501
|
Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2000; 2:441-8. [PMID: 10878810 DOI: 10.1038/35017080] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASP) and N-WASP have emerged as key proteins connecting signalling cascades to actin polymerization. Here we show that the amino-terminal WH1 domain, and not the polyproline-rich region, of N-WASP is responsible for its recruitment to sites of actin polymerization during Cdc42-independent, actin-based motility of vaccinia virus. Recruitment of N-WASP to vaccinia is mediated by WASP-interacting protein (WIP), whereas in Shigella WIP is recruited by N-WASP. Our observations show that vaccinia and Shigella activate the Arp2/3 complex to achieve actin-based motility, by mimicking either the SH2/SH3-containing adaptor or Cdc42 signalling pathways to recruit the N-WASP-WIP complex. We propose that the N-WASP-WIP complex has a pivotal function in integrating signalling cascades that lead to actin polymerization.
Collapse
Affiliation(s)
- V Moreau
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
502
|
Ariga T, Yamada M, Ito S, Iwamura M, Iseki M, Sakiyama Y. Characterization of a deletion mutation involving exons 3-7 of the WASP gene detected in a patient with Wiskott-Aldrich syndrome. Hum Mutat 2000; 10:310-6. [PMID: 9338585 DOI: 10.1002/(sici)1098-1004(1997)10:4<310::aid-humu7>3.0.co;2-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A case of Wiskott-Aldrich syndrome (WAS) suspected to have a deletion mutation in the WAS protein (WASP) gene had previously been reported (Ariga et al., 1997). Genomic polymerase chain reaction (PCR) suggested that exons 3-7 of the WASP gene were included in the deletion. Present Southern blot studies confirm that the deletion is approximately 2.0 kb in length, involving exons 3-7 and seemed to have been created by the fusion of introns 2 and 7. To characterize the deletion mutation in detail, we analyzed the PCR-amplified fragments of introns 2 and 7 from normal individuals and the fragment suspected of including the deletion junction from the patient. Sequencing of the patient fragment revealed that the deletion mutation involving exons 3-7 of the WASP gene did, indeed, result from the fusion of introns 2 and 7.
Collapse
Affiliation(s)
- T Ariga
- Department of Pediatrics, Hokkaido University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
503
|
Abstract
Immunodeficiencies form a distinct group of human hereditary diseases with several rare disorders. During recent years, information has been collected concerning immunodeficiency patients and mutations causing disorders. The large European (ESID) registry contains clinical data for some 7,000 patients. At present, international mutation databases have information for > 1,000 immunodeficiency patients, including X-linked chronic granulomatous disease (XCGD), Wiskott-Aldrich syndrome (WAS), and X-linked thrombocytopenia (XLT), X-linked hyper-IgM syndrome (XHIM), X-linked agammaglobulinemia (XLA), and X-linked severe combined immunodeficiency (XSCID). The databases are available on Internet. The mutation spectra of patients in these registries were compared. Mutational hotspots were found in CpG dinucleotides with a preference for selected flanking bases.
Collapse
Affiliation(s)
- I Lappalainen
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
504
|
Lemahieu V, Gastier JM, Francke U. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes. Hum Mutat 2000; 14:54-66. [PMID: 10447259 DOI: 10.1002/(sici)1098-1004(1999)14:1<54::aid-humu7>3.0.co;2-e] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia, eczema, and recurrent infections, and caused by mutations in the WAS protein (WASP) gene. WASP contains several functional domains through which it interacts with proteins involved in intracellular signaling and regulation of the actin cytoskeleton. In this report, 17 WASP gene mutations were identified, 12 of which are novel. DNA of affected males and obligate carriers was PCR amplified and analyzed by SSCA, heteroduplex analysis, and direct sequencing. The effects of the mutations at the mRNA and protein level were ascertained by RT-PCR and Western blot analyses. All missense mutations were located in exons 1-4. Most of the nonsense, frameshift and splice site mutations were found in exons 6-11. Mutations that alter splice sites led to the synthesis of several types of mRNAs, a fraction of which represented the normally spliced product. The presence of normally spliced transcripts was correlated with a milder phenotype. When one such case was studied by Western blotting, reduced amounts of normal-size WASP were present. In other cases as well, a correlation was found between the amount of normal or mutant WASP present and the phenotypes of the affected individuals. No protein was detected in two individuals with severe WAS. Reduced levels of a normal-size WASP with a missense mutation were seen in two individuals with XLT. It is concluded that mutation analysis at the DNA level is not sufficient for predicting clinical course. Studies at the transcript and protein level are needed for a better assessment.
Collapse
Affiliation(s)
- V Lemahieu
- Department of Genetics, Stanford University School of Medicine, California, USA
| | | | | |
Collapse
|
505
|
Sasaki N, Miki H, Takenawa T. Arp2/3 complex-independent actin regulatory function of WAVE. Biochem Biophys Res Commun 2000; 272:386-90. [PMID: 10833423 DOI: 10.1006/bbrc.2000.2785] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report that WAVE1/Scar1, a WASP-family protein that functions downstream of Rac in membrane ruffling, can induce part of the reorganization of the actin cytoskeleton without Arp2/3 complex. WAVE1 has been reported to associate and activate Arp2/3 complex at its C-terminal region that is rich in acidic residues. The deletion of the acidic residues abolished the interaction with and the activation ability of Arp2/3 complex. The expression of the mutant WAVE1 lacking the acidic residues (DeltaA), however, induced actin-clustering in cells as the wild-type WAVE1 did. In addition, this actin-clustering could not be suppressed by the coexpression of the Arp2/3 complex-sequestering fragment (CA-region) derived from N-WASP, which clearly inhibits Rac-induced membrane ruffling. This study therefore demonstrates that WAVE1 reorganizes the actin cytoskeleton not only through Arp2/3 complex but also through another unidentified mechanism that may be important but has been neglected thus far.
Collapse
Affiliation(s)
- N Sasaki
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Japan
| | | | | |
Collapse
|
506
|
Suzuki T, Mimuro H, Miki H, Takenawa T, Sasaki T, Nakanishi H, Takai Y, Sasakawa C. Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J Exp Med 2000; 191:1905-20. [PMID: 10839806 PMCID: PMC2213524 DOI: 10.1084/jem.191.11.1905] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, is capable of directing its movement within host cells by exploiting actin dynamics. The VirG protein expressed at one pole of the bacterium can recruit neural Wiskott-Aldrich syndrome protein (N-WASP), a downstream effector of Cdc42. Here, we show that Cdc42 is required for the actin-based motility of Shigella. Microinjection of a dominant active mutant Cdc42, but not Rac1 or RhoA, into Swiss 3T3 cells accelerated Shigella motility. In add-back experiments in Xenopus egg extracts, addition of a guanine nucleotide dissociation inhibitor for the Rho family, RhoGDI, greatly diminished the bacterial motility or actin assembly, which was restored by adding activated Cdc42. In N-WASP-depleted extracts, the bacterial movement almost arrested was restored by adding exogenous N-WASP but not H208D, an N-WASP mutant defective in binding to Cdc42. In pyrene actin assay, Cdc42 enhanced VirG-stimulating actin polymerization by N-WASP-actin-related protein (Arp)2/3 complex. Actually, Cdc42 stimulated actin cloud formation on the surface of bacteria expressing VirG in a solution containing N-WASP, Arp2/3 complex, and G-actin. Immunohistological study of Shigella-infected cells expressing green fluorescent protein-tagged Cdc42 revealed that Cdc42 accumulated by being colocalized with actin cloud at one pole of intracellular bacterium. Furthermore, overexpression of H208D mutant in cells interfered with the actin assembly of infected Shigella and diminished the intra- and intercellular spreading. These results suggest that Cdc42 activity is involved in initiating actin nucleation mediated by VirG-N-WASP-Arp2/3 complex formed on intracellular Shigella.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hitomi Mimuro
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Miki
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takuya Sasaki
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita 565-0871, Japan
| | - Hiroyuki Nakanishi
- Takai Biotimer Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita 565-0871, Japan
- Takai Biotimer Project, Exploratory Research for Advanced Technology Program, Japan Science and Technology Corporation, JCR Pharmaceuticals Co., Ltd., Kobe 651-2241, Japan
| | - Chihiro Sasakawa
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Bacterial Toxicology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
507
|
Niebuhr K, Sansonetti PJ. Invasion of epithelial cells by bacterial pathogens the paradigm of Shigella. Subcell Biochem 2000; 33:251-87. [PMID: 10804859 DOI: 10.1007/978-1-4757-4580-1_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- K Niebuhr
- Unité de Pathogénie Microbienne Moléculaire Institut Pasteur, Paris, France
| | | |
Collapse
|
508
|
Abstract
Epstein-Barr virus (EBV), one of 8 known human herpesviruses, infects the vast majority of mankind and infections are generally subclinical. However, EBV infection has been associated with a spectrum of diseases, lymphoproliferative diseases (EBV-LPD) in particular, including malignant lymphoma. EBV-LPD are frequently observed in patients with primary or secondary immunodeficiencies. The incidence of EBV-LPD is on the rise, partly because of increasing numbers and success of hematopoietic stem cell and solid organ transplants and partly because many patients with immunodeficiencies, both primary and secondary, including AIDS, live longer, with improvements in supportive care. Herein, a spectrum of EBV-associated diseases in patients with immunodeficiency are summarized and discussed mainly focusing on their pathogenetic mechanism(s).
Collapse
Affiliation(s)
- M Okano
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | | |
Collapse
|
509
|
Abstract
The proteins of the Homer family bind to proline-rich sequences in group I metabotropic glutamate receptors, inositol trisphosphate receptors, ryanodine receptors, and Shank family proteins. Homer proteins also self associate and function as adaptors to couple interacting proteins. Recent observations indicate a role for Homer complexes in signal transduction, synaptogenesis and receptor trafficking.
Collapse
Affiliation(s)
- B Xiao
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
510
|
Abstract
Bacterial actin-based motility has provided cell biologists with tools that led to the recent discovery that, in many forms of actin-based motilities, a key player is a protein complex named the Arp2/3 complex. The Arp2/3 complex is evolutionally conserved and made up of seven polypeptides involved in both actin filament nucleation and organization. Interestingly, this complex is inactive by itself and recent work has highlighted the fact that its activation is achieved differently in the different types of actin-based motilities, including the well-known examples of Listeria and Shigella motilities. Proteins of the WASP family and small G-proteins are involved in most cases. It is interesting that bacteria bypass or mimic some of the events occurring in eukaryotic systems. The Shigella protein IcsA recruits N-WASP and activates it in a Cdc42-like fashion. This activation leads to Arp2/3 complex recruitment, activation of the complex and ultimately actin polymerization and movement. The Listeria ActA protein activates Arp2/3 directly and, thus, seems to mimic proteins of the WASP family. A breakthrough in the field is the recent reconstitution of the actin-based motilities of Listeria and N-WASP-coated E. coli (IcsA) using a restricted number of purified cellular proteins including F-actin, the Arp2/3 complex, actin depolymerizing factor (ADF or cofilin) and capping protein. The movement was more effective upon addition of profilin, alpha-actinin and VASP (for Listeria). Bacterial actin-based motility is now one of the best-documented examples of the exploitation of mammalian cell machineries by bacterial pathogens.
Collapse
Affiliation(s)
- P Cossart
- Unité des Interactions Bactéries-cellules, Institut Pasteur, Paris, France. pcossart@pasteur
| |
Collapse
|
511
|
Okano M, Gross TG. A Review of Epstein-Barr Virus Infection in Patients with Immunodeficiency Disorders. Am J Med Sci 2000. [DOI: 10.1016/s0002-9629(15)40780-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
512
|
Abstract
Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field.
Collapse
|
513
|
Feliciani C, Castellaneta M, Amatetti M, Morelli F, Toto P, Coscione G, Pour Mohammad S, Amerio P. Non-lethal Wiskott-Aldrich syndrome: atopic dermatitis-like lesions persist after splenectomy. Int J Dermatol 2000; 39:398-400. [PMID: 10849137 DOI: 10.1046/j.1365-4362.2000.00869-2.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
514
|
Means GD, Toy DY, Baum PR, Derry JM. A transcript map of a 2-Mb BAC contig in the proximal portion of the mouse X chromosome and regional mapping of the scurfy mutation. Genomics 2000; 65:213-23. [PMID: 10857745 DOI: 10.1006/geno.2000.6173] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A physical clone contig has been constructed, spanning 2 Mb on the proximal mouse X chromosome containing the mouse scurfy (sf) and tattered (Td) mutations. Extensive transcript mapping in this interval has identified 37 potential transcription units, including a number of novel genes, and 4 pseudogenes. These genes have been ordered by STS content and restriction mapping. Comparison of the transcript map to the corresponding region in human Xp11.23-p11.22 shows extensive homology, with complete conservation of gene order for loci in common between the two maps. Further, using a novel method to identify simple sequence length polymorphisms, we have developed a number of genetic markers, which has enabled the region containing the sf mutation to be narrowed to <300 kb. This contig has already allowed the cloning of the Td gene using a candidate gene approach and now serves as a starting point for the cloning of the sf mutation.
Collapse
Affiliation(s)
- G D Means
- Immunex Corporation, Seattle, Washington 98101-2936, USA
| | | | | | | |
Collapse
|
515
|
Krause M, Sechi AS, Konradt M, Monner D, Gertler FB, Wehland J. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol 2000; 149:181-94. [PMID: 10747096 PMCID: PMC2175102 DOI: 10.1083/jcb.149.1.181] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Accepted: 02/24/2000] [Indexed: 11/28/2022] Open
Abstract
T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76-associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3-coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - Antonio S. Sechi
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - Marlies Konradt
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - David Monner
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - Frank B. Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138-4307
| | - Jürgen Wehland
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| |
Collapse
|
516
|
Beneken J, Tu JC, Xiao B, Nuriya M, Yuan JP, Worley PF, Leahy DJ. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 2000; 26:143-54. [PMID: 10798399 DOI: 10.1016/s0896-6273(00)81145-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homer EVH1 (Ena/VASP Homology 1) domains interact with proline-rich motifs in the cytoplasmic regions of group 1 metabotropic glutamate receptors (mGluRs), inositol-1,4,5-trisphosphate receptors (IP3Rs), and Shank proteins. We have determined the crystal structure of the Homer EVH1 domain complexed with a peptide from mGluR (TPPSPF). In contrast to other EVH1 domains, the bound mGluR ligand assumes an unusual conformation in which the side chains of the Ser-Pro tandem are oriented away from the Homer surface, and the Phe forms a unique contact. This unusual binding mode rationalizes conserved features of both Homer and Homer ligands that are not shared by other EVH1 domains. Site-directed mutagenesis confirms the importance of specific Homer residues for ligand binding. These results establish a molecular basis for understanding the biological properties of Homer-ligand complexes.
Collapse
Affiliation(s)
- J Beneken
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
517
|
Fukunaga Y. [Primary immunodeficiency diseases]. J NIPPON MED SCH 2000; 67:83-91. [PMID: 10754596 DOI: 10.1272/jnms.67.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Y Fukunaga
- Department of Pediatrics, Nippon Medical School
| |
Collapse
|
518
|
Affiliation(s)
- A J Thrasher
- Molecular Immunology Unit, Institute of Child Health, London, UK
| | | |
Collapse
|
519
|
Tian L, Nelson DL, Stewart DM. Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J Biol Chem 2000; 275:7854-61. [PMID: 10713100 DOI: 10.1074/jbc.275.11.7854] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Wiskott-Aldrich syndrome is an inherited X-linked immunodeficiency characterized by thrombocytopenia, eczema, and a tendency toward lymphoid malignancy. Lymphocytes from affected individuals have cytoskeletal abnormalities, and monocytes show impaired motility. The Wiskott-Aldrich syndrome protein (WASP) is a multi-domain protein involved in cytoskeletal organization. In a two-hybrid screen, we identified the protein Cdc42-interacting protein 4 (CIP4) as a WASP interactor. CIP4, like WASP, is a Cdc42 effector protein involved in cytoskeletal organization. We found that the WASP-CIP4 interaction is mediated by the binding of the Src homology 3 domain of CIP4 to the proline-rich segment of WASP. Cdc42 was not required for this interaction. Co-expression of CIP4 and green fluorescent protein-WASP in COS-7 cells led to the association of WASP with microtubules. In vitro experiments showed that CIP4 binds to microtubules via its NH(2) terminus. The region of CIP4 responsible for binding to active Cdc42 was localized to amino acids 383-417, and the mutation I398S abrogated binding. Deletion of the Cdc42-binding domain of CIP4 did not affect the colocalization of WASP with microtubules in vivo. We conclude that CIP4 can mediate the association of WASP with microtubules. This may facilitate transport of WASP to sites of substrate adhesion in hematopoietic cells.
Collapse
Affiliation(s)
- L Tian
- Metabolism Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
520
|
Savoy DN, Billadeau DD, Leibson PJ. Cutting edge: WIP, a binding partner for Wiskott-Aldrich syndrome protein, cooperates with Vav in the regulation of T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2866-70. [PMID: 10706671 DOI: 10.4049/jimmunol.164.6.2866] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP), specifically binds to a region of WASp that is frequently mutated in Wiskott-Aldrich syndrome. Due to the similar phenotypes of WASp- and Vav-deficient T cells, and the putative importance of the WIP/WASp complex in mediating normal signals from the TCR, we investigated the role of WIP in regulating NF-AT/AP-1-mediated gene transcription. We show that WIP has the ability to enhance Vav-mediated activation of NF-AT/AP-1 gene transcription. In addition, we provide evidence that the interaction of WIP with WASp is necessary, but not sufficient for the ability of WIP to regulate NF-AT/AP-1 activity. Finally, we have identified a region in WIP required for its regulation of NF-AT/AP-1 activity. Our data suggests that the WIP-WASp interaction is important for NF-AT/AP-1-mediated gene transcription, and that defects seen in the activation of T cells from WAS patients may be due to the inability of these cells to form a functional WIP/WASp-signaling complex.
Collapse
Affiliation(s)
- D N Savoy
- Departments of Pharmacology and Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
521
|
Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 2000; 404:151-8. [PMID: 10724160 DOI: 10.1038/35004513] [Citation(s) in RCA: 530] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Rho-family GTPase, Cdc42, can regulate the actin cytoskeleton through activation of Wiskott-Aldrich syndrome protein (WASP) family members. Activation relieves an autoinhibitory contact between the GTPase-binding domain and the carboxy-terminal region of WASP proteins. Here we report the autoinhibited structure of the GTPase-binding domain of WASP, which can be induced by the C-terminal region or by organic co-solvents. In the autoinhibited complex, intramolecular interactions with the GTPase-binding domain occlude residues of the C terminus that regulate the Arp2/3 actin-nucleating complex. Binding of Cdc42 to the GTPase-binding domain causes a dramatic conformational change, resulting in disruption of the hydrophobic core and release of the C terminus, enabling its interaction with the actin regulatory machinery. These data show that 'intrinsically unstructured' peptides such as the GTPase-binding domain of WASP can be induced into distinct structural and functional states depending on context.
Collapse
Affiliation(s)
- A S Kim
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
522
|
Ferguson PJ, Blanton SH, Saulsbury FT, McDuffie MJ, Lemahieu V, Gastier JM, Francke U, Borowitz SM, Sutphen JL, Kelly TE. Manifestations and linkage analysis in X-linked autoimmunity-immunodeficiency syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 90:390-7. [PMID: 10706361 DOI: 10.1002/(sici)1096-8628(20000228)90:5<390::aid-ajmg9>3.0.co;2-m] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical findings of a kindred with an X-linked disorder are characterized by autoimmune polyendocrinopathy, enteropathy with villous atrophy, chronic dermatitis, and variable immunodeficiency. Linkage analysis was performed on 20 members of the affected kindred to determine the location of the responsible locus. Informative recombinations limited the region to an approximate 20 cM interval bordered by DXS1055 and DXS1196/DXS1050. Multipoint analysis generated a lod score >3 for the region contained between DXS8024 and DXS8031. The candidate region includes the Wiskott-Aldrich syndrome (WAS) locus. Evaluation of the Wiskott-Aldrich syndrome protein gene by single strand conformational analysis, heteroduplex analysis, and direct sequencing of the 12 exons in an affected male and two carrier females revealed no abnormalities. We conclude that this kindred has an X-linked disorder, distinct from WAS, that results in autoimmunity and variable immunodeficiency. The responsible locus maps to the pericentromeric region Xp11.23 to Xq21.1.
Collapse
Affiliation(s)
- P J Ferguson
- Department of Pediatrics, University of Virginia, Charlottesville, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
523
|
Abstract
Mutations in the Wiskott-Aldrich syndrome protein (WASP) have been hypothesized to cause defective actin cytoskeletal function. This resultant dysfunction of the actin cytoskeleton has been implicated in the pathogenesis of Wiskott-Aldrich syndrome (WAS). In contrast, it was found that stimulated actin polymerization is kinetically normal in the hematopoietic lineages affected in WAS. It was also found that the actin cytoskeleton in WAS platelets is capable of producing the hallmark cytoarchitectural features associated with activation. Further analysis revealed accelerated cell death in WAS lymphocytes as evidenced by increased caspase-3 activity. This increased activity resulted in accelerated apoptosis of these cells. CD95 expression was also increased in these cells, suggesting an up-regulation in the FAS pathway in WAS lymphocytes. Additionally, inhibition of actin polymerization in lymphocytes using cytochalasin B did not accelerate apoptosis in these cells. This suggests that the accelerated apoptosis observed in WAS lymphocytes was not secondary to an underlying defect in actin polymerization caused by mutation of the WAS gene. These data indicate that WASP does not play a universal role in signaling actin polymerization, but does play a role in delaying cell death. Therefore, the principal consequence of mutations in theWAS gene is to accelerate lymphocyte apoptosis, potentially through up-regulation of the FAS-mediated cell death pathway. This accelerated apoptosis may ultimately give rise to the clinical manifestations observed in WAS.
Collapse
|
524
|
Bennett CL, Yoshioka R, Kiyosawa H, Barker DF, Fain PR, Shigeoka AO, Chance PF. X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3. Am J Hum Genet 2000; 66:461-8. [PMID: 10677306 PMCID: PMC1288099 DOI: 10.1086/302761] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1999] [Accepted: 11/29/1999] [Indexed: 11/04/2022] Open
Abstract
We describe genetic analysis of a large pedigree with an X-linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea (XPID), which frequently results in death during infancy or childhood. Linkage analysis mapped the XPID gene to a 17-cM interval defined by markers DXS8083 and DXS8107 on the X chromosome, at Xp11. 23-Xq13.3. The maximum LOD score was 3.99 (recombination fraction0) at DXS1235. Because this interval also harbors the gene for Wiskott-Aldrich syndrome (WAS), we investigated mutations in the WASP gene, as the molecular basis of XPID. Northern blot analysis detected the same relative amount and the same-sized WASP message in patients with XPID and in a control. Analysis of the WASP coding sequence, an alternate promoter, and an untranslated upstream first exon was carried out, and no mutations were found in patients with XPID. A C-->T transition within the alternate translation start site cosegregated with the XPID phenotype in this family; however, the same transition site was detected in a normal control male. We conclude that XPID maps to Xp11.23-Xq13.3 and that mutations of WASP are not associated with XPID.
Collapse
Affiliation(s)
- Craig L. Bennett
- Department of Pediatrics, University of Washington School of Medicine, Seattle; Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa-ken, Japan; Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima-ken, Japan; Departments of Physiology and Pediatrics, University of Utah Medical Center, Salt Lake City; and Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver
| | - Ritsuko Yoshioka
- Department of Pediatrics, University of Washington School of Medicine, Seattle; Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa-ken, Japan; Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima-ken, Japan; Departments of Physiology and Pediatrics, University of Utah Medical Center, Salt Lake City; and Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver
| | - Hidenori Kiyosawa
- Department of Pediatrics, University of Washington School of Medicine, Seattle; Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa-ken, Japan; Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima-ken, Japan; Departments of Physiology and Pediatrics, University of Utah Medical Center, Salt Lake City; and Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver
| | - David F. Barker
- Department of Pediatrics, University of Washington School of Medicine, Seattle; Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa-ken, Japan; Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima-ken, Japan; Departments of Physiology and Pediatrics, University of Utah Medical Center, Salt Lake City; and Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver
| | - Pamela R. Fain
- Department of Pediatrics, University of Washington School of Medicine, Seattle; Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa-ken, Japan; Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima-ken, Japan; Departments of Physiology and Pediatrics, University of Utah Medical Center, Salt Lake City; and Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver
| | - Ann O. Shigeoka
- Department of Pediatrics, University of Washington School of Medicine, Seattle; Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa-ken, Japan; Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima-ken, Japan; Departments of Physiology and Pediatrics, University of Utah Medical Center, Salt Lake City; and Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver
| | - Phillip F. Chance
- Department of Pediatrics, University of Washington School of Medicine, Seattle; Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa-ken, Japan; Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima-ken, Japan; Departments of Physiology and Pediatrics, University of Utah Medical Center, Salt Lake City; and Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver
| |
Collapse
|
525
|
|
526
|
Abstract
Tables 1 and 2 highlight the enormous advances that have been made in the definition of the molecular defects underlying primary immunodeficiencies in the past decade. The identification of SAP as the gene defective in XLP now completes the molecular bases of all the recognised X linked syndromes. Of the autosomally inherited syndromes, only the genes for DiGeorge syndrome, hyper-IgE, and perhaps most importantly, common variable immunodeficiency remain to be elucidated. The major clinical benefits of this information have primarily been in offering more accurate and rapid molecular diagnoses. The ability to make a molecular diagnosis also increases the options for earlier definitive treatments such as bone marrow transplantation and somatic gene therapy. Finally, as illustrated by the studies on the functions of WASP and the gamma c/JAK-3 pathway, identification of the gene defect is the first step to understanding the molecular pathogenesis of the immunological abnormalities.
Collapse
Affiliation(s)
- A M Jones
- Department of Immunology, Great Ormond Street Hospital NHS Trust, London, UK.
| | | |
Collapse
|
527
|
Abstract
Abstract
Wiskott Aldrich syndrome (WAS) is an X-linked recessive disorder associated with abnormalities in platelets and lymphocytes giving rise to thrombocytopenia and immunodeficiency. WAS is caused by a mutation in the gene encoding the cytoskeletal protein (WASp). Despite its importance, the role of WASp in platelet function is not established. WASp was recently shown to undergo tyrosine phosphorylation in platelets after activation by collagen, suggesting that it may play a selective role in activation by the adhesion molecule. In the present study, we show that WASp is heavily tyrosine phosphorylated by a collagen-related peptide (CRP) that binds to the collagen receptor glycoprotein (GP) VI, but not to the integrin 2β1. Tyrosine phosphorylation of WASp was blocked by Src family kinase inhibitors and reduced by treatment with wortmannin and in patients with X-linked agammaglobulinemia (XLA), a condition caused by a lack of functional expression of Btk. This indicates that Src kinases, phosphatidylinositol 3-kinase (PI 3-kinase), and Btk all contribute to the regulation of tyrosine phosphorylation of WASp. The functional importance of WASp was investigated in 2 WAS brothers who show no detectable expression of WASp. Platelet aggregation and secretion from dense granules induced by CRP and thrombin was slightly enhanced in the WAS platelets relative to controls. Furthermore, there was no apparent difference in morphology in WAS platelets after stimulation by these agonists. These observations suggest that WASp does not play a critical role in intracellular signaling downstream of tyrosine kinase-linked and G protein-coupled receptors in platelets.
Collapse
|
528
|
Abstract
Wiskott Aldrich syndrome (WAS) is an X-linked recessive disorder associated with abnormalities in platelets and lymphocytes giving rise to thrombocytopenia and immunodeficiency. WAS is caused by a mutation in the gene encoding the cytoskeletal protein (WASp). Despite its importance, the role of WASp in platelet function is not established. WASp was recently shown to undergo tyrosine phosphorylation in platelets after activation by collagen, suggesting that it may play a selective role in activation by the adhesion molecule. In the present study, we show that WASp is heavily tyrosine phosphorylated by a collagen-related peptide (CRP) that binds to the collagen receptor glycoprotein (GP) VI, but not to the integrin 2β1. Tyrosine phosphorylation of WASp was blocked by Src family kinase inhibitors and reduced by treatment with wortmannin and in patients with X-linked agammaglobulinemia (XLA), a condition caused by a lack of functional expression of Btk. This indicates that Src kinases, phosphatidylinositol 3-kinase (PI 3-kinase), and Btk all contribute to the regulation of tyrosine phosphorylation of WASp. The functional importance of WASp was investigated in 2 WAS brothers who show no detectable expression of WASp. Platelet aggregation and secretion from dense granules induced by CRP and thrombin was slightly enhanced in the WAS platelets relative to controls. Furthermore, there was no apparent difference in morphology in WAS platelets after stimulation by these agonists. These observations suggest that WASp does not play a critical role in intracellular signaling downstream of tyrosine kinase-linked and G protein-coupled receptors in platelets.
Collapse
|
529
|
Spontaneous Apoptosis in Lymphocytes From Patients With Wiskott-Aldrich Syndrome: Correlation of Accelerated Cell Death and Attenuated Bcl-2 Expression. Blood 1999. [DOI: 10.1182/blood.v94.11.3872.423k37_3872_3882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, and a progressive deterioration of immune function. WAS is caused by mutations in an intracellular protein, WASP, that is involved in signal transduction and regulation of actin cytoskeleton rearrangement. Because immune dysfunction in WAS may be due to an accelerated destruction of lymphocytes, we examined the susceptibility to apoptosis of resting primary lymphocytes isolated from WAS patients in the absence of exogenous apoptogenic stimulation. We found that unstimulated WAS lymphocytes underwent spontaneous apoptosis at a greater frequency than unstimulated normal lymphocytes. Coincident with increased apoptotic susceptibility, WAS lymphocytes had markedly attenuated Bcl-2 expression, whereas Bax expression did not differ. A negative correlation between the frequency of spontaneous apoptosis and the level of Bcl-2 expression was demonstrated. These data indicate that accelerated lymphocyte destruction by spontaneous induction of apoptosis may be one pathogenic mechanism by which the progressive immunodeficiency in WAS patients develops.
Collapse
|
530
|
Minegishi Y, Rohrer J, Conley ME. Recent progress in the diagnosis and treatment of patients with defects in early B-cell development. Curr Opin Pediatr 1999; 11:528-32. [PMID: 10590911 DOI: 10.1097/00008480-199912000-00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutation detection for X-linked agammaglobulinemia (XLA) has revealed the heterogeneity of the clinical phenotype of patients with defects in Bruton's tyrosine kinase (Btk), the gene that is abnormal in XLA. Over 50% of patients with mutations in Btk have no family history of the disease because their cases are the first manifestation of a new mutation in their family. In 10% to 20% of patients, the serum immunoglobulins are higher than expected or the onset of disease is delayed; however, a marked reduction in B-cell numbers is consistent in all patients. Mutation detection has also shown that not all patients with presumed XLA have mutations in Btk. Mutations in mu heavy chain, and other components of the pre-B cell receptor complex, including lambda 5/14.1, cause a disorder that is clinically identical to XLA. Although new strategies for therapy are not yet available, the groundwork is being laid for cell or gene therapy.
Collapse
Affiliation(s)
- Y Minegishi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
531
|
Shcherbina A, Rosen FS, Remold-O’Donnell E. WASP Levels in Platelets and Lymphocytes of Wiskott-Aldrich Syndrome Patients Correlate with Cell Dysfunction. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Wiskott-Aldrich syndrome, an inherited blood cell disorder due to mutations of the X-chromosome gene WASP (Wiskott-Aldrich syndrome protein), was characterized originally by thrombocytopenia, immunodeficiency, and eczema. Whereas platelet dysfunction is severe and consistent, immune defects are clinically variable, ranging from negligible to life threatening. To understand this heterogeneity, we quantified WASP in PBMC and platelets, and also in neutrophils, of patients with diverse mutations. A surprisingly complex pattern of WASP expression found for lymphoid cells formed the basis for dividing the patient mutations into four groups. Group A have low WASP levels in PBMC and higher levels in EBV cell lines, as well as near normal WASP RNA levels (7 patients, most with mild disease), suggesting that group A WASP molecules are hypersusceptible to proteolysis. Group B have low WASP levels in PBMC and EBV cells and similar low RNA levels (2 patients, moderate disease). Group C have discordant expression: WASP-positive peripheral T cells and WASP-negative peripheral B cells and EBV cell lines (9 patients, variable disease severity). Noteworthy among group C kindred are several instances of B cell lymphomas. In group D, PBMC and EBV cell lines are WASP negative (7 patients, severe disease). In contrast to the complex lymphoid cell expression patterns, all patient platelets examined were WASP negative (18 diverse patients). WASP absence in platelets provides an apparent molecular explanation for the universally severe platelet dysfunction in this disease, and the cumulative lymphoid cell findings suggest that WASP levels play a substantial role in determining immune outcome.
Collapse
Affiliation(s)
- Anna Shcherbina
- The Center for Blood Research and the Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Fred S. Rosen
- The Center for Blood Research and the Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Eileen Remold-O’Donnell
- The Center for Blood Research and the Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
532
|
Wellington A, Emmons S, James B, Calley J, Grover M, Tolias P, Manseau L. Spire contains actin binding domains and is related to ascidian posterior end mark-5. Development 1999; 126:5267-74. [PMID: 10556052 DOI: 10.1242/dev.126.23.5267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Spire is a maternal effect locus that affects both the dorsal-ventral and anterior-posterior axes of the Drosophila egg and embryo. It is required for localization of determinants within the developing oocyte to the posterior pole and to the dorsal anterior corner. During mid-oogenesis, spire mutants display premature microtubule-dependent cytoplasmic streaming, a phenotype that can be mimicked by pharmacological disruption of the actin cytoskeleton with cytochalasin D. Spire has been cloned by transposon tagging and is related to posterior end mark-5, a gene from sea squirts that encodes a posteriorly localized mRNA. Spire mRNA is not, however, localized to the posterior pole. SPIRE also contains two domains with similarity to the actin monomer-binding WH2 domain, and we demonstrate that SPIRE binds to actin in the interaction trap system and in vitro. In addition, SPIRE interacts with the rho family GTPases RHOA, RAC1 and CDC42 in the interaction trap system. Thus, our evidence supports the model that SPIRE links rho family signaling to the actin cytoskeleton.
Collapse
Affiliation(s)
- A Wellington
- Department of Molecular and Cellular Biology, Interdisciplinary Program in Genetics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
533
|
Spontaneous Apoptosis in Lymphocytes From Patients With Wiskott-Aldrich Syndrome: Correlation of Accelerated Cell Death and Attenuated Bcl-2 Expression. Blood 1999. [DOI: 10.1182/blood.v94.11.3872] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, and a progressive deterioration of immune function. WAS is caused by mutations in an intracellular protein, WASP, that is involved in signal transduction and regulation of actin cytoskeleton rearrangement. Because immune dysfunction in WAS may be due to an accelerated destruction of lymphocytes, we examined the susceptibility to apoptosis of resting primary lymphocytes isolated from WAS patients in the absence of exogenous apoptogenic stimulation. We found that unstimulated WAS lymphocytes underwent spontaneous apoptosis at a greater frequency than unstimulated normal lymphocytes. Coincident with increased apoptotic susceptibility, WAS lymphocytes had markedly attenuated Bcl-2 expression, whereas Bax expression did not differ. A negative correlation between the frequency of spontaneous apoptosis and the level of Bcl-2 expression was demonstrated. These data indicate that accelerated lymphocyte destruction by spontaneous induction of apoptosis may be one pathogenic mechanism by which the progressive immunodeficiency in WAS patients develops.
Collapse
|
534
|
Young G, Angiolillo AL. Long-term treatment of refractory thrombocytopenia in a patient with Wiskott-Aldrich syndrome with vincristine, immunoglobulin, and methylprednisolone. Am J Hematol 1999; 62:183-5. [PMID: 10539885 DOI: 10.1002/(sici)1096-8652(199911)62:3<183::aid-ajh8>3.0.co;2-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a child with Wiskott-Aldrich syndrome with severe, refractory, symptomatic thrombocytopenia who achieved an excellent response to combination therapy with vincristine 1.5 mg/m(2) x 1 day, intravenous immunoglobulin 1 g/kg x 3 days, and methylprednisolone 25 mg/kg x 3 days (VIM) for 7 years after failing multiple treatments. He did not have a histocompatible donor for bone marrow transplantation. When the patient ceased to respond to this regimen, he was rescued with pulse dexamethasone. Vincristine, immunoglobulin, and methylprednisolone might serve as a novel treatment option for the patient with refractory thrombocytopenia. Our patient had a sustained remission of symptomatic thrombocytopenia without toxicity. Furthermore, pulse dexamethasone might be an alternative treatment option to which patients with Wiskott-Aldrich syndrome may respond.
Collapse
Affiliation(s)
- G Young
- Department of Pediatrics, Division of Hematology/Oncology, Loma Linda University, Loma Linda, California 92350, USA.
| | | |
Collapse
|
535
|
Kajiwara M, Nonoyama S, Eguchi M, Morio T, Imai K, Okawa H, Kaneko M, Sako M, Ohga S, Maeda M, Hibi S, Hashimito H, Shibuya A, Ochs HD, Nakahata T, Yata JI. WASP is involved in proliferation and differentiation of human haemopoietic progenitors in vitro. Br J Haematol 1999; 107:254-62. [PMID: 10583210 DOI: 10.1046/j.1365-2141.1999.01694.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, immunodeficiency and eczema. X-linked thrombocytopenia (XLT) is a mild form of WAS with isolated thrombocytopenia. Both phenotypes are caused by mutation of the Wiskott-Aldrich syndrome protein (WASP) gene. In this study we investigated the role of WASP in the differentiation of CD34-positive (CD34+) cells isolated from the bone marrow of patients with WAS (n = 5) or with XLT (n = 4). Megakaryocyte colony formation was significantly decreased in patients with WAS when compared with normal controls. The formation of granulocyte-macrophage colonies and erythroid bursts were also decreased in WAS patinets. In contrast, in XLT patients, formation of all these colonies was normal. However, in vitro proplatelet formation of megakaryocytes induced by thrombopoietin was markedly decreased in both XLT and WAS. Electron microscopic examination revealed that megakaryocytes obtained from WAS or XLT patients grown in vitro had abnormal morphologic features, which seemed to be caused by defective actin cytoskeletal organization, including labyrinth-like structures of the demarcation membrane system and deviated distribution of the alpha-granules and demarcation membrane system. These observations indicate that WASP is involved in the proliferation and differentiation of CD34+ haemopoietic progenitor cells probably by its participation in signal transduction and in the regulation of the cytoskeleton.
Collapse
Affiliation(s)
- M Kajiwara
- Department of Paediatrics, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Zhang J, Shehabeldin A, da Cruz LA, Butler J, Somani AK, McGavin M, Kozieradzki I, dos Santos AO, Nagy A, Grinstein S, Penninger JM, Siminovitch KA. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J Exp Med 1999; 190:1329-42. [PMID: 10544204 PMCID: PMC2195687 DOI: 10.1084/jem.190.9.1329] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) has been implicated in modulation of lymphocyte activation and cytoskeletal reorganization. To address the mechanisms whereby WASp subserves such functions, we have examined WASp roles in lymphocyte development and activation using mice carrying a WAS null allele (WAS(-)(/)(-)). Enumeration of hemopoietic cells in these animals revealed total numbers of thymocytes, peripheral B and T lymphocytes, and platelets to be significantly diminished relative to wild-type mice. In the thymus, this abnormality was associated with impaired progression from the CD44(-)CD25(+) to the CD44(-)CD25(-) stage of differentiation. WASp-deficient thymocytes and T cells also exhibited impaired proliferation and interleukin (IL)-2 production in response to T cell antigen receptor (TCR) stimulation, but proliferated normally in response to phorbol ester/ionomycin. This defect in TCR signaling was associated with a reduction in TCR-evoked upregulation of the early activation marker CD69 and in TCR-triggered apoptosis. While induction of TCR-zeta, ZAP70, and total protein tyrosine phosphorylation as well as mitogen-activated protein kinase (MAPK) and stress-activated protein/c-Jun NH(2)-terminal kinase (SAPK/JNK) activation appeared normal in TCR-stimulated WAS(-)(/)(-) cells, TCR-evoked increases in intracellular calcium concentration were decreased in WASp-deficient relative to wild-type cells. WAS(-)(/)(-) lymphocytes also manifested a marked reduction in actin polymerization and both antigen receptor capping and endocytosis after TCR stimulation, whereas WAS(-)(/)(-) neutrophils exhibited reduced phagocytic activity. Together, these results provide evidence of roles for WASp in driving lymphocyte development, as well as in the translation of antigen receptor stimulation to proliferative or apoptotic responses, cytokine production, and cytoskeletal rearrangement. The data also reveal a role for WASp in modulating endocytosis and phagocytosis and, accordingly, suggest that the immune deficit conferred by WASp deficiency reflects the disruption of a broad range of cellular behaviors.
Collapse
Affiliation(s)
- Jinyi Zhang
- Department of Medicine, University of Toronto, Ontario, Canada M5G 1X5
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada M5G 1X5
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Amro Shehabeldin
- Department of Medicine, University of Toronto, Ontario, Canada M5G 1X5
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada M5G 1X5
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Luis A.G. da Cruz
- Department of Medicine, University of Toronto, Ontario, Canada M5G 1X5
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada M5G 1X5
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Jeffrey Butler
- Department of Biochemistry, University of Toronto, Ontario, Canada M5G 1X5
- Division of Cell Biology, Research Institute, Hospital for Sick Children
| | - Ally-Khan Somani
- Department of Medicine, University of Toronto, Ontario, Canada M5G 1X5
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada M5G 1X5
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Mary McGavin
- Department of Medicine, University of Toronto, Ontario, Canada M5G 1X5
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada M5G 1X5
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Ivona Kozieradzki
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Biophysics, University of Toronto, Ontario, Canada M5G 1X5
- Amgen Institute, Ontario Cancer Institute, Toronto, Ontario, Canada M5G 2C1
| | - Antonio O. dos Santos
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Biophysics, University of Toronto, Ontario, Canada M5G 1X5
- Amgen Institute, Ontario Cancer Institute, Toronto, Ontario, Canada M5G 2C1
| | - Andras Nagy
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada M5G 1X5
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Sergio Grinstein
- Department of Biochemistry, University of Toronto, Ontario, Canada M5G 1X5
- Division of Cell Biology, Research Institute, Hospital for Sick Children
| | - Josef M. Penninger
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Biophysics, University of Toronto, Ontario, Canada M5G 1X5
- Amgen Institute, Ontario Cancer Institute, Toronto, Ontario, Canada M5G 2C1
| | - Katherine A. Siminovitch
- Department of Medicine, University of Toronto, Ontario, Canada M5G 1X5
- Department of Immunology, University of Toronto, Ontario, Canada M5G 1X5
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada M5G 1X5
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| |
Collapse
|
537
|
Savoia A, Del Vecchio M, Totaro A, Perrotta S, Amendola G, Moretti A, Zelante L, Iolascon A. An autosomal dominant thrombocytopenia gene maps to chromosomal region 10p. Am J Hum Genet 1999; 65:1401-5. [PMID: 10521306 PMCID: PMC1288293 DOI: 10.1086/302637] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The increasing number of diagnosed cases of inherited thrombocytopenias, owing to the routine practice of including platelet counts in blood tests, suggests that this condition is not so rare as expected. In the majority of cases, the molecular basis of the disease is unknown, although the defect is likely to affect thrombocytopoiesis and regulation of the normal platelet count. Here we report a genomewide search in a large Italian family affected by autosomal dominant thrombocytopenia. Patients showed a moderate thrombocytopenia with minimal symptoms characterized by normocellular bone marrow, normal medium platelet volume, and positive aggregation tests. Microsatellite analysis demonstrated that the disease locus (THC2) is linked to chromosome 10p11.1-12, within a candidate region of 6 cM between markers D10S586 and D19S1639. A maximum LOD score of 8.12 at recombination fraction.00 was obtained with the microsatellite D10S588. These data localized the first locus of an autosomal dominant thrombocytopenia, and the subsequent identification of the gene will provide new insight into the basic mechanism of megakaryocytopoiesis disorders.
Collapse
Affiliation(s)
- A Savoia
- Medical Genetic Service, I.R.C.C.S. Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
538
|
da Cruz LA, Penfold S, Zhang J, Somani AK, Shi F, McGavin MK, Song X, Siminovitch KA. Involvement of the lymphocyte cytoskeleton in antigen-receptor signaling. Curr Top Microbiol Immunol 1999; 245:135-67. [PMID: 10533312 DOI: 10.1007/978-3-642-57066-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L A da Cruz
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
539
|
Abstract
The Wiskott-Aldrich Syndrome (WAS) is a rare inherited X-linked recessive disease characterised by immune dysregulation and microthrombocytopenia. Recently, the biological mechanisms that are responsible for the pathophysiology of WAS have been shown to be linked to the regulation of the actin cytoskeleton in haematopoietic cells. The WAS protein (WASp) is now known to be a member of a unique family that share similar domain structures, and that are responsible for transduction of signals from the cell membrane to the actin cytoskeleton. The interactions between WASp, the Rho family GTPase Cdc42, and the cytoskeletal organising complex Arp2/3 are probably critical to many of these functions, which, when disturbed, translate into measurable defects of cell polarisation and motility.
Collapse
Affiliation(s)
- A J Thrasher
- Molecular Immunology Unit, Institute of Child Health, London WC1N 1EH, United Kingdom.
| | | |
Collapse
|
540
|
Abstract
Mucin-type O-glycans on leukocytes acquire functions once they contain core 2 branches, which can be synthesized by core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT). Recently, understanding the roles of mucin-type O-glycans has been significantly advanced by generating transgenic mice overexpressing C2GnT or knockout mice defective in C2GnT. This review article summarizes previous results implicating the roles of mucin-type O-glycans and the most recent studies to test such a hypothesis. These results, taken together, demonstrate that mucin-type O-glycans either facilitate or attenuate cell adhesion depending on the structures of non-reducing termini.
Collapse
Affiliation(s)
- M Fukuda
- The Glycobiology Program, Cancer Research Center, Burnham Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
541
|
Miki H, Fukuda M, Nishida E, Takenawa T. Phosphorylation of WAVE downstream of mitogen-activated protein kinase signaling. J Biol Chem 1999; 274:27605-9. [PMID: 10488099 DOI: 10.1074/jbc.274.39.27605] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WAVE is a Wiskott-Aldrich syndrome protein (WASP)-family protein that functions in membrane-ruffling formation induced by Rac, a Rho family small GTPase. Here we report that WAVE is a phosphoprotein whose phosphorylation increases in response to various external stimuli that activate mitogen-activated protein (MAP) kinase signaling. When Swiss 3T3 cells are stimulated with platelet-derived growth factor, electrophoretic mobility shift occurs to WAVE, which reflects hyperphosphorylation. This is perfectly inhibited by the addition of PD98059, a specific inhibitor of MAP kinase kinase. Indeed, the ectopic expression of an activated mutant of MAP kinase kinase induces WAVE mobility shift. When MAP kinase activation is suppressed by PD98059, the intensity of platelet-derived growth factor-induced membrane ruffling is greatly reduced. In various cancer cell lines, the amount of WAVE mobility shift was found to increase significantly, suggesting the importance of WAVE hyperphosphorylation in the formation of membrane ruffles and oncogenic transformation.
Collapse
Affiliation(s)
- H Miki
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan
| | | | | | | |
Collapse
|
542
|
Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Carlier MF. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 1999; 146:1319-32. [PMID: 10491394 PMCID: PMC2156126 DOI: 10.1083/jcb.146.6.1319] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To propel itself in infected cells, the pathogen Shigella flexneri subverts the Cdc42-controlled machinery responsible for actin assembly during filopodia formation. Using a combination of bacterial motility assays in platelet extracts with Escherichia coli expressing the Shigella IcsA protein and in vitro analysis of reconstituted systems from purified proteins, we show here that the bacterial protein IcsA binds N-WASP and activates it in a Cdc42-like fashion. Dramatic stimulation of actin assembly is linked to the formation of a ternary IcsA-N-WASP-Arp2/3 complex, which nucleates actin polymerization. The Arp2/3 complex is essential in initiation of actin assembly and Shigella movement, as previously observed for Listeria monocytogenes. Activation of N-WASP by IcsA unmasks two domains acting together in insertional actin polymerization. The isolated COOH-terminal domain of N-WASP containing a verprolin-homology region, a cofilin-homology sequence, and an acidic terminal segment (VCA) interacts with G-actin in a unique profilin-like functional fashion. Hence, when N-WASP is activated, its COOH-terminal domain feeds barbed end growth of filaments and lowers the critical concentration at the bacterial surface. On the other hand, the NH(2)-terminal domain of N-WASP interacts with F-actin, mediating the attachment of the actin tail to the bacterium surface. VASP is not involved in Shigella movement, and the function of profilin does not require its binding to proline-rich regions.
Collapse
Affiliation(s)
- Coumaran Egile
- Unité de Pathogénie Microbienne Moléculaire, INSERM U 389, Institut Pasteur, 75724 Paris Cedex 15
| | - Thomas P. Loisel
- Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurale, Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198 France
| | - Valérie Laurent
- Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurale, Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198 France
| | - Rong Li
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dominique Pantaloni
- Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurale, Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198 France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, INSERM U 389, Institut Pasteur, 75724 Paris Cedex 15
| | - Marie-France Carlier
- Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurale, Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198 France
| |
Collapse
|
543
|
Kato M, Miki H, Imai K, Nonoyama S, Suzuki T, Sasakawa C, Takenawa T. Wiskott-Aldrich syndrome protein induces actin clustering without direct binding to Cdc42. J Biol Chem 1999; 274:27225-30. [PMID: 10480940 DOI: 10.1074/jbc.274.38.27225] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WASP (Wiskott-Aldrich syndrome protein) was identified as the gene product whose mutation causes the human hereditary disease Wiskott-Aldrich syndrome. WASP contains many functional domains and has been shown to induce the formation of clusters of actin filaments in a manner dependent on Cdc42. However, there has been no report investigating what domain(s) is(are) important for the function. Here we present for the first time the results of detailed analyses on the domain-function relationship of WASP. First, the C-terminal verprolin-cofilin-acidic domain was shown to be essential for the regulation of actin cytoskeleton. In addition, we found that the clustering of WASP itself is distinct from actin clustering. The partial protein containing the region from the N-terminal pleckstrin homology domain to the basic residue-rich region also clustered especially around the nucleus as wild type WASP without inducing actin clustering. Finally, we obtained the quite unexpected result that a WASP mutant deficient in binding to Cdc42 still induced actin cluster formation, indicating that direct interaction between Cdc42 and WASP is not required for the regulation of actin cytoskeleton. This result may explain why no Wiskott-Aldrich syndrome patients have been identified with a missense mutation in the Cdc42-binding site.
Collapse
Affiliation(s)
- M Kato
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Chiba 263-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
544
|
Shcherbina A, Rosen FS, Remold-O'Donnell E. Pathological events in platelets of Wiskott-Aldrich syndrome patients. Br J Haematol 1999; 106:875-83. [PMID: 10519987 DOI: 10.1046/j.1365-2141.1999.01637.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a severe X-linked platelet/immunological disorder arising from mutations of the gene WASP. At the clinical level, the major platelet abnormalities are small size and low number, both partially correctable by splenectomy. To identify underlying pathological events, we examined WAS platelets at various stages of their lifetime. In spleen sections from WAS patients, fluorescence microscopy showed dramatic co-localization of markers of platelets (CD41) and macrophages (CD68) compared to non-thrombocytopenic controls, suggesting that WAS splenic macrophages are involved in platelet removal. Study of isolated WAS blood platelets by flow cytometry showed substantial enhancement of surface exposure of phosphatidylserine (PS), a signal for engulfment by macrophages. Isolated resting WAS platelets were also aberrantly susceptible to microparticle release, and plasma samples of WAS patients contained > 5 times normal numbers of platelet-derived microparticles which may explain the small size of circulating platelets. Measurements with the Ca2+ sensitive dye fluo-3 revealed significantly increased Ca2+ levels, 310 +/- 13 nmol/l for WAS platelets versus 106 +/- 12 nmol/l for normal platelets, and also prolongation of agonist-induced Ca2+ flux. Cumulatively, these studies identify abnormal events occurring in WAS platelets: increased Ca2+ levels and enhancement of two Ca2+ dependent processes, PS exposure and microparticle release; these abnormal events may contribute to the in vivo decrease of platelet number and reduction of platelet size in this disease.
Collapse
Affiliation(s)
- A Shcherbina
- Center for Blood Research, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
545
|
Linder S, Nelson D, Weiss M, Aepfelbacher M. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 1999; 96:9648-53. [PMID: 10449748 PMCID: PMC22264 DOI: 10.1073/pnas.96.17.9648] [Citation(s) in RCA: 357] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 06/22/1999] [Indexed: 12/19/2022] Open
Abstract
Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific, multidomain protein whose mutation is responsible for the immunodeficiency disorder Wiskott-Aldrich syndrome. WASp contains a binding motif for the Rho GTPase CDC42Hs as well as verprolin/cofilin-like actin-regulatory domains, but no specific actin structure regulated by CDC42Hs-WASp has been identified. We found that WASp colocalizes with CDC42Hs and actin in the core of podosomes, a highly dynamic adhesion structure of human blood-derived macrophages. Microinjection of constitutively active V12CDC42Hs or a constitutively active WASp fragment consisting of the verprolin/cofilin-like domains led to the disassemly of podosomes. Conversely, macrophages from patients expressing truncated forms of WASp completely lacked podosomes. These findings indicate that WASp controls podosome assembly and, in cooperation with CDC42Hs, podosome disassembly in primary human macrophages.
Collapse
Affiliation(s)
- S Linder
- Max von Pettenkofer-Institut für Medizinische Mikrobiologie, Pettenkoferstrasse 9a, Ludwig-Maximilians-Universität, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
546
|
Imai K, Nonoyama S, Miki H, Morio T, Fukami K, Zhu Q, Aruffo A, Ochs HD, Yata J, Takenawa T. The pleckstrin homology domain of the Wiskott-Aldrich syndrome protein is involved in the organization of actin cytoskeleton. Clin Immunol 1999; 92:128-37. [PMID: 10444357 DOI: 10.1006/clim.1999.4746] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the role of the pleckstrin homology (PH) domain of the Wiskott-Aldrich syndrome protein (WASP) in the regulation of actin cytoskeleton, which is defective in patients with Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). Overexpression of the WASP in COS-7 cells cultured in the presence of fetal calf serum (FCS) resulted in large cluster formation of polymerized actin and WASP in the cytoplasm. In contrast, when the WASP transfected cells were cultured in the absence of FCS, activation with PMA or EGF was required to induce cluster formation. Overexpression of WASP with a missense mutation in the N-terminus of the PH domain failed to induce the large cluster formation in COS-7 cells even in the presence of FCS. We also found that phosphatidylinositol 4,5-bisphosphate (PIP(2)), which is known to regulate the actin cytoskeleton, binds to the PH domain of WASP, and the binding was abolished by the introduction of a missense mutation into the N-terminus but not the C-terminus of the PH domain. Together with the observations that most of the missense mutations observed in patients with WAS and XLT are located within the PH domain, these results indicate that the PH domain of WASP plays important roles in the regulation of actin cytoskeleton and suggested that the binding of PIP(2) to the PH domain is necessary for WASP to function properly.
Collapse
Affiliation(s)
- K Imai
- School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Banin S, Gout I, Brickell P. Interaction between Wiskott-Aldrich Syndrome protein (WASP) and the Fyn protein-tyrosine kinase. Mol Biol Rep 1999; 26:173-7. [PMID: 10532312 DOI: 10.1023/a:1006954206151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wiskott-Aldrich Syndrome (WAS) is a severe X-linked disorder characterised by immune deficiency, thrombocytopenia and eczema, resulting from abnormalities in a range of haematopoietic cell types. The protein that is defective in WAS, named WASP, appears to be involved in regulating changes in the cytoskeletal organisation of haematopoietic cells in response to external stimuli. In support of this idea, WASP has been found to be physically associated in haematopoietic cells in vivo with a number of SH3 domain-containing proteins involved in signal transduction, including the cytoplasmic protein-tyrosine kinase Fyn. Here, we have used a baculovirus expression system to explore the biochemical consequences of the interaction between WASP and Fyn. We find that the kinase activity of Fyn is stimulated as a result of binding to WASP, and that a cellular protein, which may be WASP itself, becomes phosphorylated on tyrosine as a result of the binding of WASP to Fyn.
Collapse
Affiliation(s)
- S Banin
- Leukaemia Research Fund Centre for Childhood Leukaemia, Molecular Haematology Unit, Institute of Child Health, London, UK
| | | | | |
Collapse
|
548
|
Affiliation(s)
- L M Machesky
- Department of Biochemistry, University of Birmingham, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
549
|
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked hereditary disease characterized by thrombocytopenia with small platelet size, eczema, and increased susceptibility to infections. The gene responsible for WAS was recently cloned. Although the precise function of WAS protein (WASP) is unknown, it appears to play a critical role in the regulation of cytoskeletal organization. The platelet defect, resulting in thombocytopenia and small platelet size, is a consistent finding in patients with mutations in the WASP gene. However, its exact mechanism is unknown. Regarding WASP function in cytoskeletal organization, we investigated whether these platelet abnormalities could be due to a defect in proplatelet formation or in megakaryocyte (MK) migration. CD34+ cells were isolated from blood and/or marrow of 14 WAS patients and five patients with hereditary X-linked thrombocytopenia (XLT) and cultured in serum-free liquid medium containing recombinant human Mpl-L (PEG-rHuMGDF) and stem-cell factor (SCF) to study in vitro megakaryocytopoiesis. In all cases, under an inverted microscope, normal MK differentiation and proplatelet formation were observed. At the ultrastructural level, there was also no abnormality in MK maturation, and normal filamentous MK were present. Moreover, the in vitro produced platelets had a normal size, while peripheral blood platelets of the same patients exhibited an abnormally small size. However, despite this normal platelet production, we observed that F-actin distribution was abnormal in MKs from WAS patients. Indeed, F-actin was regularly and linearly distributed under the cytoplasmic membrane in normal MKs, but it was found concentrated in the center of the WAS MKs. After adhesion, normal MKs extended very long filopodia in which WASP could be detected. In contrast, MKs from WAS patients showed shorter and less numerous filopodia. However, despite this abnormal filopodia formation, MKs from WAS patients normally migrated in response to stroma-derived factor-1 (SDF-1), and actin normally polymerized after SDF-1 or thrombin stimulation. These results suggest that the platelet defect in WAS patients is not due to abnormal platelet production, but instead to cytoskeletal changes occuring in platelets during circulation.
Collapse
|
550
|
May RC, Hall ME, Higgs HN, Pollard TD, Chakraborty T, Wehland J, Machesky LM, Sechi AS. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr Biol 1999; 9:759-62. [PMID: 10421578 DOI: 10.1016/s0960-9822(99)80337-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Actin polymerisation is thought to drive the movement of eukaryotic cells and some intracellular pathogens such as Listeria monocytogenes. The Listeria surface protein ActA synergises with recruited host proteins to induce actin polymerisation, propelling the bacterium through the host cytoplasm [1]. The Arp2/3 complex is one recruited host factor [2] [3]; it is also believed to regulate actin dynamics in lamellipodia [4] [5]. The Arp2/3 complex promotes actin filament nucleation in vitro, which is further enhanced by ActA [6] [7]. The Arp2/3 complex also interacts with members of the Wiskott-Aldrich syndrome protein (WASP) [8] family - Scar1 [9] [10] and WASP itself [11]. We interfered with the targeting of the Arp2/3 complex to Listeria by using carboxy-terminal fragments of Scar1 that bind the Arp2/3 complex [11]. These fragments completely blocked actin tail formation and motility of Listeria, both in mouse brain extract and in Ptk2 cells overexpressing Scar1 constructs. In both systems, Listeria could initiate actin cloud formation, but tail formation was blocked. Full motility in vitro was restored by adding purified Arp2/3 complex. We conclude that the Arp2/3 complex is a host-cell factor essential for the actin-based motility of L. monocytogenes, suggesting that it plays a pivotal role in regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- R C May
- Department of Biochemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|