501
|
Tsutsui K, Maeda Y, Tsutsui K, Seki S, Tokunaga A. cDNA cloning of a novel amphiphysin isoform and tissue-specific expression of its multiple splice variants. Biochem Biophys Res Commun 1997; 236:178-83. [PMID: 9223448 DOI: 10.1006/bbrc.1997.6927] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amphiphysin, an SH3-domain containing protein concentrated in nerve terminals, is believed to be involved in the synaptic vesicle recycling. We have cloned cDNAs of a novel isoform of amphiphysin (amphiphysin II) by exploiting sequence information for homologous ESTs deposited in databases. At least 9 different subtypes of the isoform with 50-60% amino acid identity to the human amphiphysin were identified by a conventional library screening and PCR amplification of cDNA libraries. Each subtype probably represents a splice variant of a single gene transcript. Analysis of mRNA expression in various tissues by RT-PCR showed that the isoform is ubiquitously distributed. The expression spectrum of the isoform subtypes, however, is significantly different in several tissues examined, suggesting that they are involved in the regulation of endocytic processes that are unique to each cell type.
Collapse
Affiliation(s)
- K Tsutsui
- Department of Molecular Biology, Institute of Cellular and Molecular Biology, Okayama University Medical School, Shikata-cho, Japan
| | | | | | | | | |
Collapse
|
502
|
von Poser C, Ichtchenko K, Shao X, Rizo J, Südhof TC. The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca2+ binding. J Biol Chem 1997; 272:14314-9. [PMID: 9162066 DOI: 10.1074/jbc.272.22.14314] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Synaptotagmin I is a Ca2+-binding protein of synaptic vesicles that serves as a Ca2+ sensor for neurotransmitter release and was the first member found of a large family of trafficking proteins. We have now identified a novel synaptotagmin, synaptotagmin XI, that is highly expressed in brain and at lower levels in other tissues. Like other synaptotagmins, synaptotagmin XI has a single transmembrane region and two cytoplasmic C2-domains but is most closely related to synaptotagmin IV with which it forms a new subclass of synaptotagmins. The first C2-domain of synaptotagmin I (the C2A-domain) binds phospholipids as a function of Ca2+ and contains a Ca2+-binding site, the C2-motif, that binds at least two Ca2+ ions via five aspartate residues and is conserved in most C2-domains (Shao, X., Davletov, B., Sutton, B., Südhof, T. C., Rizo, J. R. (1996) Science 273, 248-253). In the C2A-domains of synaptotagmins IV and XI, however, one of the five Ca2+-binding aspartates in the C2-motif is substituted for a serine, suggesting that these C2-domains do not bind Ca2+. To test this, we produced recombinant C2A-domains from synaptotagmins IV and XI with either wild type serine or mutant aspartate in the C2-motif. Circular dichroism showed that Ca2+ stabilizes both mutant but not wild type C2-domains against temperature-induced denaturation, indicating that the mutations restore Ca2+-binding to the wild type C2-domains. Furthermore, wild type C2A-domains of synaptotagmins IV and XI exhibited no Ca2+-dependent phospholipid binding, whereas mutant C2A-domains bound phospholipids as a function of Ca2+ similarly to wild type synaptotagmin I. These experiments suggest that a class of synaptotagmins was selected during evolution in which the Ca2+-binding site of the C2A-domain was inactivated by a single point mutation. Thus, synaptotagmins must have Ca2+-independent functions as well as Ca2+-dependent functions that are selectively maintained in distinct members of this gene family.
Collapse
Affiliation(s)
- C von Poser
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
503
|
Baruch A, Hartmann M, Zrihan-Licht S, Greenstein S, Burstein M, Keydar I, Weiss M, Smorodinsky N, Wreschner DH. Preferential expression of novel MUC1 tumor antigen isoforms in human epithelial tumors and their tumor-potentiating function. Int J Cancer 1997; 71:741-9. [PMID: 9180140 DOI: 10.1002/(sici)1097-0215(19970529)71:5<741::aid-ijc9>3.0.co;2-r] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human MUC1 gene expresses at least 2 type 1 membrane proteins: MUC1/REP, a polymorphic high m.w. MUC1 glycoprotein often highly expressed in breast cancer tissues and containing a variable number of tandem 20 amino acid repeat units, and the MUC1/Y protein, which lacks this repeat array and, therefore, is not polymorphic. Despite their documented importance in signal transduction processes, the relative expression of the 2 isoforms in epithelial tumors is unknown. Using antibody reagents which recognize different MUC1 domains, the expression of these isoforms in malignant epithelial cells has been evaluated. A comparison of the amounts of the 2 isoforms revealed preferential expression of the novel MUC1/Y protein in breast cancer tissue samples. Furthermore, although the MUC1/REP protein is almost undetectable in HeLa cervical adenocarcinoma epithelial cells, the MUC1/Y isoform is extensively expressed in these cells. The presence of the MUC1/Y sequence as well as that of an additional tandem-repeat-array-lacking isoform, designated MUC1/X, were demonstrated by reverse transcriptase PCR amplification of RNA extracted from HeLa and ovarian carcinoma cells. It has been shown previously that the MUC1 cytoplasmic domain interacts with the SH2 domain containing GRB2 protein, which transduces signals to ras, a protein which in its activated form can lead to cell transformation. We present here data demonstrating that MUC1/Y isoform expression increases the tumorigenic potential of DA3 mouse mammary epithelial cells; in contrast, potentiation of tumorigenicity is not observed with MUC1/REP expression. Our studies thus demonstrate that expression of the MUC1 gene in epithelial tumors can give rise to substantial levels of MUC1 proteins devoid of the tandem repeat array, which are generated by alternative splicing mechanisms.
Collapse
Affiliation(s)
- A Baruch
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Affiliation(s)
- J T Littleton
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
505
|
Srivatsan M, Peretz B. Acetylcholinesterase promotes regeneration of neurites in cultured adult neurons of Aplysia. Neuroscience 1997; 77:921-31. [PMID: 9070763 DOI: 10.1016/s0306-4522(96)00458-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aplysia, a marine mollusc, has significant amounts of acetylcholinesterase in its hemolymph, reaching maximum levels in the adults with reproductive maturity [Srivatsan M., et al. (1992) J. comp. Physiol. 162, 29-37]. Since hemolymph of mature Aplysia is neurotrophic to Aplysia neurons in culture [Schacher S. and Proshanski E. (1983) J. Neurosci. 3, 2403-2413], we examined whether acetylcholinesterase is a hemolymph neurotrophic factor. Dopaminergic neurons from the pedal ganglia of young adult Aplysia were maintained in culture in defined medium or defined medium supplemented with hemolymph. After 24 h, neurons in defined medium supplemented with hemolymph were well attached to the substratum and exhibited multiple, long neurites. In contrast, neurons in defined medium alone attached poorly and exhibited one or two short neurites. When acetylcholinesterase was inhibited with a specific, membrane-impermeable inhibitor (1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide) which binds to its catalytic and peripheral anionic sites, the neurotrophic effect of hemolymph was significantly reduced. However, inhibition of the catalytic site alone with membrane impermeable echothiophate still resulted in enhanced neurite growth. An analogue of acetylcholine, carbachol, which is not hydrolysed by acetylcholinesterase, did not interfere with neurite growth when added to the supplemented medium. Acetylcholinesterase isolated from the hemolymph and highly purified human acetylcholinesterase also promoted neurite growth in Aplysia neurons. These results show that i) acetylcholinesterase circulating in the hemolymph promotes neurite growth of adult neurons in culture; ii) the growth promoting action of acetylcholinesterase is independent of its function of hydrolysing acetylcholine and iii) the peripheral anionic site of acetylcholinesterase appears to be involved in neurite regeneration.
Collapse
Affiliation(s)
- M Srivatsan
- Department of Physiology and Biophysics, University of Kentucky Medical Center, Lexington 40536-0084, U.S.A
| | | |
Collapse
|
506
|
Lidar T, Christian A, Yakar S, Langevitz P, Zeilig G, Ohry A, Bakimer R, Sorek H, Livneh A. Clinically insignificant (natural) autoantibodies against acetyl cholinesterase in the sera of patients with a variety of neurologic, muscular and autoimmune diseases. Immunol Lett 1997; 55:79-84. [PMID: 9143937 DOI: 10.1016/s0165-2478(96)02686-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acetyl cholinesterase (AChE) antibodies were shown to be associated with myasthenia-like neuromuscular disease. However, it is not clear whether they cause the disease, or their presence is secondary to the disease or an unrelated epiphenomenon. Therefore, AChE antibodies were studied in the sera of 135 patients with neurologic, muscular and autoimmune diseases, using enzyme linked immunosorbent assay (ELISA), immunoblotting and enzyme inhibition assay. In 12 sera the AChE binding by ELISA was greater than 2 standard deviations (SDs) above the mean value of the 20 healthy controls. However, this increased binding was not disease-specific, had no clinical correlates and could not be demonstrated using Western blotting and AChE enzyme inhibition assay, suggesting that these antibodies are naturally occurring, pathogenically unimportant autoantibodies. The finding also supports a possible pathogenic role for the previously reported, high titer, high affinity, inhibitory AChE antibodies in the neuromuscular disease.
Collapse
Affiliation(s)
- T Lidar
- Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
507
|
Glynn P. Neuropathy target esterase (NTE): molecular characterisation and cellular localisation. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1997; 19:325-9. [PMID: 9079219 DOI: 10.1007/978-3-642-60682-3_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- P Glynn
- MRC Toxicology Unit, University of Leicestér, UK
| |
Collapse
|
508
|
Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquet-Ehrismann R, Prokop A, Bellen HJ. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 1996; 87:1059-68. [PMID: 8978610 DOI: 10.1016/s0092-8674(00)81800-0] [Citation(s) in RCA: 333] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Septate and tight junctions are thought to seal neighboring cells together and to function as barriers between epithelial cells. We have characterized a novel member of the neurexin family, Neurexin IV (NRX), which is localized to septate junctions (SJs) of epithelial and glial cells. NRX is a transmembrane protein with a cytoplasmic domain homologous to glycophorin C, a protein required for anchoring protein 4.1 in the red blood cell. Absence of NRX results in mislocalization of Coracle, a Drosophila protein 4.1 homolog, at SJs and causes dorsal closure defects similar to those observed in coracle mutants. nrx mutant embryos are paralyzed, and electrophysiological studies indicate that the lack of NRX in glial-glial SJs causes a breakdown of the blood-brain barrier. Electron microscopy demonstrates that nrx mutants lack the ladder-like intercellular septa characteristic of pleated SJs (pSJs). These studies identify NRX as the first transmembrane protein of SJ and demonstrate a requirement for NRX in the formation of septate-junction septa and intercellular barriers.
Collapse
|
509
|
Zacharias DA, Strehler EE. Change in plasma membrane Ca2(+)-ATPase splice-variant expression in response to a rise in intracellular Ca2+. Curr Biol 1996; 6:1642-52. [PMID: 8994829 DOI: 10.1016/s0960-9822(02)70788-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Most eukaryotic genes are divided into introns and exons. Upon transcription, the intronic segments are eliminated and the exonic sequences spliced together through a series of complex processing events. Alternative splicing refers to the optional inclusion or exclusion of specific exons in transcripts derived from a single gene, which leads to structural and functional changes in the encoded proteins. Although many components of the machinery directing the physical excision of introns and joining of exons have been elucidated in recent years, the signaling pathways regulating the activity of the machinery remain largely unexplored. RESULTS A calcium-mediated signaling pathway regulates alternative splicing at a specific site of human plasma membrane calcium pump-2 transcripts. This site consists of three exons, which are differentially used in a tissue-specific manner. In IMR32 neuroblastoma cells, a transient elevation of intracellular calcium changed the predominant pattern from one in which all three exons are included to the coexpression of a variant including only the third exon. Western-blot analysis demonstrated that the newly expressed mRNAs are faithfully translated. Once induced, the new splicing pattern was maintained over multiple cell divisions. Protein synthesis was not required to induce the alternative splice change, indicating that all components necessary for a rapid cellular response are present in the cells. CONCLUSIONS Calcium signaling exerts a direct influence on the regulation of alternative splicing. Notably, a calcium-mediated change in the expression of alternatively spliced variants of a calcium regulatory protein was discovered. The change in splicing occurs quickly, is persistent but reversible and leads to a corresponding change in protein expression. The specific nature in which differently spliced protein variants are expressed, and now the fact that their expression can be regulated by distinct intracellular signaling pathways, suggests that the regulation of alternative splicing by physiological stimuli is a widespread regulatory mechanism by which a cell may coordinate its responses to environmental cues.
Collapse
Affiliation(s)
- D A Zacharias
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
510
|
Ariazi EA, Gould MN. Identifying differential gene expression in monoterpene-treated mammary carcinomas using subtractive display. J Biol Chem 1996; 271:29286-94. [PMID: 8910589 DOI: 10.1074/jbc.271.46.29286] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Monoterpene-induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method termed subtractive display. The subtractive display screen identified 42 monoterpene-induced genes comprising 9 known genes and 33 unidentified genes, as well as 58 monoterpene-repressed genes comprising 1 known gene and 57 unidentified genes. Several of the identified differentially expressed genes are involved in the mitoinhibitory transforming growth factor beta signal tranduction pathway, as demonstrated by isolation of the mannose 6-phosphate/insulin-like growth factor II receptor and the transforming growth factor beta type II receptor. The monoterpene-induced/repressed genes indicate that apoptosis and differentiation act in concert to effect carcinoma regression. Apoptosis is suggested by the cloning of a marker of programmed cell death, lipocortin 1. Consistent with a differentiation/remodeling process occurring during tumor regression, subtractive display identified YWK-II and neuroligin 1. Thus far, of the cDNAs putatively identified as differentially expressed in this complex in situ carcinoma model, 5 were tested, and each one has been confirmed to be differentially expressed. Additionally, many of the identified known genes are expressed as rare transcripts and exhibit small but significant changes in abundance. Together, these points demonstrate the unique utility of this new gene expression screen to identify altered gene expression in a complex in vivo environment.
Collapse
Affiliation(s)
- E A Ariazi
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA.
| | | |
Collapse
|
511
|
Aurrand-Lions M, Galland F, Bazin H, Zakharyev VM, Imhof BA, Naquet P. Vanin-1, a novel GPI-linked perivascular molecule involved in thymus homing. Immunity 1996; 5:391-405. [PMID: 8934567 DOI: 10.1016/s1074-7613(00)80496-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Migration of hematopoietic precursor cells to the thymus is shown to depend upon a novel molecule called Vanin-1 expressed by perivascular thymic stromal cells. An anti-Vanin-1 antibody blocks the binding of pro-T cells to thymic sections in vitro, the in vivo accumulation of bone marrow cells around cortical thymic vessels, and long-term thymic regeneration. Thus, it interferes with the entry, and not the differentiation, of hematopoietic precursor cells. The Vanin-1 gene codes for a GPI-anchored 70 kDa protein that shows homology only with human biotinidase. Transfection of thymic stromal cells with the Vanin-1 cDNA enhances thymocyte adhesion in vitro. These data suggest that Vanin-1 regulates late adhesion steps of thymus homing under physiological, noninflammatory conditions.
Collapse
Affiliation(s)
- M Aurrand-Lions
- Centre d'Immunologie, INSERM-Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | |
Collapse
|
512
|
Abstract
Using affinity chromatography on immobilized alpha-latrotoxin, we have purified a novel 29 kDa protein, neurexophilin, in a complex with neurexin l alpha. Cloning revealed that rat and bovine neurexophilins are composed of N-terminal signal peptides, nonconserved N-terminal domains (20% identity over 80 residues), and highly homologous C-terminal sequences (85% identity over 169 residues). Analysis of genomic clones from mice identified two distinct neurexophilin genes, one of which is more homologous to rat neurexophilin and the other to bovine neurexophilin. The first neurexophilin gene is expressed abundantly in adult rat and mouse brain, whereas no mRNA corresponding to the second gene was detected in rodents despite its abundant expression in bovine brain, suggesting that rodents and cattle primarily express distinct neurexophilin genes. RNA blots and in situ hybridizations revealed that neurexophilin is expressed in adult rat brain at high levels only in a scattered subpopulation of neurons that probably represent inhibitory interneurons; by contrast, neurexins are expressed in all neurons. Neurexophilin contains a signal sequence and is N-glycosylated at multiple sites, suggesting that it is secreted and binds to the extracellular domain of neurexin l alpha. This hypothesis was confirmed by binding recombinant neurexophilin to the extracellular domains of neurexin l alpha. Together our data suggest that neurexophilin constitutes a secreted glycoprotein that is synthesized in a subclass of neurons and may be a ligand for neurexins.
Collapse
|
513
|
Small DH, Michaelson S, Sberna G. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease. Neurochem Int 1996; 28:453-83. [PMID: 8792327 DOI: 10.1016/0197-0186(95)00099-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinesterases are members of the serine hydrolase family, which utilize a serine residue at the active site. Acetylcholinesterase (AChE) is distinguished from butyrylcholinesterase (BChE) by its greater specificity for hydrolysing acetylcholine. The function of AChE at cholinergic synapses is to terminate cholinergic neurotransmission. However, AChE is expressed in tissues that are not directly innervated by cholinergic nerves. AChE and BChE are found in several types of haematopoietic cells. Transient expression of AChE in the brain during embryogenesis suggests that AChE may function in the regulation of neurite outgrowth. Overexpression of cholinesterases has also been correlated with tumorigenesis and abnormal megakaryocytopoiesis. Acetylcholine has been shown to influence cell proliferation and neurite outgrowth through nicotinic and muscarinic receptor-mediated mechanisms and thus, that the expression of AChE and BChE at non-synaptic sites may be associated with a cholinergic function. However, structural homologies between cholinesterases and adhesion proteins indicate that cholinesterases could also function as cell-cell or cell-substrate adhesion molecules. Abnormal expression of AChE and BChE has been detected around the amyloid plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease. The function of the cholinesterases in these regions of the Alzheimer brain is unknown, but this function is probably unrelated to cholinergic neurotransmission. The presence of abnormal cholinesterase expression in the Alzheimer brain has implications for the pathogenesis of Alzheimer's disease and for therapeutic strategies using cholinesterase inhibitors.
Collapse
Affiliation(s)
- D H Small
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
514
|
Gesemann M, Cavalli V, Denzer AJ, Brancaccio A, Schumacher B, Ruegg MA. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 1996; 16:755-67. [PMID: 8607994 DOI: 10.1016/s0896-6273(00)80096-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Agrin is a heparan sulfate proteoglycan that induces aggregation of acetylcholine receptors (AChRs) at the neuromuscular synapse. This aggregating activity is modulated by alternative splicing. Here, we compared binding of agrin isoforms to heparin, alpha-dystroglycan, and cultured myotubes. We find that the alternatively spliced 4 amino acids insert (KSRK) is required for heparin binding. The binding affinity of agrin isoforms to alpha-dystroglycan correlates neither with binding to heparin nor with their AChR-aggregating activities. Moreover, the minimal fragment sufficient to induce AChR aggregation does not bind to alpha-dystroglycan. Nevertheless, this fragment still binds to cultured muscle cells. Its binding is completed only by agrin isoforms that are active in AChR aggregation, and therefore this binding site is likely to represent the receptor that initiates AChR clustering.
Collapse
Affiliation(s)
- M Gesemann
- Department of Pharmacology, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
515
|
Ichtchenko K, Nguyen T, Südhof TC. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 1996; 271:2676-82. [PMID: 8576240 DOI: 10.1074/jbc.271.5.2676] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neuroligin 1 is a neuronal cell surface protein that binds to a subset of neurexins, polymorphic cell surface proteins that are also localized on neurons (Ichtchenko, K., Hata, Y., Nguyen, T., Ullrich, B., Missler, M., Moomaw, C., and Südhof, T. C. (1995) Cell 81, 435-443). We now describe two novel neuroligins called neuroligins 2 and 3 that are similar in structure and sequence to neuroligin 1. All neuroligins contain an N-terminal hydrophobic sequence with the characteristics of a cleaved signal peptide followed by a large esterase homology domain, a highly conserved single transmembrane region, and a short cytoplasmic domain. The three neuroligins are alternatively spliced at the same position and are expressed at high levels only in brain. Binding studies demonstrate that all three neuroligins bind to beta-neurexins both as native brain proteins and as recombinant proteins. Tight binding of the three neuroligins to beta-neurexins is observed only for beta-neurexins lacking an insert in splice site 4. Thus, neuroligins constitute a multigene family of brain-specific proteins with distinct isoforms that may have overlapping functions in mediating recognition processes between neurons.
Collapse
Affiliation(s)
- K Ichtchenko
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | |
Collapse
|
516
|
Cousin X, Hotelier T, Liévin P, Toutant JP, Chatonnet A. A cholinesterase genes server (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval. Nucleic Acids Res 1996; 24:132-6. [PMID: 8594562 PMCID: PMC145568 DOI: 10.1093/nar/24.1.132] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have built a database of sequences phylogenetically related to cholinesterases (ESTHER) for esterases, alpha/beta hydrolase enzymes and relatives). These sequences define a homogeneous group of enzymes (carboxylesterases, lipases and hormone-sensitive lipases) with some related proteins devoid of enzymatic activity. The purpose of ESTHER is to help comparison and alignment of any new sequence appearing in the field, to favour mutation analysis of structure-function relationships and to allow structural data recovery. ESTHER is a World Wide Web server with the URL http://www.montpellier.inra.fr:70/cholinesterase.
Collapse
Affiliation(s)
- X Cousin
- Unité des Venins, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
517
|
Massoulié J, Legay C, Anselmet A, Krejci E, Coussen F, Bon S. Biosynthesis and integration of acetylcholinesterase in the cholinergic synapse. PROGRESS IN BRAIN RESEARCH 1996; 109:55-65. [PMID: 9009693 DOI: 10.1016/s0079-6123(08)62088-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J Massoulié
- Laboratorie de Neurobiologie Moléculaire et Cellulaire, CNRS URA 1857, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
518
|
Taylor P, Radic Z, Hosea NA, Camp S, Marchot P, Berman HA. Structural bases for the specificity of cholinesterase catalysis and inhibition. Toxicol Lett 1995; 82-83:453-8. [PMID: 8597093 DOI: 10.1016/0378-4274(95)03575-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The availability of a crystal structure and comparative sequences of the cholinesterases has provided templates suitable for analyzing the molecular bases of specificity of reversible inhibitors, carbamoylating agents and organophosphates. Site-specific mutagenesis enables one to modify the structures of both the binding site and peptide ligand as well as create chimeras reflecting one type of esterase substituted in the template of another. Herein we define the bases for substrate specificity of carboxylesters, the stereospecificity of enantiomeric alkylphosphonates and the selectivity of tricyclic aromatic compounds in the active center of cholinesterase. We also describe the binding loci of the peripheral site and changes in catalytic parameters induced by peripheral site ligands, using the peptide fasciculin.
Collapse
Affiliation(s)
- P Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
519
|
Affiliation(s)
- P A Garrity
- Department of Biological Chemistry, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
520
|
Davletov BA, Krasnoperov V, Hata Y, Petrenko AG, Südhof TC. High affinity binding of alpha-latrotoxin to recombinant neurexin I alpha. J Biol Chem 1995; 270:23903-5. [PMID: 7592578 DOI: 10.1074/jbc.270.41.23903] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
alpha-Latrotoxin is a potent neurotoxin from black widow spider venom that stimulates neurotransmitter release. alpha-Latrotoxin is thought to act by binding to a high affinity receptor on presynaptic nerve terminals. In previous studies, high affinity alpha-latrotoxin binding proteins were isolated and demonstrated to contain neurexin I alpha as a major component. Neurexin I alpha is a cell surface protein that exists in multiple differentially spliced isoforms and belongs to a large family of neuron-specific proteins. Using a series of neurexin I-IgG fusion proteins, we now show that recombinant neurexin I alpha binds alpha-latrotoxin directly with high affinity (Kd approximately 4 nM). Binding of alpha-latrotoxin to recombinant neurexin I alpha is dependent on Ca2+ (EC50 approximately 30 microM). Our data suggest that neurexin I alpha is a Ca(2+)-dependent high affinity receptor for alpha-latrotoxin.
Collapse
Affiliation(s)
- B A Davletov
- Department of Molecular Genetics, University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | | | | | |
Collapse
|
521
|
Carbonetto S, Lindenbaum M. The basement membrane at the neuromuscular junction: a synaptic mediatrix. Curr Opin Neurobiol 1995; 5:596-605. [PMID: 8580711 DOI: 10.1016/0959-4388(95)80064-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The basement membrane at the neuromuscular junction directs formation of pre- and postsynaptic elements at this synapse. Efforts to understand the molecular basis for development of the postsynaptic specialization have brought new insights into extracellular matrix proteins and their cell-surface receptors. Recent evidence for an agrin receptor and mice null for the s-laminin gene have reinforced the function of the basement membrane in both orthograde and retrograde signalling across the synapse.
Collapse
Affiliation(s)
- S Carbonetto
- Centre for Neuroscience Research, McGill University, Montreal General Hospital Research Institute, PQ, Canada.
| | | |
Collapse
|