample size and lack of a control arm are the limitations of this trial; analyses are therefore exploratory. CONCLUSIONS Treatment with metformin is safe in nondiabetic patients, and it yields objective PSA responses and may induce disease stabilization. The activity of metformin in PCa, along with its low cost, favorable toxicity profile, and positive effect on metabolic parameters, suggests that further investigation of metformin as therapy for patients with PCa is of interest. PATIENT SUMMARY In this trial we assessed the use of the diabetes mellitus drug metformin in patients with advanced prostate cancer. We found disease stabilization and prolongation of prostate-specific antigen doubling time in some patients as well as effects on metabolic parameters. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov with the identifier NCT01243385. PREVIOUS PRESENTATION The study was presented at ESMO 2012 (abstract 1460).
Collapse
Affiliation(s)
| | | | - Arnoud J Templeton
- Cantonal Hospital St. Gallen, St. Gallen, Switzerland; SAKK Coordinating Center Bern, Bern, Switzerland
| | | | | | | | - Michael Pollak
- Lady Davis Institute for Medical Research Jewish General Hospital Montréal, Montréal, Canada
| | - Lillianne Lui
- Lady Davis Institute for Medical Research Jewish General Hospital Montréal, Montréal, Canada
| | | | | | - Jan H Rüschoff
- Institute of Surgical Pathology University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
474
|
De Tata V. Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms. Front Endocrinol (Lausanne) 2014; 5:138. [PMID: 25232350 PMCID: PMC4153315 DOI: 10.3389/fendo.2014.00138] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/07/2014] [Indexed: 12/13/2022] Open
Abstract
The incidence of type 2 diabetes significantly increases with age. The relevance of this association is dramatically magnified by the concomitant global aging of the population, but the underlying mechanisms remain to be fully elucidated. Here, some recent advances in this field are reviewed at the level of both the pathophysiology of glucose homeostasis and the cellular senescence of pancreatic islets. Overall, recent results highlight the crucial role of beta-cell dysfunction in the age-related impairment of pancreatic endocrine function and delineate the possibility of new original therapeutic interventions.
Collapse
Affiliation(s)
- Vincenzo De Tata
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- *Correspondence: Vincenzo De Tata, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55 Scuola Medica, Pisa 56126, Italy e-mail:
| |
Collapse
|
475
|
Abstract
Metformin is the first-line treatment for type 2 diabetes. Results from several clinical studies have indicated that type 2 diabetic patients treated with metformin might have a lower cancer risk. One of the primary metabolic changes observed in malignant cell transformation is an increased catabolic glucose metabolism. In this context, once it has entered the cell through organic cation transporters, metformin decreases mitochondrial respiration chain activity and ATP production that, in turn, activates AMP-activated protein kinase, which regulates energy homeostasis. In addition, metformin reduces cellular energy availability and glucose entrapment by inhibiting hexokinase-II, which catalyses the glucose phosphorylation reaction. In this review, we discuss recent findings on molecular mechanisms that sustain the anticancer effect of metformin through regulation of glucose metabolism. In particular, we have focused on the emerging action of metformin on glycolysis in normal and cancer cells, with a drug discovery perspective.
Collapse
Affiliation(s)
- Barbara Salani
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Alberto Del Rio
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Cecilia Marini
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Gianmario Sambuceti
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Renzo Cordera
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Davide Maggi
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| |
Collapse
|
476
|
Cheng J, Huang T, Li Y, Guo Y, Zhu Y, Wang Q, Tan X, Chen W, Zhang Y, Cheng W, Yamamoto T, Jing X, Huang J. AMP-activated protein kinase suppresses the in vitro and in vivo proliferation of hepatocellular carcinoma. PLoS One 2014; 9:e93256. [PMID: 24709998 PMCID: PMC3977828 DOI: 10.1371/journal.pone.0093256] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/04/2014] [Indexed: 02/05/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a central metabolic sensor and plays an important role in regulating glucose, lipid and cholesterol metabolism. Therefore, AMPK is a key therapeutic target in diabetes. Recent pilot studies have suggested that diabetes drugs may reduce the risk of cancer by affecting the AMPK pathway. However, the association between AMPK and the proliferation of hepatocellular carcinoma (HCC) is unknown. In this study, we investigated the relationship between AMPK activity and the proliferation of HCC in cell lines, nude mice and human clinic samples. We first investigated the relationship between AMPK activity and cell proliferation in two HCC cell lines, PLC/PRF/5 and HepG2, by two AMPK activators, 5-aminoimidazole-4-carboxamide-1-h-D-ribofuranoside (AICAR) and metformain. AICAR and metformin treatment significantly inhibited the proliferation of HCC cells and induced cell cycle arrest at G1-S checkpoint. We then observed that metformin abrogated the growth of HCC xenografts in nude mice. The clinical pathology of AMPK activity in HCC, including cell proliferation, differential grade, tumor size and microvessel density, was studied by using 30 clinical tissue samples. In HCC tissue samples, phosphorylated AMPK was expressed mainly in cytoplasm. AMPK activity decreased significantly in HCC in comparison with paracancerous liver tissues (P<0.05). AMPK activity was negatively correlated with the level of Ki-67 (a marker of cell proliferation), differential degradation and tumor size (P<0.05), but not with microvessel density, hemorrhage or necrosis in HCC. Our findings suggest that AMPK activity inhibits the proliferation of HCC and AMPK might be an effective target for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Jidong Cheng
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- * E-mail: (JC); (XJ); (JH)
| | - Tianliang Huang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Youfeng Li
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yubai Guo
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhang Zhu
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qingjia Wang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaojun Tan
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weisheng Chen
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongneng Zhang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weijie Cheng
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Xubin Jing
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- * E-mail: (JC); (XJ); (JH)
| | - Jiexiong Huang
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- * E-mail: (JC); (XJ); (JH)
| |
Collapse
|
477
|
Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.25. [PMID: 23744710 DOI: 10.1002/0471141755.ph1425s61] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of small subpopulations of cancer stem cells (CSCs) from blood mononuclear cells in human acute myeloid leukemia (AML) in 1997 was a landmark observation that recognized the potential role of CSCs in tumor aggressiveness. Two critical properties contribute to the functional role of CSCs in the establishment and recurrence of cancerous tumors: their capacity for self-renewal and their potential to differentiate into unlimited heterogeneous populations of cancer cells. These findings suggest that CSCs may represent novel therapeutic targets for the treatment and/or prevention of tumor progression, since they appear to be involved in cell migration, invasion, metastasis, and treatment resistance-all of which lead to poor clinical outcomes. The identification of CSC-specific markers, the isolation and characterization of CSCs from malignant tissues, and targeting strategies for the destruction of CSCs provide a novel opportunity for cancer research. This overview describes the potential implications of several common CSC markers in the identification of CSC subpopulations that are restricted to common malignant diseases, e.g., leukemia, and breast, prostate, pancreatic, and lung cancers. The role of microRNAs (miRNAs) in the regulation of CSC function is also discussed, as are several methods commonly used in CSC research. The potential role of the antidiabetic drug metformin- which has been shown to have effects on CSCs, and is known to function as an antitumor agent-is discussed as an example of this new class of chemotherapeutics.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
478
|
Taylor A, Westveld AH, Szkudlinska M, Guruguri P, Annabi E, Patwardhan A, Price TJ, Yassine HN. The use of metformin is associated with decreased lumbar radiculopathy pain. J Pain Res 2013; 6:755-63. [PMID: 24357937 PMCID: PMC3862700 DOI: 10.2147/jpr.s52205] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lumbar radiculopathy pain represents a major public health problem, with few effective long-term treatments. Preclinical neuropathic and postsurgical pain studies implicate the kinase adenosine monophosphate activated kinase (AMPK) as a potential pharmacological target for the treatment of chronic pain conditions. Metformin, which acts via AMPK, is a safe and clinically available drug used in the treatment of diabetes. Despite the strong preclinical rationale, the utility of metformin as a potential pain therapeutic has not yet been studied in humans. Our objective was to assess whether metformin is associated with decreased lumbar radiculopathy pain, in a retrospective chart review. We completed a retrospective chart review of patients who sought care from a university pain specialist for lumbar radiculopathy between 2008 and 2011. Patients on metformin at the time of visit to a university pain specialist were compared with patients who were not on metformin. We compared the pain outcomes in 46 patients on metformin and 94 patients not taking metformin therapy. The major finding was that metformin use was associated with a decrease in the mean of "pain now," by -1.85 (confidence interval: -3.6 to -0.08) on a 0-10 visual analog scale, using a matched propensity scoring analysis and confirmed using a Bayesian analysis, with a significant mean decrease of -1.36 (credible interval: -2.6 to -0.03). Additionally, patients on metformin showed a non-statistically significant trend toward decreased pain on a variety of other pain descriptors. Our proof-of-concept findings suggest that metformin use is associated with a decrease in lumbar radiculopathy pain, providing a rational for larger retrospective trials in different pain populations and for prospective trials, to test the effectiveness of metformin in reducing neuropathic pain.
Collapse
Affiliation(s)
- Amber Taylor
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Anton H Westveld
- Statistics Laboratory, Bio5 Institute, Statistics GIDP, University of Arizona, Tucson, AZ, USA ; Faculty of ESTeM, University of Canberra, Canberra, ACT, Australia
| | | | | | - Emil Annabi
- Department of Anesthesia, University of Arizona, Tucson, AZ, USA
| | - Amol Patwardhan
- Department of Anesthesia, University of Arizona, Tucson, AZ, USA
| | - Theodore J Price
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Hussein N Yassine
- Department of Medicine, University of Southern California, LA, CA, USA
| |
Collapse
|
479
|
Abstract
The complex life cycle of Trypanosoma brucei provides an excellent model system to understand signalling pathways that regulate development. We described previously the classical functions of TOR (target of rapamycin) 1 and TOR2 in T. brucei. In a more recent study, we described a novel TOR kinase, named TOR4, which regulates differentiation from the proliferative infective form to the quiescent form. In contrast with TOR1 loss-of-function, down-regulation of TOR4 triggers an irreversible differentiation process through the development of the insect pre-adapted quiescent form. TOR4 governs a signalling pathway distinct from those controlled by the conventional TOR complexes TORC1 and TORC2. Depletion of TOR4 induces all well-known characteristics of the quiescent developmental stage in trypanosomes, including expression of the PAD (proteins associated with differentiation) surface proteins and transcriptional down-regulation of the VSG (variant surface glycoprotein) gene. TOR4 kinase forms a structurally and functionally distinct complex named TORC4. TOR4 associates with LST8 (lethal with sec-13 protein 8) and other factors including an armadillo-domain-containing protein and the major vault protein, which probably serves as a scaffold for this kinase. Research in T. brucei, a protozoan parasite that diverged from the eukaryotic tree early in evolution, may help to uncover new functions of TOR kinases.
Collapse
|
480
|
Moon HS, Mantzoros CS. Adiponectin and metformin additively attenuate IL1β-induced malignant potential of colon cancer. Endocr Relat Cancer 2013; 20:849-59. [PMID: 24157941 DOI: 10.1530/erc-13-0240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both adiponectin (AD) and metformin (Met) have been proposed to downregulate cell proliferation of colon cancer cells, but whether their effect might be additive has not been studied to date. Genetic studies in humans have suggested an important role for interleukin 1β (IL1β) in cancer pathogenesis. Direct evidence that IL1β contributes to the development of colon cancer has not yet been fully confirmed and no previous studies have evaluated how IL1β may interact with AD and/or Met to regulate malignant potential and intracellular signaling pathways in human and mouse colon cancer cells. We conducted in vitro studies using human (LoVo) and mouse (MCA38) colon cancer cell lines to evaluate whether AD and Met alone or in combination may antagonize IL1β-regulated malignant potential in human and mouse colon cancer cell lines. IL1β increased malignant potential and regulated the expression of tumor suppressor (p53) and cell cycle regulatory genes (p21, p27, and cyclin E2) in human and mouse colon cancer cell lines. These effects were reversed by co-administration of AD and/or Met and were additively altered by AD and Met in combination in a STAT3- and AMPK/LKB1-dependent manner. We also observed using fluorescence activated cell sorter analysis that IL1β-regulated cell cycle progression is altered by AD and Met alone or in combination. Our novel mechanistic studies provide evidence for an important role for IL1β in colon cancer and suggest that AD and/or Met might be useful agents in the management or chemoprevention of IL1β-induced colon carcinogenesis.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, JP9B52A, 150 South Huntington Avenue, Boston, Massachusetts 02130, USA
| | | |
Collapse
|
481
|
La Vecchia C, Bosetti C. Metformin: are potential benefits on cancer risk extended to cancer survival? Oncologist 2013; 18:1245-7. [PMID: 24258614 DOI: 10.1634/theoncologist.2013-0381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Carlo La Vecchia
- Department of Epidemiology, IRCCS-lstituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | |
Collapse
|
482
|
Yin M, Zhou J, Gorak EJ, Quddus F. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: a systematic review and meta-analysis. Oncologist 2013; 18:1248-55. [PMID: 24258613 DOI: 10.1634/theoncologist.2013-0111] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Patients with type 2 diabetes have increased cancer risk and cancer-related mortality, which can be reduced by metformin treatment. However, it is unclear whether metformin can also modulate clinical outcomes in patients with cancer and concurrent type 2 diabetes. PATIENTS AND METHODS A meta-analysis of 20 publications that included 13,008 subjects was performed to investigate the association between metformin and overall survival (OS) as well as cancer-specific survival (CSS) in patients with cancer and concurrent type 2 diabetes. RESULTS We found that there was a relative survival benefit associated with metformin treatment compared with treatment with other glucose-lowering medications in both OS and CSS (hazard ratio [HR] = 0.66; 95% confidence interval [CI]: 0.55-0.79 and HR = 0.62; 95% CI: 0.46-0.84, respectively). These associations were also observed in subgroups by cancer type and country. CONCLUSION These results suggest that metformin is the drug of choice in the treatment of patients with cancer and concurrent type 2 diabetes.
Collapse
|
483
|
Li W, Ma W, Zhong H, Liu W, Sun Q. Metformin inhibits proliferation of human keratinocytes through a mechanism associated with activation of the MAPK signaling pathway. Exp Ther Med 2013; 7:389-392. [PMID: 24396411 PMCID: PMC3881035 DOI: 10.3892/etm.2013.1416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/05/2013] [Indexed: 12/24/2022] Open
Abstract
In the present study, the effects of metformin on the proliferation of human immortalized keratinocytes (HaCaTs) and the underlying mechanisms were investigated. HaCaT cells in the logarithmic growth phase were treated with 50 mM metformin for 24, 48 and 72 h. Cell morphology after 24 h of treatment was observed under a microscope. Cell proliferation was detected using a colorimetric cell proliferation and cytotoxicity assay kit. Western blot analyses were performed to detect the protein phosphorylation levels of adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-related kinase 1/2 (ERK1/2). Metformin treatment resulted in morphological changes of the HaCaT cells. The survival rates of HaCaT cells treated with metformin were 36.18, 12.70 and 10.12% at 24, 48 and 72 h, respectively. As the treatment time extended, the survival rates of HaCaT cells decreased. Western blot analysis results showed that the mean level of phosphorylated (p)-AMPK in the HaCaT cells without metformin treatment was 2.856±0.323. However, the mean p-AMPK level following metformin treatment for 24 h increased to 5.198±0.625, indicating a significant difference between these two groups (P<0.05). The mean absorbance ratio of p-ERK1/2 was 7.550±1.087 for the untreated cells, but the levels in cells following metformin treatment for 24 h increased to 10.430±1.217, indicating a significant difference between the two groups (P<0.05). In conclusion, metformin treatment upregulated the levels of p-AMPK and p-ERK1/2 in HaCaT cells, and significantly inhibited HaCaT cell proliferation in vitro by a mechanism associated with activation of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Weining Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China ; Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, P.R. China
| | - Weiyuan Ma
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hua Zhong
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenbin Liu
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
484
|
Obara I, Hunt SP. Axonal protein synthesis and the regulation of primary afferent function. Dev Neurobiol 2013; 74:269-78. [PMID: 24085547 PMCID: PMC4237183 DOI: 10.1002/dneu.22133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/27/2013] [Accepted: 09/15/2013] [Indexed: 11/09/2022]
Abstract
Local protein synthesis has been demonstrated in the peripheral processes of sensory primary afferents and is thought to contribute to the maintenance of the neuron, to neuronal plasticity following injury and also to regeneration of the axon after damage to the nerve. The mammalian target of rapamycin (mTOR), a master regulator of protein synthesis, integrates a variety of cues that regulate cellular homeostasis and is thought to play a key role in coordinating the neuronal response to environmental challenges. Evidence suggests that activated mTOR is expressed by peripheral nerve fibers, principally by A-nociceptors that rapidly signal noxious stimulation to the central nervous system, but also by a subset of fibers that respond to cold and itch. Inhibition of mTOR complex 1 (mTORC1) has shown that while the acute response to noxious stimulation is unaffected, more complex aspects of pain processing including the setting up and maintenance of chronic pain states can be disrupted suggesting a route for the generation of new drugs for the control of chronic pain. Given the role of mTORC1 in cellular homeostasis, it seems that systemic changes in the physiological state of the body such as occur during illness are likely to modulate the sensitivity of peripheral sensory afferents through mTORC1 signaling pathways.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees TS17 6BH, United Kingdom
| | | |
Collapse
|
485
|
Pulito C, Sanli T, Rana P, Muti P, Blandino G, Strano S. Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites 2013; 3:1051-75. [PMID: 24958265 PMCID: PMC3937831 DOI: 10.3390/metabo3041051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Abstract
Cancer metabolism is the focus of intense research, which witnesses its key role in human tumors. Diabetic patients treated with metformin exhibit a reduced incidence of cancer and cancer-related mortality. This highlights the possibility that the tackling of metabolic alterations might also hold promising value for treating cancer patients. Here, we review the emerging role of metformin as a paradigmatic example of an old drug used worldwide to treat patients with type II diabetes which to date is gaining strong in vitro and in vivo anticancer activities to be included in clinical trials. Metformin is also becoming the focus of intense basic and clinical research on chemoprevention, thus suggesting that metabolic alteration is an early lesion along cancer transformation. Metabolic reprogramming might be a very efficient prevention strategy with a profound impact on public health worldwide.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Toran Sanli
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Punam Rana
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Giovanni Blandino
- Translational Oncogenomics Unit-ROC, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| |
Collapse
|
486
|
Checkley LA, Rho O, Angel JM, Cho J, Blando J, Beltran L, Hursting SD, DiGiovanni J. Metformin inhibits skin tumor promotion in overweight and obese mice. Cancer Prev Res (Phila) 2013; 7:54-64. [PMID: 24196830 DOI: 10.1158/1940-6207.capr-13-0110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present study, the ability of metformin to inhibit skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA) was analyzed in mice maintained on either an overweight control diet or an obesity-inducing diet. Rapamycin was included for comparison, and a combination of metformin and rapamycin was also evaluated. Metformin (given in the drinking water) and rapamycin (given topically) inhibited development of both papillomas and squamous cell carcinomas in overweight and obese mice in a dose-dependent manner. A low-dose combination of these two compounds displayed an additive inhibitory effect on tumor development. Metformin treatment also reduced the size of papillomas. Interestingly, all treatments seemed to be at least as effective for inhibiting tumor formation in obese mice, and both metformin and rapamycin were more effective at reducing tumor size in obese mice compared with overweight control mice. The effect of metformin on skin tumor development was associated with a significant reduction in TPA-induced epidermal hyperproliferation. Furthermore, treatment with metformin led to activation of epidermal AMP-activated protein kinase (AMPK) and attenuated signaling through mTOR complex (mTORC)-1 and p70S6K. Combinations of metformin and rapamycin were more effective at blocking epidermal mTORC1 signaling induced by TPA consistent with the greater inhibitory effect on skin tumor promotion. Collectively, the current data demonstrate that metformin given in the drinking water effectively inhibited skin tumor promotion in both overweight and obese mice and that the mechanism involves activation of epidermal AMPK and attenuated signaling downstream of mTORC1.
Collapse
Affiliation(s)
- L Allyson Checkley
- Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723.
| | | | | | | | | | | | | | | |
Collapse
|
487
|
Son HS, Kwon HY, Sohn EJ, Lee JH, Woo HJ, Yun M, Kim SH, Kim YC. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 β mediate ursolic acid induced apoptosis in HepG2 liver cancer cells. Phytother Res 2013; 27:1714-22. [PMID: 23325562 DOI: 10.1002/ptr.4925] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2023]
Abstract
Despite the antitumour effect of ursolic acid observed in several cancers, the underlying mechanism remains unclear. Thus, in the present study, the roles of AMP-activated protein kinase (AMPK) and glycogen synthase kinase 3 beta (GSK3β) were examined in ursolic acid induced apoptosis in HepG2 hepatocellular carcinoma cells. Ursolic acid significantly exerted cytotoxicity, increased the sub-G1 population and the number of ethidium homodimer and terminal deoxynucleotidyl transferase(TdT) mediated dUTP nick end labeling positive cells in HepG2 cells. Also, ursolic acid enhanced the cleavages of poly-ADP-ribose polymerase (PARP) and caspase3, attenuated the expression of astrocyte elevated gene (AEG1) and survivin in HepG2 cells. Interestingly, ursolic acid increased the phosphorylation of AMPK and coenzyme A carboxylase and also enhanced phosphorylation of GSK3β at inactive form serine 9, whereas ursolic acid attenuated the phosphorylation of AKT and mTOR in HepG2 cells. Conversely, AMPK inhibitor compound C or GSK3β inhibitor SB216763 blocked the cleavages of PARP and caspase 3 induced by ursolic acid in HepG2 cells. Furthermore, proteosomal inhibitor MG132 suppressed AMPK activation, GSK3β phosphorylation, cleaved PARP and deceased AEG-1 induced by ursolic acid in HepG2 cells. Overall, our findings suggest that ursolic acid induced apoptosis in HepG2 cells via AMPK activation and GSK3β phosphorylation as a potent chemopreventive agent.
Collapse
Affiliation(s)
- Hyun-Soo Son
- College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
488
|
Xiao Y, Zhang S, Hou G, Zhang X, Hao X, Zhang J. Clinical pathological characteristics and prognostic analysis of diabetic women with luminal subtype breast cancer. Tumour Biol 2013; 35:2035-45. [PMID: 24096546 DOI: 10.1007/s13277-013-1270-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022] Open
Abstract
This study selected luminal-type breast cancer patients as the study subjects. The patients were divided into groups according to the presence of diabetes and the types of medication used, and the patients' clinicopathological characteristics and prognostic indicators were explored. A total of 5,785 patients with luminal-type breast cancer admitted to Tianjin Medical University Cancer Institute and Hospital between January 2002 and December 2006 were selected as the study subjects. The subjects included 680 breast cancer patients with diabetes and 5,105 breast cancer patients without diabetes. The patients were divided into Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+) subtypes. Each subtype was further divided into a metformin group, a non-metformin group, and a nondiabetic group. The research indicators included breast cancer mortality, age, body mass index (BMI), amenorrhea, the presence of cardiovascular and cerebrovascular disease, pathological stage, pathological type, lymph node involvement, vessel carcinoma embolus, and the chemotherapy and endocrine regimen. A Kaplan-Meier analysis was conducted to analyze the differences in breast cancer mortality rates among the groups. The Cox proportional hazard model was adopted to detect independent factors related to prognosis. Kaplan-Meier univariate analysis showed that for the Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+) subtypes, the cancer-specific mortality rates differed significantly among the metformin, non-metformin, and nondiabetic groups. The 5-year survival rates were 94%, 82%, and 91% (P = 0.002); 93.5%, 81%, and 89% (P < 0.001); and 84%, 77%, and 83% (P = 0.035) for the subtypes within each group, respectively. Cox regression multivariate analysis showed that compared with the metformin group, all three subtypes of the, the non-metformin group showed poorer prognosis (hazard ratio [HR], 3.579; 95% confidence interval [CI], 1.506-8.506 [P = 0.004]; HR, 3.232; 95% CI, 1.839-5.678 [P < 0.001]; HR, 2.034; 95% CI,1.019-4.059 [P = 0.044] for Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+, respectively). Compared with the metformin group, the diabetic group showed poorer prognosis only for the Luminal B (high ki67) subtype (HR, 1.762; 95% CI, 1.033-3.005 [P = 0.038]). In addition, for the Luminal A, Luminal B (high ki67), and Luminal B (her-2/neu+) subgroups, there was a higher proportion of elderly patients (P < 0.001) and postmenopausal patients (P < 0.001) in the metformin and non-metformin groups than in the nondiabetic group. Moreover, the probability of having cardiovascular and cerebrovascular disease was also higher (P < 0.001) in the metformin and non-metformin groups. For the Luminal B (high ki67) and Luminal B (her-2/neu +) subgroups, there was a higher proportion of obese patients in the metformin and non-metformin groups (P < 0.001). In terms of clinical characteristics, for the Luminal B (high ki67) subtype, the proportion of patients with invasive ductal carcinoma was lower in the non-metformin group than in the other two groups (P = 0.001). In both the metformin and non-metformin groups, the proportion of T3/4 patients was higher (P < 0.001), the proportion of patients with lymph node metastasis was higher (P = 0.001), and the proportion of patients with vessel carcinoma embolus was higher (P = 0.001) compared with the nondiabetic group. In conclusion, compared with the metformin group, the non-metformin group had a poorer prognosis for all subtypes of luminal breast cancer. In the diabetic group, only patients with the Luminal B (high ki67) subtype exhibited a poorer prognosis. Therefore, different diabetes medication may have a different impact on the prognosis of different subtypes of luminal breast cancer.
Collapse
Affiliation(s)
- Yuanting Xiao
- Surgical Department, Tianhe Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
489
|
Kitazono S, Takiguchi Y, Ashinuma H, Saito-Kitazono M, Kitamura A, Chiba T, Sakaida E, Sekine I, Tada Y, Kurosu K, Sakao S, Tanabe N, Iwama A, Yokosuka O, Tatsumi K. Effect of metformin on residual cells after chemotherapy in a human lung adenocarcinoma cell line. Int J Oncol 2013; 43:1846-54. [PMID: 24100792 PMCID: PMC3834555 DOI: 10.3892/ijo.2013.2120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/16/2013] [Indexed: 01/03/2023] Open
Abstract
Cancer chemotherapy, including molecular targeted therapy, has major limitations because it does not kill all the cancer cells; the residual cells survive until they acquire chemoresistance. In the present study, the combined effects of metformin and gefitinib were examined in vivo in a mouse xenograft model, inoculated with a human lung adenocarcinoma cell line that possesses an activating epidermal growth factor receptor mutation. The mechanism of the interaction was further elucidated in vitro. Metformin did not suppress the growth of already established tumors, nor did metformin augment tumor shrinkage by gefitinib. However, metformin significantly suppressed the regrowth of the tumor after effective treatment with gefitinib, suggesting the specific effect of metformin on the residual cells. Cytotoxicity of metformin was characterized by the absence of apoptosis induction and unremarkable cell cycle shift in vitro. The residual cell population after treatment with gefitinib was characterized by enriched cells with high expression of CD133 and CD24. Metformin was still effective on this specific cell population. Targeting residual cells after chemotherapy may represent an effective novel strategy for the treatment of cancer. Elucidating the mechanism of metformin cytotoxicity provides insights into future development of anticancer therapeutics.
Collapse
Affiliation(s)
- Satoru Kitazono
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Lega IC, Austin PC, Gruneir A, Goodwin PJ, Rochon PA, Lipscombe LL. Association between metformin therapy and mortality after breast cancer: a population-based study. Diabetes Care 2013; 36:3018-26. [PMID: 23633525 PMCID: PMC3781496 DOI: 10.2337/dc12-2535] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/03/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Metformin has been associated with a reduction in breast cancer risk and may improve survival after cancer through direct and indirect tumor-suppressing mechanisms. The purpose of this study was to evaluate the effect of metformin therapy on survival in women with breast cancer using methods that accounted for the duration of treatment with glucose-lowering therapies. RESEARCH DESIGN AND METHODS This population-based study, using Ontario health care databases, recruited women aged 66 years or older diagnosed with diabetes and breast cancer between 1 April 1997 and 31 March 2008. Using Cox regression analyses, we explored the association between cumulative duration of past metformin use and all-cause and breast cancer-specific mortality. We modeled cumulative duration of past metformin use as a time-varying exposure. RESULTS Of 2,361 breast cancer patients identified, mean (±SD) age at cancer diagnosis was 77.4±6.3 years, and mean follow-up was 4.5±3.0 years. There were 1,101 deaths (46.6%), among which 386 (16.3%) were breast cancer-specific deaths. No significant association was found between cumulative duration of past metformin use and all-cause mortality (adjusted hazard ratio 0.97 [95% CI 0.92-1.02]) or breast cancer-specific mortality (0.91 [0.81-1.03]) per additional year of cumulative use. CONCLUSIONS Our findings failed to show an association between improved survival and increased cumulative metformin duration in older breast cancer patients who had recent-onset diabetes. Further research is needed to clarify this association, accounting for effects of cancer stage and BMI in younger populations or those with differing stages of diabetes as well as in nondiabetic populations.
Collapse
|
491
|
Risk of cancer in diabetes: the effect of metformin. ISRN ENDOCRINOLOGY 2013; 2013:636927. [PMID: 24224094 PMCID: PMC3800579 DOI: 10.1155/2013/636927] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/16/2013] [Indexed: 12/20/2022]
Abstract
Cancer is the second cause of death. Association of diabetes as a growing and costly disease with cancer is a major health concern. Meanwhile, preexisting diabetes is associated with an increased risk of all-cause and cancer-specific mortalities. Presence of diabetes related comorbidities, poorer response to cancer treatment, and excess mortality related to diabetes are among the most important explanations. Although diabetes appear to be a risk factor for cancer and is associated with the mortality risk in cancer patients, several factors such as diabetes duration, multiple drug therapy, and the presence of diabetes comorbidities make the assessment of the effect of diabetes treatment on cancer risk and mortality difficult. Metformin is the drug of choice for the treatment of type 2 diabetes. The available evidence from basic science, clinical, and population-based research supports the anticancer effect of metformin. However, randomized controlled clinical trials do not provide enough evidence for a strong protective effect of metformin on cancer incidence or mortality. One of the most important limitations of these trials is the short duration of the followup. Further long-term randomized controlled clinical trials specifically designed to determine metformin effect on cancer risk are needed to provide the best answer to this challenge.
Collapse
|
492
|
|
493
|
Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 2013; 24:469-80. [PMID: 23773243 DOI: 10.1016/j.tem.2013.05.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/07/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Metformin is the most commonly prescribed drug for type 2 diabetes (T2DM). Retrospective studies show that metformin is associated with decreased cancer risk. This historical correlation has driven vigorous research campaigns to determine the anticancer mechanisms of metformin. Consolidating the preclinical data is a challenge because unanswered questions remain concerning relevant mechanisms, bioavailability, and genetic factors that confer metformin sensitivity. Perhaps the most important unanswered question is whether metformin has activity against cancer in non-diabetics. In this review we highlight the proposed mechanisms of metformin action in cancer and discuss ongoing clinical trials with metformin in cancer. Improved understanding of these issues will increase the chances for successful application of metformin as an inexpensive, well-tolerated, and effective anticancer agent.
Collapse
Affiliation(s)
- Brendan J Quinn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
494
|
Hajjar J, Habra MA, Naing A. Metformin: an old drug with new potential. Expert Opin Investig Drugs 2013; 22:1511-7. [PMID: 23978196 DOI: 10.1517/13543784.2013.833604] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metformin is the most commonly prescribed antidiabetic oral agent. It has also been used off-label for polycystic ovarian syndrome, steatohepatitis, and HIV-associated metabolic abnormalities. However, this oldie is a newbie for the oncologist. Population studies have suggested that metformin decreased the incidence and mortality rates of cancer in diabetic patients. With better understanding of its mechanisms of antitumor activity, metformin may become a new drug for cancer in combination with chemotherapy or targeted therapy.
Collapse
Affiliation(s)
- Joud Hajjar
- Virginia Commonwealth University, Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology , Richmond, VA , USA
| | | | | |
Collapse
|
495
|
Metformin inhibits lung cancer cells proliferation through repressing microRNA-222. Biotechnol Lett 2013; 35:2013-9. [DOI: 10.1007/s10529-013-1309-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/25/2013] [Indexed: 02/08/2023]
|
496
|
Blagosklonny MV. Common drugs and treatments for cancer and age-related diseases: revitalizing answers to NCI's provocative questions. Oncotarget 2013; 3:1711-24. [PMID: 23565531 PMCID: PMC3681506 DOI: 10.18632/oncotarget.890] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2011, The National Cancer Institute (NCI) has announced 24 provocative questions on cancer. Some of these questions have been already answered in “NCI's provocative questions on cancer: some answers to ignite discussion” (published in Oncotarget, 2011, 2: 1352.) The questions included “Why do many cancer cells die when suddenly deprived of a protein encoded by an oncogene?” “Can we extend patient survival by using approaches that keep tumors static?” “Why are some disseminated cancers cured by chemotherapy alone?” “Can we develop methods to rapidly test interventions for cancer treatment or prevention?” “Can we use our knowledge of aging to enhance prevention or treatment of cancer?” “What is the mechanism by which some drugs commonly and chronically used for other indications protect against cancer?” “How does obesity contribute to cancer risk?” I devoted a single subchapter to each the answer. As expected, the provocative questions were very diverse and numerous. Now I choose and combine, as a single problem, only three last questions, all related to common mechanisms and treatment of age-related diseases including obesity and cancer. Can we use common existing drugs for cancer prevention and treatment? Can we use some targeted “cancer-selective” agents for other diseases and … aging itself.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, USA.
| |
Collapse
|
497
|
Kasuga M, Ueki K, Tajima N, Noda M, Ohashi K, Noto H, Goto A, Ogawa W, Sakai R, Tsugane S, Hamajima N, Nakagama H, Tajima K, Miyazono K, Imai K. Report of the JDS/JCA Joint Committee on Diabetes and Cancer. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0121-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
498
|
André N, Banavali S, Snihur Y, Pasquier E. Has the time come for metronomics in low-income and middle-income countries? Lancet Oncol 2013; 14:e239-48. [PMID: 23639324 DOI: 10.1016/s1470-2045(13)70056-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In 2008, 72% of cancer deaths occurred in low-income and middle-income countries, where, although there is a lower incidence of cancer than in high-income countries, survival rates are also low. Many patients are sent home to die, and an even larger number of patients do not have access to treatment facilities. New constraint-adapted therapeutic strategies are therefore urgently needed. Metronomic chemotherapy--the chronic administration of chemotherapy at low, minimally toxic doses on a frequent schedule of administration, with no prolonged drug-free breaks--has recently emerged as a potential strategy to control advanced or refractory cancer and represents an alternative for patients with cancer living in developing countries. This low-cost, well-tolerated, and easy to access strategy is an attractive therapeutic option in resource-limited countries. Moreover, combined with drug repositioning, additional anticancer effects can be achieved, ultimately resulting in improved cancer control while maintaining minimum cost of treatment. In this Personal View, we will briefly review the rationale behind the combination of metronomic chemotherapy and drug repositioning-an approach we term metronomics. We assess the clinical experience obtained with this kind of anticancer treatment and describe potential new developments in countries with limited resources. We also highlight the need for adapted clinical study endpoints and innovative models of collaboration between for-profit and non-profit organisations, to address the growing problem of cancer in resource-limited countries.
Collapse
Affiliation(s)
- Nicolas André
- Service d'Hématologie et Oncologie Pédiatrique, AP-HM, Marseille, France.
| | | | | | | |
Collapse
|
499
|
Quinn BJ, Dallos M, Kitagawa H, Kunnumakkara AB, Memmott RM, Hollander MC, Gills JJ, Dennis PA. Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling. Cancer Prev Res (Phila) 2013; 6:801-10. [PMID: 23771523 DOI: 10.1158/1940-6207.capr-13-0058-t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metformin is the most commonly prescribed drug for type II diabetes and is associated with decreased cancer risk. Previously, we showed that metformin prevented tobacco carcinogen (NNK)-induced lung tumorigenesis in a non-diabetic mouse model, which was associated with decreased IGF-I/insulin receptor signaling but not activation of AMPK in lung tissues, as well as decreased circulating levels of IGF-I and insulin. Here, we used liver IGF-I-deficient (LID) mice to determine the importance of IGF-I in NNK-induced lung tumorigenesis and chemoprevention by metformin. LID mice had decreased lung tumor multiplicity and burden compared with wild-type (WT) mice. Metformin further decreased lung tumorigenesis in LID mice without affecting IGF-I levels, suggesting that metformin can act through IGF-I-independent mechanisms. In lung tissues, metformin decreased phosphorylation of multiple receptor tyrosine kinases (RTK) as well as levels of GTP-bound Ras independently of AMPK. Metformin also diminished plasma levels of several cognate ligands for these RTKs. Tissue distribution studies using [(14)C]-metformin showed that uptake of metformin was high in liver but four-fold lower in lungs, suggesting that the suppression of RTK activation by metformin occurs predominantly via systemic, indirect effects. Systemic inhibition of circulating growth factors and local RTK signaling are new AMPK-independent mechanisms of action of metformin that could underlie its ability to prevent tobacco carcinogen-induced lung tumorigenesis.
Collapse
Affiliation(s)
- Brendan J Quinn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
500
|
Xiong Y, Lu QJ, Zhao J, Wu GY. Metformin inhibits growth of hepatocellular carcinoma cells by inducing apoptosis via mitochondrion-mediated pathway. Asian Pac J Cancer Prev 2013; 13:3275-9. [PMID: 22994747 DOI: 10.7314/apjcp.2012.13.7.3275] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Recently, population-based studies of type 2 diabetes patients have provided evidence that metformin treatment is associated with a reduced cancer incidence and mortality, but its mode of action remains unclear. Here we report effects of metformin on hepatocellular carcinoma (HCC) Hep-G2 cells and details of molecular mechanisms of metformin activity. Our research indicates that metformin displays anticancer activity against HCC through inhibition of the mTOR translational pathway in an AMPK-independent manner, leading to G1 arrest in the cell-cycle and subsequent cell apoptosis through the mitochondrion-dependent pathway. Furthermore, we showed that metformin strongly attenuated colony formation and dramatically inhibited Hep-G2 tumor growth in vivo. In conclusion, our studies suggested that metformin might have potential as a cytotoxic drug in the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | | | | | | |
Collapse
|