501
|
Guo G, Luc S, Marco E, Lin TW, Peng C, Kerenyi MA, Beyaz S, Kim W, Xu J, Das PP, Neff T, Zou K, Yuan GC, Orkin SH. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 2013; 13:492-505. [PMID: 24035353 DOI: 10.1016/j.stem.2013.07.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/04/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023]
Abstract
Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems.
Collapse
Affiliation(s)
- Guoji Guo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Lorthongpanich C, Messerschmidt DM, Chan SW, Hong W, Knowles BB, Solter D. Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev 2013; 27:1441-6. [PMID: 23824537 DOI: 10.1101/gad.219618.113] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cellular localization of the Yes-associated protein (YAP) is dependent on large tumor suppressor (LATS) kinase activity and initiates lineage specification in the preimplantation embryo. We temporally reduced LATS activity to disrupt this early event, allowing its reactivation at later stages. This interference resulted in an irreversible lineage misspecification and aberrant polarization of the inner cell mass (ICM). Complementation experiments revealed that neither epiblast nor primitive endoderm can be established from these ICMs. We therefore conclude that precisely timed YAP localization in early morulae is essential to prevent trophectoderm marker expression in, and lineage specification of, the ICM.
Collapse
|
503
|
Arias AM, Nichols J, Schröter C. A molecular basis for developmental plasticity in early mammalian embryos. Development 2013; 140:3499-510. [DOI: 10.1242/dev.091959] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Early mammalian embryos exhibit remarkable plasticity, as highlighted by the ability of separated early blastomeres to produce a whole organism. Recent work in the mouse implicates a network of transcription factors in governing the establishment of the primary embryonic lineages. A combination of genetics and embryology has uncovered the organisation and function of the components of this network, revealing a gradual resolution from ubiquitous to lineage-specific expression through a combination of defined regulatory relationships, spatially organised signalling, and biases from mechanical inputs. Here, we summarise this information, link it to classical embryology and propose a molecular framework for the establishment and regulation of developmental plasticity.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
504
|
TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports 2013; 1:248-65. [PMID: 24319661 PMCID: PMC3849240 DOI: 10.1016/j.stemcr.2013.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022] Open
Abstract
Cell-fate decisions and pluripotency are dependent on networks of key transcriptional regulators. Recent reports demonstrated additional functions of pluripotency-associated factors during early lineage commitment. The T-box transcription factor TBX3 has been implicated in regulating embryonic stem cell self-renewal and cardiogenesis. Here, we show that TBX3 is dynamically expressed during specification of the mesendoderm lineages in differentiating embryonic stem cells (ESCs) in vitro and in developing mouse and Xenopus embryos in vivo. Forced TBX3 expression in ESCs promotes mesendoderm specification by directly activating key lineage specification factors and indirectly by enhancing paracrine Nodal/Smad2 signaling. TBX3 loss-of-function analyses in the Xenopus underline its requirement for mesendoderm lineage commitment. Moreover, we uncovered a functional redundancy between TBX3 and Tbx2 during Xenopus gastrulation. Taken together, we define further facets of TBX3 actions and map TBX3 as an upstream regulator of the mesendoderm transcriptional program during gastrulation. T-box transcription factor TBX3 is involved in early embryonic events Key transcription factor promoters of mesendoderm formation are occupied by TBX3 TBX3 promotes mesendodermal fate of mESCs
Collapse
|
505
|
|
506
|
Do DV, Ueda J, Messerschmidt DM, Lorthongpanich C, Zhou Y, Feng B, Guo G, Lin PJ, Hossain MZ, Zhang W, Moh A, Wu Q, Robson P, Ng HH, Poellinger L, Knowles BB, Solter D, Fu XY. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev 2013; 27:1378-90. [PMID: 23788624 DOI: 10.1101/gad.221176.113] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although it is known that OCT4-NANOG are required for maintenance of pluripotent cells in vitro, the upstream signals that regulate this circuit during early development in vivo have not been identified. Here we demonstrate, for the first time, signal transducers and activators of transcription 3 (STAT3)-dependent regulation of the OCT4-NANOG circuitry necessary to maintain the pluripotent inner cell mass (ICM), the source of in vitro-derived embryonic stem cells (ESCs). We show that STAT3 is highly expressed in mouse oocytes and becomes phosphorylated and translocates to the nucleus in the four-cell and later stage embryos. Using leukemia inhibitory factor (Lif)-null embryos, we found that STAT3 phosphorylation is dependent on LIF in four-cell stage embryos. In blastocysts, interleukin 6 (IL-6) acts in an autocrine fashion to ensure STAT3 phosphorylation, mediated by janus kinase 1 (JAK1), a LIF- and IL-6-dependent kinase. Using genetically engineered mouse strains to eliminate Stat3 in oocytes and embryos, we firmly establish that STAT3 is essential for maintenance of ICM lineages but not for ICM and trophectoderm formation. Indeed, STAT3 directly binds to the Oct4 and Nanog distal enhancers, modulating their expression to maintain pluripotency of mouse embryonic and induced pluripotent stem cells. These results provide a novel genetic model of cell fate determination operating through STAT3 in the preimplantation embryo and pluripotent stem cells in vivo.
Collapse
Affiliation(s)
- Dang Vinh Do
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
507
|
Trott J, Martinez Arias A. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biol Open 2013; 2:1049-56. [PMID: 24167715 PMCID: PMC3798188 DOI: 10.1242/bio.20135934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES) cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.
Collapse
Affiliation(s)
- Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
- Present address: Institute of Medical Biology, 8A Biomedical Grove, No. 06-06 Immunos, Singapore 138648
| | | |
Collapse
|
508
|
Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20:1131-9. [PMID: 23934149 DOI: 10.1038/nsmb.2660] [Citation(s) in RCA: 1210] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022]
Abstract
Measuring gene expression in individual cells is crucial for understanding the gene regulatory network controlling human embryonic development. Here we apply single-cell RNA sequencing (RNA-Seq) analysis to 124 individual cells from human preimplantation embryos and human embryonic stem cells (hESCs) at different passages. The number of maternally expressed genes detected in our data set is 22,687, including 8,701 long noncoding RNAs (lncRNAs), which represents a significant increase from 9,735 maternal genes detected previously by cDNA microarray. We discovered 2,733 novel lncRNAs, many of which are expressed in specific developmental stages. To address the long-standing question whether gene expression signatures of human epiblast (EPI) and in vitro hESCs are the same, we found that EPI cells and primary hESC outgrowth have dramatically different transcriptomes, with 1,498 genes showing differential expression between them. This work provides a comprehensive framework of the transcriptome landscapes of human early embryos and hESCs.
Collapse
|
509
|
|
510
|
White AK, Heyries KA, Doolin C, Vaninsberghe M, Hansen CL. High-throughput microfluidic single-cell digital polymerase chain reaction. Anal Chem 2013; 85:7182-90. [PMID: 23819473 DOI: 10.1021/ac400896j] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.
Collapse
Affiliation(s)
- A K White
- Centre for High Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
511
|
Abstract
Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic-stem-cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodelling the genome, including new insights into the function of MYC, and describe the different phases, markers and emerging models of reprogramming.
Collapse
|
512
|
A self-organization framework for symmetry breaking in the mammalian embryo. Nat Rev Mol Cell Biol 2013; 14:452-9. [PMID: 23778971 DOI: 10.1038/nrm3602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the appearance of asymmetry between cells in the early embryo and consequently the specification of distinct cell lineages during mammalian development remain elusive. Recent experimental advances have revealed unexpected dynamics of and new complexity in this process. These findings can be integrated in a new unified framework that regards the early mammalian embryo as a self-organizing system.
Collapse
|
513
|
Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell 2013; 25:610-22. [PMID: 23747191 DOI: 10.1016/j.devcel.2013.05.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/10/2013] [Accepted: 05/06/2013] [Indexed: 01/18/2023]
Abstract
In embryonic stem (ES) cells and in early mouse embryos, the transcription factor Oct4 is an essential regulator of pluripotency. Oct4 transcriptional targets have been described in ES cell lines; however, the molecular mechanisms by which Oct4 regulates establishment of pluripotency in the epiblast (EPI) have not been fully elucidated. Here, we show that neither maternal nor zygotic Oct4 is required for the formation of EPI cells in the blastocyst. Rather, Oct4 is first required for development of the primitive endoderm (PE), an extraembryonic lineage. EPI cells promote PE fate in neighboring cells by secreting Fgf4, and Oct4 is required for expression of Fgf4, but we show that Oct4 promotes PE development cell-autonomously, downstream of Fgf4 and Mapk. Finally, we show that Oct4 is required for the expression of multiple EPI and PE genes as well as multiple metabolic pathways essential for the continued growth of the preimplantation embryo.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
514
|
Dominguez MH, Chattopadhyay PK, Ma S, Lamoreaux L, McDavid A, Finak G, Gottardo R, Koup RA, Roederer M. Highly multiplexed quantitation of gene expression on single cells. J Immunol Methods 2013; 391:133-45. [PMID: 23500781 PMCID: PMC3814038 DOI: 10.1016/j.jim.2013.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 01/12/2023]
Abstract
Highly multiplexed, single-cell technologies reveal important heterogeneity within cell populations. Recently, technologies to simultaneously measure expression of 96 (or more) genes from a single cell have been developed for immunologic monitoring. Here, we report a rigorous, optimized, quantitative methodology for using this technology. Specifically: we describe a unique primer/probe qualification method necessary for quantitative results; we show that primers do not compete in highly multiplexed amplifications; we define the limit of detection for this assay as a single mRNA transcript; and, we show that the technical reproducibility of the system is very high. We illustrate two disparate applications of the platform: a "bulk" approach that measures expression patterns from 100 cells at a time in high throughput to define gene signatures, and a single-cell approach to define the coordinate expression patterns of multiple genes and reveal unique subsets of cells.
Collapse
Affiliation(s)
- Maria H. Dominguez
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, United States
| | | | - Steven Ma
- Laboratory of Immunology, Vaccine Research Center, NIAID, NIH, United States
| | - Laurie Lamoreaux
- Laboratory of Immunology, Vaccine Research Center, NIAID, NIH, United States
| | - Andrew McDavid
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Public Health Sciences Division, University of Washington, United States
| | - Greg Finak
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Public Health Sciences Division, University of Washington, United States
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Public Health Sciences Division, University of Washington, United States
| | - Richard A. Koup
- Laboratory of Immunology, Vaccine Research Center, NIAID, NIH, United States
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, United States
| |
Collapse
|
515
|
Zhang X, Zhang C, Li Z, Zhong J, Weiner LP, Zhong JF. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis. CHINESE JOURNAL OF CANCER 2013; 32:636-9. [PMID: 23706768 PMCID: PMC3870846 DOI: 10.5732/cjc.012.10291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cell population contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-cell transcriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA; 2Z-Genetic Medicine LLC, Temple City, CA 91780, USA.
| | | | | | | | | | | |
Collapse
|
516
|
Buettner F, Theis FJ. A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics 2013; 28:i626-i632. [PMID: 22962491 PMCID: PMC3436812 DOI: 10.1093/bioinformatics/bts385] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Motivation: Single-cell experiments of cells from the early mouse embryo yield gene expression data for different developmental stages from zygote to blastocyst. To better understand cell fate decisions during differentiation, it is desirable to analyse the high-dimensional gene expression data and assess differences in gene expression patterns between different developmental stages as well as within developmental stages. Conventional methods include univariate analyses of distributions of genes at different stages or multivariate linear methods such as principal component analysis (PCA). However, these approaches often fail to resolve important differences as each lineage has a unique gene expression pattern which changes gradually over time yielding different gene expressions both between different developmental stages as well as heterogeneous distributions at a specific stage. Furthermore, to date, no approach taking the temporal structure of the data into account has been presented. Results: We present a novel framework based on Gaussian process latent variable models (GPLVMs) to analyse single-cell qPCR expression data of 48 genes from mouse zygote to blastocyst as presented by (Guo et al., 2010). We extend GPLVMs by introducing gene relevance maps and gradient plots to provide interpretability as in the linear case. Furthermore, we take the temporal group structure of the data into account and introduce a new factor in the GPLVM likelihood which ensures that small distances are preserved for cells from the same developmental stage. Using our novel framework, it is possible to resolve differences in gene expressions for all developmental stages. Furthermore, a new subpopulation of cells within the 16-cell stage is identified which is significantly more trophectoderm-like than the rest of the population. The trophectoderm-like subpopulation was characterized by considerable differences in the expression of Id2, Gata4 and, to a smaller extent, Klf4 and Hand1. The relevance of Id2 as early markers for TE cells is consistent with previously published results. Availability: The mappings were implemented based on Prof. Neil Lawrence's FGPLVM toolbox1; extensions for relevance analysis and including the structure of the data can be obtained from one of the authors' homepage.2 Contact:f.buettner@helmholtz-muenchen.de
Collapse
Affiliation(s)
- Florian Buettner
- Institute of Bioinformatics and Systems Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany.
| | | |
Collapse
|
517
|
Bruce AW. Generating different genetic expression patterns in the early embryo: insights from the mouse model. Reprod Biomed Online 2013; 27:586-92. [PMID: 23768616 DOI: 10.1016/j.rbmo.2013.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/02/2013] [Accepted: 03/19/2013] [Indexed: 11/26/2022]
Abstract
The divergence of two differentiating extraembryonic cell types (trophectoderm and primitive endoderm) from the pluripotent epiblast population (the source of fetal progenitor cells) by the blastocyst stage of mouse development relies upon the activation and execution of lineage-specific gene expression programmes. While our understanding of the central transcription factor 'effectors' directing these cell-fate choices has accumulated rapidly, what is less clear is how the differential expression of such genes within the diverging lineages is initially generated. This review summarizes and consolidates current understanding. I introduce the traditional concept and importance of a cell's spatial location within the embryo, referencing recent mechanistic and molecular insights relating to cell fate. Additionally, I address the growing body of evidence that suggests that heterogeneities among blastomeres precede, and possibly inform, their spatial segregation in the embryo. I also discuss whether the origins of such early heterogeneity are stochastic and/or indicative of intrinsic properties of the embryo. Lastly, I argue that the robustness and regulative capacity of preimplantation embryonic development may reflect the existence of multiple converging, if not wholly redundant, mechanisms that act together to generate the necessary diversity of inter-cell-lineage gene expression patterns.
Collapse
Affiliation(s)
- Alexander W Bruce
- Laboratory of Developmental Biology and Genetics, Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice (Budweis), Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences in České Budějovice, Branišovská 31, 37005 České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
518
|
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110329. [PMID: 23166393 DOI: 10.1098/rstb.2011.0329] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
519
|
Moignard V, Macaulay IC, Swiers G, Buettner F, Schütte J, Calero-Nieto FJ, Kinston S, Joshi A, Hannah R, Theis FJ, Jacobsen SE, de Bruijn M, Göttgens B. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 2013; 15:363-72. [PMID: 23524953 PMCID: PMC3796878 DOI: 10.1038/ncb2709] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 02/08/2013] [Indexed: 12/15/2022]
Abstract
Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.
Collapse
Affiliation(s)
- Victoria Moignard
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Iain C. Macaulay
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Gemma Swiers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Florian Buettner
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Ingolstadter Landstraße 1, 85764 Neuherberg, Germany
| | - Judith Schütte
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Fernando J. Calero-Nieto
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Sarah Kinston
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Anagha Joshi
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Rebecca Hannah
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Ingolstadter Landstraße 1, 85764 Neuherberg, Germany
| | - Sten Eirik Jacobsen
- Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Marella de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Berthold Göttgens
- University of Cambridge, Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
520
|
Price FD, Yin H, Jones A, van Ijcken W, Grosveld F, Rudnicki MA. Canonical Wnt Signaling Induces a Primitive Endoderm Metastable State in Mouse Embryonic Stem Cells. Stem Cells 2013; 31:752-64. [DOI: 10.1002/stem.1321] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/09/2012] [Indexed: 11/08/2022]
|
521
|
Gibson TM, Gersbach CA. The role of single-cell analyses in understanding cell lineage commitment. Biotechnol J 2013; 8:397-407. [PMID: 23520130 DOI: 10.1002/biot.201200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/08/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022]
Abstract
The study of cell lineage commitment is critical for improving our understanding of tissue development and regeneration, and for realizing stem cell-based therapies and engineered tissue replacements. Recently, the discovery of an unanticipated degree of variability in fundamental biological processes, including divergent responses of genetically identical cells to various stimuli, has provided mechanistic insight into cellular decision making and the collective behavior of cell populations. Therefore, the study of lineage commitment with single-cell resolution could provide greater knowledge of cellular differentiation mechanisms and the influence of noise on cellular processes. This will require the adoption of new technologies for single-cell analysis as traditional methods typically measure average values of bulk population behavior. This review discusses the recent developments in methods for analyzing the behavior of individual cells, and how these approaches are leading to a deeper understanding and better control of cellular decision making.
Collapse
Affiliation(s)
- Tyler M Gibson
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA
| | | |
Collapse
|
522
|
Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J 2013; 32:938-53. [PMID: 23474895 DOI: 10.1038/emboj.2013.31] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/24/2013] [Indexed: 01/04/2023] Open
Abstract
How regulatory information is encoded in the genome is poorly understood and poses a challenge when studying biological processes. We demonstrate here that genomic redistribution of Oct4 by alternative partnering with Sox2 and Sox17 is a fundamental regulatory event of endodermal specification. We show that Sox17 partners with Oct4 and binds to a unique 'compressed' Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at 'canonical' binding sites. The distinct selection of binding sites by alternative Sox/Oct partnering is underscored by our demonstration that rationally point-mutated Sox17 partners with Oct4 on pluripotency genes earmarked by the canonical Sox/Oct motif. In an endodermal differentiation assay, we demonstrate that the compressed motif is required for proper expression of endodermal genes. Evidently, Oct4 drives alternative developmental programs by switching Sox partners that affects enhancer selection, leading to either an endodermal or pluripotent cell fate. This work provides insights in understanding cell fate transcriptional regulation by highlighting the direct link between the DNA sequence of an enhancer and a developmental outcome.
Collapse
|
523
|
Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 2013; 11:452-60. [PMID: 23040474 DOI: 10.1016/j.stem.2012.09.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Decades ago, two nonoverlapping crypt stem cell populations were proposed: Leblond's Crypt Base Columnar (CBC) cell and Potten's +4 cell. The identification of CBC markers including Lgr5 has confirmed Leblond's predictions that CBC cells are anatomically distinct, long-lived stem cells that permanently cycle. While Potten originally described +4 cells as proliferative and unusually radiation-sensitive, recent efforts to identify +4 stem cells have focused on the identification of cells that are quiescent and radiation-resistant. Here, we describe commonalities and discrepancies between the individual studies and discuss challenges of marker-based lineage tracing.
Collapse
Affiliation(s)
- Nick Barker
- Institute of Medical Biology, 8A Biomedical Grove, Immunos 138648, Singapore
| | | | | |
Collapse
|
524
|
Ramirez JM, Bai Q, Péquignot M, Becker F, Kassambara A, Bouin A, Kalatzis V, Dijon-Grinand M, De Vos J. Side scatter intensity is highly heterogeneous in undifferentiated pluripotent stem cells and predicts clonogenic self-renewal. Stem Cells Dev 2013; 22:1851-60. [PMID: 23360234 DOI: 10.1089/scd.2012.0658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In culture, human pluripotent stem cells (PSCs) are phenotypically (for instance, the SSEA3 expression level) and functionally (capacity to survive after single-cell dissociation) heterogeneous. We report here that the side scatter (SSC) signal measured by flow cytometry, a variable correlated with membrane irregularity and cell granularity, is very high in PSCs, even higher than in blood polymorphonuclear cells, and markedly heterogeneous. Moreover, SSC intensity rapidly and strongly decreases upon PSC differentiation into any of the three germ layers. PSCs with high SSC (HSSC cells) or low SSC (LSSC cells) values both express pluripotency markers, but HSSC cells are characterized by more frequent simultaneous expression of the membrane pluripotency factors SSEA3, SSEA4, TRA-1-81, TRA-1-60, and CD24 and by a higher mitochondrial content. Functionally, HSSC cells are more likely to generate colonies upon single-cell passage than LSSC cells. SSC monitoring might provide a simple, but robust and rapid method to estimate pluripotency variations in culture and unveils a new phenotypic and functional heterogeneity in PSCs.
Collapse
Affiliation(s)
- Jean-Marie Ramirez
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
525
|
Abstract
During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.
Collapse
Affiliation(s)
- Néstor Saiz
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
526
|
Flynn JM, Spusta SC, Rosen CJ, Melov S. Single cell gene expression profiling of cortical osteoblast lineage cells. Bone 2013; 53:174-81. [PMID: 23238121 PMCID: PMC3589579 DOI: 10.1016/j.bone.2012.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
Abstract
In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states.
Collapse
Affiliation(s)
- James M. Flynn
- Buck Institute for Research on Aging. 8001 Redwood Blvd. Novato, CA 94945
| | - Steven C. Spusta
- Buck Institute for Research on Aging. 8001 Redwood Blvd. Novato, CA 94945
| | - Clifford J. Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute. 81 Research Dr. Scarborough, ME 04074
| | - Simon Melov
- Buck Institute for Research on Aging. 8001 Redwood Blvd. Novato, CA 94945
| |
Collapse
|
527
|
Schrode N, Xenopoulos P, Piliszek A, Frankenberg S, Plusa B, Hadjantonakis AK. Anatomy of a blastocyst: cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis 2013; 51:219-33. [PMID: 23349011 DOI: 10.1002/dvg.22368] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 01/06/2023]
Abstract
The preimplantation period of mouse early embryonic development is devoted to the specification of two extraembryonic tissues and their spatial segregation from the pluripotent epiblast. During this period two cell fate decisions are made while cells gradually lose their totipotency. The first fate decision involves the segregation of the extraembryonic trophectoderm (TE) lineage from the inner cell mass (ICM); the second occurs within the ICM and involves the segregation of the extraembryonic primitive endoderm (PrE) lineage from the pluripotent epiblast (EPI) lineage, which eventually gives rise to the embryo proper. Multiple determinants, such as differential cellular properties, signaling cues and the activity of transcriptional regulators, influence lineage choice in the early embryo. Here, we provide an overview of our current understanding of the mechanisms governing these cell fate decisions ensuring proper lineage allocation and segregation, while at the same time providing the embryo with an inherent flexibility to adjust when perturbed.
Collapse
Affiliation(s)
- Nadine Schrode
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
528
|
Demarcation of stable subpopulations within the pluripotent hESC compartment. PLoS One 2013; 8:e57276. [PMID: 23437358 PMCID: PMC3578859 DOI: 10.1371/journal.pone.0057276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/20/2013] [Indexed: 11/19/2022] Open
Abstract
Heterogeneity is a feature of stem cell populations, resulting from innate cellular hierarchies that govern differentiation capability. How heterogeneity impacts human pluripotent stem cell populations is directly relevant to their efficacious use in regenerative medicine applications. The control of pluripotency is asserted by a core transcription factor network, of which Oct4 is a necessary member. In mouse embryonic stem cells (ESCs), the zinc finger transcription factor Rex1 (Zfp42) closely tracks the undifferentiated state and is capable of segregating Oct4 positive mESCs into metastable populations expressing or lacking Rex1 that are inter-convertible. However, little is currently understood about the extent or function of heterogeneous populations in the human pluripotent compartment. Human ESCs express REX1 transcripts but the distribution and properties of REX1 expressing cells have yet to be described. To address these questions, we used gene targeting in human ESCs to insert the fluorescent protein Venus and an antibiotic selection marker under the control of the endogenous REX1 transcription regulatory elements, generating a sensitive, selectable reporter of pluripotency. REX1 is co-expressed in OCT4 and TRA-1-60 positive hESCs and rapidly lost upon differentiation. Importantly, REX1 expression reveals significant heterogeneity within seemingly homogenous populations of OCT4 and TRA-1-60 hESCs. REX1 expression is extinguished before OCT4 during differentiation, but, in contrast to the mouse, loss of REX1 expression demarcates a stable, OCT4 positive lineage-primed state in pluripotent hESCs that does not revert back to REX1 positivity under normal conditions. We show that loss of REX1 expression correlates with altered patterns of DNA methylation at the REX1 locus, implying that epigenetic mechanisms may interfere with the metastable phenotype commonly found in murine pluripotency.
Collapse
|
529
|
Hutchins AP, Choo SH, Mistri TK, Rahmani M, Woon CT, Keow Leng Ng C, Jauch R, Robson P. Co-Motif Discovery Identifies an Esrrb-Sox2-DNA Ternary Complex as a Mediator of Transcriptional Differences Between Mouse Embryonic and Epiblast Stem Cells. Stem Cells 2013; 31:269-81. [DOI: 10.1002/stem.1279] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/24/2012] [Indexed: 01/03/2023]
|
530
|
Ståhlberg A, Rusnakova V, Kubista M. The added value of single-cell gene expression profiling. Brief Funct Genomics 2013; 12:81-9. [PMID: 23393397 DOI: 10.1093/bfgp/elt001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cells are the basic unit of life and they have remarkable abilities to respond individually as well as in concert to internal and external stimuli in a specific manner. Studying complex tissues and whole organs requires understanding of cell heterogeneity and responses to stimuli at the single-cell level. In this review, we discuss the potential of single-cell gene expression profiling, focusing on data analysis and biological interpretation. We exemplify several aspects of the added value of single-cell analysis by comparing the same experimental data at both single-cell and cell population level. Data normalization and handling of missing data are two important steps in data analysis that are performed differently at single-cell level compared with cell population level. Furthermore, we discuss how single-cell gene expression data can be viewed and how subpopulations of cells can be identified and characterized.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Department of Pathology, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Box 425, 40530 Gothenburg, Sweden.
| | | | | |
Collapse
|
531
|
Zhang T, Zhu Q, Xie Z, Chen Y, Qiao Y, Li L, Jing N. The zinc finger transcription factor Ovol2 acts downstream of the bone morphogenetic protein pathway to regulate the cell fate decision between neuroectoderm and mesendoderm. J Biol Chem 2013; 288:6166-77. [PMID: 23319585 DOI: 10.1074/jbc.m112.418376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During early embryonic development, bone morphogenetic protein (BMP) signaling is essential for neural/non-neural cell fate decisions. BMP signaling inhibits precocious neural differentiation and allows for proper differentiation of mesoderm, endoderm, and epidermis. However, the mechanisms underlying the BMP pathway-mediated cell fate decision remain largely unknown. Here, we show that the expression of Ovol2, which encodes an evolutionarily conserved zinc finger transcription factor, is down-regulated during neural differentiation of mouse embryonic stem cells. Knockdown of Ovol2 in embryonic stem cells facilitates neural conversion and inhibits mesendodermal differentiation, whereas Ovol2 overexpression gives rise to the opposite phenotype. Moreover, Ovol2 knockdown partially rescues the neural inhibition and mesendodermal induction by BMP4. Mechanistic studies further show that BMP4 directly regulates Ovol2 expression through the binding of Smad1/5/8 to the second intron of the Ovol2 gene. In the chick embryo, cOvol2 expression is specifically excluded from neural territory and is up-regulated by BMP4. In addition, ectopic expression of cOvol2 in the prospective neural plate represses the expression of the definitive neural plate marker cSox2. Taken together, these results indicate that Ovol2 acts downstream of the BMP pathway in the cell fate decision between neuroectoderm and mesendoderm to ensure proper germ layer development.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
532
|
Tan MH, Au KF, Leong DE, Foygel K, Wong WH, Yao MWM. An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo. Mol Syst Biol 2013; 9:632. [PMID: 23295861 PMCID: PMC3564263 DOI: 10.1038/msb.2012.65] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/30/2012] [Indexed: 01/18/2023] Open
Abstract
Landmark events occur in a coordinated manner during pre-implantation development of the mammalian embryo, yet the regulatory network that orchestrates these events remains largely unknown. Here, we present the first systematic investigation of the network in pre-implantation mouse embryos using morpholino-mediated gene knockdowns of key embryonic stem cell (ESC) factors followed by detailed transcriptome analysis of pooled embryos, single embryos, and individual blastomeres. We delineated the regulons of Oct4, Sall4, and Nanog and identified a set of metabolism- and transport-related genes that were controlled by these transcription factors in embryos but not in ESCs. Strikingly, the knockdown embryos arrested at a range of developmental stages. We provided evidence that the DNA methyltransferase Dnmt3b has a role in determining the extent to which a knockdown embryo can develop. We further showed that the feed-forward loop comprising Dnmt3b, the pluripotency factors, and the miR-290-295 cluster exemplifies a network motif that buffers embryos against gene expression noise. Our findings indicate that Oct4, Sall4, and Nanog form a robust and integrated network to govern mammalian pre-implantation development.
Collapse
Affiliation(s)
- Meng How Tan
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kin Fai Au
- Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, CA, USA
| | - Denise E Leong
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kira Foygel
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wing H Wong
- Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, CA, USA
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Mylene WM Yao
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
533
|
Livak KJ, Wills QF, Tipping AJ, Datta K, Mittal R, Goldson AJ, Sexton DW, Holmes CC. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods 2013; 59:71-9. [PMID: 23079396 PMCID: PMC3562442 DOI: 10.1016/j.ymeth.2012.10.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/18/2012] [Accepted: 10/05/2012] [Indexed: 01/10/2023] Open
Abstract
The stochastic nature of generating eukaryotic transcripts challenges conventional methods for obtaining and analyzing single-cell gene expression data. In order to address the inherent noise, detailed methods are described on how to collect data on multiple genes in a large number of single cells using microfluidic arrays. As part of a study exploring the effect of genotype on Wnt pathway activation, data were collected for 96 qPCR assays on 1440 lymphoblastoid cells. The description of methods includes preliminary data processing steps. The methods used in the collection and analysis of single-cell qPCR data are contrasted with those used in conventional qPCR.
Collapse
Affiliation(s)
- Kenneth J. Livak
- Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, CA 94080, USA
| | - Quin F. Wills
- Department of Statistics, University of Oxford, Oxford OX1 3TG, United Kingdom
| | - Alex J. Tipping
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Krishnalekha Datta
- Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, CA 94080, USA
| | - Rowena Mittal
- Fluidigm Corporation, 7000 Shoreline Court, Suite 100, South San Francisco, CA 94080, USA
| | - Andrew J. Goldson
- UEA Flow Cytometry Services, BioMedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Darren W. Sexton
- BioMedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Chris C. Holmes
- Department of Statistics, University of Oxford, Oxford OX1 3TG, United Kingdom
| |
Collapse
|
534
|
Abstract
The early mammalian embryo is marked by genome-wide parental epigenetic asymmetries, which are directly inherited from the sperm and the oocyte, but are also amplified a few hours after fertilization. The yin-yang of these complementary parental programs is essential for proper development, as uniparental embryos are not viable. The majority of these parental asymmetries are erased, as the embryonic genome assumes its own chromatin signature toward pluripotency and then differentiation, reducing the risk for haploinsufficiency. At a few loci, however, parent-of-origin information persists through development, via maintenance and protective complexes. In this review, we discuss the parental asymmetries that are inherited from the gametes, the forces involved in their elimination, reinforcement or protection, and how this influences the embryonic program. We highlight the gradual loss of all parental asymmetries occurring throughout development, except at imprinted loci, which maintain distinct parent-of-origin chromatin and transcriptional characteristics for life. A deeper understanding of the nongenetic contributions of each germline is important to provide insight into the origin of non-Mendelian inheritance of phenotypic traits, as well as the risk of incompatibilities between parental genomes.
Collapse
Affiliation(s)
- Rachel Duffié
- Unité Génétique Biologie du Développement, Institut Curie, UMR3215/INSERM U394, Paris, France
| | | |
Collapse
|
535
|
Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol 2013; 9:640. [PMID: 23340846 PMCID: PMC3564260 DOI: 10.1038/msb.2012.61] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/29/2012] [Indexed: 02/06/2023] Open
Abstract
Advances in genome sequencing have progressed at a rapid pace, with increased throughput accompanied by plunging costs. But these advances go far beyond faster and cheaper. High-throughput sequencing technologies are now routinely being applied to a wide range of important topics in biology and medicine, often allowing researchers to address important biological questions that were not possible before. In this review, we discuss these innovative new approaches-including ever finer analyses of transcriptome dynamics, genome structure and genomic variation-and provide an overview of the new insights into complex biological systems catalyzed by these technologies. We also assess the impact of genotyping, genome sequencing and personal omics profiling on medical applications, including diagnosis and disease monitoring. Finally, we review recent developments in single-cell sequencing, and conclude with a discussion of possible future advances and obstacles for sequencing in biology and health.
Collapse
Affiliation(s)
- Wendy Weijia Soon
- Department of Genetics, Stanford University School of Medicine, Alway Building, 300 Pasteur Drive, Stanford, CA, USA
| | - Manoj Hariharan
- Department of Genetics, Stanford University School of Medicine, Alway Building, 300 Pasteur Drive, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Alway Building, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
536
|
Lorthongpanich C, Doris TPY, Limviphuvadh V, Knowles BB, Solter D. Developmental fate and lineage commitment of singled mouse blastomeres. Development 2012; 139:3722-31. [PMID: 22991438 DOI: 10.1242/dev.086454] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Mammalian Development Laboratory, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648.
| | | | | | | | | |
Collapse
|
537
|
Cassan-Wang H, Soler M, Yu H, Camargo ELO, Carocha V, Ladouce N, Savelli B, Paiva JAP, Leplé JC, Grima-Pettenati J. Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. PLANT & CELL PHYSIOLOGY 2012; 53:2101-16. [PMID: 23161857 DOI: 10.1093/pcp/pcs152] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and ΔCt), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.
Collapse
Affiliation(s)
- Hua Cassan-Wang
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, 31326 Castanet Tolosan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
538
|
Lee C, Hu J, Ralls S, Kitamura T, Loh YP, Yang Y, Mukouyama YS, Ahn S. The molecular profiles of neural stem cell niche in the adult subventricular zone. PLoS One 2012; 7:e50501. [PMID: 23209762 PMCID: PMC3510163 DOI: 10.1371/journal.pone.0050501] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
Neural stem cells (NSCs) reside in a unique microenvironment called the neurogenic niche and generate functional new neurons. The neurogenic niche contains several distinct types of cells and interacts with the NSCs in the subventricular zone (SVZ) of the lateral ventricle. While several molecules produced by the niche cells have been identified to regulate adult neurogenesis, a systematic profiling of autocrine/paracrine signaling molecules in the neurogenic regions involved in maintenance, self-renewal, proliferation, and differentiation of NSCs has not been done. We took advantage of the genetic inducible fate mapping system (GIFM) and transgenic mice to isolate the SVZ niche cells including NSCs, transit-amplifying progenitors (TAPs), astrocytes, ependymal cells, and vascular endothelial cells. From the isolated cells and microdissected choroid plexus, we obtained the secretory molecule expression profiling (SMEP) of each cell type using the Signal Sequence Trap method. We identified a total of 151 genes encoding secretory or membrane proteins. In addition, we obtained the potential SMEP of NSCs using cDNA microarray technology. Through the combination of multiple screening approaches, we identified a number of candidate genes with a potential relevance for regulating the NSC behaviors, which provide new insight into the nature of neurogenic niche signals.
Collapse
Affiliation(s)
- Cheol Lee
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jingqiong Hu
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sherry Ralls
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yanqin Yang
- DNA Sequencing and Genomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (YM); (SA)
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (YM); (SA)
| |
Collapse
|
539
|
Kang M, Piliszek A, Artus J, Hadjantonakis AK. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 2012. [PMID: 23193166 DOI: 10.1242/dev.084996] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of pluripotent epiblast (EPI) and primitive endoderm (PrE) lineages within the inner cell mass (ICM) of the mouse blastocyst involves initial co-expression of lineage-associated markers followed by mutual exclusion and salt-and-pepper distribution of lineage-biased cells. Precisely how EPI and PrE cell fate commitment occurs is not entirely clear; however, previous studies in mice have implicated FGF/ERK signaling in this process. Here, we investigated the phenotype resulting from zygotic and maternal/zygotic inactivation of Fgf4. Fgf4 heterozygous blastocysts exhibited increased numbers of NANOG-positive EPI cells and reduced numbers of GATA6-positive PrE cells, suggesting that FGF signaling is tightly regulated to ensure specification of the appropriate numbers of cells for each lineage. Although the size of the ICM was unaffected in Fgf4 null mutant embryos, it entirely lacked a PrE layer and exclusively comprised NANOG-expressing cells at the time of implantation. An initial period of widespread EPI and PrE marker co-expression was however established even in the absence of FGF4. Thus, Fgf4 mutant embryos initiated the PrE program but exhibited defects in its restriction phase, when lineage bias is acquired. Consistent with this, XEN cells could be derived from Fgf4 mutant embryos in which PrE had been restored and these cells appeared indistinguishable from wild-type cells. Sustained exogenous FGF failed to rescue the mutant phenotype. Instead, depending on concentration, we noted no effect or conversion of all ICM cells to GATA6-positive PrE. We propose that heterogeneities in the availability of FGF produce the salt-and-pepper distribution of lineage-biased cells.
Collapse
Affiliation(s)
- Minjung Kang
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
540
|
|
541
|
Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, Klemm SL, van Oudenaarden A, Jaenisch R. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012; 150:1209-22. [PMID: 22980981 DOI: 10.1016/j.cell.2012.08.023] [Citation(s) in RCA: 640] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/04/2012] [Accepted: 08/22/2012] [Indexed: 01/03/2023]
Abstract
During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of the previously suggested reprogramming markers Fbxo15, Fgf4, and Oct4. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc, and Nanog, can activate the pluripotency circuitry.
Collapse
Affiliation(s)
- Yosef Buganim
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Shaw L, Sneddon SF, Brison DR, Kimber SJ. Comparison of gene expression in fresh and frozen–thawed human preimplantation embryos. Reproduction 2012; 144:569-82. [DOI: 10.1530/rep-12-0047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Identification and characterisation of differentially regulated genes in preimplantation human embryonic development are required to improve embryo quality and pregnancy rates in IVF. In this study, we examined expression of a number of genes known to be critical for early development and compared expression profiles in individual preimplantation human embryos to establish any differences in gene expression in fresh compared to frozen–thawed embryos used routinely in IVF. We analysed expression of 19 genes by cDNA amplification followed by quantitative real-time PCR in a panel of 44 fresh and frozen–thawed human preimplantation embryos. Fresh embryos were obtained from surplus early cleavage stage embryos and frozen–thawed embryos from cryopreserved 2PN embryos. Our aim was to determine differences in gene expression between fresh and frozen–thawed human embryos, but we also identified differences in developmental expression patterns for particular genes. We show that overall gene expression among embryos of the same stage is highly variable and our results indicate that expression levels between groups did differ and differences in expression of individual genes was detected. Our results show that gene expression from frozen–thawed embryos is more consistent when compared with fresh, suggesting that cryopreserved embryos may represent a reliable source for studying the molecular events underpinning early human embryo development.
Collapse
|
543
|
Stephenson RO, Rossant J, Tam PPL. Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008235. [PMID: 23125013 DOI: 10.1101/cshperspect.a008235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.
Collapse
Affiliation(s)
- Robert O Stephenson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
544
|
Zhang K, Dai X, Wallingford MC, Mager J. Depletion of Suds3 reveals an essential role in early lineage specification. Dev Biol 2012; 373:359-72. [PMID: 23123966 DOI: 10.1016/j.ydbio.2012.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/20/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Preimplantation development culminates with the emergence of three distinct populations: the inner cell mass, primitive endoderm and trophectoderm. Here, we define the mechanisms underlying the requirement of Suds3 in pre/peri-implantation development. Suds3 knockdown blastocysts exhibit a failure of both trophectoderm proliferation as well as a conspicuous lack of primitive endoderm. Expression of essential lineage factors Nanog, Sox2, Cdx2, Eomes, Elf5 and Sox17 are severely reduced in the absence of Suds3. Importantly, we document deficient FGF4/ERK signaling and show that exogenous FGF4 rescues primitive endoderm formation and trophectoderm proliferation in Suds3 knockdown blastocysts. We also show that Hdac1 knockdown reduces Sox2/FGF4/ERK signaling in blastocysts. Collectively, these data define a role for Suds3 in activation of FGF4/ERK signaling and determine an essential molecular role of Suds3/Sin3/HDAC complexes in lineage specification in vivo.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, 455, 661 N. Pleasant Street, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
545
|
MacArthur BD, Sevilla A, Lenz M, Müller FJ, Schuldt BM, Schuppert AA, Ridden SJ, Stumpf PS, Fidalgo M, Ma'ayan A, Wang J, Lemischka IR. Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nat Cell Biol 2012; 14:1139-47. [PMID: 23103910 PMCID: PMC3507454 DOI: 10.1038/ncb2603] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022]
Abstract
A number of key regulators of mouse embryonic stem (ES) cell identity, including the transcription factor Nanog, show strong expression fluctuations at the single cell level. The molecular basis for these fluctuations is unknown. Here we used a genetic complementation strategy to investigate expression changes during transient periods of Nanog downregulation. Employing an integrated approach, that includes high-throughput single cell transcriptional profiling and mathematical modelling, we found that early molecular changes subsequent to Nanog loss are stochastic and reversible. However, analysis also revealed that Nanog loss severely compromises the self-sustaining feedback structure of the ES cell regulatory network. Consequently, these nascent changes soon become consolidated to committed fate decisions in the prolonged absence of Nanog. Consistent with this, we found that exogenous regulation of Nanog-dependent feedback control mechanisms produced more a homogeneous ES cell population. Taken together our results indicate that Nanog-dependent feedback loops have a role in controlling both ES cell fate decisions and population variability.
Collapse
Affiliation(s)
- Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
546
|
Tischler J, Surani MA. Investigating transcriptional states at single-cell-resolution. Curr Opin Biotechnol 2012; 24:69-78. [PMID: 23084076 DOI: 10.1016/j.copbio.2012.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 01/09/2023]
Abstract
Gene expression analysis at single-cell-resolution is a powerful tool for uncovering individual cell differences within heterogeneous cell populations and complex tissues, which can provide invaluable insights into the extent of gene expression variability. Multi-dimensional information of gene expression at the level of the individual cell can help to identify distinct and rare molecular cell 'states' within populations and aid in unravelling genetic regulatory circuits. Gene expression analysis at the single-cell-level will also enhance our understanding of the molecular basis of aberrant cell states and disease development and holds great promise for the advancement of personalized medicine. We present approaches that provide large-scale views of gene expression at the level of the individual cell.
Collapse
Affiliation(s)
- Julia Tischler
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|
547
|
Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc Natl Acad Sci U S A 2012; 109:17567-72. [PMID: 23045682 DOI: 10.1073/pnas.1215468109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver, a preleukemic condition termed transient myeloproliferative disorder, and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins, human embryonic stem (hES), and induced pluripotent stem (iPS) cells, were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation, we isolated disomic and trisomic subclones from the same parental iPS line, thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like, γ-globin expressing, definitive hematopoiesis, we found that trisomic cells of hES, iPS, or isogenic origins exhibited a two- to fivefold increase in a population of CD43(+)(Leukosialin)/CD235(+)(Glycophorin A) hematopoietic cells, accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage.
Collapse
|
548
|
Bogdanović O, Fernandez-Miñán A, Tena JJ, de la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, van Heeringen SJ, Veenstra GJC, Gómez-Skarmeta JL. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res 2012; 22:2043-53. [PMID: 22593555 PMCID: PMC3460198 DOI: 10.1101/gr.134833.111] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
Abstract
The generation of distinctive cell types that form different tissues and organs requires precise, temporal and spatial control of gene expression. This depends on specific cis-regulatory elements distributed in the noncoding DNA surrounding their target genes. Studies performed on mammalian embryonic stem cells and Drosophila embryos suggest that active enhancers form part of a defined chromatin landscape marked by histone H3 lysine 4 mono-methylation (H3K4me1) and histone H3 lysine 27 acetylation (H3K27ac). Nevertheless, little is known about the dynamics and the potential roles of these marks during vertebrate embryogenesis. Here, we provide genomic maps of H3K4me1/me3 and H3K27ac at four developmental time-points of zebrafish embryogenesis and analyze embryonic enhancer activity. We find that (1) changes in H3K27ac enrichment at enhancers accompany the shift from pluripotency to tissue-specific gene expression, (2) in early embryos, the peaks of H3K27ac enrichment are bound by pluripotent factors such as Nanog, and (3) the degree of evolutionary conservation is higher for enhancers that become marked by H3K27ac at the end of gastrulation, suggesting their implication in the establishment of the most conserved (phylotypic) transcriptome that is known to occur later at the pharyngula stage.
Collapse
Affiliation(s)
- Ozren Bogdanović
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Ana Fernandez-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | | | - Carmen Hidalgo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Ila van Kruysbergen
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, 41013 Sevilla, Spain
| | - Simon J. van Heeringen
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | - Gert Jan C. Veenstra
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6525 GA, The Netherlands
| | | |
Collapse
|
549
|
RT-qPCR work-flow for single-cell data analysis. Methods 2012; 59:80-8. [PMID: 23021995 DOI: 10.1016/j.ymeth.2012.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/21/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Individual cells represent the basic unit in tissues and organisms and are in many aspects unique in their properties. The introduction of new and sensitive techniques to study single-cells opens up new avenues to understand fundamental biological processes. Well established statistical tools and recommendations exist for gene expression data based on traditional cell population measurements. However, these workflows are not suitable, and some steps are even inappropriate, to apply on single-cell data. Here, we present a simple and practical workflow for preprocessing of single-cell data generated by reverse transcription quantitative real-time PCR. The approach is demonstrated on a data set based on profiling of 41 genes in 303 single-cells. For some pre-processing steps we present options and also recommendations. In particular, we demonstrate and discuss different strategies for handling missing data and scaling data for downstream multivariate analysis. The aim of this workflow is provide guide to the rapidly growing community studying single-cells by means of reverse transcription quantitative real-time PCR profiling.
Collapse
|
550
|
Chen YH, Yu J. Ectopic expression of Fgf3 leads to aberrant lineage segregation in the mouse parthenote preimplantation embryos. Dev Dyn 2012; 241:1651-64. [PMID: 22930543 DOI: 10.1002/dvdy.23851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parthenogenetic mammalian embryos were reported to die in utero no later than the 25-somite stage due to abnormal development of both embryonic and extraembryonic lineages. Interestingly, it has been shown that parthenogenetic ICM cells tend to differentiate more into primitive endoderm cells and less into epiblast and ES cells. Hence we are interested in studying the molecular mechanisms underlying lineage defects of parthenotes. RESULTS We found that parthenote inner cell masses (ICMs) contained decreased numbers of Sox2(+) /Nanog(+) epiblast cells but increased numbers of Gata4(+) primitive endoderm cells, indicating an unusual lineage segregation. We demonstrate for the first time that the increased Gata4 level in parthenotes may be explained by the strong up-regulation of Fgf3 and Fgfr2 phosphorylation. Inhibition of Fgfr2 activation by SU5402 in parthenotes restored normal Nanog and Gata4 levels without affecting Fgf3, indicating that Fgf3 is upstream of Fgfr2 activation. In parthenote trophectoderm, we detected normal Cdx2 but ectopic Gata4 expression and reduced Elf5 and Tbr2(Eomes) levels. CONCLUSIONS Taken together, our work provides for the first time the insight into the molecular mechanisms of the developmental defects of parthenogenetic embryos in both the trophectoderm and ICM.
Collapse
Affiliation(s)
- Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|