501
|
Abstract
PURPOSE OF REVIEW Radiation-associated valvular disease (RAVD) is characterized by late valvular manifestations following radiation exposure to the mediastinum. Review of current guidelines was performed to examine best practices to reduce risk and optimize outcomes in this patient population. RECENT FINDINGS Early and consistent screening and comprehensive and careful planning are critical in managing RAVD. Due to long latency periods, serial screening and targeted evaluation of risk factors are essential to early detection. Varying and complex presentations of RAVD require an integrated team of experienced specialists equipped with multimodality imaging-based screening protocols to stratify risk, plan intervention, and evaluate treatment response. Patients with valvular manifestations associated with radiation therapy call for an individualized plan of care involving longitudinal multimodality imaging-based screening and experienced decision-making regarding timing and strategy of intervention to improve patient outcomes.
Collapse
Affiliation(s)
- Samantha Xu
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Eoin Donnellan
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Milind Y Desai
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Imaging, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
502
|
Desideri I, Loi M, Francolini G, Becherini C, Livi L, Bonomo P. Application of Radiomics for the Prediction of Radiation-Induced Toxicity in the IMRT Era: Current State-of-the-Art. Front Oncol 2020; 10:1708. [PMID: 33117669 PMCID: PMC7574641 DOI: 10.3389/fonc.2020.01708] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Normal tissue complication probability (NTCP) models that were formulated in the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) are one of the pillars in support of everyday’s clinical radiation oncology. Because of steady therapeutic refinements and the availability of cutting-edge technical solutions, the ceiling of organs-at-risk-sparing has been reached for photon-based intensity modulated radiotherapy (IMRT). The possibility to capture heterogeneity of patients and tissues in the prediction of toxicity is still an unmet need in modern radiation therapy. Potentially, a major step towards a wider therapeutic index could be obtained from refined assessment of radiation-induced morbidity at an individual level. The rising integration of quantitative imaging and machine learning applications into radiation oncology workflow offers an unprecedented opportunity to further explore the biologic interplay underlying the normal tissue response to radiation. Based on these premises, in this review we focused on the current-state-of-the-art on the use of radiomics for the prediction of toxicity in the field of head and neck, lung, breast and prostate radiotherapy.
Collapse
Affiliation(s)
- Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Carlotta Becherini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
503
|
Risk assessment of osteoradionecrosis associated with periodontitis using 18F-FDG PET/CT. Eur J Radiol 2020; 132:109259. [PMID: 33012550 DOI: 10.1016/j.ejrad.2020.109259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/28/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE Osteoradionecrosis (ORN) is a serious complication after radiotherapy (RT), even in the era of intensity modulated radiation therapy (IMRT). The purpose of this study was to evaluate whether 18F-FDG PET/CT can predict ORN associated with periodontal disease in patients with oropharyngeal or oral cavity squamous cell carcinoma (OP/OC SCC) undergoing RT. METHODS One hundred and five OP/OC SCC patients treated with RT who underwent pretreatment 18F-FDG PET/CT between October 2007 and June 2016 were retrospectively reviewed. A post-treatment diagnosis of ORN was made clinically based on presence of exposed irradiated mandibular bone that failed to heal after a period of three months without persistent or recurrent tumor. The maximum standardized uptake value (SUVmax) of periodontal regions identified on PET/CT was measured for all patients. Image-based staging of periodontitis was also performed using American Academy of Periodontology staging system on CT. RESULTS Among 105 patients, 14 (13.3 %) developed ORN. The SUVmax of the periodontal region in patients with ORN (3.35 ± 1.23) was significantly higher than patients without ORN (1.92 ± 0.66) (P < .01). The corresponding CT stage of periodontitis in patients with ORN was significantly higher (2.71±0.47) than patients without ORN (1.80±0.73) (P < .01). ROC analysis revealed the cut-off values of developing ORN were 2.1 in SUVmax, and II in CT stage of periodontitis. The corresponding AUC was 0.86 and 0.82, respectively. CONCLUSIONS Pretreatment 18F-FDG PET/CT identification of periodontitis may be helpful to predict the future development of ORN in patients with OP/OC SCC undergoing RT.
Collapse
|
504
|
Nardone V, Giugliano FM, Reginelli A, Sangiovanni A, Mormile M, Iadanza L, Cappabianca S, Guida C. 4D CT analysis of organs at risk (OARs) in stereotactic radiotherapy. Radiother Oncol 2020; 151:10-14. [PMID: 32622777 DOI: 10.1016/j.radonc.2020.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Internal organs at risk volumes (IRV) represent the propagation of organs at risk (OARs) in 4DCT. Sixty consecutive patients that underwent 4DCT for thoracic stereotactic radiotherapy were analyzed and IRVs for heart, trachea, esophagus, bronchial tree, great vessels, and spinal cord were calculated. IRVs were then tested for the respect of dose constraints. IRVs were significantly bigger than standard OARs (p-value <0.001 for all the IRVs). IRVs that did not respect the dose constraints were, respectively, 7/60 (11.7%) for Heart IRV, 6/60 (10%) for Esophagus IRV, 11/60 (18.3%) for Trachea IRV, 16/60 (26.6%) for Bronchial Tree and 0/60 (0%) for great vessel and spinal cord IRV. In the subset of central targets, the percentage of plans that can be unacceptable taking into consideration OARs motion reaches 42%. The correlation of IRVs with clinical parameters and toxicity deserves future investigations in prospective trials.
Collapse
Affiliation(s)
- Valerio Nardone
- Unit of Radiation Oncology, Ospedale del Mare, Naples, Italy.
| | | | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Mormile
- Unit of Radiation Oncology, Ospedale del Mare, Naples, Italy
| | - Luciano Iadanza
- Unit of Radiation Oncology, Rummo General Hospital, Benevento, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cesare Guida
- Unit of Radiation Oncology, Ospedale del Mare, Naples, Italy
| |
Collapse
|
505
|
Zaer H, Glud AN, Schneider BM, Lukacova S, Vang Hansen K, Adler JR, Høyer M, Jensen MB, Hansen R, Hoffmann L, Worm ES, Sørensen JCH, Orlowski D. Radionecrosis and cellular changes in small volume stereotactic brain radiosurgery in a porcine model. Sci Rep 2020; 10:16223. [PMID: 33004849 PMCID: PMC7529917 DOI: 10.1038/s41598-020-72876-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiosurgery (SRS) has proven an effective tool for the treatment of brain tumors, arteriovenous malformation, and functional conditions. However, radiation-induced therapeutic effect in viable cells in functional SRS is also suggested. Evaluation of the proposed modulatory effect of irradiation on neuronal activity without causing cellular death requires the knowledge of radiation dose tolerance at very small tissue volume. Therefore, we aimed to establish a porcine model to study the effects of ultra-high radiosurgical doses in small volumes of the brain. Five minipigs received focal stereotactic radiosurgery with single large doses of 40–100 Gy to 5–7.5 mm fields in the left primary motor cortex and the right subcortical white matter, and one animal remained as unirradiated control. The animals were followed-up with serial MRI,
PET scans, and histology 6 months post-radiation. We observed a dose-dependent relation of the histological and MRI changes at 6 months post-radiation. The necrotic lesions were seen in the grey matter at 100 Gy and in white matter at 60 Gy. Furthermore, small volume radiosurgery at different dose levels induced vascular, as well as neuronal cell changes and glial cell remodeling.
Collapse
Affiliation(s)
- Hamed Zaer
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Andreas Nørgaard Glud
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bret M Schneider
- Zap Surgical Systems, Inc., San Carlos, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Slávka Lukacova
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Vang Hansen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - John R Adler
- Zap Surgical Systems, Inc., San Carlos, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Bjørn Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Lone Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Schjødt Worm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oncology and Radiation Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Chr Hedemann Sørensen
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dariusz Orlowski
- Centre for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, indgang J, Plan 1, J118-125, (Krydspunkt 116), 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
506
|
Hu W, Hu J, Huang Q, Gao J, Yang J, Qiu X, Kong L, Lu JJ. Particle Beam Radiation Therapy for Adenoid Cystic Carcinoma of the Nasal Cavity and Paranasal Sinuses. Front Oncol 2020; 10:572493. [PMID: 33102230 PMCID: PMC7556111 DOI: 10.3389/fonc.2020.572493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Sinonasal adenoid cystic carcinoma (SNACC) presents a challenge to oncologists due to its complex anatomy and poor prognosis. Although radiation therapy, either definitive or adjuvant to surgery, is an important part of the multidisciplinary management of SNACC, photon-based radiotherapy yielded suboptimal local control. The purpose of this study was to report the clinical results of a large patient cohort treated with particle beam radiation therapy. Methods: Patients with SNACC that received proton beam therapy (PBT), carbon-ion radiotherapy (CIRT) or a combination of CIRT and PBT between May 2015 and May 2019 were included in the analysis. Three patients were treated with PBT, 17 with CIRT and 18 received PBT and a CIRT boost. Overall survival (OS), progression-free survival (PFS), local control (LC), regional control (RC), and distant metastasis-free (DMF) rates were calculated using the Kaplan-Meier method. Toxicities were reported using the CTCAE (version 4.03). Results: A total of 38 patients were included in this analysis. Of these patients, 12 had recurrent disease, including 10 whose previous photon-based RT had failed. The most common primary tumor site was the maxillary sinus. Thirty-six patients (94.7%) suffered from locally advanced disease (T3-4). After a median follow-up of 27.2 months, the 3-year OS, PFS, LC, RC, and DMF rates were 96.7, 80.6, 90.0, 100, and 88.7%, respectively. No acute toxicities of grade 3 or above were observed. Two patients experienced grade 3 xerostomia or vision decreased, and one patient died of hemorrhage. Conclusion: PBT, CIRT or a combination of CIRT and PBT appeared to be a promising treatment option for SNACC and produced satisfactory local control and toxicity profile. Longer follow-up is needed to verify the long-term benefit of particle-beam radiation therapy (PBRT) for patients with SNACC.
Collapse
Affiliation(s)
- Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
507
|
Rasmusson E, Nilsson P, Kjellén E, Gunnlaugsson A. Long-Term Risk of Hip Complications After Radiation Therapy for Prostate Cancer: A Dose-Response Study. Adv Radiat Oncol 2020; 6:100571. [PMID: 33665484 PMCID: PMC7897764 DOI: 10.1016/j.adro.2020.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/28/2020] [Accepted: 09/19/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of the present study was to analyze the long-term incidence of hip complications after external beam radiation therapy compared with age-matched controls from the general population. We also investigated whether there were any dose-response associations. Methods and materials A total of 349 patients with prostate cancer treated to curative dose with external beam radiation therapy between 1997 and 2002 were included in the study. Physical and fractionation-corrected dose-volume descriptors were derived for the femoral heads, pubic bone, and sacrum. Information on skeletal events was collected for the patients and 1661 matched controls through the Prostate Cancer database Sweden. Uni- and multivariable Cox proportional hazard regressions were used to analyze the time to event. Results Data from 346 patients were available for analysis. The median mean physical dose and corresponding equivalent 2-Gy/fraction dose (EQD2) to the femoral heads were 35.5 Gy and 28.7 Gy, respectively. The median follow-up time was 16.0 years. During the follow up, 12 hip fractures occurred. Hip osteoarthritis was diagnosed in 36 cases, with 29 cases leading to replacement surgery. No increased risk of hip fractures was found. Hip osteoarthritis was the only event for which a statistically significant difference was found between the irradiated cohort and the controls (cause-specific hazard ratio: 1.56; 95% confidence interval, 1.07-2.26; P = .02). The cumulative incidence of osteoarthritis at 10 years was 8.1% and 4.9% in the irradiated cohort and the controls, respectively. A significant relationship between osteoarthritis and the volume of the femoral head receiving ≥40 Gy (ie, EQD2) was found. Conclusions In this study of 346 patients treated with conventional radiation therapy, we found no increased risk of hip fracture but an increased risk of clinically relevant osteoarthritis at long-term follow up. Our results indicate a dose-response relationship between osteoarthritis and the volume of the femoral head receiving an EQD2 dose of ≥40 Gy.
Collapse
Affiliation(s)
- Elisabeth Rasmusson
- Department of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden.,Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Oncology and Pathology, Lund, Sweden
| | - Per Nilsson
- Department of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden.,Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Radiation Physics, Lund, Sweden
| | - Elisabeth Kjellén
- Department of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden.,Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Oncology and Pathology, Lund, Sweden
| | - Adalsteinn Gunnlaugsson
- Department of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden.,Lund University, Faculty of Medicine, Department of Clinical Sciences, Lund, Oncology and Pathology, Lund, Sweden
| |
Collapse
|
508
|
Hu W, Hu J, Huang Q, Gao J, Yang J, Qiu X, Kong L, Lu JJ. Particle beam radiation therapy for sinonasal malignancies: Single institutional experience at the Shanghai Proton and Heavy Ion Center. Cancer Med 2020; 9:7914-7924. [PMID: 32977357 PMCID: PMC7643686 DOI: 10.1002/cam4.3393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Sinonasal malignancies (SNM) include malignant neoplasms of various histologies that originate from the paranasal sinuses or nasal cavity. This study reported the safety and efficacy of particle‐beam radiation therapy (PBRT) for the treatment of sinonasal malignancies. Methods and materials One‐hundred‐and‐eleven patients with nonmetastatic sinonasal malignancies received definitive (82.9%) or salvage (31.5%) PBRT. The majority (85.6%) of patients presented with T3/4 disease, and only 19 (17.1%) had R0 or R1 resection. Seventy (63.1%) patients received carbon‐ion radiotherapy (CIRT), 37 received proton radiotherapy (PRT) followed by CIRT boost, and 4 received PRT alone. Prognostic factors were analyzed using Cox regression for univariate and multiple regression. Toxicities were reported using the Common Terminology Criteria for Adverse Events (version 4.03). Results The median follow‐up was 20.2 months for the entire cohort. The 2‐year local progression‐free survival (LPFS), regional progression‐free survival (RPFS), distant metastasis‐free survival (DMFS), progression‐free survival (PFS), and overall survival (OS) rates were 83%, 97.2%, 85.9%, 66%, and 82%, respectively. Re‐irradiation and large GTV were the significant factors for OS. Melanoma and sarcoma patients had significantly higher distant metastatic rate, and poorer OS and PFS. Late toxicity occurred in 22 (19.8%) patients, but only 4 (3.6%) patients experienced grades 3‐4 late toxicity. Conclusions Particle‐beam radiation therapy results in excellent local‐regional control with extremely low serve toxicities for patients with SNM. Sarcoma and melanoma were featured with a greater risk of death from distant dissemination. Patients who underwent re‐irradiation had significantly worse OS. PBRT is feasible and safe in the management of SNM.
Collapse
Affiliation(s)
- Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
509
|
Hernandez V, Hansen CR, Widesott L, Bäck A, Canters R, Fusella M, Götstedt J, Jurado-Bruggeman D, Mukumoto N, Kaplan LP, Koniarová I, Piotrowski T, Placidi L, Vaniqui A, Jornet N. What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol 2020; 153:26-33. [PMID: 32987045 DOI: 10.1016/j.radonc.2020.09.038] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
Plan evaluation is a key step in the radiotherapy treatment workflow. Central to this step is the assessment of treatment plan quality. Hence, it is important to agree on what we mean by plan quality and to be fully aware of which parameters it depends on. We understand plan quality in radiotherapy as the clinical suitability of the delivered dose distribution that can be realistically expected from a treatment plan. Plan quality is commonly assessed by evaluating the dose distribution calculated by the treatment planning system (TPS). Evaluating the 3D dose distribution is not easy, however; it is hard to fully evaluate its spatial characteristics and we still lack the knowledge for personalising the prediction of the clinical outcome based on individual patient characteristics. This advocates for standardisation and systematic collection of clinical data and outcomes after radiotherapy. Additionally, the calculated dose distribution is not exactly the dose delivered to the patient due to uncertainties in the dose calculation and the treatment delivery, including variations in the patient set-up and anatomy. Consequently, plan quality also depends on the robustness and complexity of the treatment plan. We believe that future work and consensus on the best metrics for quality indices are required. Better tools are needed in TPSs for the evaluation of dose distributions, for the robust evaluation and optimisation of treatment plans, and for controlling and reporting plan complexity. Implementation of such tools and a better understanding of these concepts will facilitate the handling of these characteristics in clinical practice and be helpful to increase the overall quality of treatment plans in radiotherapy.
Collapse
Affiliation(s)
- Victor Hernandez
- Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Spain.
| | - Christian Rønn Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Denmark; Institute of Clinical Research, University of Southern Denmark, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | | | - Anna Bäck
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Marco Fusella
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Julia Götstedt
- Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden
| | - Diego Jurado-Bruggeman
- Medical Physics and Radiation Protection Department, Institut Català d'Oncologia, Girona, Spain
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate, School of Medicine, Kyoto University, Japan
| | | | - Irena Koniarová
- National Radiation Protection Institute, Prague, Czech Republic
| | - Tomasz Piotrowski
- Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland; Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - Ana Vaniqui
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Nuria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
510
|
Yang J, Hu W, Guan X, Hu J, Gao J, Qiu X, Huang Q, Zhang W, Kong L, Lu JJ. Particle Beam Radiation Therapy for Skull Base Sarcomas. Front Oncol 2020; 10:1368. [PMID: 33042790 PMCID: PMC7525010 DOI: 10.3389/fonc.2020.01368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background: To report the clinical experience of carbon-ion and proton radiation therapy for skull base sarcomas. Methods: An analysis of the retrospective data registry from the Shanghai Proton and Heavy Ion Center for patients with skull base sarcomas was conducted. The 1-/2-year local relapse-free, distant metastasis-free, progression-free, and overall survival (LRFS, DMFS, PFS, OS) rates as well as associated prognostic indicators were analyzed. Radiotherapy-induced acute and late toxicities were summarized. Results: Between 7/2014 and 5/2019, 62 patients with skull base sarcomas of various subtypes received carbon-ion radiation therapy (53), proton radiation therapy (5), or proton radiation therapy + carbon-ion boost (4). With a median follow-up of 20.4 (range 2.73–91.67) months, the 1-/2-year OS, LRFS, DMFS, and PFS rates were 91.2%/80.2%, 89.2%/80.2%, 86.0%/81.1%, and 75.8%/62.9%, respectively. Grade 3 mucositis and grade 4 hemorrhage were observed in 1 patient for each. Only grade 1 and grade 2 toxicities were observed except for the same patient with grade 4 acute toxicity died of severe hemorrhage (grade 5). Multivariate analyses revealed the lack of prior RT was an independent favorable prognostic factor for OS, PFS, and LRFS, age under 40 was associated with improved OS, early T-disease (T1/2) showed a significant association with better PFS. Conclusion: With few observed acute and late toxicities, particle beam radiation therapy provided effective tumor control and overall survival for patients with skull base sarcomas.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xiyin Guan
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Wenna Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Hospital, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
511
|
Hu J, Huang Q, Gao J, Guan X, Hu W, Yang J, Qiu X, Chen M, Kong L, Lu JJ. Clinical outcomes of carbon-ion radiotherapy for patients with locoregionally recurrent nasopharyngeal carcinoma. Cancer 2020; 126:5173-5183. [PMID: 32931035 PMCID: PMC7693227 DOI: 10.1002/cncr.33197] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Reirradiation for locoregionally recurrent nasopharyngeal carcinoma (LR-NPC) after high-dose radiotherapy (RT) is challenging and usually is associated with poor survival and severe toxicities. Because of its physical and biological advantages over photon-beam RT, carbon-ion RT (CIRT) could be a potential treatment option for patients with LR-NPC. METHODS Patients with LR-NPC who underwent salvage therapy using CIRT at the Shanghai Proton and Heavy Ion Center between May 2015 and June 2019 were analyzed. CIRT doses were 50 to 69 gray equivalent (GyE) (2.0-3.0 GyE per fraction). Overall survival (OS), local control, regional control, distant control, and acute and late toxicities were analyzed. Univariable and multivariable analyses of OS and local control were performed using the Cox regression model. RESULTS Among the 206 patients included, 139 patients (67.5%) had recurrent American Joint Committee on Cancer stage III or stage IV disease. With a median follow-up of 22.8 months, the 2-year OS, local control, regional control, and distant control rates were 83.7%, 58.0%, 87.3%, and 94.7%, respectively. Multivariable analysis revealed that older age (P = .017) was predictive of worse OS, whereas a larger tumor volume (P = .049) and a lower biological equivalent dose (P = .029) were associated with inferior local control. No patient developed an acute toxicity of ≥grade 3 during CIRT. Severe (≥grade 3) late toxicities included temporal lobe necrosis (0.97%), cranial neuropathy (0.49%), hearing loss (1.46%), xerostomia (0.49%), and mucosal necrosis (16.02%) (toxicities were graded using the Radiation Therapy Oncology Group and European Organization for Research and Treatment of Cancer criteria). CONCLUSIONS Salvage treatment using CIRT is efficacious for patients with LR-NPC and its toxicities are acceptable. CIRT may improve the survival and toxicity profiles substantially for patients with LR-NPC compared with the reported results after photon-based intensity-modulated RT.
Collapse
Affiliation(s)
- Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xiyin Guan
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Mingyuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
512
|
Deep Learning in Radiation Oncology Treatment Planning for Prostate Cancer: A Systematic Review. J Med Syst 2020; 44:179. [DOI: 10.1007/s10916-020-01641-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
|
513
|
Dosimetric and radiobiological evaluation of four radiation techniques in preoperative rectal cancer radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPurpose:To compare tumour dose distribution, conformality, homogeneity, normal tissue avoidance, tumour control probability (TCP) and normal tissue complication probability (NTCP) using 3D conformal radiation therapy (3DCRT), 3- and 4-field intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with locally advanced rectal cancer.Materials and methods:Twenty-four patients staged T1–3N+M0 with locally advanced rectal cancer underwent neoadjuvant chemoradiation therapy. Four different radiotherapy plans were prepared for each patient: 3DCRT, 3- and 4-field IMRT and VMAT are evaluated for target distribution using CI and homogeneity index (HI), normal tissue avoidance using Dmax, V45, V40, V50 and TCP and NTCP using the Lyman–Kutcher–Burman model.Results:VMAT has better HI (HI = 1·32) and 3DCRT exhibited better conformality (CI = 1·05) than the other radiotherapy techniques. With regard to normal tissue avoidance, all radiotherapy plans met the constraints. Dmax in the 3DCRT plans was statistically significant (p = 0·04) for bladder and no significant differences in V40 and V50. In the bowel bag, no significant differences in Dmax for any radiotherapy plan and V40 was lower in 3DCRT than VMAT (p = 0·024). In the case of femoral heads, 3DCRT has a statistically significant lower dose on Dmax than 4-field IMRT (p = 0·00 « 0·05). VMAT has the biggest TCP (80·76%) than the other three radiotherapy plans. With regard to normal tissue complications, probabilities were shown to be very low, of the order of 10-14 and 10-41 for bowel bag and femoral heads respectively.Conclusions:It can be concluded that 3DCRT plan improves conformity and decreases radiation sparing in the organ at risks, but the VMAT plan exhibits better homogeneity and greater TCP.
Collapse
|
514
|
Rubin DI. Brachial and lumbosacral plexopathies: A review. Clin Neurophysiol Pract 2020; 5:173-193. [PMID: 32954064 PMCID: PMC7484503 DOI: 10.1016/j.cnp.2020.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Diseases of the brachial and lumbosacral plexus are uncommon and complex. The diagnosis of plexopathies is often challenging for the clinician, both in terms of localizing a patient's symptoms to the plexus as well as determining the etiology. The non-specific clinical features and similar presentations to other root, nerve, and non-neurologic disorders emphasize the importance of a high clinical index of suspicion for a plexopathy and comprehensive clinical evaluation. Various diagnostic tests, including electrodiagnostic (EDX) studies, neuroimaging (including ultrasound, MRI, or PET), serologic studies, and genetic testing, may be used to confirm a plexopathy and assist in identifying the underlying etiology. EDX testing plays an important role in confirming a plexopathy defining the localization, pathophysiology, chronicity, severity, and prognosis. Given the complexity of the plexus anatomy, multiple common and uncommon NCS and an extensive needle examination is often required, and a comprehensive, individualized approach to each patient is necessary. Treatment of plexopathies often focuses on symptomatic management although, depending on the etiology, specific targeted treatments may improve outcome. This article reviews the clinical features, EDX approaches, and evaluation and treatment of brachial and lumbosacral plexopathies.
Collapse
Affiliation(s)
- Devon I. Rubin
- Electromyography Laboratory, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
515
|
Dosimetric and Radiobiological Comparison of Five Techniques for Postmastectomy Radiotherapy with Simultaneous Integrated Boost. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9097352. [PMID: 32775448 PMCID: PMC7391102 DOI: 10.1155/2020/9097352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
Abstract
Purpose To compare five techniques for the postmastectomy radiotherapy (PMRT) with simultaneous integrated boost (SIB). Materials and Methods Twenty patients with left-sided breast cancer were retrospectively selected. Five treatment plans were created for each patient: TomoDirect (TD), unblocked helical TomoTherapy (unb-HT), blocked HT (b-HT), hybrid intensity-modulated radiotherapy (hy-IMRT), and fixed-field IMRT (ff-IMRT). A dose of 50.4 Gy in 28 fractions to PTVtotal and 60.2 Gy in 28 fractions to PTVboost were prescribed. The dosimetric parameters for targets and organs at risk (OARs), the normal tissue complication probability (NTCP), the second cancer complication probability (SCCP) for OARs, and the treatment efficiency were assessed and compared. Results TD plans and hy-IMRT plans had similar good dose coverage and homogeneity for both PTVboost and PTVtotal and superior dose sparing for the lungs and heart. The ff-IMRT plans had similar dosimetric results for the target volumes compared with the TD and hy-IMRT plans, but gave a relatively higher NTCP and SCCP for the lungs. The unb-HT plans exhibited the highest OAR mean dose, highest NTCP for the lungs (0.97 ± 1.25‰) and heart (4.58 ± 3.62%), and highest SCCP for the lungs (3.57 ± 0.05%) and contralateral breast (2.75 ± 0.29%) among all techniques. The b-HT plans significantly outperformed unb-HT plans with respect to the sparing of the lungs and heart. This technique also showed the best conformity index (0.73 ± 0.08) for PTVboost and the optimal NTCP for the lungs (0.03 ± 0.03‰) and heart (0.61 ± 0.73%). Concerning the delivery efficiency, the hy-IMRT and ff-IMRT achieved much higher delivery efficiency compared with TomoTherapy plans. Conclusion Of the five techniques studied, TD and hy-IMRT are considered the preferable options for PMRT with SIB for left-sided breast cancer treatment and can be routinely applied in clinical practice.
Collapse
|
516
|
Zhang HR, Li JK, Yang XG, Qiao RQ, Hu YC. Conventional Radiotherapy and Stereotactic Radiosurgery in the Management of Metastatic Spine Disease. Technol Cancer Res Treat 2020; 19:1533033820945798. [PMID: 32757820 PMCID: PMC7432975 DOI: 10.1177/1533033820945798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spinal metastases are a common manifestation of malignant tumors that can cause
severe pain, spinal cord compression, pathological fractures, and hypercalcemia,
and these clinical manifestations will ultimately reduce the health-related
quality of life and even shorten life expectancy in patient with cancer.
Effective management of spinal bone metastases requires multidisciplinary
collaboration, including radiologists, surgeons, radiation oncologists, medical
oncologists, and pain specialists. In the past few decades, conventional
radiotherapy has been the most common form of radiotherapy, which can achieve
favorable local control and pain relief; however, it lacks precise methods of
delivering radiation and thus cannot provide sufficient tumoricidal dose. The
advent of stereotactic radiosurgery has changed this situation by using highly
focused radiation beams guided by 3-dimensional imaging to deliver a high
biologic equivalent dose to the target region, and the spinal cord can be
identified and excluded from the target volume to reduce the risk of
radiation-induced myelopathy. Separation surgery can provide a 2- to 3-mm safe
separation of tumor and spinal cord to avoid radiation-induced damage to the
spinal cord. Targets for separation surgery include decompression of metastatic
epidural spinal cord compression and spinal stabilization without partial or en
bloc tumor resection. Combined with conventional radiotherapy, stereotactic
radiosurgery can provide better local tumor control and pain relief. Several
scoring systems have been developed to estimate the life expectancy of patients
with spinal metastases treated with radiotherapy. Thorough understanding of
radiotherapy-related knowledge including the dose-fractionation schedule,
separation surgery, efficacy and safety, scoring systems, and feasibility of
combination with other treatment methods is critical to providing optimal
patient care.
Collapse
Affiliation(s)
- Hao-Ran Zhang
- Department of Bone Tumor, Tianjin Hospital, Tianjin, China
| | - Ji-Kai Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Rui-Qi Qiao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yong-Cheng Hu
- Department of Bone Tumor, Tianjin Hospital, Tianjin, China
| |
Collapse
|
517
|
Hu W, Hu J, Gao J, Yang J, Qiu X, Kong L, Lu JJ. Intensity-modulated particle beam radiation therapy in the management of olfactory neuroblastoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:926. [PMID: 32953726 PMCID: PMC7475427 DOI: 10.21037/atm-19-4790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background To report the clinical experience and short-term efficacy in the management of olfactory neuroblastoma (ONB). Methods We performed a retrospective analysis of 12 ONB patients treated with particle beam radiation therapy (PBRT) between 12/2015 and 5/2019 at the Shanghai Proton and Heavy Ion Center. Four (33.3%) patients presented with Kadish B ONB, and 8 (66.7%) presented with Kadish C or D disease. Eleven patients received proton radiotherapy (PRT) followed by a carbon ion radiotherapy (CIRT) boost, one patient received CIRT only. The 2-year survival rates were calculated using the Kaplan-Meier method. Acute and late adverse events were summarized and scored according to the CTCAE (version 4.03). Results With a median follow-up of 17.5 (range, 2.53–49.9) months, all patients but 1 were alive. Eight patients were alive without evidence of disease, and 2 additional patients achieved partial response and remained alive with residual disease. One patient died of toxicity associated with salvage chemotherapy for distant metastasis and local failure. Another patient developed distant metastasis only and was alive at the time of the last follow-up. The 2-year OS, PFS, LRPFS, and DMFS rates were 83.3%, 75.8%, 87.5%, and 79.5%, respectively. No acute or late toxicities of ≥ grade 3 was observed. Conclusions Intensity modulated PBRT of ONB is well tolerated. While longer follow-up is needed, early outcomes suggested that PBRT is safe and effective for the treatment of ONB with minimal adverse events.
Collapse
Affiliation(s)
- Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xianxin Qiu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jiade J Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
518
|
Dutta S, Dewan A, Mitra S, Sharma MK, Aggarwal S, Barik S, Mahammood Suhail M, Bhushan M, Sharma A, Wahi IK, Dobriyal K, Mukhee J. Dosimetric impact of variable bladder filling on IMRT planning for locally advanced carcinoma cervix. J Egypt Natl Canc Inst 2020; 32:31. [PMID: 32734431 DOI: 10.1186/s43046-020-00033-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To evaluate the dosimetric impact of variable bladder filling on target and organ at risk (OARs) in cervical cancer patients undergoing chemoradiation. Forty consecutive patients with cervical cancer underwent radiotherapy planning as per the departmental protocol. All patients were asked to empty their bowel and bladder before simulation and catheterization was done. Normal saline was instilled into the bladder through Foleys till the patient had a maximal urge to urinate. Pelvic cast fabrication and CT simulation was done. Then, 30%, 50%, and 100% of the instilled saline was removed and rescans taken. Planning was done on full bladder (X) and the same plan applied to the contours with bladder volumes 0.7X (PLAN70), 0.5X (PLAN50), and empty (PLAN0). A dose of 50 Gy/25# was prescribed to the PTV and plans evaluated. Intensity-modulated radiotherapy plans with full bladder were implemented for each patient. Shifts in the center of mass (COM) of the cervix/uterus with variable bladder filling identified were noted. Statistical analysis was performed using SPSS software. A p value < 0.05 was considered significant. RESULTS Bladder volume in 70%, 50%, and empty bladder planning was 78.34% (388.35 + 117.44 ml), 64.44% (320.60 + 106.20 ml), and 13.63% (62.60 + 23.12 ml), respectively. The mean dose received by 95% PTV was 49.76 Gy + 1.30 Gy. Though the difference in target coverage was significant between PLAN100 and other plans, the mean difference was minimal. A decrease in bladder filling resulted in an increase in OAR dose. Variation in the increase in dose to OARs was not significant if bladder filling was > 78.34% and > 64.44% of a full bladder with respect to the bowel and rectal/bladder doses, respectively. Inconsistent bladder filling led to a maximal shift in COM (uterus/cervix) in the Y- and Z-axis. CONCLUSION Bladder filling variations have an impact on cervico-uterine motion/shape, thereby impacting the dose to the target and OARs. It is recommended to have a threshold bladder volume of at least 70-75% of optimally filled bladder during daily treatment. TRIAL REGISTRATION Institutional review board (IRB) registered by Drug Controller General (India) with registration number ECR/10/Ins/DC/2013. Trial Registration number - RGCIRC/IRB/44/2016, registered and approved on the 14th of May 2016.
Collapse
Affiliation(s)
- Soumya Dutta
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India
| | - Abhinav Dewan
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India.
| | - Swarupa Mitra
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Radiotherapy, Fortis Hospital, Noida, Uttar Pradesh, India
| | - Sumeet Aggarwal
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India
| | - Soumitra Barik
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India
| | - M Mahammood Suhail
- Department of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Maninder Bhushan
- Department of Medical Physics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Anurag Sharma
- Department of Medical Statistics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Inderjeet Kaur Wahi
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India
| | - Kiran Dobriyal
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India
| | - Jwala Mukhee
- Department of Radiotherapy, Rajiv Gandhi Cancer Institute and Research Centre, Sector-5, Rohini, New Delhi, India
| |
Collapse
|
519
|
Jeans C, Brown B, Ward EC, Vertigan AE, Pigott AE, Nixon JL, Wratten C. Comparing the prevalence, location, and severity of head and neck lymphedema after postoperative radiotherapy for oral cavity cancers and definitive chemoradiotherapy for oropharyngeal, laryngeal, and hypopharyngeal cancers. Head Neck 2020; 42:3364-3374. [PMID: 32735033 DOI: 10.1002/hed.26394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/01/2020] [Accepted: 07/09/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND This study aimed to examine the prevalence, location, and severity of chronic internal, external, and combined head and neck lymphedema (HNL) in patients with head and neck (HNC) who were treated with definitive chemoradiotherapy (CRT) or postoperative radiotherapy (PORT). METHODS Sixty-two participants between 1 and 3 years post-treatment were recruited. Internal HNL was rated with Patterson's Scale. External HNL was graded with the MD Anderson Cancer Center Lymphedema Rating Scale. RESULTS Ninety-eight percent of participants presented with some form of chronic HNL. Sixty-one percent had internal HNL only, 35% had combined HNL, and 2% had external HNL only. Participants treated with PORT were more likely to experience combined HNL (69% vs 24%, P = .001), whereas those treated with CRT were more likely to have internal HNL only (74% vs 25%, P = .001). CONCLUSIONS Chronic HNL is highly prevalent following multimodal treatment, and differences in HNL presentations exist between treatment modalities.
Collapse
Affiliation(s)
- Claire Jeans
- Division of Speech Pathology, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Speech Pathology Department, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Bena Brown
- Division of Speech Pathology, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Functioning and Health Research, Metro South Health Services District, Queensland Health, Buranda, Brisbane, Queensland, Australia.,Speech Pathology Department, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Elizabeth C Ward
- Division of Speech Pathology, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Functioning and Health Research, Metro South Health Services District, Queensland Health, Buranda, Brisbane, Queensland, Australia
| | - Anne E Vertigan
- Speech Pathology Department, John Hunter Hospital and Belmont Hospital, New Lambton Heights, New South Wales, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Amanda E Pigott
- Centre for Functioning and Health Research, Metro South Health Services District, Queensland Health, Buranda, Brisbane, Queensland, Australia.,Division of Occupational Therapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Occupational Therapy Department, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Jodie L Nixon
- Division of Occupational Therapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Occupational Therapy Department, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Chris Wratten
- Radiation Oncology Department, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| |
Collapse
|
520
|
Bielak L, Wiedenmann N, Berlin A, Nicolay NH, Gunashekar DD, Hägele L, Lottner T, Grosu AL, Bock M. Convolutional neural networks for head and neck tumor segmentation on 7-channel multiparametric MRI: a leave-one-out analysis. Radiat Oncol 2020; 15:181. [PMID: 32727525 PMCID: PMC7392704 DOI: 10.1186/s13014-020-01618-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Background Automatic tumor segmentation based on Convolutional Neural Networks (CNNs) has shown to be a valuable tool in treatment planning and clinical decision making. We investigate the influence of 7 MRI input channels of a CNN with respect to the segmentation performance of head&neck cancer. Methods Head&neck cancer patients underwent multi-parametric MRI including T2w, pre- and post-contrast T1w, T2*, perfusion (ktrans, ve) and diffusion (ADC) measurements at 3 time points before and during radiochemotherapy. The 7 different MRI contrasts (input channels) and manually defined gross tumor volumes (primary tumor and lymph node metastases) were used to train CNNs for lesion segmentation. A reference CNN with all input channels was compared to individually trained CNNs where one of the input channels was left out to identify which MRI contrast contributes the most to the tumor segmentation task. A statistical analysis was employed to account for random fluctuations in the segmentation performance. Results The CNN segmentation performance scored up to a Dice similarity coefficient (DSC) of 0.65. The network trained without T2* data generally yielded the worst results, with ΔDSCGTV-T = 5.7% for primary tumor and ΔDSCGTV-Ln = 5.8% for lymph node metastases compared to the network containing all input channels. Overall, the ADC input channel showed the least impact on segmentation performance, with ΔDSCGTV-T = 2.4% for primary tumor and ΔDSCGTV-Ln = 2.2% respectively. Conclusions We developed a method to reduce overall scan times in MRI protocols by prioritizing those sequences that add most unique information for the task of automatic tumor segmentation. The optimized CNNs could be used to aid in the definition of the GTVs in radiotherapy planning, and the faster imaging protocols will reduce patient scan times which can increase patient compliance. Trial registration The trial was registered retrospectively at the German Register for Clinical Studies (DRKS) under register number DRKS00003830 on August 20th, 2015.
Collapse
Affiliation(s)
- Lars Bielak
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.
| | - Nicole Wiedenmann
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Nils Henrik Nicolay
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Deepa Darshini Gunashekar
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonard Hägele
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| |
Collapse
|
521
|
Bielak L, Wiedenmann N, Nicolay NH, Lottner T, Fischer J, Bunea H, Grosu AL, Bock M. Automatic Tumor Segmentation With a Convolutional Neural Network in Multiparametric MRI: Influence of Distortion Correction. ACTA ACUST UNITED AC 2020; 5:292-299. [PMID: 31572790 PMCID: PMC6752289 DOI: 10.18383/j.tom.2019.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise tumor segmentation is a crucial task in radiation therapy planning. Convolutional neural networks (CNNs) are among the highest scoring automatic approaches for tumor segmentation. We investigate the difference in segmentation performance of geometrically distorted and corrected diffusion-weighted data using data of patients with head and neck tumors; 18 patients with head and neck tumors underwent multiparametric magnetic resonance imaging, including T2w, T1w, T2*, perfusion (ktrans), and apparent diffusion coefficient (ADC) measurements. Owing to strong geometrical distortions in diffusion-weighted echo planar imaging in the head and neck region, ADC data were additionally distortion corrected. To investigate the influence of geometrical correction, first 14 CNNs were trained on data with geometrically corrected ADC and another 14 CNNs were trained using data without the correction on different samples of 13 patients for training and 4 patients for validation each. The different sets were each trained from scratch using randomly initialized weights, but the training data distributions were pairwise equal for corrected and uncorrected data. Segmentation performance was evaluated on the remaining 1 test-patient for each of the 14 sets. The CNN segmentation performance scored an average Dice coefficient of 0.40 ± 0.18 for data including distortion-corrected ADC and 0.37 ± 0.21 for uncorrected data. Paired t test revealed that the performance was not significantly different (P = .313). Thus, geometrical distortion on diffusion-weighted imaging data in patients with head and neck tumor does not significantly impair CNN segmentation performance in use.
Collapse
Affiliation(s)
- Lars Bielak
- Radiology, Medical Physics.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Nicole Wiedenmann
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Nils Henrik Nicolay
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | | | - Hatice Bunea
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Radiation Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Michael Bock
- Radiology, Medical Physics.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| |
Collapse
|
522
|
Beekman C, Beek S, Stam J, Sonke J, Remeijer P. A biomechanical finite element model to generate a library of cervix CTVs. Med Phys 2020; 47:3852-3860. [DOI: 10.1002/mp.14349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023] Open
Affiliation(s)
- Chris Beekman
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam The Netherlands
| | - Suzanne Beek
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam The Netherlands
| | - Jikke Stam
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam The Netherlands
| | - Jan‐Jakob Sonke
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam The Netherlands
| | - Peter Remeijer
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam The Netherlands
| |
Collapse
|
523
|
Witt JS, Rosenberg SA, Bassetti MF. MRI-guided adaptive radiotherapy for liver tumours: visualising the future. Lancet Oncol 2020; 21:e74-e82. [PMID: 32007208 DOI: 10.1016/s1470-2045(20)30034-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
MRI-guided radiotherapy is a novel and rapidly evolving technology that might enhance the risk-benefit ratio. Through direct visualisation of the tumour and the nearby healthy tissues, the radiation oncologist can deliver highly accurate treatment even to mobile targets. Each individual treatment can be customised to changing anatomy, potentially reducing the risk of radiation-related toxicities while simultaneously increasing the dose delivered to the tumour. MRI-guided radiotherapy offers a new tool for the radiation oncologist, and creates an opportunity to achieve durable local control of liver tumours that might not otherwise be possible. Future work will allow us to expand the population eligible for curative-intent radiotherapy, optimise and customise radiation doses to specific tumours, and hopefully create opportunities for improving outcomes through machine learning and radiomics-based approaches. This Review outlines the current and future applications for MRI-guided radiotherapy with respect to metastatic and primary liver cancers.
Collapse
Affiliation(s)
- Jacob S Witt
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen A Rosenberg
- Department of Radiation Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
524
|
Takenaka S, Araki N, Outani H, Hamada KI, Yoshikawa H, Kamada T, Imai R. Complication rate, functional outcomes, and risk factors associated with carbon ion radiotherapy for patients with unresectable pelvic bone sarcoma. Cancer 2020; 126:4188-4196. [PMID: 32658315 DOI: 10.1002/cncr.33082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To the authors' knowledge, carbon ion radiotherapy (CIRT) is one of the few curative treatments for unresectable pelvic bone sarcoma. The current study investigated the complications, functional outcomes, and risk factors of CIRT. METHODS Of 112 patients who were treated with CIRT for unresectable pelvic bone sarcoma, the authors enrolled 29 patients who were without local disease recurrence or distant metastasis. The mean follow-up was 93 months. Complications, functional outcomes, and quality of life scores were assessed. Risk factors were analyzed, including the dose-volume histogram of the femoral head. RESULTS Femoral head necrosis occurred in approximately 37% of patients, pelvic fractures were reported in 48% of patients, and neurological deficits were noted in 52% of patients. Femoral head necrosis was found to be significantly more prevalent among patients with periacetabular tumors (P = .018). The dose-volume histogram of the femoral head indicated tolerable volume percentages of the femoral head to be <33% for 40 grays (relative biological effectiveness) and 16% for 60 grays ( relative biological effectiveness). The mean Musculoskeletal Tumor Society score and Toronto Extremity Salvage Score were 53% and 64%, respectively, and the mean EuroQol 5 dimensions questionnaire index was 0.587. Patients aged >50 years and those with periacetabular tumors were found to have significantly lower Toronto Extremity Salvage Scores. CONCLUSIONS Femoral head necrosis, pelvic fracture, and nerve damage are common complications with the use of CIRT for pelvic bone sarcoma. To prevent femoral head necrosis, the radiation dose to the femoral head should be kept below the estimated tolerance curve presented in the current study. The functional outcome is nearly equivalent to that of surgery. CIRT may be a promising alternative to surgery for patients with unresectable pelvic bone sarcoma.
Collapse
Affiliation(s)
- Satoshi Takenaka
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Orthopaedics, Osaka International Cancer Institute, Osaka, Japan.,Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Nobuhito Araki
- Department of Orthopaedic Surgery, Ashiya Municipal Hospital, Ashiya, Japan
| | - Hidetatsu Outani
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ken-Ichiro Hamada
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, Toyonaka, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Reiko Imai
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
525
|
König L, Haering P, Lang C, Splinter M, von Nettelbladt B, Weykamp F, Hoegen P, Lischalk JW, Herfarth K, Debus J, Hörner-Rieber J. Secondary Malignancy Risk Following Proton vs. X-ray Treatment of Mediastinal Malignant Lymphoma: A Comparative Modeling Study of Thoracic Organ-Specific Cancer Risk. Front Oncol 2020; 10:989. [PMID: 32733794 PMCID: PMC7358352 DOI: 10.3389/fonc.2020.00989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose: Proton radiotherapy (PRT) is potentially associated with a lower risk for secondary malignancies due to a decreased integral dose to the surrounding organs at risk (OARs). Prospective trials confirming this are lacking due to the need for long-term follow-up and the ethical complexities of randomizing patients between modalities. The objective of the current study is to calculate the risk for secondary malignancies following PRT and photon-based intensity-modulated radiotherapy (IMRT). Materials and Methods: Twenty-three patients (16 female and seven male), previously treated with active scanning PRT for malignant mediastinal lymphoma at Heidelberg Ion Beam Therapy Center, were retrospectively re-planned using helical photon IMRT. The risk for radiation-induced secondary malignancies was estimated and evaluated using two distinct prediction models (1–4). Results: According to the Dasu model, the median absolute total risk for tumor induction following IMRT was 4.4% (range, 3.3–5.8%), 9.9% (range, 2.0–27.6%), and 1.0% (range, 0.5–1.5%) for lung, breast, and esophageal cancer, respectively. For PRT, it was significantly lower for the aforementioned organs at 1.6% (range, 0.7–2.1%), 4.5% (range, 0.0–15.5), and 0.8% (range, 0.0–1.6%), respectively (p ≤ 0.01). The mortality risk from secondary malignancies was also significantly reduced for PRT relative to IMRT at 1.1 vs. 3.1% (p ≤ 0.001), 0.9 vs. 1.9% (p ≤ 0.001), and 0.7 vs. 1.0% (p ≤ 0.001) for lung, breast, and esophageal tumors, respectively. Using the Schneider model, a significant risk reduction of 54.4% (range, 32.2–84.0%), 56.4% (range, 16.0–99.4%), and 24.4% (range, 0.0–99.0%) was seen for secondary lung, breast, and esophageal malignancies, favoring PRT vs. X-ray-based IMRT (p ≤ 0.01). Conclusion: Based on the two prediction models, PRT for malignant mediastinal lymphoma is expected to reduce the risk for radiation-induced secondary malignancies compared with the X-ray-based IMRT. The young age and the long natural history of patients diagnosed with mediastinal lymphoma predisposes them to a high risk of secondary malignancies following curative radiotherapy treatment and, as a consequence, potentially reducing this risk by utilizing advanced radiation therapy techniques such as PRT should be considered.
Collapse
Affiliation(s)
- Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Haering
- Department for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Clemens Lang
- Department for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Mona Splinter
- Department for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Bastian von Nettelbladt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan W Lischalk
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC, United States
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
526
|
Minniti G, Paolini S, Rea MLJ, Isidori A, Scaringi C, Russo I, Osti MF, Cavallo L, Esposito V. Stereotactic reirradiation with temozolomide in patients with recurrent aggressive pituitary tumors and pituitary carcinomas. J Neurooncol 2020; 149:123-130. [PMID: 32632895 DOI: 10.1007/s11060-020-03579-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/29/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the efficacy of a second course of fractionated stereotactic radiotherapy (re-SRT) and temozolomide (TMZ) as salvage treatment option in patients with aggressive pituitary tumors (APTs) and pituitary carcinomas (PCs). PATIENTS AND METHODS Twenty-one patients with recurrent or progressive APTs (n = 17) and PCs (n = 4) who received combined TMZ and re-SRT, 36 Gy/18fractions or 37.5 Gy/15fractions, were retrospectively evaluated. TMZ was given at a dose of 75 mg/m2 given concurrently to re-SRT, and then 150-200 mg/m2/day for 5 days every 4 weeks or 50 mg/m2 daily for 12 months. Local control (LC) and overall survival (OS) were calculated from the time of re-SRT by Kaplan-Meier method. RESULTS With a median follow-up of 27 months (range 12-58 months), 2-year and 4-year LC rates were 73% and 65%, respectively; 2-year and 4-year survival rates were 82% and 66%, respectively. A complete response was achieved in 2 and partial response in 11 patients. Six patients recurred with a median time to progression of 14 months. O(6)-Methylguanine-DNA methyltransferase (MGMT) status and tumor volume emerged as prognostic factors. Grade 3 radiation-related toxicities occurred in 3 (14%) patients. Grade 2 or 3 hematologic toxicities during chemotherapy occurred in 8 (38%) patients. CONCLUSION Re-SRT and TMZ is a safe treatment offering high LC in patients with progressive APTs and PCs. The potential advantages of combined chemoradiation as up-front or salvage treatment need to be explored in prospective trials.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | | | - Marie Lise Jaffrain Rea
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Andrea Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Scaringi
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Ivana Russo
- UPMC Hillman Cancer Center, Villa Maria, Mirabella, AV, Italy
| | | | - Luigi Cavallo
- Division of Neurosurgery, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | |
Collapse
|
527
|
Au KP, Chiang CL, Chan ACY, Cheung TT, Lo CM, Chok KSH. Initial experience with stereotactic body radiotherapy for intrahepatic hepatocellular carcinoma recurrence after liver transplantation. World J Clin Cases 2020; 8:2758-2768. [PMID: 32742986 PMCID: PMC7360706 DOI: 10.12998/wjcc.v8.i13.2758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Graft hepatocellular carcinoma (HCC) recurrence after liver transplant is more frequently encountered. Graft hepatectomy is technically challenging and is associated with high morbidity. Stereotactic body radiation therapy (SBRT) has been shown to be safe and effective for the treatment of primary HCC. However, its role in HCC recurrence in a liver graft remains unclear. AIM To evaluate the safety and efficacy of SBRT for the treatment of graft HCC recurrence after liver transplantation. METHODS A retrospective study was conducted. From 2012 to 2018, 6 patients with intrahepatic HCC recurrence after liver transplant were treated with SBRT at Queen Mary Hospital, the University of Hong Kong. The primary outcome was time to overall disease progression and secondary outcomes were time to local progression and best local response, as assessed with the Modified response Evaluation Criteria for Solid Tumours criteria. Patients were monitored for treatment related toxicities and graft dysfunction. RESULTS A total of 9 treatment courses were given for 13 tumours. The median tumour size was 2.3 cm (range 0.7-3.6 cm). Two (22%) patients had inferior vena cava tumour thrombus. The best local treatment response was: 5 (55%) complete response, 1 (11%) partial response and 3 (33%) stable disease. After a median follow up duration of 15.5 mo, no local progression or mortality was yet observed. The median time to overall disease progression was 6.5 mo. There were 6 regional progression in the liver graft (67%) and 2 distant progression in the lung (22%). There was no grade 3 or above toxicity and there was no graft dysfunction after SBRT. CONCLUSION SBRT appears to be safe in this context. Regional progression is the mode of failure.
Collapse
Affiliation(s)
- Kin Pan Au
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Chi Leung Chiang
- Department of Clinical Oncology, Queen Mary Hospital, the University of Hong Kong, Hong Kong 999077, China
| | - Albert Chi Yan Chan
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Tan To Cheung
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Chung Mau Lo
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Kenneth Siu Ho Chok
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
528
|
Singh G, Kamal R, Thaper D, Oinam AS, Handa B, Kumar V, Kumar N. Voxel based evaluation of sequential radiotherapy treatment plans with different dose fractionation schemes. Br J Radiol 2020; 93:20200197. [PMID: 32614607 DOI: 10.1259/bjr.20200197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE This study presents a methodology for voxel-based evaluation of two phase sequential radiotherapy treatment plans having conventional dose scheme in the first phase and subsequent hypofractionation dose scheme in the second phase based upon different priority [planning target volume (PTV), clinical target volume (CTV) and organs at risk (OAR)] of display modes. METHODS A case of carcinoma prostate was selected for demonstration. Varian Eclipse treatment planning system (TPS) was used for contouring and planning. In the first phase, a dose of 52 Gy in 26 fractions to the PTV and in the second phase, a dose of 19.5 Gy in 3 fractions to the PTV Boost was planned on the same CT data set. Both the plans (Phase 1 and Phase 2) were exported and processed using "Voxel-based radiobiology display (VRb) tool". Plan Sum for Biologically effective dose (BED)-Cube and equivalent dose of 2Gy (EQD2)-Cube was reconstructed using a combination of linear quadratic (LQ) and linear quadratic-linear (LQ-L) radiobiological models. Tumor control probability (TCP) and normal tissue complication probability (NTCP) for different target volumes and organs were also calculated using EQD2-volume histograms of the Plan Sum. RESULTS An in-house graphical user interface (GUI) is developed to present the qualitative and quantitative evaluation of the multiphase treatment plans with different display modes and dose regimens. The voxel based TCP obtained for the combined target volume was 90.56%. NTCP for the bladder and rectum was calculated from the Plan Sum histograms and found to be 0.33% and ~0.0% respectively. CONCLUSION The proposed methodology using the VRb tool offers superior plan evaluation for multiphase sequential radiotherapy treatment plans over the existing methods. ADVANCES IN KNOWLEDGE PTV, CTV and OAR priority based display modes in VRb tool offers better understanding of radiobiological evaluation of sequential radiotherapy treatment plans.
Collapse
Affiliation(s)
- Gaganpreet Singh
- Centre for Medical Physics, Panjab University, Chandigarh, India
| | - Rose Kamal
- Centre for Medical Physics, Panjab University, Chandigarh, India
| | - Deepak Thaper
- Centre for Medical Physics, Panjab University, Chandigarh, India
| | - Arun Singh Oinam
- Department of Radiotherapy, PGIMER, Regional Cancer Centre, Chandigarh, India
| | - Bhumika Handa
- Centre for Medical Physics, Panjab University, Chandigarh, India
| | - Vivek Kumar
- Centre for Medical Physics, Panjab University, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, PGIMER, Regional Cancer Centre, Chandigarh, India
| |
Collapse
|
529
|
Ye F, Ning J, Fardous Z, Katsube T, Li Q, Wang B. Citrulline, A Potential Biomarker of Radiation-Induced Small Intestine Damage. Dose Response 2020; 18:1559325820962341. [PMID: 33013253 PMCID: PMC7513408 DOI: 10.1177/1559325820962341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation damage assessment of the small intestine is important in nuclear accidents or routine radiotherapy of abdominal tumors. This article reviews the clinical symptoms and molecular mechanisms of radiation-induced small intestinal damage and summarizes recent research on biomarkers of such damage. Citrulline is the most promising biomarker for the evaluation of radiation-induced small intestinal damage caused by radiotherapy and nuclear accidents. This article also summarizes the factors influencing plasma citrulline measurement investigated in the latest research, as well as new findings on the concentration of citrulline in saliva and urine after different types of radiation.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Jing Ning
- Gansu Provincial Hospital, Lanzhou, People’s Republic of China
| | - Zeenath Fardous
- Institute of Food and Radiation
Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy
Commission, Dhaka, Bangladesh
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of
China
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes
for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
530
|
Ramos-Prudencio R, Pérez-Álvarez SI, Flores-Balcazar CH, de León-Alfaro MA, Herrera-González JA, Elizalde-Cabrera J, Rubalcava-Ortega J, Espinoza-Alvarado L, Balderrama-Ibarra RI. Radiotherapy for the treatment of pituitary adenomas: A dosimetric comparison of three planning techniques. Rep Pract Oncol Radiother 2020; 25:586-593. [PMID: 32508534 PMCID: PMC7264003 DOI: 10.1016/j.rpor.2020.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022] Open
Abstract
AIM Our goal was to compare conformal 3D (C3D) radiotherapy (RT), modulated intensity RT (IMRT), and volumetric modulated arc therapy (VMAT) planning techniques in treating pituitary adenomas. BACKGROUND RT is important for managing pituitary adenomas. Treatment planning advances allow for higher radiation dosing with less risk of affecting organs at risk (OAR). MATERIALS AND METHODS We conducted a 5-year retrospective review of patients with pituitary adenoma treated with external beam radiation therapy (C3D with flattening filter, flattening filter-free [FFF], IMRT, and VMAT). We compared dose-volume histogram data. For OARs, we recorded D2%, maximum, and mean doses. For planning target volume (PTV), we registered V95%, V107%, D95%, D98%, D50%, D2%, minimum dose, conformity index (CI), and homogeneity index (HI). RESULTS Fifty-eight patients with pituitary adenoma were included. Target-volume coverage was acceptable for all techniques. The HI values were 0.06, IMRT; 0.07, VMAT; 0.08, C3D; and 0.09, C3D FFF (p < 0.0001). VMAT and IMRT provided the best target volume conformity (CI, 0.64 and 0.74, respectively; p < 0.0001). VMAT yielded the lowest doses to the optic pathway, lens, and cochlea. The position of the neck in extreme flexion showed that it helps in planning mainly with VMAT by allowing only one arc to be used and achieving the desired conformity, decreasing the treatment time, while allowing greater protection to the organs of risk using C3D, C3DFFF. CONCLUSIONS Our results confirmed that EBRT in pituitary adenomas using IMRT, VMAT, C3D, C3FFF provide adequate coverage to the target. VMAT with a single arc or incomplete arc had a better compliance with desired dosimetric goals, such as target coverage and normal structures dose constraints, as well as shorter treatment time. Neck extreme flexion may have benefits in treatment planning for better preservation of organs at risk. C3D with extreme neck flexion is an appropriate treatment option when other treatment techniques are not available.
Collapse
Key Words
- C3D, conformal three-dimensional radiotherapy
- CFRT, conventional fractionated radiotherapy
- CI, conformity index
- CT, computed tomography
- CTV, clinical target volume
- Conformal radiotherapy
- DVH, dose-volume histogram
- EBRT, external beam radiation therapy
- ESAPI, Eclipse Scripting Application Programming Interface
- FF, flattening filter
- FFF, flattening filter free
- GTV, gross tumor volume
- HI, homogeneity index
- IMRT
- IMRT, modulated intensity radiotherapy
- MRI, magnetic resonance imaging
- OAR, organs at risk
- PTV, planning target volume
- Pituitary adenomas
- RION, radiation-induced neuropathy
- RT, radiotherapy
- SRS, stereotactic radiosurgery
- VMAT
- VMAT, volumetric modulated arc therapy
Collapse
Affiliation(s)
- Rubi Ramos-Prudencio
- Department of Radiotherapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Sandra Ileana Pérez-Álvarez
- Department of Radiotherapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Christian Haydée Flores-Balcazar
- Department of Radiotherapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Mayra Angélica de León-Alfaro
- Department of Radiotherapy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Sección XVI, Tlalpan, México City 14080, Mexico
| | - José Alfredo Herrera-González
- Division of Radiotherapy, Instituto Nacional de Cancerología, 22 San Fernando Ave, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Jonathan Elizalde-Cabrera
- Division of Radiotherapy, Instituto Nacional de Cancerología, 22 San Fernando Ave, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Johnatan Rubalcava-Ortega
- Department of Neuroimaging, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Lissett Espinoza-Alvarado
- Department of Neuroimaging, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Ricardo Iván Balderrama-Ibarra
- Department of Radiotherapy, Instituto Mexicano Del Seguro Social (IMSS), Centro Médico Nacional de Occidente, Universidad de Guadalajara, Independencia Oriente, Guadalajara 44340, Mexico
| |
Collapse
|
531
|
Barazzuol L, Coppes RP, van Luijk P. Prevention and treatment of radiotherapy-induced side effects. Mol Oncol 2020; 14:1538-1554. [PMID: 32521079 PMCID: PMC7332214 DOI: 10.1002/1878-0261.12750] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy remains a mainstay of cancer treatment, being used in roughly 50% of patients. The precision with which the radiation dose can be delivered is rapidly improving. This precision allows the more accurate targeting of radiation dose to the tumor and reduces the amount of surrounding normal tissue exposed. Although this often reduces the unwanted side effects of radiotherapy, we still need to further improve patients' quality of life and to escalate radiation doses to tumors when necessary. High-precision radiotherapy forces one to choose which organ or functional organ substructures should be spared. To be able to make such choices, we urgently need to better understand the molecular and physiological mechanisms of normal tissue responses to radiotherapy. Currently, oversimplified approaches using constraints on mean doses, and irradiated volumes of normal tissues are used to plan treatments with minimized risk of radiation side effects. In this review, we discuss the responses of three different normal tissues to radiotherapy: the salivary glands, cardiopulmonary system, and brain. We show that although they may share very similar local cellular processes, they respond very differently through organ-specific, nonlocal mechanisms. We also discuss how a better knowledge of these mechanisms can be used to treat or to prevent the effects of radiotherapy on normal tissue and to optimize radiotherapy delivery.
Collapse
Affiliation(s)
- Lara Barazzuol
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rob P. Coppes
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
532
|
Clinical implication in the use of the AAA algorithm versus the AXB in nasopharyngeal carcinomas by comparison of TCP and NTCP values. Radiat Oncol 2020; 15:150. [PMID: 32532351 PMCID: PMC7291676 DOI: 10.1186/s13014-020-01591-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Retrospective analysis of volumetric modulated arc therapy treatment plans to investigate qualitative, possible, clinical consequences of the use of AAA versus AXB in nasopharyngeal cancer (NPC) cases. Methods The dose distribution of 26 treatment plans, produced using RapidArc technique and AAA algorithm, were recalculated using AXB and the same number of monitor units provided by AAA and clinically delivered to each patient. The potential clinical effect of dosimetric differences in the planning target volume (PTV) and in organs at risk (OAR) were evaluated by comparing TCP and NTCP values. The Wilcoxon Signed Rank test was used for statistical comparison of all results obtained from the use of the two algorithms. Results The poorer coverage of the PTV, with higher prescribed dose, was reflected in the TCP, which was significantly lower when AXB was used, the median value was 81.55% (range: 74.90, 88.60%) and 84.10% (range: 77.70, 89.90%) for AAA (p < 0.001). OAR mean dose was lower in the AXB recalculated plan than the AAA plan and the difference was statistically significant for all the structures. The NTCP for developing mandible necrosis showed the largest median percentage difference between AAA and AXB (56.6%), the NTCP of risk for larynx edema of Grade ≥ 2 followed with 12.2%. Conclusions Differences in dose distribution of NPC treatment plans recalculated with AXB are of clinical significance in those situations where the PTV and OAR involve air or bone, media in which AXB has been shown to more accurately represent the true dose distribution. The availability of AXB algorithm could improve patient dose estimation, increasing the data consistency of clinical trials.
Collapse
|
533
|
Opposits G, Aranyi C, Glavák C, Cselik Z, Trón L, Sipos D, Hadjiev J, Berényi E, Repa I, Emri M, Kovács Á. OAR sparing 3D radiotherapy planning supported by fMRI brain mapping investigations. Med Dosim 2020; 45:e1-e8. [PMID: 32505630 DOI: 10.1016/j.meddos.2020.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/21/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
Abstract
The human brain as an organ has numerous functions; some of them can be visualized by functional imaging techniques (e.g., functional MRI [fMRI] or positron emission tomography). The localization of the appropriate activity clusters requires sophisticated instrumentation and complex measuring protocol. As the inclusion of the activation pattern in modern self-tailored 3D based radiotherapy has notable advantages, this method is applied frequently. Unfortunately, no standardized method has been published yet for the integration of the fMRI data into the planning process and the detailed description of the individual applications is usually missing. Thirteen patients with brain tumors, receiving fMRI based RT planning were enrolled in this study. The delivered dose maps were exported from the treatment planning system and processed for further statistical analysis. Two parameters were introduced to measure the geometrical distance Hausdorff Distance (HD), and volumetric overlap Dice Similarity Coefficient (DSC) of fMRI corrected and not corrected dose matrices as calculated by 3D planning to characterize similarity and/or dissimilarity of these dose matrices. Statistical analysis of bootstrapped HD and DSC data was performed to determine confidence intervals of these parameters. The calculated confidence intervals for HD and DSC were (5.04, 7.09), (0.79, 0.86), respectively for the 40 Gy and (5.2, 7.85), (0.74, 0.83), respectively for the 60 Gy dose volumes. These data indicate that in the case of HD < 5.04 and/or DSC > 0.86, the 40 Gy dose volumes obtained with and without fMRI activation pattern do not show a significant difference (5% significance level). The same conditions for the 60 Gy dose volumes were HD < 5.2 and/or DSC > 0.83. At the same time, with HD > 7.09 and/or DSC < 0.79 for 40 Gy and HD > 7.85 and/or DSC < 0.74 for 60 Gy the impact of fMRI utilization in RT planning is excessive. The fMRI activation clusters can be used in daily RT planning routine to spare activation clusters as critical areas in the brain and avoid their high dose irradiation. Parameters HD (as distance) and DSC (as overlap) can be used to characterize the difference and similarity between the radiotherapy planning target volumes and indicate whether the fMRI delivered activation patterns and consequent fMRI corrected planning volumes are reliable or not.
Collapse
Affiliation(s)
- Gábor Opposits
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary.
| | - Csaba Aranyi
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Csaba Glavák
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary
| | - Zsolt Cselik
- Veszprém County Hospital, Oncoradiology, Veszprém, Hungary
| | - Lajos Trón
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Dávid Sipos
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary; University of Pécs Doctoral School of Health Sciences, Pécs, Hungary
| | - Janaki Hadjiev
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary
| | - Ervin Berényi
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Imre Repa
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary
| | - Miklós Emri
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Árpád Kovács
- University of Debrecen, Faculty of Medicine, Department of Oncoradiology, Debrecen, Hungary; Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary; University of Pécs Doctoral School of Health Sciences, Pécs, Hungary
| |
Collapse
|
534
|
Impact of brachial plexus movement during radical radiotherapy for head and neck cancers: the case for a larger planning organ at risk volume margin. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractIntroduction:Treatment volumes for radical radiotherapy to head and neck cancers commonly extend into the lower neck, the territory of the brachial plexus (BP). There is a risk of radiation-induced brachial plexopathy, a non-reversible late toxicity experienced by a small number of patients. The BP was anatomically divided into superior and inferior divisions and analysed to establish if segmental inter-fractional BP movement should be considered when planning radiotherapy in this high-dose region.Methods:A retrospective single-centre analysis of 15 patients with head and neck cancers treated with radical bilateral neck irradiation was conducted. The extent of BP movement relative to the planning scan was assessed using weekly cone beam computed tomography (CBCT) scans. The BP was contoured on the planning scan and the subsequent six weekly CBCTs; this was used to calculate the Jaccard Conformity Index (JCI) for the left, right, superior and inferior divisions of the BP.Results:The mean (±SD) JCI for right and left superior BP was 44·4±15·5%, whereas the mean (±SD) JCI for right and left inferior BP was 38·3±15·5%. There was a statistically significant difference between superior and inferior JCI, p=0·0002, 95% CI (−9·26 to −2·88). Bilateral superior BP JCI was higher, with better conformity than the corresponding inferior divisions.Conclusions:Inter-fractional BP movement occurs; the greatest movement is seen at the inferior division. This data suggest the need for re-evaluation of current BP margins and consideration of a larger inferior BP planning at risk volume (PRV) margin.
Collapse
|
535
|
Kang J, Coates JT, Strawderman RL, Rosenstein BS, Kerns SL. Genomics models in radiotherapy: From mechanistic to machine learning. Med Phys 2020; 47:e203-e217. [PMID: 32418335 PMCID: PMC8725063 DOI: 10.1002/mp.13751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022] Open
Abstract
Machine learning (ML) provides a broad framework for addressing high-dimensional prediction problems in classification and regression. While ML is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data toward questions of radiation biology. Here, we provide a review of radiogenomics modeling frameworks and efforts toward genomically guided radiotherapy. We first discuss medical oncology efforts to develop precision biomarkers. We next discuss similar efforts to create clinical assays for normal tissue or tumor radiosensitivity. We then discuss modeling frameworks for radiosensitivity and the evolution of ML to create predictive models for radiogenomics.
Collapse
Affiliation(s)
- John Kang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James T. Coates
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Robert L. Strawderman
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA
| | - Barry S. Rosenstein
- Department of Radiation Oncology and the Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah L. Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
536
|
Hung YH, Lin YC, Lin YT, Shih GW, Liao JW, Chen KS, Liu HM, Chen YW, Chuang YJ, Yang CM, Peir JJ, Yang CH, Chou FI. Suitability of boric acid as a boron drug for boron neutron capture therapy for hepatoma. Appl Radiat Isot 2020; 164:109254. [PMID: 32554126 DOI: 10.1016/j.apradiso.2020.109254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Hepatoma is the second leading cause of cancer death worldwide. Due to the poor outcomes of patients with late diagnosis, newer treatments for hepatoma are still needed. As an emerging therapy, boron neutron capture therapy (BNCT) may be an effective solution in hepatoma management. In this study, boric acid (BA) was used as the boron drug for in vivo analysis of action mechanism. The N1S1 single liver tumor-bearing rat and the VX2 multifocal liver tumor-bearing rabbit models were used to investigate the retention status of BA in the tumor regions during BNCT. The autoradiographic examination showed BA can localize specifically not only in the hepatoma cells but also in tumor blood vessels. Our findings indicate that superior hepatoma targeting could be achieved in BA-mediated BNCT, which supports BA to be a suitable boron drug for BNCT for hepatoma.
Collapse
Affiliation(s)
- Yi-Hsuan Hung
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chuan Lin
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ting Lin
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Guan-Wen Shih
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Sheng Chen
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Ming Liu
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wei Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Jen Chuang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Jinn-Jer Peir
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Hua Yang
- Department of Biomedical Engineering & Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Department of Radiology, Taoyuan General Hospital, Department of Health, Executive Yuan, Taoyuan, Taiwan
| | - Fong-In Chou
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
537
|
Kitpanit S, Lee A, Pitter KL, Fan D, Chow JC, Neal B, Han Z, Fox P, Sine K, Mah D, Dunn LA, Sherman EJ, Michel L, Ganly I, Wong RJ, Boyle JO, Cohen MA, Singh B, Brennan CW, Gavrilovic IT, Hatzoglou V, O'Malley B, Zakeri K, Yu Y, Chen L, Gelblum DY, Kang JJ, McBride SM, Tsai CJ, Riaz N, Lee NY. Temporal Lobe Necrosis in Head and Neck Cancer Patients after Proton Therapy to the Skull Base. Int J Part Ther 2020; 6:17-28. [PMID: 32582816 PMCID: PMC7302730 DOI: 10.14338/ijpt-20-00014.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To demonstrate temporal lobe necrosis (TLN) rate and clinical/dose-volume factors associated with TLN in radiation-naïve patients with head and neck cancer treated with proton therapy where the field of radiation involved the skull base. MATERIALS AND METHODS Medical records and dosimetric data for radiation-naïve patients with head and neck cancer receiving proton therapy to the skull base were retrospectively reviewed. Patients with <3 months of follow-up, receiving <45 GyRBE or nonconventional fractionation, and/or no follow-up magnetic resonance imaging (MRI) were excluded. TLN was determined using MRI and graded using Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Clinical (gender, age, comorbidities, concurrent chemotherapy, smoking, radiation techniques) and dose-volume parameters were analyzed for TLN correlation. The receiver operating characteristic curve and area under the curve (AUC) were performed to determine the cutoff points of significant dose-volume parameters. RESULTS Between 2013 and 2019, 234 patients were included. The median follow-up time was 22.5 months (range = 3.2-69.3). Overall TLN rates of any grade, ≥ grade 2, and ≥ grade 3 were 5.6% (N = 13), 2.1%, and 0.9%, respectively. The estimated 2-year TLN rate was 4.6%, and the 2-year rate of any brain necrosis was 6.8%. The median time to TLN was 20.9 months from proton completion. Absolute volume receiving 40, 50, 60, and 70 GyRBE (absolute volume [aV]); mean and maximum dose received by the temporal lobe; and dose to the 0.5, 1, and 2 cm3 volume receiving the maximum dose (D0.5cm3, D1cm3, and D2cm3, respectively) of the temporal lobe were associated with greater TLN risk while clinical parameters showed no correlation. Among volume parameters, aV50 gave maximum AUC (0.921), and D2cm3 gave the highest AUC (0.935) among dose parameters. The 11-cm3 cutoff value for aV50 and 62 GyRBE for D2cm3 showed maximum specificity and sensitivity. CONCLUSION The estimated 2-year TLN rate was 4.6% with a low rate of toxicities ≥grade 3; aV50 ≤11 cm3, D2cm3 ≤62 GyRBE and other cutoff values are suggested as constraints in proton therapy planning to minimize the risk of any grade TLN. Patients whose temporal lobe(s) unavoidably receive higher doses than these thresholds should be carefully followed with MRI after proton therapy.
Collapse
Affiliation(s)
- Sarin Kitpanit
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Anna Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken L. Pitter
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Fan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - James C.H. Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Brian Neal
- ProCure Proton Therapy Center, Somerset, NJ, USA
| | - Zhiqiang Han
- ProCure Proton Therapy Center, Somerset, NJ, USA
| | - Pamela Fox
- ProCure Proton Therapy Center, Somerset, NJ, USA
| | - Kevin Sine
- ProCure Proton Therapy Center, Somerset, NJ, USA
| | - Dennis Mah
- ProCure Proton Therapy Center, Somerset, NJ, USA
| | - Lara A. Dunn
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric J. Sherman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Loren Michel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jay O. Boyle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc A. Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bhuvanesh Singh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W. Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Igor T. Gavrilovic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard O'Malley
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
- ProCure Proton Therapy Center, Somerset, NJ, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jung Julie Kang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean M. McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chiaojung J. Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
538
|
Gayen S, Kombathula SH, Manna S, Varshney S, Pareek P. Dosimetric comparison of coplanar and non-coplanar volumetric-modulated arc therapy in head and neck cancer treated with radiotherapy. Radiat Oncol J 2020; 38:138-147. [PMID: 33012157 PMCID: PMC7533406 DOI: 10.3857/roj.2020.00143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate the dosimetric variations in patients of head and neck cancer treated with definitive or adjuvant radiotherapy using optimized non-coplanar (ncVMAT) beams with coplanar (cVMAT) beams using volumetric arc therapy. Materials and Methods Twenty-two patients of head and neck cancer that had received radiotherapy using VMAT in our department were retrospectively analyzed. Each of the patients was planned using coplanar and non-coplanar orientations using an optimized couch angle and fluences. We analyzed the Conformity Index (CIRTOG), Dose Homogeneity Index (DHI), Heterogeneity Index (HIRTOG), low dose volume, target and organs-at-risk coverage in both the plans without changing planning optimization parameters. Results The prescription dose ranged from 60 Gy to 70 Gy. Using ncVMAT, CIRTOG, DHI and HIRTOG, and tumor coverage (ID95%) had improved, low dose spillage volume in the body V5Gy was increased and V10Gy was reduced. Integral dose and intensity-modulated radiation therapy factor had increased in ncVMAT. In the case of non-coplanar beam arrangements, maximum dose (Dmax) of right and left humeral head were reduced significantly whereas apex of the right and left lung mean dose were increased. Conclusion The use of ncVMAT produced better target coverage and sparing of the shoulder and soft tissue of the neck as well as the critical organ compared with the cVMAT in patients of head and neck malignancy.
Collapse
Affiliation(s)
- Sanjib Gayen
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Sri Harsha Kombathula
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Sumanta Manna
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Sonal Varshney
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
539
|
Kelly VJ, Wu ST, Gottumukkala V, Coelho R, Palmer K, Nair S, Erick T, Puri R, Ilovich O, Mukherjee P. Preclinical evaluation of an 111In/ 225Ac theranostic targeting transformed MUC1 for triple negative breast cancer. Theranostics 2020; 10:6946-6958. [PMID: 32550914 PMCID: PMC7295045 DOI: 10.7150/thno.38236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: Transformed MUC1 (tMUC1) is a cancer-associated antigen that is overexpressed in >90% of triple-negative breast cancers (TNBC), a highly metastatic and aggressive subtype of breast cancer. TAB004, a murine antibody targeting tMUC1, has shown efficacy for the targeted delivery of therapeutics to cancer cells. Our aim was to evaluate humanized TAB004 (hTAB004) as a potential theranostic for TNBC. Methods: The internalization of hTAB004 in tMUC1 expressing HCC70 cells was assessed via fluorescent microscopy. hTAB004 was DOTA-conjugated and radiolabeled with Indium-111 or Actinium-225 and tested for stability and tMUC1 binding (ELISA, flow cytometry). Lastly, in vivo biodistribution (SPECT-CT), dosimetry, and efficacy of hTAB004 were evaluated using a TNBC orthotopic mouse model. Results: hTAB004 was shown to bind and internalize into tMUC1-expressing cells. A production method of 225Ac-DOTA-hTAB004 (yield>97%, RCP>97% SA=5 kBq/µg) and 111In-DOTA-hTAB004 (yield>70%, RCP>99%, SA=884 kBq/µg) was developed. The labeled molecules retained their affinity to tMUC1 and were stable in formulation and mouse serum. In NSG female mice bearing orthotopic HCC70 xenografts, the in vivo tumor concentration of 111In-DOTA-hTAB004 was 65 ± 15 %ID/g (120 h post injection). A single 225Ac-DOTA-hTAB004 dose (18.5 kBq) caused a significant reduction in tumor volume (P<0.001, day 22) and increased survival compared to controls (P<0.007). The human dosimetry results were comparable to other clinically used agents. Conclusion: The results obtained with hTAB004 suggest that the 111In/225Ac-DOTA-hTAB004 combination has significant potential as a theranostic strategy in TNBC and merits further development toward clinical translation.
Collapse
|
540
|
Radioembolization of hepatocarcinoma with 90Y glass microspheres: treatment optimization using the dose-toxicity relationship. Eur J Nucl Med Mol Imaging 2020; 47:3018-3032. [PMID: 32451604 DOI: 10.1007/s00259-020-04845-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
AIM Transarterial radioembolization (TARE) is, by all standards, a radiation therapy. As such, according to Euratom Directive 2013/59, it should be optimized by a thorough treatment plan based on the distinct evaluation of absorbed dose to the lesions and to the non-tumoural liver (two-compartment dosimetry). Since the dosimetric prediction with 99mTc albumin macro-aggregates (MAA) of non-tumoural liver is much more accurate than the same prediction on lesions, treatment planning should focus on non-tumoural liver rather than on lesion dosimetry. The aim of this study was to determine a safety limit through the analysis of pre-treatment dosimetry with 99mTc-MAA single photon emission computed tomography (SPECT/CT), in order to deliver the maximum tolerable absorbed dose to non-tumoural liver. METHODS Data from intermediate/advanced hepato-cellular carcinoma (HCC) patients treated with 90Y glass microspheres were collected in this single-arm retrospective study. Injection was always lobar, even in case of bilobar disease, to avoid treating the whole liver in a single session. A three-level definition of liver decompensation (LD) was introduced, considering toxicity only in cases of liver decompensation requiring medical action (LD type C, LDC). We report LDC rates, receiver operating characteristic (ROC) analysis between LDC and NO LDC absorbed dose distributions, normal tissue complication probability (NTCP) curves and uni- and multivariate analysis of risk factors associated with toxicity. RESULTS A 6-month timeline was defined as necessary to capture all treatment-related toxicity events. Previous transarterial chemoembolization (TACE), presence or extension of portal vein tumoural thrombosis (PVTT) and tumour pattern (nodular versus infiltrative) were not associated with tolerance to TARE. On the contrary, at the multivariate analysis, the absorbed dose averaged over the whole non-tumoural liver (including the non-injected lobe) was a prognostic indicator correlated with liver decompensation (odds ratio = 4.24). Basal bilirubin > 1.1 mg/dL was a second even more significant risk factor (odds ratio = 6.35). NTCP analysis stratified with this bilirubin cut-off determined a 15% liver decompensation risk at 50 Gy/90 Gy for bilirubin >/< 1.1 mg/dL. These results are valid for a 90Y glass microsphere administration 4 days after the reference time. CONCLUSION Given the low predictive accuracy of 99mTc-MAA on lesion absorbed dose reported by several authors, an optimized TARE with 90Y glass microspheres with lobar injection 4 days after reference time should aim at an absorbed dose averaged over the whole non-tumoural liver of 50 Gy/90 Gy for basal bilirubin higher/lower than 1.1 mg/dL, respectively.
Collapse
|
541
|
Chargari C, Levy A, Paoletti X, Soria JC, Massard C, Weichselbaum RR, Deutsch E. Methodological Development of Combination Drug and Radiotherapy in Basic and Clinical Research. Clin Cancer Res 2020; 26:4723-4736. [PMID: 32409306 DOI: 10.1158/1078-0432.ccr-19-4155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
Newer technical improvements in radiation oncology have been rapidly implemented in recent decades, allowing an improved therapeutic ratio. The development of strategies using local and systemic treatments concurrently, mainly targeted therapies, has however plateaued. Targeted molecular compounds and immunotherapy are increasingly being incorporated as the new standard of care for a wide array of cancers. A better understanding of possible prior methodology issues is therefore required and should be integrated into upcoming early clinical trials including individualized radiotherapy-drug combinations. The outcome of clinical trials is influenced by the validity of the preclinical proofs of concept, the impact on normal tissue, the robustness of biomarkers and the quality of the delivery of radiation. Herein, key methodological aspects are discussed with the aim of optimizing the design and implementation of future precision drug-radiotherapy trials.
Collapse
Affiliation(s)
- Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xavier Paoletti
- University of Versailles St. Quentin, France
- Institut Curie INSERM U900, Biostatistics for Personalized Medicine Team, St. Cloud, France
| | | | - Christophe Massard
- Université Paris-Sud, Orsay, France
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
542
|
El Shafie RA, Tonndorf-Martini E, Schmitt D, Celik A, Weber D, Lang K, König L, Höne S, Forster T, von Nettelbladt B, Adeberg S, Debus J, Rieken S, Bernhardt D. Single-Isocenter Volumetric Modulated Arc Therapy vs. CyberKnife M6 for the Stereotactic Radiosurgery of Multiple Brain Metastases. Front Oncol 2020; 10:568. [PMID: 32457829 PMCID: PMC7225280 DOI: 10.3389/fonc.2020.00568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction: Stereotactic radiosurgery (SRS) is becoming more frequently used for patients with multiple brain metastases (BMs). Single-isocenter volumetric modulated arc therapy (SI-VMAT) is an emerging alternative to dedicated systems such as CyberKnife (CK). We present a dosimetric comparison between CyberKnife M6 and SI-VMAT, planned at RayStation V8B, for the simultaneous SRS of five or more BM. Patients and Methods: Twenty treatment plans of CK-based single-session SRS to ≥5 brain metastases were replanned using SI-VMAT for delivery at an Elekta VersaHD linear accelerator. Prescription dose was 20 or 18 Gy, conformally enclosing at least 98% of the total planning target volume (PTV), with PTV margin-width adapted to the respective SRS technique. Comparatively analyzed quality metrics included dose distribution to the healthy brain (HB), including different isodose volumes, conformity, and gradient indices. Estimated treatment time was also compared. Results: Median HB isodose volumes for 3, 5, 8, 10, and 12 Gy were consistently smaller for CK-SRS compared to SI-VMAT (p < 0.001). Dose falloff outside the target volume, as expressed by the gradient indices GI_high and GI_low, was consistently steeper for CK-SRS compared to SI-VMAT (p < 0.001). CK-SRS achieved a median GI_high of 3.1 [interquartile range (IQR), 2.9–1.3] vs. 5.0 (IQR 4.3–5.5) for SI-VMAT (p < 0.001). For GI_low, the results were 3.0 (IQR, 2.9–3.1) for CK-SRS vs. 5.6 (IQR, 4.3–5.5) for SI-VMAT (p < 0.001). The median conformity index (CI) was 1.2 (IQR, 1.1–1.2) for CK-SRS vs. 1.5 (IQR, 1.4–1.7) for SI-VMAT (p < 0.001). Estimated treatment time was shorter for SI-VMAT, yielding a median of 13.7 min (IQR, 13.5–14.0) compared to 130 min (IQR, 114.5–154.5) for CK-SRS (p < 0.001). Conclusion: SI-VMAT offers enhanced treatment efficiency in cases with multiple BM, as compared to CyberKnife, but requires compromise regarding conformity and integral dose to the healthy brain. Additionally, delivery at a conventional linear accelerator (linac) may require a larger PTV margin to account for delivery and setup errors. Further evaluations are warranted to determine whether the detected dosimetric differences are clinically relevant. SI-VMAT could be a reasonable alternative to a dedicated radiosurgery system for selected patients with multiple BM.
Collapse
Affiliation(s)
- Rami A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Eric Tonndorf-Martini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Daniela Schmitt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Aylin Celik
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Dorothea Weber
- Institute of Medical Biometry and Informatics (IMBI), Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Simon Höne
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Bastian von Nettelbladt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
543
|
Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, Imai T, Imaizumi M, Imaoka T, Kakinuma S, Kamada T, Nishimura N, Okonogi N, Ozasa K, Rübe CE, Sadakane A, Sakata R, Shimada Y, Yoshida K, Bouffler S. Individual response of humans to ionising radiation: governing factors and importance for radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:185-209. [PMID: 32146555 DOI: 10.1007/s00411-020-00837-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
Tissue reactions and stochastic effects after exposure to ionising radiation are variable between individuals but the factors and mechanisms governing individual responses are not well understood. Individual responses can be measured at different levels of biological organization and using different endpoints following varying doses of radiation, including: cancers, non-cancer diseases and mortality in the whole organism; normal tissue reactions after exposures; and, cellular endpoints such as chromosomal damage and molecular alterations. There is no doubt that many factors influence the responses of people to radiation to different degrees. In addition to the obvious general factors of radiation quality, dose, dose rate and the tissue (sub)volume irradiated, recognized and potential determining factors include age, sex, life style (e.g., smoking, diet, possibly body mass index), environmental factors, genetics and epigenetics, stochastic distribution of cellular events, and systemic comorbidities such as diabetes or viral infections. Genetic factors are commonly thought to be a substantial contributor to individual response to radiation. Apart from a small number of rare monogenic diseases such as ataxia telangiectasia, the inheritance of an abnormally responsive phenotype among a population of healthy individuals does not follow a classical Mendelian inheritance pattern. Rather it is considered to be a multi-factorial, complex trait.
Collapse
Affiliation(s)
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany
| | - A Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden
| | - M Bourguignon
- Department of Biophysics and Nuclear Medicine, University of Paris Saclay (UVSQ), Verseilles, France
| | - A Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - T Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - M Imaizumi
- Department of Nagasaki Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan
| | - T Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - S Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - T Kamada
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - N Okonogi
- QST Hospital, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - K Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - C E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - A Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - R Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Y Shimada
- National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Aomori, Japan
| | - K Yoshida
- Immunology Laboratory, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - S Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilto, Didcot, UK
| |
Collapse
|
544
|
Ileana PÁS, Rubi RP, Javier LRF, Sagrario MGMD, Haydeé FBC. Pelvic radiation therapy with volumetric modulated arc therapy and intensity-modulated radiotherapy after renal transplant: A report of 3 cases. Rep Pract Oncol Radiother 2020; 25:548-555. [PMID: 32494227 DOI: 10.1016/j.rpor.2020.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/23/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Aim Describe characteristics and outcomes of three patients treated with pelvic radiation therapy after kidney transplant. Background The incidence of pelvic cancers in kidney transplant (KT) recipients is rising. Currently it is the leading cause of death. Moreover, treatment is challenging because anatomical variants, comorbidities, and associated treatments, which raises the concern of using radiotherapy (RT). RT has been discouraged due to the increased risk of urethral/ureteral stricture and KT dysfunction. Materials and methods We reviewed the electronic health records and digital planning system of patients treated with pelvic RT between December 2013 and December 2018 to identify patients with previous KT. Cases description We describe three successful cases of KT patients in which modern techniques allowed full standard RT for pelvic malignances (2 prostate and 1 vaginal cancer) with or without elective pelvic nodal RT, without allograft toxicity at short and long follow-up (up to 60 months). Conclusion When needed, RT modern techniques remain a valid option with excellent oncologic results and acceptable toxicity. Physicians should give special considerations to accomplish all OAR dose constraints in the patient's specific setting. Recent publications recommend KT mean dose <4 Gy, but graft proximity to CTV makes this unfeasible. We present 2 cases where dose constraint was not achieved, and to a short follow-up of 20 months renal toxicity has not been documented. We recommend the lowest possible mean dose to the KT, but never compromising the CTV coverage, since morbimortality from recurrent or progressive cancer disease outweighs the risk of graft injury.
Collapse
Key Words
- BF, Biochemical failure
- BT, Brachytherapy
- C3D-RT, Conformal three-dimensional radiation therapy
- CBCT, Cone-beam computed tomography
- CCa, Cervix cancer
- Dmax, Maximum dose
- Dmean, Mean dose
- Dmin, Minimum dose
- Dx, Dose (in Gy) receiving x% of a volume or more
- EBRT, External beam radiation therapy
- EQD2, Equivalent dose in 2-Gy fractions
- ESKD, End-stage kidney disease
- FU, Follow-up
- HPV, Human papillomavirus
- IBT, Intracavitary brachytherapy
- IMRT, Intensity-modulated radiation therapy
- KT, Kidney transplant
- Kidney allograft
- LRDRT, Living related donor renal transplantation
- MMF, Mycophenolate mofetil
- NED, No evidence of disease
- OAR, Organs at risk
- OS, Overall survival
- PCa, Prostate cancer
- PDN, Prednisone
- PP, Post-prostatectomy
- PSA, Prostate-specific antigen
- PTV, Planning target volume
- Pelvic radiotherapy
- Prostate cancer
- RR, Risk ratio
- RT, Radiation therapy
- Renal transplant
- SCCVa, Squamous cell carcinoma of the vagina
- SIR, Standardized Incidence Ratio
- TBI, Total body irradiation
- VCa, Vaginal cancer
- VMAT, Volumetric Modulated Arc Therapy
- Vaginal cancer
- Vx, Volume (in percentage) receiving x dose or more (in Gy)
- fr, Fractions
- mo, Months
Collapse
Affiliation(s)
- Pérez Álvarez Sandra Ileana
- Radiotherapy and Medical Physics Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. 15 Vasco de Quiroga, Belisario Domínguez, Sección XVI, Tlalpan, Mexico City, 14080, Mexico
| | - Ramos Prudencio Rubi
- Radiotherapy and Medical Physics Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. 15 Vasco de Quiroga, Belisario Domínguez, Sección XVI, Tlalpan, Mexico City, 14080, Mexico
| | - Lozano Ruiz Francisco Javier
- Department of Radiation Oncology, Médica Sur Hospital. 150 Puente de Piedra, Toriello Guerra, Tlalpan, Mexico City, 14050, Mexico
| | | | - Flores Balcazar Christian Haydeé
- Radiotherapy and Medical Physics Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. 15 Vasco de Quiroga, Belisario Domínguez, Sección XVI, Tlalpan, Mexico City, 14080, Mexico
| |
Collapse
|
545
|
Guberina N, Pöttgen C, Kebir S, Lazaridis L, Scharmberg C, Lübcke W, Niessen M, Guberina M, Scheffler B, Jendrossek V, Jabbarli R, Pierscianek D, Sure U, Schmidt T, Oster C, Hau P, Grosu AL, Stuschke M, Glas M, Nour Y, Lüdemann L. Combined radiotherapy and concurrent tumor treating fields (TTFields) for glioblastoma: Dosimetric consequences on non-coplanar IMRT as initial results from a phase I trial. Radiat Oncol 2020; 15:83. [PMID: 32307022 PMCID: PMC7168823 DOI: 10.1186/s13014-020-01521-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastoma is a rapidly proliferating tumor. Patients bear an inferior prognosis with a median survival time of 14-16 months. Proliferation and repopulation are a major resistance promoting factor for conventionally fractionated radiotherapy. Tumor-Treating-Fields (TTFields) are an antimitotic modality applying low-intensity (1-3 V/cm), intermediate-frequency (100-300 kHz) alternating electric-fields. More recently interference of TTFields with DNA-damage-repair and synergistic effects with radiotherapy were reported in the preclinical setting. This study aims at examining the dosimetric consequences of TTFields applied during the course of radiochemotherapy. Methods Cone-beam-computed-tomography (CBCT)-data from the first seven patients of the PriCoTTF-phase-I-trial were used in a predefined way for dosimetric verification and dose-accumulation of the non-coplanar-intensity-modulated-radiotherapy (IMRT)-treatment-plans as well as geometric analysis of the transducer-arrays by which TTFields are applied throughout the course of treatment. Transducer-array-position and contours were obtained from the low-dose CBCT’s routinely made for image-guidance. Material-composition of the electrodes was determined and a respective Hounsfield-unit was assigned to the electrodes. After 6D-fusion with the planning-CT, the dose-distribution was recalculated using a Boltzmann-equation-solver (Acuros XB) and a Monte-Carlo-dose-calculation-engine. Results Overdosage in the scalp in comparison to the treatment plan without electrodes stayed below 8.5% of the prescribed dose in the first 2 mm below and also in deeper layers outside 1cm2 at highest dose as obtained from dose-volume-histogram comparisons. In the clinical target volume (CTV), underdosage was limited to 2.0% due to dose attenuation by the electrodes in terms of D95 and the effective-uniform-dose. Principal-component-analysis (PCA) showed that the first principal-position-component of the variation of repeated array-placement in the direction of the largest variations and the perpendicular second-component spanning a tangential plane on the skull had a standard deviation of 1.06 cm, 1.23 cm, 0.96 cm, and 1.11 cm for the frontal, occipital, left and right arrays for the first and 0.70 cm, 0.71 cm, 0.79 cm, and 0.68 cm, respectively for the second-principal-component. The variations did not differ from patient-to-patient (p > 0.8, Kruskal-Wallis-tests). This motion led to a diminution of the dosimetric effects of the electrodes. Conclusion From a dosimetric point of view, dose deviations in the CTV due to transducer-arrays were not clinically significant in the first 7 patients and confirmed feasibility of combined adjuvant radiochemotherapy and concurrent TTFields. PriCoTTF Trial: A phase I/II trial of TTFields prior and concomitant to radiotherapy in newly diagnosed glioblastoma. DRKS-ID: DRKS00016667. Date of Registration in DRKS: 2019/02/26. Investigator Sponsored/Initiated Trial (IST/IIT): yes. Ethics Approval/Approval of the Ethics Committee: Approved. (leading) Ethics Committee Nr.: 18–8316-MF, Ethik-Kommission der Medizinischen. Fakultät der Universität Duisburg-Essen. EUDAMED-No. (for studies acc. to Medical Devices act): CIV-18-08-025247.
Collapse
Affiliation(s)
- N Guberina
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - C Pöttgen
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - S Kebir
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - L Lazaridis
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - C Scharmberg
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - W Lübcke
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - M Niessen
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - M Guberina
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - B Scheffler
- DKFZ-Division Translational Neurooncology at the West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Partner Site University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - V Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - R Jabbarli
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - D Pierscianek
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - U Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - T Schmidt
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - C Oster
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - P Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - A L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) Partner Site University Hospital Freiburg, Heidelberg, Germany
| | - M Stuschke
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany. .,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - M Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany. .,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Y Nour
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - L Lüdemann
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
546
|
Wolf F, Meier VS, Pot SA, Rohrer Bley C. Ocular and periocular radiation toxicity in dogs treated for sinonasal tumors: A critical review. Vet Ophthalmol 2020; 23:596-610. [PMID: 32281234 PMCID: PMC7496316 DOI: 10.1111/vop.12761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022]
Abstract
Visual impairment from radiation‐induced damage can be painful, disabling, and reduces the patient's quality of life. Ocular tissue damage can result from the proximity of ocular organs at risk to irradiated sinonasal target volumes. As toxicity depends on the radiation dose delivered to a certain volume, dose‐volume constraints for organs at risk should ideally be known during treatment planning in order to reduce toxicity. Herein, we summarize published ocular toxicity data of dogs irradiated for sinonasal tumors from 36 publications (1976‐2018). In particular, we tried to extract a dose guideline for a clinically acceptable rate of ocular toxicity. The side effects to ocular and periocular tissues were reported in 26/36 studies (72%) and graded according to scoring systems (10/26; 39%). With most scoring systems, however, toxicities of different ocular and periocular tissues are summed into one score. Further, the scores were mostly applied in retrospect and lack volume‐ and dose‐data. This incomplete information reflects the crux of the matter for radiation dose tolerance in canine ocular tissues: The published information of the last three decades does not allow formulating dose‐volume guidelines. As a start, we can only state that a mean dose of 39 Gy (given in 10 x 4.2 Gy fractions) will lead to loss of vision by one or both eyes, while mean doses of <30 Gy seem to preserve functionality. With a future goal to define tolerated doses and volumes of ocular and periocular tissues at risk, we propose the use of combined ocular toxicity scoring systems.
Collapse
Affiliation(s)
- Friederike Wolf
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Valeria S Meier
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland
| | - Simon A Pot
- Ophthalmology Section, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
547
|
Peng Z, Fang X, Yan P, Shan H, Liu T, Pei X, Wang G, Liu B, Kalra MK, Xu XG. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Med Phys 2020; 47:2526-2536. [PMID: 32155670 DOI: 10.1002/mp.14131] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/06/2020] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE One technical barrier to patient-specific computed tomography (CT) dosimetry has been the lack of computational tools for the automatic patient-specific multi-organ segmentation of CT images and rapid organ dose quantification. When previous CT images are available for the same body region of the patient, the ability to obtain patient-specific organ doses for CT - in a similar manner as radiation therapy treatment planning - will open the door to personalized and prospective CT scan protocols. This study aims to demonstrate the feasibility of combining deep-learning algorithms for automatic segmentation of multiple radiosensitive organs from CT images with the GPU-based Monte Carlo rapid organ dose calculation. METHODS A deep convolutional neural network (CNN) based on the U-Net for organ segmentation is developed and trained to automatically delineate multiple radiosensitive organs from CT images. Two databases are used: The lung CT segmentation challenge 2017 (LCTSC) dataset that contains 60 thoracic CT scan patients, each consisting of five segmented organs, and the Pancreas-CT (PCT) dataset, which contains 43 abdominal CT scan patients each consisting of eight segmented organs. A fivefold cross-validation method is performed on both sets of data. Dice similarity coefficients (DSCs) are used to evaluate the segmentation performance against the ground truth. A GPU-based Monte Carlo dose code, ARCHER, is used to calculate patient-specific CT organ doses. The proposed method is evaluated in terms of relative dose errors (RDEs). To demonstrate the potential improvement of the new method, organ dose results are compared against those obtained for population-average patient phantoms used in an off-line dose reporting software, VirtualDose, at Massachusetts General Hospital. RESULTS The median DSCs are found to be 0.97 (right lung), 0.96 (left lung), 0.92 (heart), 0.86 (spinal cord), 0.76 (esophagus) for the LCTSC dataset, along with 0.96 (spleen), 0.96 (liver), 0.95 (left kidney), 0.90 (stomach), 0.87 (gall bladder), 0.80 (pancreas), 0.75 (esophagus), and 0.61 (duodenum) for the PCT dataset. Comparing with organ dose results from population-averaged phantoms, the new patient-specific method achieved smaller absolute RDEs (mean ± standard deviation) for all organs: 1.8% ± 1.4% (vs 16.0% ± 11.8%) for the lung, 0.8% ± 0.7% (vs 34.0% ± 31.1%) for the heart, 1.6% ± 1.7% (vs 45.7% ± 29.3%) for the esophagus, 0.6% ± 1.2% (vs 15.8% ± 12.7%) for the spleen, 1.2% ± 1.0% (vs 18.1% ± 15.7%) for the pancreas, 0.9% ± 0.6% (vs 20.0% ± 15.2%) for the left kidney, 1.7% ± 3.1% (vs 19.1% ± 9.8%) for the gallbladder, 0.3% ± 0.3% (vs 24.2% ± 18.7%) for the liver, and 1.6% ± 1.7% (vs 19.3% ± 13.6%) for the stomach. The trained automatic segmentation tool takes <5 s per patient for all 103 patients in the dataset. The Monte Carlo radiation dose calculations performed in parallel to the segmentation process using the GPU-accelerated ARCHER code take <4 s per patient to achieve <0.5% statistical uncertainty in all organ doses for all 103 patients in the database. CONCLUSION This work shows the feasibility to perform combined automatic patient-specific multi-organ segmentation of CT images and rapid GPU-based Monte Carlo dose quantification with clinically acceptable accuracy and efficiency.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xi Fang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Pingkun Yan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hongming Shan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Tianyu Liu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xi Pei
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Anhui Wisdom Technology Company Limited, Hefei, Anhui, 238000, China
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Bob Liu
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - X George Xu
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
548
|
Kasraei F, Ochoa C, Vial P, Lee MT. Evaluation of the introduction of a 'traffic light protocol' for dose-volume histogram constraints of organs at risk in definitive radiotherapy at Liverpool and Macarthur Cancer Therapy Centres. J Med Imaging Radiat Oncol 2020; 64:427-434. [PMID: 32237046 DOI: 10.1111/1754-9485.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Protocols have been developed in our department with recommended dose constraints for organs at risk (OAR) for each tumour site receiving definitive radiotherapy. We have developed a colour coding system to indicate when constraints are meeting objectives (green), have minor variation from planning objectives (yellow) and have major variation from planning objectives (red). We performed a quality audit to assess adherence to the protocol and to determine the rate of acute and subacute toxicities. METHODS All definitive radiotherapy dose-volume histogram (DVH) reports generated in the first 6 months of 2017 at Liverpool and Macarthur cancer therapy centres were collected. For each radiotherapy group, the overridden dose constraints were evaluated and categorized to red and yellow. For all patients in our data set, follow-up documents/assessments were searched for grade 3 or higher acute or subacute radiotherapy toxicity and compared with those who had overridden dose constraints. RESULTS There were 210 (34%) plans accepted with at least one major variation and 161 (26%) plans with minor variation. Head and neck group had the most rate of major variations (77%). The best groups in adherence to protocol were lymphoma and breast groups. In general, grade 3 toxicity was observed in 1%, 4% and 9% of patients who were in green, yellow and red categories. Overall, we noted a correlation with grade 3 toxicities between acceptable plans (green) and ones with a minor or major variation (yellow or red) (1% vs. 7% P = 0.0001). CONCLUSION In conclusion this study showed an increased risk of higher grade toxicities when DVHs were beyond our departmental constraints using a 'Traffic Light System'. With this new colour coding system, we can facilitate auditing of the dose constraints in order to improve the quality of radiotherapy plans and potentially provide benchmarking for reducing toxicities in radiotherapy treatments.
Collapse
Affiliation(s)
- Farshad Kasraei
- Radiation Oncology, Liverpool Cancer Therapy Centre, Sydney, New South Wales, Australia.,Radiation Oncology, Macarthur Cancer Therapy Centre, Sydney, New South Wales, Australia
| | - Cesar Ochoa
- Radiation Oncology, Liverpool Cancer Therapy Centre, Sydney, New South Wales, Australia.,Radiation Oncology, Macarthur Cancer Therapy Centre, Sydney, New South Wales, Australia
| | - Phillip Vial
- Radiation Oncology, Liverpool Cancer Therapy Centre, Sydney, New South Wales, Australia.,Radiation Oncology, Macarthur Cancer Therapy Centre, Sydney, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Institute of Medical Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark T Lee
- Radiation Oncology, Liverpool Cancer Therapy Centre, Sydney, New South Wales, Australia.,Radiation Oncology, Macarthur Cancer Therapy Centre, Sydney, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
549
|
Shelley LEA, Sutcliffe MPF, Thomas SJ, Noble DJ, Romanchikova M, Harrison K, Bates AM, Burnet NG, Jena R. Associations between voxel-level accumulated dose and rectal toxicity in prostate radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 14:87-94. [PMID: 32582869 PMCID: PMC7301619 DOI: 10.1016/j.phro.2020.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Background and Purpose Associations between dose and rectal toxicity in prostate radiotherapy are generally poorly understood. Evaluating spatial dose distributions to the rectal wall (RW) may lead to improvements in dose-toxicity modelling by incorporating geometric information, masked by dose-volume histograms. Furthermore, predictive power may be strengthened by incorporating the effects of interfraction motion into delivered dose calculations.Here we interrogate 3D dose distributions for patients with and without toxicity to identify rectal subregions at risk (SRR), and compare the discriminatory ability of planned and delivered dose. Material and Methods Daily delivered dose to the rectum was calculated using image guidance scans, and accumulated at the voxel level using biomechanical finite element modelling. SRRs were statistically determined for rectal bleeding, proctitis, faecal incontinence and stool frequency from a training set (n = 139), and tested on a validation set (n = 47). Results SRR patterns differed per endpoint. Analysing dose to SRRs improved discriminative ability with respect to the full RW for three of four endpoints. Training set AUC and OR analysis produced stronger toxicity associations from accumulated dose than planned dose. For rectal bleeding in particular, accumulated dose to the SRR (AUC 0.76) improved upon dose-toxicity associations derived from planned dose to the RW (AUC 0.63). However, validation results could not be considered significant. Conclusions Voxel-level analysis of dose to the RW revealed SRRs associated with rectal toxicity, suggesting non-homogeneous intra-organ radiosensitivity. Incorporating spatial features of accumulated delivered dose improved dose-toxicity associations. This may be an important tool for adaptive radiotherapy in the future.
Collapse
Affiliation(s)
- Leila E A Shelley
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Edinburgh Cancer Centre, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.,Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB21PZ, United Kingdom
| | - Michael P F Sutcliffe
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB21PZ, United Kingdom
| | - Simon J Thomas
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Medical Physics and Clinical Engineering, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - David J Noble
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Marina Romanchikova
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,National Physical Laboratory, Teddington TW11 0JE, United Kingdom
| | - Karl Harrison
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Amy M Bates
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Neil G Burnet
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Raj Jena
- Cancer Research UK VoxTox Research Group, Cambridge University Hospitals NHS Foundation Trust, Department of Oncology, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom.,Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
550
|
Kyroudi A, Petersson K, Ozsahin E, Bourhis J, Bochud F, Moeckli R. Exploration of clinical preferences in treatment planning of radiotherapy for prostate cancer using Pareto fronts and clinical grading analysis. Phys Imaging Radiat Oncol 2020; 14:82-86. [PMID: 33458319 PMCID: PMC7807626 DOI: 10.1016/j.phro.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Radiotherapy treatment planning is a multi-criteria problem. Any optimization of the process produces a set of mathematically optimal solutions. These optimal plans are considered mathematically equal, but they differ in terms of the trade-offs involved. Since the various objectives are conflicting, the choice of the best plan for treatment is dependent on the preferences of the radiation oncologists or the medical physicists (decision makers).We defined a clinically relevant area on a prostate Pareto front which better represented clinical preferences and determined if there were differences among radiation oncologists and medical physicists. METHODS AND MATERIALS Pareto fronts of five localized prostate cancer patients were used to analyze and visualize the trade-off between the rectum sparing and the PTV under-dosage. Clinical preferences were evaluated with Clinical Grading Analysis by asking nine radiation oncologists and ten medical physicists to rate pairs of plans presented side by side. A choice of the optimal plan on the Pareto front was made by all decision makers. RESULTS The plans in the central region of the Pareto front (1-4% PTV under-dosage) received the best evaluations. Radiation oncologists preferred the organ at risk (OAR) sparing region (2.5-4% PTV under-dosage) while medical physicists preferred better PTV coverage (1-2.5% PTV under-dosage). When the Pareto fronts were additionally presented to the decisions makers they systematically chose the plan in the trade-off region (0.5-1% PTV under-dosage). CONCLUSION We determined a specific region on the Pareto front preferred by the radiation oncologists and medical physicists and found a difference between them.
Collapse
Affiliation(s)
- A. Kyroudi
- Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, CH 1007 Lausanne, Switzerland
| | - K. Petersson
- Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, CH 1007 Lausanne, Switzerland
| | - E. Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital, Rue du Bugnon 46, CH 1011 Lausanne, Switzerland
| | - J. Bourhis
- Department of Radiation Oncology, Lausanne University Hospital, Rue du Bugnon 46, CH 1011 Lausanne, Switzerland
| | - F. Bochud
- Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, CH 1007 Lausanne, Switzerland
| | - R. Moeckli
- Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pré 1, CH 1007 Lausanne, Switzerland
| |
Collapse
|