451
|
Brain-Targeted Delivery of Pre-miR-29b Using Lactoferrin-Stearic Acid-Modified-Chitosan/Polyethyleneimine Polyplexes. Pharmaceuticals (Basel) 2020; 13:ph13100314. [PMID: 33076502 PMCID: PMC7602608 DOI: 10.3390/ph13100314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The efficacy of brain therapeutics is largely hampered by the presence of the blood–brain barrier (BBB), mainly due to the failure of most (bio) pharmaceuticals to cross it. Accordingly, this study aims to develop nanocarriers for targeted delivery of recombinant precursor microRNA (pre-miR-29b), foreseeing a decrease in the expression of the BACE1 protein, with potential implications in Alzheimer’s disease (AD) treatment. Stearic acid (SA) and lactoferrin (Lf) were successfully exploited as brain-targeting ligands to modify cationic polymers (chitosan (CS) or polyethyleneimine (PEI)), and its BBB penetration behavior was evaluated. The intracellular uptake of the dual-targeting drug delivery systems by neuronal cell models, as well as the gene silencing efficiency of recombinant pre-miR-29b, was analyzed in vitro. Labeled pre-miR-29b-CS/PEI-SA-Lf systems showed very strong fluorescence in the cytoplasm and nucleus of RBE4 cells, being verified the delivery of pre-miR-29b to neuronal cells after 1 h transfection. The experiment of transport across the BBB showed that CS-SA-Lf delivered 65% of recombinant pre-miR-29b in a period of 4 h, a significantly higher transport ratio than the 42% found for PEI-SA-Lf in the same time frame. Overall, a novel procedure for the dual targeting of DDS is disclosed, opening new perspectives in nanomedicines delivery, whereby a novel drug delivery system harvests the merits and properties of the different immobilized ligands.
Collapse
|
452
|
Unbehau R, Luthringer-Feyerabend BJC, Willumeit-Römer R. The impact of brain cell metabolism and extracellular matrix on magnesium degradation. Acta Biomater 2020; 116:426-437. [PMID: 32890748 DOI: 10.1016/j.actbio.2020.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 01/09/2023]
Abstract
Due to its degradability, magnesium holds potential for the application as a base material for local treatment systems. Particularly for the therapy of severe brain-related diseases, local approaches are advantageous. To confirm the suitability of magnesium as a material for neural implants, information on the interaction of brain cells with magnesium is essential. Initial steps of such an evaluation need to include not only cytocompatibility tests but also the analysis of the in vitro material degradation to predict in vivo material performance. Considering the sensitivity and functional importance of neural tissue, an in-depth understanding of the processes involved is of particular relevance. Here, we investigate the influence of four different brain cell types and fibroblasts on magnesium degradation in direct material contact. Our findings indicate cell type as well as cell density-dependent degradation behavior. Metabolic activity (lactate content) appears to be crucial for degradation promotion. Extracellular matrix composition, distribution, and matrix/cell ratios are analyzed to elucidate the cell-material interactions further. Statement of Significance Thanks to their degradability, magnesium (Mg)-based materials could be promising biomaterials for local ion or even drug delivery strategies for the treatment of severe brain-related diseases. To confirm the suitability of Mg as a neural implant material, information on the interaction of brain cells with Mg is essential. Initial steps of such an evaluation need to include cytocompatibility tests and the analysis of the in vitro material degradation to predict in vivo material performance. The present study provides data on the influence of different brain cell types on Mg degradation in direct material contact. Our findings indicate cell type and cell density-dependent degradation behavior, and elucidate the role of cell metabolites and extracellular matrix molecules in the underlying degradation mechanisms.
Collapse
Affiliation(s)
- Reneé Unbehau
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Bérengère J C Luthringer-Feyerabend
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
453
|
Zhao L, Zhu J, Gong J, Song N, Wu S, Qiao W, Yang J, Zhu M, Zhao J. Polyethylenimine-based theranostic nanoplatform for glioma-targeting single-photon emission computed tomography imaging and anticancer drug delivery. J Nanobiotechnology 2020; 18:143. [PMID: 33054757 PMCID: PMC7557081 DOI: 10.1186/s12951-020-00705-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Glioma is the deadliest brain cancer in adults because the blood–brain-barrier (BBB) prevents the vast majority of therapeutic drugs from entering into the central nervous system. The development of BBB-penetrating drug delivery systems for glioma therapy still remains a great challenge. In this study, we aimed to design and develop a theranostic nanocomplex with enhanced BBB penetrability and tumor-targeting efficiency for glioma single-photon emission computed tomography (SPECT) imaging and anticancer drug delivery. Results This multifunctional nanocomplex was manufactured using branched polyethylenimine (PEI) as a template to sequentially conjugate with methoxypolyethylene glycol (mPEG), glioma-targeting peptide chlorotoxin (CTX), and diethylenetriaminepentaacetic acid (DTPA) for 99mTc radiolabeling on the surface of PEI. After the acetylation of the remaining PEI surface amines using acetic anhydride (Ac2O), the CTX-modified PEI (mPEI-CTX) was utilized as a carrier to load chemotherapeutic drug doxorubicin (DOX) in its interior cavity. The formed mPEI-CTX/DOX complex had excellent water dispersibility and released DOX in a sustainable and pH-dependent manner; furthermore, it showed targeting specificity and therapeutic effect of DOX toward glioma cells in vitro and in vivo (a subcutaneous tumor mouse model). Owing to the unique biological properties of CTX, the mPEI-CTX/DOX complex was able to cross the BBB and accumulate at the tumor site in an orthotopic rat glioma model. In addition, after efficient radiolabeling of PEI with 99mTc via DTPA, the 99mTc-labeled complex could help to visualize the drug accumulation in tumors of glioma-bearing mice and the drug delivery into the brains of rats through SPECT imaging. Conclusions These results indicate the potential of the developed PEI-based nanocomplex in facilitating glioma-targeting SPECT imaging and chemotherapy. ![]()
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Ningning Song
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Shan Wu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Wenli Qiao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jiqin Yang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China.
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
454
|
HGF/MET Signaling in Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207546. [PMID: 33066121 PMCID: PMC7590206 DOI: 10.3390/ijms21207546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) ligand and its receptor tyrosine kinase (RTK) mesenchymal-epithelial transition factor (MET) are important regulators of cellular processes such as proliferation, motility, angiogenesis, and tissue regeneration. In healthy adult somatic cells, this ligand and receptor pair is expressed at low levels and has little activity except when tissue injuries arise. In cancer cells, HGF/MET are often overexpressed, and this overexpression is found to correlate with tumorigenesis, metastasis, and poorer overall prognosis. This review focuses on the signaling of these molecules in the context of malignant brain tumors. RTK signaling pathways are among the most common and universally dysregulated pathways in gliomas. We focus on the role of HGF/MET in the following primary malignant brain tumors: astrocytomas, glioblastomas, oligodendrogliomas, ependymomas, and embryonal central nervous system tumors (including medulloblastomas and others). Brain metastasis, as well as current advances in targeted therapies, are also discussed.
Collapse
|
455
|
Affiliation(s)
- Kia J Jones
- Emory University and Atlanta VA Medical Center, Atlanta, Georgia
| | | |
Collapse
|
456
|
Zhang S, Gong P, Zhang J, Mao X, Zhao Y, Wang H, Gan L, Lin X. Specific Frequency Electroacupuncture Stimulation Transiently Enhances the Permeability of the Blood-Brain Barrier and Induces Tight Junction Changes. Front Neurosci 2020; 14:582324. [PMID: 33122995 PMCID: PMC7573286 DOI: 10.3389/fnins.2020.582324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
The blood-brain barrier (BBB) plays an important role in both the physiological state and pharmacological state of the brain. Transiently enhancing the permeability of the BBB may allow the use of more types of medications for neuropsychiatric diseases. Our previous research revealed that electroacupuncture (EA) stimulation at certain parameters can enhance the permeability of the BBB in Sprague-Dawley rats, but this phenomenon is not well characterized. We propose that specific frequency EA can transiently open the BBB and may be related to the change of tight junctions (TJ). To find the best EA frequency among commonly used frequencies, preliminarily explore the mechanism, we detected BBB permeability by measuring the intensity of Evans Blue and 20 kDa FITC-dextran fluorescence in the cerebral cortex. Then, we used a laser spectrometer, immunofluorescence, western blotting, and transmission electron microscopy to detect the mechanism of BBB opening. Finally, measured brain water content, AQP4, GFAP, Iba1, and used the DeadEndTM Fluorometric TUNEL System to clear whether the stimulation caused obvious negative effects. The results show that EA stimulation at 2/100 Hz maximally increased BBB permeability, and the BBB closed within 12 h after EA stimulation was removed. EA stimulation increased blood perfusion, c-fos levels, and Substance P expression in the cerebral cortex, decreased ZO-1 and occludin levels and induced ultrastructural changes in TJ morphology. EA stimulation at specific parameters did not cause brain edema, activation of glial cells, or cell apoptosis. This study shows that EA stimulation induces a reversible, frequency-dependent alteration of BBB permeability and proposes a hypothetical mechanism of BBB opening related to vasodilation and TJ disruption. Transiently enhancing the permeability of the BBB with EA at specific parameters may be a new strategies for delivering therapeutics to the central nervous system. Further study of this technology is needed.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Peng Gong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jiangsong Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xuqing Mao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yibin Zhao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Lin Gan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xianming Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
457
|
Wu S, Fu J, Liu D, Chen D, Hu H. The Blood-Brain Barrier Cell-Targeted Gene Delivery System to Enhance Nerve Growth Factor Protein Secretion in the Brain. ACS Biomater Sci Eng 2020; 6:6207-6216. [PMID: 33449648 DOI: 10.1021/acsbiomaterials.0c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The enhanced permeability efficiencies still remain a big challenge in crossing the blood-brain barrier (BBB). Herein, a BBB-targeting delivery system based on transferrin (Tf)-poly(ethylene glycol) (PEG) PEGylated-cationic liposome was prepared for delivering the protamine labeled nerve growth factor (NGF) gene. The nanoparticle (TLDP) could preferentially accumulate into the BBB by receptor-mediated transcytosis via the Tf receptor present on cerebral endothelial cells. The polyplex showed good encapsulation of the NGF gene as well as triggered corresponding protein release in the BBB. Surface modification of liposomes with PEG imparts a steric barrier to the NPs that decreases their recognition and clearance by the reticuloendothelial system for increasing the circulation time, and cationic liposomes with protamine are indicated with nuclear localization function to improve the efficiency of nucleus localization and gene expression. The polyplex at a DOTAP/DNA ratio of 3 showed an appropriate diameter, desired serum stability, and much higher encapsulation efficiency. The polyplex had no cytotoxicity against cells. The cell uptake of the TLDP was stronger than other groups without transferrin, which suggested that the TLDP could successfully deliver the NGF gene to the BBB cell and enhanced the expression and secretion of the NGF protein in the brain. In vivo imaging further verified that the TLDP exhibited a higher brain distribution than other groups. Consequently, these findings showed that BBB cells as the "transit station" is a promising method to overcome the BBB and increase the concentration of drug in the brain.
Collapse
Affiliation(s)
- Shiyang Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jia Fu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
458
|
Emerging Role of Extracellular Vesicles in the Pathophysiology of Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21197336. [PMID: 33020408 PMCID: PMC7582271 DOI: 10.3390/ijms21197336] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) represent a new reality for many physiological and pathological functions as an alternative mode of intercellular communication. This is due to their capacity to interact with distant recipient cells, usually involving delivery of the EVs contents into the target cells. Intensive investigation has targeted the role of EVs in different pathological conditions, including multiple sclerosis (MS). MS is a chronic inflammatory and neurodegenerative disease of the nervous system, one of the main causes of neurological disability in young adults. The fine interplay between the immune and nervous systems is profoundly altered in this disease, and EVs seems to have a relevant impact on MS pathogenesis. Here, we provide an overview of both clinical and preclinical studies showing that EVs released from blood–brain barrier (BBB) endothelial cells, platelets, leukocytes, myeloid cells, astrocytes, and oligodendrocytes are involved in the pathogenesis of MS and of its rodent model experimental autoimmune encephalomyelitis (EAE). Most of the information points to an impact of EVs on BBB damage, on spreading pro-inflammatory signals, and altering neuronal functions, but EVs reparative function of brain damage deserves attention. Finally, we will describe recent advances about EVs as potential therapeutic targets and tools for therapeutic intervention in MS.
Collapse
|
459
|
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-Responsive Nanobiomaterials-Based Therapeutics for Neurodegenerative Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907308. [PMID: 32940007 DOI: 10.1002/smll.201907308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Redox regulation has recently been proposed as a critical intracellular mechanism affecting cell survival, proliferation, and differentiation. Redox homeostasis has also been implicated in a variety of degenerative neurological disorders such as Parkinson's and Alzheimer's disease. In fact, it is hypothesized that markers of oxidative stress precede pathologic lesions in Alzheimer's disease and other neurodegenerative diseases. Several therapeutic approaches have been suggested so far to improve the endogenous defense against oxidative stress and its harmful effects. Among such approaches, the use of artificial antioxidant systems has gained increased popularity as an effective strategy. Nanoscale drug delivery systems loaded with enzymes, bioinspired catalytic nanoparticles and other nanomaterials have emerged as promising candidates. The development of degradable hydrogels scaffolds with antioxidant effects could also enable scientists to positively influence cell fate. This current review summarizes nanobiomaterial-based approaches for redox regulation and their potential applications as central nervous system neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- UCL Centre for Nerve Engineering, University College London, London, WC1E 6BT, UK
| | - Despoina Kesidou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Francisco Moura
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Eric Felli
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
460
|
Rana I, Khan N, Ansari MM, Shah FA, Din FU, Sarwar S, Imran M, Qureshi OS, Choi HI, Lee CH, Kim JK, Zeb A. Solid lipid nanoparticles-mediated enhanced antidepressant activity of duloxetine in lipopolysaccharide-induced depressive model. Colloids Surf B Biointerfaces 2020; 194:111209. [DOI: 10.1016/j.colsurfb.2020.111209] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
|
461
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
462
|
Qiao C, Zhang R, Wang Y, Jia Q, Wang X, Yang Z, Xue T, Ji R, Cui X, Wang Z. Rabies Virus‐Inspired Metal–Organic Frameworks (MOFs) for Targeted Imaging and Chemotherapy of Glioma. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chaoqiang Qiao
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Ruili Zhang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Yongdong Wang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Qian Jia
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Xiaofei Wang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Zuo Yang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Tengfei Xue
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Renchuan Ji
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Xiufang Cui
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Zhongliang Wang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| |
Collapse
|
463
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
464
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
465
|
Serris I, Serris P, Frey KM, Cho H. Development of 3D-Printed Layered PLGA Films for Drug Delivery and Evaluation of Drug Release Behaviors. AAPS PharmSciTech 2020; 21:256. [PMID: 32888114 DOI: 10.1208/s12249-020-01790-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
3D printing has been widely used to rapidly manufacture a variety of solid dosage forms on-demand, without sacrificing precision. This study used extrusion-based 3D printing to prepare single-layered, tri-layered, and core-in-shell poly(lactic-co-glycolic acid) (PLGA) films carrying paclitaxel and rapamycin in combination or lidocaine alone. Each layer was composed of either low molecular weight (MW) PLGA or high MW PLGA. In vitro drug release kinetics of paclitaxel, rapamycin, and lidocaine for PLGA films were assessed and compared with PLGA-polyethylene glycol (PEG)-PLGA hydrogel discs. Regardless of the structure of PLGA film, paclitaxel (half-time: 54-63 days) was released faster than when compared with rapamycin (half-time: 74-80 days). In contrast, single-layered PLGA-PEG-PLGA discs released rapamycin (half-time 5.7 h) at a more rapid rate than paclitaxel (half-time: 7.3 h). Single-layered PLGA-PEG-PLGA discs enabled a faster drug release than PLGA films, noting that the disc matrices dissolve in water in 24 h. Similarly, lidocaine incorporated in PLGA films (half-time: 13-36 days) exhibited slower release patterns than that in PLGA-PEG-PLGA discs (half-time: 2.6 h). In vitro drug release patterns were explained using molecular models that simulate drug-polymer interactions. Analysis of models suggested that drug-polymer interactions, location of each drug in the polymeric matrix, and solubility of drugs in water were major factors that determine drug release behaviors from the polymeric films and discs.
Collapse
|
466
|
Lee JY, Mushtaq S, Park JE, Shin HS, Lee SY, Jeon J. Radioanalytical Techniques to Quantitatively Assess the Biological Uptake and In Vivo Behavior of Hazardous Substances. Molecules 2020; 25:molecules25173985. [PMID: 32882977 PMCID: PMC7504758 DOI: 10.3390/molecules25173985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Concern about environmental exposure to hazardous substances has grown over the past several decades, because these substances have adverse effects on human health. Methods used to monitor the biological uptake of hazardous substances and their spatiotemporal behavior in vivo must be accurate and reliable. Recent advances in radiolabeling chemistry and radioanalytical methodologies have facilitated the quantitative analysis of toxic substances, and whole-body imaging can be achieved using nuclear imaging instruments. Herein, we review recent literature on the radioanalytical methods used to study the biological distribution, changes in the uptake and accumulation of hazardous substances, including industrial chemicals, nanomaterials, and microorganisms. We begin with an overview of the radioisotopes used to prepare radiotracers for in vivo experiments. We then summarize the results of molecular imaging studies involving radiolabeled toxins and their quantitative assessment. We conclude the review with perspectives on the use of radioanalytical methods for future environmental research.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea;
| | - Sajid Mushtaq
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Jung Eun Park
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Hee Soon Shin
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea; (H.S.S.); (S.-Y.L.)
- Food Biotechnology Program, University of Science and Technology, Daejeon 34113, Korea
| | - So-Young Lee
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea; (H.S.S.); (S.-Y.L.)
- Food Biotechnology Program, University of Science and Technology, Daejeon 34113, Korea
| | - Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: ; Tel.: +82-53-950-5584
| |
Collapse
|
467
|
Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020; 589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neurological disorders have been growing in recent years and are highly prevalent globally. Resveratrol (RES) is a natural product from plant sources such as grape skins. This compound has shown biological activity in many diseases, in particular, those that act on the central nervous system. The mechanism of action and the key points in neurological disorders were described and show the targeted mechanism of action. Due to the insolubility of this compound; the use of nanotechnology-based systems has been proposed for the incorporation of RES and RES-loaded nanocarriers have been designed for intranasal administration, oral or parenteral routes to deliver it to the brain. In general, these nanosystems have shown to be effective in many studies, pharmacological and pharmacokinetic assays, as well as some cell studies. The outcomes show that RES has been reported in human clinical trials for some neurological diseases, although no studies were performed in humans using nanocarriers, animal and/or cellular models have been reported to show good results regarding therapeutics on neurological diseases. Thus, the use of this nutraceutical has shown true for neurological diseases and its loading into nanocarriers displaying good results on the stability, delivery and targeting to the brain.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
468
|
Rajib D. Central nervous system diseases associated with blood brain barrier breakdown - A Comprehensive update of existing literatures. ACTA ACUST UNITED AC 2020. [DOI: 10.29328/journal.jnnd.1001035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood vessels that supply and feed the central nervous system (CNS) possess unique and exclusive properties, named as blood–brain barrier (BBB). It is responsible for tight regulation of the movement of ions, molecules, and cells between the blood and the brain thereby maintaining controlled chemical composition of the neuronal milieu required for appropriate functioning. It also protects the neural tissue from toxic plasma components, blood cells and pathogens from entering the brain. In this review the importance of BBB and its disruption causing brain pathology and progression to different neurological diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD) etc. will be discussed.
Collapse
|
469
|
Liu Y, Zhu D, Luo J, Chen X, Gao L, Liu W, Chen T. NIR-II-Activated Yolk–Shell Nanostructures as an Intelligent Platform for Parkinsonian Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6876-6887. [DOI: 10.1021/acsabm.0c00794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Daoming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
470
|
Binda A, Murano C, Rivolta I. Innovative Therapies and Nanomedicine Applications for the Treatment of Alzheimer's Disease: A State-of-the-Art (2017-2020). Int J Nanomedicine 2020; 15:6113-6135. [PMID: 32884267 PMCID: PMC7434571 DOI: 10.2147/ijn.s231480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The field of nanomedicine is constantly expanding. Since the first work dated in 1999, almost 28 thousand articles have been published, and more and more are published every year: just think that only in the last five years 20,855 have come out (source PUBMED) including original research and reviews. The goal of this review is to present the current knowledge about nanomedicine in Alzheimer’s disease, a widespread neurodegenerative disorder in the over 60 population that deeply affects memory and cognition. Thus, after a brief introduction on the pathology and on the state-of-the-art research for NPs passing the BBB, special attention is placed to new targets that can enter the interest of nanoparticle designers and to new promising therapies. The authors performed a literature review limited to the last three years (2017–2020) of available studies with the intention to present only novel formulations or approaches where at least in vitro studies have been performed. This choice was made because, while limiting the sector to nanotechnology applied to Alzheimer, an organic census of all the relevant news is difficult to obtain.
Collapse
Affiliation(s)
- Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Carmen Murano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB) 20900, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Monza (MB) 20900, Italy
| |
Collapse
|
471
|
Qiao C, Zhang R, Wang Y, Jia Q, Wang X, Yang Z, Xue T, Ji R, Cui X, Wang Z. Rabies Virus‐Inspired Metal–Organic Frameworks (MOFs) for Targeted Imaging and Chemotherapy of Glioma. Angew Chem Int Ed Engl 2020; 59:16982-16988. [DOI: 10.1002/anie.202007474] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Chaoqiang Qiao
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Ruili Zhang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Yongdong Wang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Qian Jia
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Xiaofei Wang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Zuo Yang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Tengfei Xue
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Renchuan Ji
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Xiufang Cui
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Zhongliang Wang
- Engineering Research Center of Molecular & Neuroimaging Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| |
Collapse
|
472
|
Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: Development, characterization, in-vitro studies. Int J Biol Macromol 2020; 164:2018-2027. [PMID: 32758604 DOI: 10.1016/j.ijbiomac.2020.07.326] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Silk fibroin nanoparticles possess the hydrophobic nature which assists them to become a good substrate for reticulo-endothelial system (RES) and macrophageal uptake. Surface coating of these nanoparticles with hydrophilic stabilizers, like Tween-80 make them long circulating and facilitate their uptake by low density lipoprotein (LDL) receptors to cross blood brain barrier (BBB). Surface modified silk fibroin nanoparticles bearing anti-cancer agent doxorubicin (DOX) were fabricated by desolvation method and coated with Tween-80 as surface modifier. The prepared nanoparticles were characterized for various physicochemical parameters, like particle size, surface charge, surface morphology by scanning electron microscope (SEM) and transmission electron microscopy (TEM), and in vitro drug release along with in vitro cell cytotoxicity, flow cytometry and cellular uptake studies by flourocytometry on glioblastoma cell lines. Entrapment efficiency for the silk fibroin nanoparticles were found to be >85% for coated and uncoated nanoparticles. Nanoparticles with average diameter less than 150 nm having negative charge were found to show no toxicity of its own. The pro-inflammatory response of nanoparticles was observed by determining the cytokines level, such as TNF-α and IL-1β. Sustained drug release pattern from the nanoparticles with better cytotoxicty as compared to free drug was observed, signifying their potential ability to work as a drug delivery system.
Collapse
Affiliation(s)
- Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, India
| | - Ashok R Chandak
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai 400012, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai 400012, India
| | - Sharmila Banerjee
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai 400012, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, India.
| |
Collapse
|
473
|
Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm 2020; 586:119582. [DOI: 10.1016/j.ijpharm.2020.119582] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
|
474
|
Lipid-core nanocapsules containing simvastatin improve the cognitive impairment induced by obesity and hypercholesterolemia in adult rats. Eur J Pharm Sci 2020; 151:105397. [DOI: 10.1016/j.ejps.2020.105397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023]
|
475
|
Mukherjee S, Kumar G, Patnaik R. Withanolide a penetrates brain via intra-nasal administration and exerts neuroprotection in cerebral ischemia reperfusion injury in mice. Xenobiotica 2020; 50:957-966. [PMID: 31870211 DOI: 10.1080/00498254.2019.1709228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023]
Abstract
1. Withanolide A (WA), a major constituent phytochemical of the Ayurvedic herb Withania somnifera reportedly combats neurodegeneration in Alzheimer's disease and Parkinson's disease. But no study has yet reported the ability of WA in crossing the blood-brain barrier (BBB). The present study analyses the brain penetration ability of WA after intra-nasal administration and assesses its neuroprotective ability in cerebral ischemia-reperfusion injury in adult mice model.2. Brain penetration of WA after intranasal administration in cortex and cerebellum was assessed using HPLC-UV. Three different doses (1 mg/kg, 5 mg/kg and 10 mg/kg) of the phytochemical were used to study the neuroprotective ability of WA by evaluating the brain damage, changes in cerebral neurotransmitter levels and brain tissue morphology.3. Intranasal administration of the phytochemical facilitates its penetration in the cortex and cerebellum. Post-treatment with WA significantly reduced cerebral infarction, restored BBB disruption and cerebral oedema. The WA post-treatment also lowered the ischemia-induced elevated neurotransmitter and biochemical levels in brain compartments. The highest dose (10 mg/kg) of WA also markedly reduced the morphological damages, apoptotic and necrotic cell death in brain tissue occurring due to cerebral ischemia pathophysiology.4. Intra-nasal administration enables brain penetration of WA and allows the phytochemical to exert neuroprotective ability in the global cerebral ischemia model.
Collapse
Affiliation(s)
- Sumedha Mukherjee
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Gaurav Kumar
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
- School of Biological and Biomedical Sciences, Galgotias University, Gr. Noida, India
| | - Ranjana Patnaik
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
- School of Biological and Biomedical Sciences, Galgotias University, Gr. Noida, India
| |
Collapse
|
476
|
Duskey JT, Ottonelli I, Da Ros F, Vilella A, Zoli M, Kovachka S, Spyrakis F, Vandelli MA, Tosi G, Ruozi B. Novel peptide-conjugated nanomedicines for brain targeting: In vivo evidence. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102226. [DOI: 10.1016/j.nano.2020.102226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
|
477
|
Varnamkhasti BS, Jafari S, Taghavi F, Alaei L, Izadi Z, Lotfabadi A, Dehghanian M, Jaymand M, Derakhshankhah H, Saboury AA. Cell-Penetrating Peptides: As a Promising Theranostics Strategy to Circumvent the Blood-Brain Barrier for CNS Diseases. Curr Drug Deliv 2020; 17:375-386. [DOI: 10.2174/1567201817666200415111755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
The passage of therapeutic molecules across the Blood-Brain Barrier (BBB) is a profound challenge for the management of the Central Nervous System (CNS)-related diseases. The ineffectual nature of traditional treatments for CNS disorders led to the abundant endeavor of researchers for the design the effective approaches in order to bypass BBB during recent decades. Cell-Penetrating Peptides (CPPs) were found to be one of the promising strategies to manage CNS disorders. CPPs are short peptide sequences with translocation capacity across the biomembrane. With special regard to their two key advantages like superior permeability as well as low cytotoxicity, these peptide sequences represent an appropriate solution to promote therapeutic/theranostic delivery into the CNS. This scenario highlights CPPs with specific emphasis on their applicability as a novel theranostic delivery system into the brain.
Collapse
Affiliation(s)
- Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Fereshteh Taghavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Loghman Alaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Alireza Lotfabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Mojtaba Dehghanian
- Department of Biotechnology, Shahr-e Kord Branch, Islamic Azad University, Shahr-e Kord, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
478
|
Goda T, Miyahara Y, Ishihara K. Phospholipid-mimicking cell-penetrating polymers: principles and applications. J Mater Chem B 2020; 8:7633-7641. [PMID: 32720672 DOI: 10.1039/d0tb01520b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the interactions of eukaryotic cellular membranes with nanomaterials is required to construct efficient and safe nanomedicines and molecular bioengineering. Intracellular uptake of nanocarriers by active endocytosis limits the intracellular distribution to the endosomal compartment, impairing the intended biological actions of the cargo molecules. Nonendocytic intracellular migration is another route for nanomaterials with cationic or amphiphilic properties to evade the barrier function of the lipid bilayer plasma membranes. Direct transport of nanomaterials into cells is efficient, but this may cause cytotoxic or biocidal effects by temporarily disrupting the biological membrane barrier. We have recently discovered that nonendocytic internalization of synthetic amphipathic polymer-based nanoaggregates that mimic the structure of natural phospholipids can occur without inducing cytotoxicity. Analysis using a proton leakage assay indicated that the polymer enters cells by amphiphilicity-induced membrane fusion rather than by transmembrane pore formation. These noncytotoxic cell-penetrating polymers may find applications in drug delivery systems, gene transfection, cell therapies, and biomolecular engineering.
Collapse
Affiliation(s)
- Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
| | | | | |
Collapse
|
479
|
Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int J Pharm 2020; 587:119701. [PMID: 32736018 DOI: 10.1016/j.ijpharm.2020.119701] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Neurodegenerative disorders and brain tumors are major pathological conditions affecting the brain. The delivery of therapeutic agents into the brain is not as easy as to other organs or systems. The presence of the blood-brain barrier (BBB) makes the drug delivery into the brain more complicated and challenging. Many techniques have been developed to overcome the difficulties with BBB and to achieve brain-targeted drug delivery. Incorporation of the drugs into nanocarriers capable to penetrate BBB is a simple technique. Different nanocarriers have been developed including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, etc. Carbon nanostructures could make a superior position among them, because of their good biocompatibility and easy penetration of BBB. Carbon-family nanomaterials consist of different carbon-based structures including zero-dimensional fullerene, one-dimensional carbon nanotube, two-dimensional graphene, and some other related structures like carbon dots and nanodiamonds. They can be used as efficient carriers for drug delivery into the brain. Apart from the drug delivery applications, they can also be used as a central nervous system (CNS) therapeutic agent; some of the carbon nanostructures have neuroregenerative activity. Their influence on neuronal growth and anti-amyloid action is also interesting. This review focuses on different carbon nanostructures for brain-targeted drug delivery and their CNS activities. As a carrier and CNS therapeutic agent, carbon nanostructures can revolutionize the treatment of brain disorders.
Collapse
Affiliation(s)
- T K Henna
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - V R Raphey
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
480
|
Ma F, Yang L, Sun Z, Chen J, Rui X, Glass Z, Xu Q. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. SCIENCE ADVANCES 2020; 6:eabb4429. [PMID: 32832671 PMCID: PMC7439549 DOI: 10.1126/sciadv.abb4429] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 05/24/2023]
Abstract
Safe and efficient delivery of blood-brain barrier (BBB)-impermeable cargos into the brain through intravenous injection remains a challenge. Here, we developed a previously unknown class of neurotransmitter-derived lipidoids (NT-lipidoids) as simple and effective carriers for enhanced brain delivery of several BBB-impermeable cargos. Doping the NT-lipidoids into BBB-impermeable lipid nanoparticles (LNPs) gave the LNPs the ability to cross the BBB. Using this brain delivery platform, we successfully delivered amphotericin B (AmB), antisense oligonucleotides (ASOs) against tau, and genome-editing fusion protein (-27)GFP-Cre recombinase into the mouse brain via systemic intravenous administration. We demonstrated that the NT-lipidoid formulation not only facilitates cargo crossing of the BBB, but also delivery of the cargo into neuronal cells for functional gene silencing or gene recombination. This class of brain delivery lipid formulations holds great potential in the treatment of central nervous system diseases or as a tool to study the brain function.
Collapse
Affiliation(s)
| | | | - Zhuorui Sun
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuehui Rui
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | |
Collapse
|
481
|
Wijaya J, Gose T, Schuetz JD. Using Pharmacology to Squeeze the Life Out of Childhood Leukemia, and Potential Strategies to Achieve Breakthroughs in Medulloblastoma Treatment. Pharmacol Rev 2020; 72:668-691. [PMID: 32571983 PMCID: PMC7312347 DOI: 10.1124/pr.118.016824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eliminating cancer was once thought of as a war. This analogy is still apt today; however, we now realize that cancer is a much more formidable enemy than scientists originally perceived, and in some cases, it harbors a profound ability to thwart our best efforts to defeat it. However, before we were aware of the complexity of cancer, chemotherapy against childhood acute lymphoblastic leukemia (ALL) was successful because it applied the principles of pharmacology. Herein, we provide a historic perspective of the experience at St. Jude Children's Research Hospital. In 1962, when the hospital opened, fewer than 3% of patients experienced durable cure. Through judicious application of pharmacologic principles (e.g., combination therapy with agents using different mechanisms of action) plus appropriate drug scheduling, dosing, and pharmacodynamics, the survival of patients with ALL now exceeds 90%. We contrast this approach to treating ALL with the contemporary approach to treating medulloblastoma, in which genetics and molecular signatures are being used to guide the development of more-efficacious treatment strategies with minimal toxicity. Finally, we highlight the emerging technologies that can sustain and propel the collaborative efforts to squeeze the life out of these cancers. SIGNIFICANCE STATEMENT: Up until the early 1960s, chemotherapy for childhood acute lymphoblastic leukemia was mostly ineffective. This changed with the knowledge and implementation of rational approaches to combination therapy. Although the therapeutics of brain cancers such as medulloblastoma are not as refined (in part because of the blood-brain barrier obstacle), recent extraordinary advances in knowledge of medulloblastoma pathobiology has led to innovations in disease classification accompanied with strategies to improve therapeutic outcomes. Undoubtedly, additional novel approaches, such as immunological therapeutics, will open new avenues to further the goal of taming cancer.
Collapse
Affiliation(s)
- Juwina Wijaya
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
482
|
Sahli F, Courcelle M, Palama T, Djaker N, Savarin P, Spadavecchia J. Temozolomide, Gemcitabine, and Decitabine Hybrid Nanoconjugates: From Design to Proof-of-Concept (PoC) of Synergies toward the Understanding of Drug Impact on Human Glioblastoma Cells. J Med Chem 2020; 63:7410-7421. [PMID: 32524814 DOI: 10.1021/acs.jmedchem.0c00694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper emphasizes the synthesis of novel hybrid drug nanoparticles (Hyb-D-AuNPs) based on gold-temozolomide (TMZ) complexes combined with gemcitabine (GEM) and decitabine (DAC) to improve the efficiency and reduce the resistance of U87 malignant glial cells against TMZ. All products were evaluated by several spectroscopic techniques (Raman, UV-Vis) and transmission electron microscopy (TEM). Besides, for therapeutic purposes, the effect of these nanoparticles on cell proliferation and toxicity was evaluated, which clearly showed a synergic action of TMZ and GEM. Through the analysis of the exometabolome by nuclear magnetic resonance (NMR), the metabolic changes in the culture medium were measured in glial cells. Moreover, these nanoparticles are especially appropriated to the thermal destruction of cancer in the case of photothermal therapy due to their photothermal heating properties. This study presents an original chemical approach that it could play a central role in the field of nanomedicine, with novel perspectives for the development of new drugs and active targeting in glioblastoma multiforme (GBM) cancer therapy.
Collapse
Affiliation(s)
- Ferdaous Sahli
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Manon Courcelle
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Tony Palama
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Nadia Djaker
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Philippe Savarin
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Jolanda Spadavecchia
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| |
Collapse
|
483
|
|
484
|
Pirovano G, Jannetti SA, Carter LM, Sadique A, Kossatz S, Guru N, Demétrio De Souza França P, Maeda M, Zeglis BM, Lewis JS, Humm JL, Reiner T. Targeted Brain Tumor Radiotherapy Using an Auger Emitter. Clin Cancer Res 2020; 26:2871-2881. [PMID: 32066626 PMCID: PMC7299758 DOI: 10.1158/1078-0432.ccr-19-2440] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Glioblastoma multiforme is a highly aggressive form of brain cancer whose location, tendency to infiltrate healthy surrounding tissue, and heterogeneity significantly limit survival, with scant progress having been made in recent decades. EXPERIMENTAL DESIGN 123I-MAPi (Iodine-123 Meitner-Auger PARP1 inhibitor) is a precise therapeutic tool composed of a PARP1 inhibitor radiolabeled with an Auger- and gamma-emitting iodine isotope. Here, the PARP inhibitor, which binds to the DNA repair enzyme PARP1, specifically targets cancer cells, sparing healthy tissue, and carries a radioactive payload within reach of the cancer cells' DNA. RESULTS The high relative biological efficacy of Auger electrons within their short range of action is leveraged to inflict DNA damage and cell death with high precision. The gamma ray emission of 123I-MAPi allows for the imaging of tumor progression and therapy response, and for patient dosimetry calculation. Here we demonstrated the efficacy and specificity of this small-molecule radiotheranostic in a complex preclinical model. In vitro and in vivo studies demonstrate high tumor uptake and a prolonged survival in mice treated with 123I-MAPi when compared with vehicle controls. Different methods of drug delivery were investigated to develop this technology for clinical applications, including convection enhanced delivery and intrathecal injection. CONCLUSIONS Taken together, these results represent the first full characterization of an Auger-emitting PARP inhibitor which demonstrate a survival benefit in mouse models of GBM and confirm the high potential of 123I-MAPi for clinical translation.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen A Jannetti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry, Hunter College, The City University of New York (CUNY), New York, New York
- PhD Program in Biochemistry, The Graduate Center, The City University of New York (CUNY), New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmad Sadique
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Masatomo Maeda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Chemistry, Hunter College, The City University of New York (CUNY), New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- PhD Program in Chemistry, The Graduate Center, The City University of New York (CUNY), New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
485
|
T Cell Delivery of Nanoparticles-Bound Anti-CD20 Monoclonal Antibody: Successful B Cell Depletion in the Spinal Cord during Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2020; 16:376-389. [PMID: 32514635 DOI: 10.1007/s11481-020-09931-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
We developed a nanotechnology based-cell mediated drug delivery system by loading myelin antigen-specific T cells with nanoparticles bound to anti-CD20 monoclonal antibody. Anti-CD20 antibody is a current treatment (ocrelizumab) for multiple sclerosis (MS), a chronic, inflammatory and autoimmune disease of the central nervous system (CNS). CD20-depletion has been associated with efficacy in active relapsing and progressive MS, but may not efficiently target inflammatory cells compartmentalized in the CNS. In our work, the intravenous transfer of T cells containing nanoparticle-anti-CD20 complex in mice causes B cell depletion in the spleen and in the brain, whereas the injection of anti-CD20 alone depletes B cells only in the spleen. Testing this system in Experimental Autoimmune Encephalomyelitis (EAE), animal model of MS, we found that spinal cord B cell depletion ameliorates the disease course and pathology. Graphical Abstract.
Collapse
|
486
|
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020; 10:739. [PMID: 32582530 PMCID: PMC7290051 DOI: 10.3389/fonc.2020.00739] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Kurt V. Shaffer
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chaoqun Lin
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
487
|
Chen D, Ganesh S, Wang W, Amiji M. Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS JOURNAL 2020; 22:83. [DOI: 10.1208/s12248-020-00464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
|
488
|
Abstract
Stroke is the leading cause of long-term disability with no current treatment addressing post-stroke disability. The complex pathophysiology of stroke and the brain's limited potential for regeneration prevents sufficient endogenous repair for complete recovery. While engineered materials provide an exciting opportunity to augment endogenous repair in conjunction with other therapies that address post-stroke disability, much of the preclinical work in this arena is still in its infancy. Biomaterials can be used to enhance drug- or stem cell-sustained and targeted delivery. Moreover, materials can act as extracellular matrix-mimics and augment a pro-repair environment by addressing astrogliosis, inflammation, neurogenesis, axonal sprouting, and angiogenesis. Lastly, there is a growing need to elucidate stroke repair mechanisms to identify novel targets to inform material design for brain repair after stroke.
Collapse
Affiliation(s)
- Kevin Erning
- Duke University Biomedical Engineering Department, 101 Science Drive, CIEMAS, NC 27707
| | - Tatiana Segura
- Duke University Biomedical Engineering Department, 101 Science Drive, CIEMAS, NC 27707
| |
Collapse
|
489
|
Sathya S, Shanmuganathan B, Devi KP. Deciphering the anti-apoptotic potential of α-bisabolol loaded solid lipid nanoparticles against Aβ induced neurotoxicity in Neuro-2a cells. Colloids Surf B Biointerfaces 2020; 190:110948. [DOI: 10.1016/j.colsurfb.2020.110948] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
|
490
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
491
|
Wang S, Yao H, Xu Y, Hao R, Zhang W, Liu H, Huang Y, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for Alzheimer's disease. Theranostics 2020; 10:6854-6874. [PMID: 32550908 PMCID: PMC7295064 DOI: 10.7150/thno.44165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Repeated failures of "Aβ-lowering" therapies call for new targets and therapeutic approaches for Alzheimer's disease (AD). We propose to treat AD by halting neuronal death and repairing synapses using a BDNF-based therapy. To overcome the poor druggability of BDNF, we have developed an agonistic antibody AS86 to mimic the function of BDNF, and evaluate its therapeutic potential for AD. Method: Biochemical, electrophysiological and behavioral techniques were used to investigate the effects of AS86 in vitro and in vivo. Results: AS86 specifically activated the BDNF receptor TrkB and its downstream signaling, without affecting its other receptor p75NTR. It promoted neurite outgrowth, enhanced spine growth and prevented Aβ-induced cell death in cultured neurons, and facilitated Long-Term Potentiation (LTP) in hippocampal slices. A single-dose tail-vein injection of AS86 activated TrkB signaling in the brain, with a half-life of 6 days in the blood and brain. Bi-weekly peripheral administration of AS86 rescued the deficits in object-recognition memory in the APP/PS1 mouse model. AS86 also reversed spatial memory deficits in the 11-month, but not 14-month old AD mouse model. Conclusion: These results demonstrate the potential of AS86 in AD therapy, suggesting that neuronal and/or synaptic repair as an alternative therapeutic strategy for AD.
Collapse
Affiliation(s)
- Shudan Wang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Hongyang Yao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Rui Hao
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wen Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Ying Huang
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| |
Collapse
|
492
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxonl CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Peptide based drug delivery systems to the brain. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
493
|
Yin W, Zhao Y, Kang X, Zhao P, Fu X, Mo X, Wan Y, Huang Y. BBB-penetrating codelivery liposomes treat brain metastasis of non-small cell lung cancer with EGFR T790M mutation. Am J Cancer Res 2020; 10:6122-6135. [PMID: 32483443 PMCID: PMC7255027 DOI: 10.7150/thno.42234] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
EGFR TKI therapy has become a first-line regimen for non-small cell lung cancer (NSCLC) patients with EGRF mutations. However, there are two big challenges against effective therapy--the secondary EGFR mutation-associated TKI resistance and brain metastasis (BMs) of lung cancer. The BMs is a major cause of death for advanced NSCLC patients, and the treatment of BMs with TKI resistance remains difficult. Methods: Tumor-associated macrophages (TAM) is a promising drug target for inhibiting tumor growth, overcoming drug resistance, and anti-metastasis. TAM also plays an essential role in regulating tumor microenvironment. We developed a dual-targeting liposomal system with modification of anti-PD-L1 nanobody and transferrin receptor (TfR)-binding peptide T12 for codelivery of simvastatin/gefitinib to treat BMs of NSCLC. Results: The dual-targeting liposomes could efficiently penetrate the blood-brain barrier (BBB) and enter the BMs, acting on TAM repolarization and reversal of EGFRT790M-associated drug resistance. The treatment mechanisms were related to the elevating ROS and the suppression of the EGFR/Akt/Erk signaling pathway. Conclusion: The dual-targeting liposomal codelivery system offers a promising strategy for treating the advanced EGFRT790M NSCLC patients with BMs.
Collapse
|
494
|
Bharambe HS, Joshi A, Yogi K, Kazi S, Shirsat NV. Restoration of miR-193a expression is tumor-suppressive in MYC amplified Group 3 medulloblastoma. Acta Neuropathol Commun 2020; 8:70. [PMID: 32410663 PMCID: PMC7227220 DOI: 10.1186/s40478-020-00942-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma, a highly malignant pediatric brain tumor, consists of four molecular subgroups, namely WNT, SHH, Group 3, and Group 4. The expression of miR-193a, a WNT subgroup-specific microRNA, was found to be induced by MYC, an oncogenic target of the canonical WNT signaling. MiR-193a is not expressed in Group 3 medulloblastomas, despite MYC expression, as a result of promoter hypermethylation. Restoration of miR-193a expression in the MYC amplified Group 3 medulloblastoma cells resulted in inhibition of growth, tumorigenicity, and an increase in radiation sensitivity. MAX, STMN1, and DCAF7 were identified as novel targets of miR-193a. MiR-193a mediated downregulation of MAX could suppress MYC activity since it is an obligate hetero-dimerization partner of MYC. MYC induced expression of miR-193a, therefore, seems to act as a feedback inhibitor of MYC signaling. The expression of miR-193a resulted in widespread repression of gene expression that included not only several cell cycle regulators, WNT, NOTCH signaling genes, and those encoding DNA replication machinery, but also several chromatin modifiers like SWI/SNF family genes and histone-encoding genes. MiR-193a expression brought about a reduction in the global levels of H3K4me3, H3K27ac, the histone marks of active chromatin, and an increase in the levels of H3K27me3, a repressive chromatin mark. In cancer cells having high MYC expression, MYC brings about transcriptional amplification of all active genes apart from the induction of its target genes. MiR-193a, on the other hand, brought about global repression of gene expression. Therefore, miR-193a has therapeutic potential in the treatment of not only Group 3 medulloblastomas but possibly other MYC overexpressing aggressive cancers as well.
Collapse
|
495
|
E. Eleraky N, M. Omar M, A. Mahmoud H, A. Abou-Taleb H. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12050451. [PMID: 32422903 PMCID: PMC7284889 DOI: 10.3390/pharmaceutics12050451] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The opposing effect of the blood–brain barrier against the delivery of most drugs warrants the need for an efficient brain targeted drug delivery system for the successful management of neurological disorders. Temazepam-loaded nanostructured lipid carriers (NLCs) have shown possibilities for enhancing bioavailability and brain targeting affinity after oral administration. This study aimed to investigate these properties for insomnia treatment. Temazepam-NLCs were prepared by the solvent injection method and optimized using a 42 full factorial design. The optimum formulation (NLC-1) consisted of; Compritol® 888 ATO (75 mg), oleic acid (25 mg), and Poloxamer® 407 (0.3 g), with an entrapment efficiency of 75.2 ± 0.1%. The average size, zeta potential, and polydispersity index were determined to be 306.6 ± 49.6 nm, −10.2 ± 0.3 mV, and 0.09 ± 0.10, respectively. Moreover, an in vitro release study showed that the optimized temazepam NLC-1 formulation had a sustained release profile. Scintigraphy images showed evident improvement in brain uptake for the oral 99mTc-temazepam NLC-1 formulation versus the 99mTc-temazepam suspension. Pharmacokinetic data revealed a significant increase in the relative bioavailability of 99mTc-temazepam NLC-1 formulation (292.7%), compared to that of oral 99mTc-temazepam suspension. Besides, the NLC formulation exhibited a distinct targeting affinity to rat brain. In conclusion, our results indicate that the developed temazepam NLC formulation can be considered as a potential nanocarrier for brain-mediated drug delivery in the out-patient management of insomnia.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: or
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Hemat A. Mahmoud
- Department of Clinical Oncology and Nuclear Medicine, Assiut University, Assiut 71526, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
496
|
Don CG, Smieško M. In Silico Pharmacogenetics CYP2D6 Study Focused on the Pharmacovigilance of Herbal Antidepressants. Front Pharmacol 2020; 11:683. [PMID: 32477141 PMCID: PMC7237870 DOI: 10.3389/fphar.2020.00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 01/27/2023] Open
Abstract
The annual increase in depression worldwide together with an upward trend in the use of alternative medicine as treatment asks for developing reliable safety profiles of herbal based medicine. A considerable risk on adverse reactions exists when herbal remedies are combined with prescription medication. Around 25% of the drugs, including many antidepressants, depend on the activity of CYP2D6 for their metabolism and corresponding efficacy. Therefore, probing CYP2D6 inhibition by the active substances in herbal based medicine within the wild-type enzyme and clinically relevant allelic variants is crucial to avoid toxicity issues. In this in silico study several compounds with herbal origin suggested to have antidepressant activity were analyzed on their CYP2D6 wild-type and CYP2D6*53 inhibition potential using molecular docking. In addition, several pharmacokinetic properties were evaluated to assess their probability to cross the blood brain barrier and subsequently reach sufficient brain bioavailability for the modulation of central nervous system targets as well as characteristics which may hint toward potential safety issues.
Collapse
|
497
|
Ojeda-Hernández DD, Canales-Aguirre AA, Matias-Guiu J, Gomez-Pinedo U, Mateos-Díaz JC. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. Front Bioeng Biotechnol 2020; 8:389. [PMID: 32432095 PMCID: PMC7214799 DOI: 10.3389/fbioe.2020.00389] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that the central nervous system (CNS) has a limited regenerative capacity and that many therapeutic molecules cannot cross the blood brain barrier (BBB). The use of biomaterials has emerged as an alternative to overcome these limitations. For many years, biomedical applications of chitosan have been studied due to its remarkable biological properties, biocompatibility, and high versatility. Moreover, the interest in this biomaterial for CNS biomedical implementation has increased because of its ability to cross the BBB, mucoadhesiveness, and hydrogel formation capacity. Several chitosan-based biomaterials have been applied with promising results as drug, cell and gene delivery vehicles. Moreover, their capacity to form porous scaffolds and to bear cells and biomolecules has offered a way to achieve neural regeneration. Therefore, this review aims to bring together recent works that highlight the potential of chitosan and its derivatives as adequate biomaterials for applications directed toward the CNS. First, an overview of chitosan and its derivatives is provided with an emphasis on the properties that favor different applications. Second, a compilation of works that employ chitosan-based biomaterials for drug delivery, gene therapy, tissue engineering, and regenerative medicine in the CNS is presented. Finally, the most interesting trends and future perspectives of chitosan and its derivatives applications in the CNS are shown.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Jorge Matias-Guiu
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ulises Gomez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Juan C Mateos-Díaz
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
498
|
Han Y, Park JH. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv Transl Res 2020; 10:1876-1887. [PMID: 32367425 DOI: 10.1007/s13346-020-00773-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) impedes the efficient delivery of systemically administered drugs to brain tumors, thus reducing the therapeutic efficacy. To overcome the limitations of intravascular delivery, convention-enhanced delivery (CED) was introduced to infuse drugs directly into the brain tumor using a catheter with a continuous positive pressure. However, tissue distribution and retention of the infused drugs are significantly hindered by microenvironmental factors of the tumor such as the extracellular matrix and lymphatic drainage system in the brain. Here, we leveraged a liposomal formulation to simultaneously improve tissue distribution and retention of drugs infused in the brain tumor via the CED method. Various liposomal formulations with different surface charge, PEGylation, and transition temperature (Tm) were prepared to test the cellular uptake in vitro, and the tissue distribution and retention in the brain. In in vitro studies, PEGylated liposomal formulations with a positive surface charge and high Tm showed the most efficient cellular uptake among the tested formulations. In in vivo studies, the liposomal formulations were infused directly into the brain via the CED method. PEGylated liposomal formulations with a positive surface charge and high Tm showed more efficient distribution and retention in both normal and tumor tissues while only-PEGylated formulations displayed rapid clearance from the tissues to cervical lymph nodes. Furthermore, we demonstrated that the CED of liposomal everolimus prepared with the PEGylated formulation with a positive surface charge and high Tm resulted in superior therapeutic effects for glioblastoma treatment compared to other formulations. Graphical abstract.
Collapse
Affiliation(s)
- Yunho Han
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
499
|
Desu HL, Plastini M, Illiano P, Bramlett HM, Dietrich WD, de Rivero Vaccari JP, Brambilla R, Keane RW. IC100: a novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. J Neuroinflammation 2020; 17:143. [PMID: 32366256 PMCID: PMC7199312 DOI: 10.1186/s12974-020-01826-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC) is involved in immune signaling by bridging the interactions between inflammasome sensors and caspase-1. Strong experimental evidence has shown that ASC-/- mice are protected from disease progression in animal models of multiple sclerosis (MS), suggesting that targeting inflammasome activation via ASC inhibition may be a promising therapeutic strategy in MS. Thus, the goal of our study is to test the efficacy of IC100, a novel humanized antibody targeting ASC, in preventing and/or suppressing disease in the experimental autoimmune encephalomyelitis (EAE) model of MS. METHODS We employed the EAE model of MS where disease was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Mice were treated with vehicle or increasing doses of IC100 (10, 30, and 45 mg/kg) and clinical disease course was evaluated up to 35 days post EAE induction. Immune cell infiltration into the spinal cord and microglia responses were assessed. RESULTS We show that IC100 treatment reduced the severity of EAE when compared to vehicle-treated controls. At a dose of 30 mg/kg, IC100 significantly reduced the number of CD4+ and CD8+ T cells and CD11b+MHCII+ activated myeloid cells entering the spinal cord from the periphery, and reduced the number of total and activated microglia. CONCLUSIONS These data indicate that IC100 suppresses the immune-inflammatory response that drives EAE development and progression, thereby identifying ASC as a promising target for the treatment of MS as well as other neurological diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
- Haritha L Desu
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Melanie Plastini
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Placido Illiano
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Helen M Bramlett
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- InflamaCORE, LLC, Miami, FL, 33156, USA
- Bruce W. Carter, Department of Veterans Affairs Medical Center, Miami, FL, 33136, USA
| | - W Dalton Dietrich
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- InflamaCORE, LLC, Miami, FL, 33156, USA
| | | | - Roberta Brambilla
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Deparment of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- BRIDGE Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Robert W Keane
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- InflamaCORE, LLC, Miami, FL, 33156, USA.
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
500
|
Veletic M, Barros MT, Arjmandi H, Balasubramaniam S, Balasingham I. Modeling of Modulated Exosome Release From Differentiated Induced Neural Stem Cells for Targeted Drug Delivery. IEEE Trans Nanobioscience 2020; 19:357-367. [PMID: 32365033 DOI: 10.1109/tnb.2020.2991794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel implantable and externally controllable stem-cell-based platform for the treatment of Glioblastoma brain cancer has been proposed to bring hope to patients who suffer from this devastating cancer type. Induced Neural Stem Cells (iNSCs), known to have potent therapeutic effects through exosomes-based molecular communication, play a pivotal role in this platform. Transplanted iNSCs demonstrate long-term survival and differentiation into neurons and glia which then fully functionally integrate with the existing neural network. Recent studies have shown that specific types of calcium channels in differentiated neurons and astrocytes are inhibited or activated upon cell depolarization leading to the increased intracellular calcium concentration levels which, in turn, interact with mobilization of multivesicular bodies and exosomal release. In order to provide a platform towards treating brain cancer with the optimum therapy dosage, we propose mathematical models to compute the therapeutic exosomal release rate that is modulated by cell stimulation patterns applied from the external wearable device. This study serves as an initial and required step in the evaluation of controlled exosomal secretion and release via induced stimulation with electromagnetic, optical and/or ultrasonic waves.
Collapse
|