451
|
Kania G, Blyszczuk P, Czyz J, Navarrete-Santos A, Wobus AM. Differentiation of mouse embryonic stem cells into pancreatic and hepatic cells. Methods Enzymol 2003; 365:287-303. [PMID: 14696354 DOI: 10.1016/s0076-6879(03)65021-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we present efficient strategies to differentiate ES cells either into pancreatic or into hepatic cell types. We recommend a strategy to select nestin+ cells, an early progenitor cell type with high developmental plasticity, followed by differentiation induction with specific growth and extracellular matrix factors into pancreatic and hepatic cell types. Cells differentiating via nestin+ cells into the pancreatic and hepatic lineage expressed tissue-specific genes. Proteins characteristic for mature endocrine pancreatic or hepatic cells were synthesized and released. Further, a histotypic "spinner" culture system was introduced to generate mature insulin- and albumin-producing cells at high efficiency.
Collapse
Affiliation(s)
- Gabriela Kania
- In Vitro Differentiation Group, Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Gatersleben, D-06466, Germany
| | | | | | | | | |
Collapse
|
452
|
Lee J, Wu Y, Qi Y, Xue H, Liu Y, Scheel D, German M, Qiu M, Guillemot F, Rao M, Gradwohl G. Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord. Dev Biol 2003; 253:84-98. [PMID: 12490199 DOI: 10.1006/dbio.2002.0868] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the role of basic helix-loop-helix (bHLH) transcription factors in gliogenesis, we examined whether bHLH transcription factors were expressed in glial precursor cells and participated in regulating oligodendrocyte and astrocyte development. As assessed by reverse transcription-polymerase chain reaction (RT-PCR), Neurogenin3 (Ngn3) was transiently expressed in bipotential glial cells fated to become either oligodendrocytes or astrocytes. Mice lacking Ngn3 displayed a loss of Nkx2.2 expression, a transcription factor required for proper oligodendrogliogenesis. Furthermore, a reduction in the expression of myelin basic protein (MBP), proteolipid protein (PLP), and glial fibrillary acidic protein (GFAP), markers for mature oligodendrocytes and astrocytes, was observed in the Ngn3 null mice. Overexpression of Ngn3 was sufficient to drive expression from the PLP promoter in transient cotransfection assays. Overall, the data suggest that Ngn3 may regulate glial differentiation at a developmental stage prior to the segregation of the oligodendrocyte and astrocyte lineage.
Collapse
Affiliation(s)
- Jeffrey Lee
- IGBMC, Universite Louis Pasteur, 1 rue Laurent Fries, BP10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
453
|
|
454
|
Kaczorowski DJ, Patterson ES, Jastromb WE, Shamblott MJ. Glucose-responsive insulin-producing cells from stem cells. Diabetes Metab Res Rev 2002; 18:442-50. [PMID: 12469358 DOI: 10.1002/dmrr.330] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent success with immunosuppression following islet cell transplantation offers hope that a cell transplantation treatment for type 1 (juvenile) diabetes may be possible if sufficient quantities of safe and effective cells can be produced. For the treatment of type 1 diabetes, the two therapeutically essential functions are the ability to monitor blood glucose levels and the production of corresponding and sufficient levels of mature insulin to maintain glycemic control. Stem cells can replicate themselves and produce cells that take on more specialized functions. If a source of stem cells capable of yielding glucose-responsive insulin-producing (GRIP) cells can be identified, then transplantation-based treatment for type 1 diabetes may become widely available. Currently, stem cells from embryonic and adult sources are being investigated for their ability to proliferate and differentiate into cells with GRIP function. Human embryonic pluripotent stem cells, commonly referred to as embryonic stem (ES) cells and embryonic germ (EG) cells, have received significant attention owing to their broad capacity to differentiate and ability to proliferate well in culture. Their application to diabetes research is of particular promise, as it has been demonstrated that mouse ES cells are capable of producing cells able to normalize glucose levels of diabetic mice, and human ES cells can differentiate into cells capable of insulin production. Cells with GRIP function have also been derived from stem cells residing in adult organisms, here referred to as endogenous stem cell sources. Independent of source, stem cells capable of producing cells with GRIP function may provide a widely available cell transplantation treatment for type 1 diabetes.
Collapse
Affiliation(s)
- David J Kaczorowski
- Johns Hopkins University School of Medicine, Department of Gynecology and Obstetrics, Division of Developmental Genetics, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
455
|
Heremans Y, Van De Casteele M, in't Veld P, Gradwohl G, Serup P, Madsen O, Pipeleers D, Heimberg H. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 2002; 159:303-12. [PMID: 12403815 PMCID: PMC2173047 DOI: 10.1083/jcb.200203074] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulatory proteins have been identified in embryonic development of the endocrine pancreas. It is unknown whether these factors can also play a role in the formation of pancreatic endocrine cells from postnatal nonendocrine cells. The present study demonstrates that adult human pancreatic duct cells can be converted into insulin-expressing cells after ectopic, adenovirus-mediated expression of the class B basic helix-loop-helix factor neurogenin 3 (ngn3), which is a critical factor in embryogenesis of the mouse endocrine pancreas. Infection with adenovirus ngn3 (Adngn3) induced gene and/or protein expression of NeuroD/beta2, Pax4, Nkx2.2, Pax6, and Nkx6.1, all known to be essential for beta-cell differentiation in mouse embryos. Expression of ngn3 in adult human duct cells induced Notch ligands Dll1 and Dll4 and neuroendocrine- and beta-cell-specific markers: it increased the percentage of synaptophysin- and insulin-positive cells 15-fold in ngn3-infected versus control cells. Infection with NeuroD/beta2 (a downstream target of ngn3) induced similar effects. These data indicate that the Delta-Notch pathway, which controls embryonic development of the mouse endocrine pancreas, can also operate in adult human duct cells driving them to a neuroendocrine phenotype with the formation of insulin-expressing cells.
Collapse
Affiliation(s)
- Yves Heremans
- Diabetes Research Center, Brussels Free University (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
456
|
|
457
|
Abstract
Exocrine pancreatic cell types comprise greater than 90% of parenchymal cell mass in the adult pancreas. However, the factors regulating differentiation of acinar and ductal epithelial cells remain incompletely characterized. Like pancreatic islet cells, acinar and ductal cells arise from pluripotent precursors within embryonic pancreatic epithelium. Recent studies have suggested that a common pool of pluripotent stem cells is responsible for generating both endocrine and exocrine cell types, and that specific signaling pathways regulate a critical balance between endocrine and exocrine lineage commitment.
Collapse
Affiliation(s)
- A L Means
- Departments of Surgery and Cell Biology, Vanderbilt University School of Medicine, Nashville, Tenn., USA
| | | |
Collapse
|
458
|
Abstract
The pancreas is a vital gland of exocrine and endocrine function. It is the target of two main affections: diabetes and pancreatic cancer. We describe the tissue interactions, signaling pathways and intracellular targets that are involved in the emergence of the pancreas primordium and its proliferation, morphogenesis and differentiation. It appears that several genes of developmental relevance have an adult function and are involved in pancreas affections. Embryological experimentation in animals contributed to provide candidate genes for human disease and holds promise for future treatments.
Collapse
Affiliation(s)
- K A Johansson
- Swiss Institute for Experimental Cancer research (ISREC), Chemin des Boveresses 155, Case Postale CH-1066, Epalinges, s/Lausanne, Switzerland
| | | |
Collapse
|
459
|
Abstract
beta-cell replacement therapy via islet transplantation has had renewed interest, due to the recent improved success. In order to make such a therapy available to more than a few of the thousands of patients with diabetes, new sources of insulin-producing cells must be readily available. The recent conceptual revolution of the presence of adult pluripotent stem cells in bone marrow and in most, if not all, organs suggests that adult stem cells may be a potential source of insulin-producing cells. Pancreatic stem/progenitor cells or markers for these cells have been sought in both islets and ducts. There is considerable evidence that such cells exist and several candidate cells have been reported. However, no clearly identifiable adult pancreatic stem cell has been found as yet. The putative pancreatic stem cells will be the focus of this review.
Collapse
Affiliation(s)
- Susan Bonner-Weir
- Section of Islet Transplantation and Cellular Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
460
|
Wilson ME, Kalamaras JA, German MS. Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech Dev 2002; 115:171-6. [PMID: 12049785 DOI: 10.1016/s0925-4773(02)00118-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The earliest endocrine cells in the developing pancreas make glucagon and are described as alpha cells. We show here that these cells express islet amyloid polypeptide and prohormone convertase 1/3 (PC1/3), proteins that are not expressed by mature alpha cells, but are found in beta cells. PC1/3 converts proglucagon to the functionally distinct hormones glucagon-like peptide (GLP)-1 and GLP-2 rather than glucagon. Despite these differences, the early proglucagon-positive cells express, as do mature alpha cells, the POU domain transcription factor Brn-4, and do not express the beta cell factor pdx-1. The early production of atypical peptide hormones by these cells suggests that they could play an important role locally or systemically in the development of the embryo.
Collapse
Affiliation(s)
- Maria E Wilson
- UCSF Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0534, USA
| | | | | |
Collapse
|
461
|
Kim JW, Seghers V, Cho JH, Kang Y, Kim S, Ryu Y, Baek K, Aguilar-Bryan L, Lee YD, Bryan J, Suh-Kim H. Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol Endocrinol 2002; 16:1097-107. [PMID: 11981044 DOI: 10.1210/mend.16.5.0934] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The sulfonylurea receptor 1 (SUR1) plays a key role in regulation of insulin secretion in pancreatic beta-cells. In this study we investigated the mechanism for tissue-specific expression of the SUR1 gene. A -138/-20 fragment exhibited basal promoter activity while the -660/-20 fragment contained a regulatory element for tissue-specific expression of the mouse SUR1 gene. A pancreatic beta-cell-specific transcription factor, BETA2 (beta-cell E box transcription factor)/NeuroD, enhanced the promoter activity of the -660/-20 fragment in cooperation with E47. Coexpression of a dominant negative mutant of BETA2/NeuroD, BETA2(1-233), repressed the promoter activity of the -660/-20 fragment. BETA2/NeuroD bound specifically to the E3 element located at -141. The E3 sequence in a heterologous context conferred transactivation by BETA2/NeuroD in HeLa and HIT cells. Mutation of E3 eliminated the stimulatory effect of BETA2/NeuroD. Unlike BETA2/NeuroD, neurogenin 3 (ngn3) could not activate the E3 element in HeLa cells. Overexpression of ngn3 concomitantly increased expression of BETA2/NeuroD and SUR1 in HIT cells but not in HeLa cells. These results indicate that BETA2/NeuroD induces tissue-specific expression of the SUR1 gene through the E3 element. These results also suggest that E3 is specific for BETA2/NeuroD, and the stimulatory effect of ngn3 in HIT cells may require factors specifically expressed in HIT cells.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Anatomy, Ajou University, School of Medicine, Suwon, 442-749, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Grapin-Botton A. Les étapes du développement du pancréas : des pistes pour le traitement du diabète. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002184467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
463
|
Chakrabarti SK, James JC, Mirmira RG. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J Biol Chem 2002; 277:13286-93. [PMID: 11825903 DOI: 10.1074/jbc.m111857200] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Pdx1 is expressed in the pancreatic beta-cell, where it is believed to regulate several beta-cell-specific genes. Whereas binding by Pdx1 to elements of beta-cell genes has been demonstrated in vitro, almost none of these genes has been demonstrated to be a direct binding target for Pdx1 within cells (where complex chromatin structure exists). To determine which beta-cell promoters are bound by Pdx1 in vivo, we performed chromatin immunoprecipitation assays using Pdx1 antiserum and chromatin from beta-TC3 cells and Pdx1-transfected NIH3T3 cells and subsequently quantitated co-immunoprecipitated promoters using real-time PCR. We compared these in vivo findings to parallel immunoprecipitations in which Pdx1 was allowed to bind to promoter fragments in in vitro reactions. Our results show that in all cells Pdx1 binds strongly to the insulin, islet amyloid polypeptide, glucagon, Pdx1, and Pax4 promoters, whereas it does not bind to either the glucose transporter type 2 or albumin promoters. In addition, no binding by Pdx1 to the glucokinase promoter was observed in beta-cells. In contrast, in in vitro immunoprecipitations, Pdx1 bound all promoters to an extent approximately proportional to the number of Pdx1 binding sites. Our findings suggest a critical role for chromatin structure in directing the promoter binding selectivity of Pdx1 in beta-cells and non-beta-cells.
Collapse
Affiliation(s)
- Swarup K Chakrabarti
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia Health Sciences Center, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
464
|
Humphrey RK, Smith MS, Tuch BE, Hayek A. Regulation of pancreatic cell differentiation and morphogenesis. Pediatr Diabetes 2002; 3:46-63. [PMID: 15016175 DOI: 10.1034/j.1399-5448.2002.30109.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Organogenesis requires tissue interactions to initiate the cascade of inductive and repressive signals necessary for normal organ development. Tissue interactions initiate the pancreatic lineage within the primitive foregut endodermal epithelium and continue to direct the morphogenesis and differentiation of the endocrine, exocrine and ductal portions of the pancreas. An understanding of the mechanisms controlling pancreatic growth would enable the development of alternative therapies for diseases such as type 1 diabetes.
Collapse
Affiliation(s)
- Rohan K Humphrey
- The Islet Research Laboratory, Whittier Institute for Diabetes, Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, 92037, USA
| | | | | | | |
Collapse
|
465
|
Bramblett DE, Copeland NG, Jenkins NA, Tsai MJ. BHLHB4 is a bHLH transcriptional regulator in pancreas and brain that marks the dimesencephalic boundary. Genomics 2002; 79:402-12. [PMID: 11863370 DOI: 10.1006/geno.2002.6708] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a basic helix-loop-helix (bHLH) factor gene, Bhlhb4, from a mouse beta-cell line. Fluorescence in situ hybridization (FISH) and genetic mapping place Bhlhb4 at the telomeric end of mouse chromosome 2 (H3-H4), syntenic to human chromosome 20q13. Based on phylogenetic analysis, BHLHB4 belongs to a new subgroup of bHLH factors including at least four previously identified mouse bHLH factors: BHLHB5, MIST1, OLIG1, OLIG2, and OLIG3. In the developing nervous system, Bhlhb4 was found to mark the dimesencephalic boundary, suggesting that Bhlhb4 may have a role in diencephalic regionalization. In the pancreas, Bhlhb4 is expressed in a transient fashion that suggests a role in the pancreatic endocrine cell lineage. Transfection experiments show that BHLHB4 can repress transcriptional activation mediated through the pancreatic beta-cell specific insulin promoter enhancer RIPE3. Together, these data suggest that BHLHB4 may modulate the expression of genes required for the differentiation and/or maintenance of pancreatic and neuronal cell types.
Collapse
Affiliation(s)
- Debra E Bramblett
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
466
|
Abstract
The pancreas, as most of the digestive tract, derives from the endoderm. Differentiation of these early gut endoderm cells into the endocrine cells forming the pancreatic islets of Langerhans depends on a cascade of gene activation events. These are controlled by different classes of transcription factors including the homeodomain, the basic helix-loop-helix (bHLH) and the winged helix proteins. Recently, considerable progress has been made delineating this cascade. The present review focuses on the role of the different transcription factors during pancreas development, with a particular emphasis on the newly identified bHLH transcription factor neurogenin3.
Collapse
Affiliation(s)
- V M Schwitzgebel
- Division of Pediatric Endocrinology and Diabetology, Hôpital des Enfants, University of Geneva, 6, rue Willi Donzé, CH-1211 Geneva, Switzerland.
| |
Collapse
|
467
|
Yoshida S, Ohbo K, Takakura A, Takebayashi H, Okada T, Abe K, Nabeshima Y. Sgn1, a basic helix-loop-helix transcription factor delineates the salivary gland duct cell lineage in mice. Dev Biol 2001; 240:517-30. [PMID: 11784080 DOI: 10.1006/dbio.2001.0473] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The salivary system in mammals is comprised of three independently developed pairs of organs, the parotid, submaxillar, and sublingual glands. Each gland is composed of various ductal and acinar cell types that fulfill multiple roles. However, the molecular mechanisms regulating their biogenesis and functions are still largely unknown. In this paper, we report that two class B basic helix-loop-helix (bHLH) transcriptional regulators delineate the ductal and the acinar cells in salivary glands. Sgn1, a novel class B bHLH factor, is specifically expressed in the salivary duct cells, while the acinar cells are characterized by the expression of another class B bHLH factor, Mist1. The molecular nature of Sgn1 was also investigated: it binds to specific sequences of DNA as a dimer with a class A bHLH factor and acts as a negative transcriptional regulator against other bHLH factors. This study provides an important cue towards better understanding of the generation and function of multiple cell types in salivary glands. In addition, Sgn1 expression exhibits a reverse relationship with the development of male phenotypes, suggesting its role in gender dimorphism in the salivary glands.
Collapse
Affiliation(s)
- S Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
468
|
Pin CL, Rukstalis JM, Johnson C, Konieczny SF. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol 2001; 155:519-30. [PMID: 11696558 PMCID: PMC2198859 DOI: 10.1083/jcb.200105060] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pancreas is a complex organ that consists of separate endocrine and exocrine cell compartments. Although great strides have been made in identifying regulatory factors responsible for endocrine pancreas formation, the molecular regulatory circuits that control exocrine pancreas properties are just beginning to be elucidated. In an effort to identify genes involved in exocrine pancreas function, we have examined Mist1, a basic helix-loop-helix transcription factor expressed in pancreatic acinar cells. Mist1-null (Mist1(KO)) mice exhibit extensive disorganization of exocrine tissue and intracellular enzyme activation. The exocrine disorganization is accompanied by increases in p8, RegI/PSP, and PAP1/RegIII gene expression, mimicking the molecular changes observed in pancreatic injury. By 12 m, Mist1(KO) mice develop lesions that contain cells coexpressing acinar and duct cell markers. Analysis of the factors involved in cholecystokinin (CCK) signaling reveal inappropriate levels of the CCK receptor A and the inositol-1,4,5-trisphosphate receptor 3, suggesting that a functional defect exists in the regulated exocytosis pathway of Mist1(KO) mice. Based on these observations, we propose that Mist1(KO) mice represent a new genetic model for chronic pancreas injury and that the Mist1 protein serves as a key regulator of acinar cell function, stability, and identity.
Collapse
Affiliation(s)
- C L Pin
- Department of Paediatrics, Child Health Research Institute, University of Western Ontario, London, Ontario N6C 2V5, Canada
| | | | | | | |
Collapse
|
469
|
Abderrahmani A, Steinmann M, Plaisance V, Niederhauser G, Haefliger JA, Mooser V, Bonny C, Nicod P, Waeber G. The transcriptional repressor REST determines the cell-specific expression of the human MAPK8IP1 gene encoding IB1 (JIP-1). Mol Cell Biol 2001; 21:7256-67. [PMID: 11585908 PMCID: PMC99900 DOI: 10.1128/mcb.21.21.7256-7267.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.
Collapse
Affiliation(s)
- A Abderrahmani
- Department of Internal Medicine, CHUV-University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
470
|
Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 2001; 142:4956-68. [PMID: 11606464 DOI: 10.1210/endo.142.11.8501] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that new beta cells differentiated in pancreatic islets of mice in which diabetes was produced by injection of a high dose of the beta cell toxin streptozotocin (SZ), which produces hyperglycemia due to rapid and massive beta cell death. After SZ-mediated elimination of existing beta cells, a population of insulin containing cells reappeared in islets. However, the number of new beta cells was small, and the animals remained severely hyperglycemic. In the present study, we tested whether restoration of normoglycemia by exogenous administered insulin would enhance beta cell differentiation and maturation. We found that beta cell regeneration improved in SZ-treated mice animals that rapidly attained normoglycemia following insulin administration because the number of beta cells per islet reached near 40% of control values during the first week after restoration of normoglycemia. Two presumptive precursor cell types appeared in regenerating islets. One expressed the glucose transporter-2 (Glut-2), and the other cell type coexpressed insulin and somatostatin. These cells probably generated the monospecific cells containing insulin that repopulated the islets. We conclude that beta cell neogenesis occurred in adult islets and that the outcome of this process was regulated by the insulin-mediated normalization of circulating blood glucose levels.
Collapse
Affiliation(s)
- Y Guz
- Department of Anatomy and Cell Biology, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
471
|
Gannon M, Gamer LW, Wright CV. Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol 2001; 238:185-201. [PMID: 11784003 DOI: 10.1006/dbio.2001.0359] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pdx1 (pancreatic and duodenal homeobox gene-1), which is expressed broadly in the embryonic pancreas and, later, in a more restricted manner in the mature beta cells in the islets of Langerhans, is essential both for organ formation and beta cell gene expression and function. We carried out a transgenic reporter gene analysis to identify region- and cell type-specific regulatory regions in pdx1. A 14.5-kb pdx1 genomic fragment corrected the glucose intolerance of pdx1(+/-) animals but, moreover, fully rescued the severe gut and pancreas defects in pdx1(-/-) embryos. Sequences sufficient to direct reporter expression to the entire endogenous pdx1 expression domain lie within 4.3 kb of 5' flanking DNA. In this region, we identified two distinct fragments that drive reporter gene expression to different sets of islet neuroendocrine cells. One shows pan-endocrine cell specificity, the other is selectively activated in insulin-producing beta cells. The endocrine-specific regulatory regions overlap a localized region of 5' flanking DNA that is remarkably conserved in sequence between vertebrate pdx1 genes, and which has been associated with beta cell-selective expression in cultured cell lines. This region contains potential binding sites for several transcription factors implicated in endodermal development and the pathogenesis of some forms of type-2 diabetes. These results are consistent with our previous proposal that conserved upstream pdx1 sequences exert control over pdx1 during embryonic organogenesis and islet endocrine cell differentiation. We propose that mutations affecting the expression and/or activity of transcription factors operating via these sequences may predispose towards diabetes, at least in part by direct effects on endocrine pdx1 expression.
Collapse
Affiliation(s)
- M Gannon
- Department of Cell Biology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
472
|
Abstract
Stem cell biology is a new field that holds promise for in-vitro mass production of pancreatic beta-cells, which are responsible for insulin synthesis, storage, and release. Lack or defect of insulin produces diabetes mellitus, a devastating disease suffered by 150 million people in the world. Transplantation of insulin-producing cells could be a cure for type 1 and some cases of type 2 diabetes, however this procedure is limited by the scarcity of material. Obtaining pancreatic beta-cells from embryonic stem cells would overcome this problem. We have derived insulin-producing cells from mouse embryonic stem cells by a 3-step in-vitro differentiation method consisting of directed differentiation, cell-lineage selection, and maturation. These insulin-producing cells normalize blood glucose when transplanted into streptozotocin-diabetic mice. Strategies to increase islet precursor cells from embryonic stem cells include the expression of relevant transcription factors (Pdx1, Ngn3, Isl-1, etc), together with the use of extracellular factors. Once a high enough proportion of islet precursors has been obtained there is a need for cell-lineage selection in order to purify the desired cell population. For this purpose, we designed a cell-trapping method based on a chimeric gene that fuses the human insulin gene regulatory region with the structural gene that confers resistance to neomycin. When incorporated into embryonic stem cells, this fusion gene will generate neomycin resistance in those cells that initiate the synthesis of insulin. Not only embryonic, but also adult stem cells are potential sources for insulin-containing cells. Duct cells from the adult pancreas are committed to differentiate into the four islet cell types; other possibilities may include nestin-positive cells from islets and adult pluripotent stem cells from other origins. Whilst the former are committed to be islet cells but have a reduced capacity to expand, the latter are more pluripotent and more expandable, but a longer pathway separates them from the insulin-producing stage. The aim of this review is to discuss the different strategies that may be followed to in-vitro differentiate pancreatic beta-cells from stem cells.
Collapse
Affiliation(s)
- B Soria
- Institute of Bioengineering and Department of Physiology, School of Medicine, Miguel Hernández University, Alicante, Spain.
| |
Collapse
|
473
|
Abstract
Type 1 diabetes generally results from autoimmune destruction of pancreatic islet beta-cells, with consequent absolute insulin deficiency and complete dependence on exogenous insulin treatment. The relative paucity of donations for pancreas or islet allograft transplantation has prompted the search for alternative sources for beta-cell replacement therapy. In the current study, we used pluripotent undifferentiated human embryonic stem (hES) cells as a model system for lineage-specific differentiation. Using hES cells in both adherent and suspension culture conditions, we observed spontaneous in vitro differentiation that included the generation of cells with characteristics of insulin-producing beta-cells. Immunohistochemical staining for insulin was observed in a surprisingly high percentage of cells. Secretion of insulin into the medium was observed in a differentiation-dependent manner and was associated with the appearance of other beta-cell markers. These findings validate the hES cell model system as a potential basis for enrichment of human beta-cells or their precursors, as a possible future source for cell replacement therapy in diabetes.
Collapse
Affiliation(s)
- S Assady
- Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, and. Rambam Medical Center, Bat-Galim, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
474
|
Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J, Wollheim CB. Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J Biol Chem 2001; 276:25279-86. [PMID: 11309388 DOI: 10.1074/jbc.m101233200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The absence of Pdx1 and the expression of brain-4 distinguish alpha-cells from other pancreatic endocrine cell lineages. To define the transcription factor responsible for pancreatic cell differentiation, we employed the reverse tetracycline-dependent transactivator system in INS-I cell-derived subclones INSralphabeta and INSrbeta to achieve tightly controlled and conditional expression of wild type Pdx1 or its dominant-negative mutant, as well as brain-4. INSralphabeta cells express not only insulin but also glucagon and brain-4, while INSrbeta cells express only insulin. Overexpression of Pdx1 eliminated glucagon mRNA and protein in INSralphabeta cells and promoted the expression of beta-cell-specific genes in INSrbeta cells. Induction of dominant-negative Pdx1 in INSralphabeta cells resulted in differentiation of insulin-producing beta-cells into glucagon-containing alpha-cells without altering brain4 expression. Loss of Pdx1 function alone in INSrbeta cells, which do not express endogenous brain-4 and glucagon, was also sufficient to abolish the expression of genes restricted to beta-cells and to cause alpha-cell differentiation. In contrast, induction of brain-4 in INSrbeta cells initiated detectable expression of glucagon but did not affect beta-cell-specific gene expression. In conclusion, Pdx1 confers the expression of pancreatic beta-cell-specific genes, such as genes encoding insulin, islet amyloid polypeptide, Glut2, and Nkx6.1. Pdx1 defines pancreatic cell lineage differentiation. Loss of Pdx1 function rather than expression of brain4 is a prerequisite for alpha-cell differentiation.
Collapse
Affiliation(s)
- H Wang
- Division of Clinical Biochemistry, Department of Internal Medicine, Geneva University Medical Center, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
475
|
Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292:1389-94. [PMID: 11326082 DOI: 10.1126/science.1058866] [Citation(s) in RCA: 969] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the source of embryonic stem (ES) cells presents ethical concerns, their use may lead to many clinical benefits if differentiated cell types can be derived from them and used to assemble functional organs. In pancreas, insulin is produced and secreted by specialized structures, islets of Langerhans. Diabetes, which affects 16 million people in the United States, results from abnormal function of pancreatic islets. We have generated cells expressing insulin and other pancreatic endocrine hormones from mouse ES cells. The cells self-assemble to form three-dimensional clusters similar in topology to normal pancreatic islets where pancreatic cell types are in close association with neurons. Glucose triggers insulin release from these cell clusters by mechanisms similar to those employed in vivo. When injected into diabetic mice, the insulin-producing cells undergo rapid vascularization and maintain a clustered, islet-like organization.
Collapse
Affiliation(s)
- N Lumelsky
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4092, USA
| | | | | | | | | | | |
Collapse
|
476
|
Lee JC, Smith SB, Watada H, Lin J, Scheel D, Wang J, Mirmira RG, German MS. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 2001; 50:928-36. [PMID: 11334435 DOI: 10.2337/diabetes.50.5.928] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurogenin3 (ngn3), a basic helix-loop-helix (bHLH) transcription factor, functions as a pro-endocrine factor in the developing pancreas: by itself, it is sufficient to force undifferentiated pancreatic epithelial cells to become islet cells. Because ngn3 expression determines which precursor cells will differentiate into islet cells, the signals that regulate ngn3 expression control islet cell formation. To investigate the factors that control ngn3 gene expression, we mapped the human and mouse ngn3 promoters and delineated transcriptionally active sequences within the human promoter. Surprisingly, the human ngn3 promoter drives transcription in all cell lines tested, including fibroblast cell lines. In contrast, in transgenic animals the promoter drives expression specifically in regions of ngn3 expression in the developing pancreas and gut; and the addition of distal sequences greatly enhances transgene expression. Within the distal enhancer, binding sites for several pancreatic transcription factors, including hepatocyte nuclear factor (HNF)-1 and HNF-3, form a tight cluster. HES1, an inhibitory bHLH factor activated by Notch signaling, binds to the proximal promoter and specifically blocks promoter activity. Together with previous genetic data, these results suggest a model in which the ngn3 gene is activated by the coordinated activities of several pancreatic transcription factors and inhibited by Notch signaling through HES1.
Collapse
Affiliation(s)
- J C Lee
- Hormone Research Institute, Department of Pediatrics, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
477
|
Obata J, Yano M, Mimura H, Goto T, Nakayama R, Mibu Y, Oka C, Kawaichi M. p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 2001; 6:345-60. [PMID: 11318877 DOI: 10.1046/j.1365-2443.2001.00422.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Development of the pancreas and the nervous tissues is regulated by common transcription factors. A basic helix-loop-helix protein, p48 of pancreas transcription factor 1 (PTF1), is essential for differentiation of the exocrine acinar cells. RESULTS We isolated PTF1 p48 from 9.5-day mouse embryos as a binding protein of RBP-Jkappa, a mediator of Notch signalling. p48 bound to RBP-Jkappa more strongly than and in a distinct way from Notch1. In 9.5-12.5 day embryos, p48 was expressed in the dorsal part of the neural tube as well as in the pancreatic buds. Two lines of evidence suggested functions of p48 in neurogenesis: (i) expression of p48 was induced in P19 cells when they committed to neural fate upon retinoic acid treatment, and (ii) p48 over-expressed in Xenopus embryos repressed the development of neuronal precursors. p48 inhibited the MASH1-activated transcription from the E-box, while p48 stimulated transcription from the PTF1 motif synergistically with E47. The p48/E47-activated transcription from the PTF1 motif was stimulated further by RBP-Jkappa and RBP-Jkappa derivatives that mimicked the active RBP-Jkappa/Notch complex. CONCLUSIONS In developing embryos, p48 is expressed in both the nervous system and the pancreas. p48 inhibits neuronal differentiation. We propose possible mechanisms for this inhibition.
Collapse
Affiliation(s)
- J Obata
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
478
|
del Bosque-Plata L, Lin J, Horikawa Y, Schwarz PE, Cox NJ, Iwasaki N, Ogata M, Iwamoto Y, German MS, Bell GI. Mutations in the coding region of the neurogenin 3 gene (NEUROG3) are not a common cause of maturity-onset diabetes of the young in Japanese subjects. Diabetes 2001; 50:694-6. [PMID: 11246894 DOI: 10.2337/diabetes.50.3.694] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in transcription factors that play a role in the development of the endocrine pancreas, such as insulin promoter factor-1 and NeuroD1/BETA2, have been associated with diabetes. Cell type-specific members of the basic helix-loop-helix (bHLH) family of transcription factors play essential roles in the development and maintenance of many differentiated cell types, including pancreatic beta-cells. Neurogenin 3 is a bHLH transcription factor that is expressed in the developing central nervous system and the embryonic pancreas. Mice lacking this transcription factor fail to develop any islet endocrine cells and die postnatally from diabetes. Because neurogenin 3 is required for the development of beta-cells and other pancreatic islet cell types, we considered it a candidate diabetes gene. We screened the coding region of the human neurogenin 3 gene (NEUROG3) for mutations in a group of unrelated Japanese subjects with maturity-onset diabetes of the young (MODY). We found three sequence variants: a deletion of 2-bp in the 5'-untranslated region (NEUROG3-g.-44-45delCA), a G-to-A substitution in codon 167 (g.499G/ A), resulting in a Gly-to-Arg replacement (G/R167), and a T-to-C substitution in codon 199 (g.596T/C), resulting in a Phe/Ser polymorphism F/S199. These polymorphisms were not associated with MODY, thereby suggesting that mutations in NEUROG3 are not a common cause of MODY in Japanese patients.
Collapse
Affiliation(s)
- L del Bosque-Plata
- Howard Hughes Medical Institute and the Department of Biochemistry and Molecular Biology, the University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
Grapin-Botton A, Majithia AR, Melton DA. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 2001; 15:444-54. [PMID: 11230152 PMCID: PMC312631 DOI: 10.1101/gad.846001] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which the epithelium of the digestive tract and its associated glands are specified are largely unknown. One clue is that several transcription factors are expressed in specific regions of the endoderm prior to and during organogenesis. Pdx-1, for example, is expressed in the duodenum and pancreas and Pdx-1 inactivation results in an arrest of pancreatic development after buds formation. Similarly, ngn3 is transiently expressed in the developing pancreas and a knockout results in the absence of endocrine cells. This paper focuses on the question of whether these and other transcription factors, known to be necessary for pancreatic development, are also sufficient to drive a program of pancreatic organogenesis. Using in ovo electroporation of chick embryos, we show that ectopic expression of Pdx-1 or ngn3 causes cells to bud out of the epithelium like pancreatic progenitors. The Pdx-1-expressing cells extinguish markers for other nonpancreatic regions of the endoderm and initiate, but do not complete, pancreatic cytodifferentiation. Ectopic expression of ngn3 is sufficient to turn endodermal cells of any region into endocrine cells that form islets expressing glucagon and somatostatin in the mesenchyme. The results suggest that simple gene combinations could be used in stem cells to achieve specific endodermal tissue differentiation.
Collapse
Affiliation(s)
- A Grapin-Botton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
480
|
Affiliation(s)
- S K Kim
- Department of Developmental Biology and Medicine, Division of Oncology, Stanford University, Stanford, California, 94305-5329, USA.
| | | |
Collapse
|
481
|
Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, Schwitzgebel V, Hayes-Jordan A, German M. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 2000; 127:5533-40. [PMID: 11076772 DOI: 10.1242/dev.127.24.5533] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most insulin-producing beta-cells in the fetal mouse pancreas arise during the secondary transition, a wave of differentiation starting at embryonic day 13. Here, we show that disruption of homeobox gene Nkx6.1 in mice leads to loss of beta-cell precursors and blocks beta-cell neogenesis specifically during the secondary transition. In contrast, islet development in Nkx6. 1/Nkx2.2 double mutant embryos is identical to Nkx2.2 single mutant islet development: beta-cell precursors survive but fail to differentiate into beta-cells throughout development. Together, these experiments reveal two independently controlled pathways for beta-cell differentiation, and place Nkx6.1 downstream of Nkx2.2 in the major pathway of beta-cell differentiation.
Collapse
Affiliation(s)
- M Sander
- Hormone Research Institute, University of California San Francisco, San Francisco, CA 94143-0534, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Smith SB, Watada H, Scheel DW, Mrejen C, German MS. Autoregulation and maturity onset diabetes of the young transcription factors control the human PAX4 promoter. J Biol Chem 2000; 275:36910-9. [PMID: 10967107 DOI: 10.1074/jbc.m005202200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During pancreatic development, the paired homeodomain transcription factor PAX4 is required for the differentiation of the insulin-producing beta cells and somatostatin-producing delta cells. To establish the position of PAX4 in the hierarchy of factors controlling islet cell development, we examined the control of the human PAX4 gene promoter. In both cell lines and transgenic animals, a 4.9-kilobase pair region directly upstream of the human PAX4 gene transcriptional start site acts as a potent pancreas-specific promoter. Deletion mapping experiments demonstrate that a 118-base pair region lying approximately 1.9 kilobase pairs upstream of the transcription start site is both necessary and sufficient to direct pancreas-specific expression. Serial deletions through this region reveal the presence of positive elements that bind several pancreatic transcription factors as follows: the POU homeodomain factor HNF1alpha, the orphan nuclear receptor HNF4alpha, the homeodomain factor PDX1, and a heterodimer composed of two basic helix-loop-helix factors. Interestingly, mutations in the genes encoding four of these factors cause a dominantly inherited form of human diabetes called Maturity Onset Diabetes of the Young. In addition, PAX4 itself has at least two high affinity binding sites within the promoter through which it exerts a strong negative autoregulatory effect. Together, these results suggest a model in which PAX4 expression is activated during pancreatic development by a combination of pancreas-specific factors but is then switched off once PAX4 protein reaches sufficient levels.
Collapse
Affiliation(s)
- S B Smith
- Hormone Research Institute and Department of Medicine University of California, San Francisco, California 941423-0534, USA
| | | | | | | | | |
Collapse
|
483
|
Watada H, Mirmira RG, Leung J, German MS. Transcriptional and translational regulation of beta-cell differentiation factor Nkx6.1. J Biol Chem 2000; 275:34224-30. [PMID: 10938085 DOI: 10.1074/jbc.m004981200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the mature pancreas, the homeodomain transcription factor Nkx6.1 is uniquely restricted to beta-cells. Nkx6.1 also is expressed in developing beta-cells and plays an essential role in their differentiation. Among cell lines, both beta- and alpha-cell lines express nkx6.1 mRNA; but no protein can be detected in the alpha-cell lines, suggesting that post-transcriptional regulation contributes to the restriction of Nkx6.1 to beta-cells. To investigate the regulator of Nkx6.1 expression, we outlined the structure of the mouse nkx6.1 gene, and we identified regions that direct cell type-specific expression. The nkx6.1 gene has a long 5'-untranslated region (5'-UTR) downstream of a cluster of transcription start sites. nkx6.1 gene sequences from -5.6 to +1.0 kilobase pairs have specific promoter activity in beta-cell lines but not in NIH3T3 cells. This activity is dependent on sequences located at about -800 base pairs and on the 5'-UTR. Electrophoretic mobility shift assays demonstrate that homeodomain transcription factors PDX1 and Nkx2.2 can bind to the sequence element located at -800 base pairs. In addition, dicistronic assays establish that the 5'-UTR region functions as a potent internal ribosomal entry site, providing cell type-specific regulation of translation. These data demonstrate that complex regulation of both Nkx6.1 transcription and translation provides the specificity of expression required during pancreas development.
Collapse
Affiliation(s)
- H Watada
- Hormone Research Institute, University of California, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|