501
|
Glover-Cutter KM, Lin S, Blackwell TK. Integration of the unfolded protein and oxidative stress responses through SKN-1/Nrf. PLoS Genet 2013; 9:e1003701. [PMID: 24068940 PMCID: PMC3772064 DOI: 10.1371/journal.pgen.1003701] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022] Open
Abstract
The Unfolded Protein Response (UPR) maintains homeostasis in the endoplasmic reticulum (ER) and defends against ER stress, an underlying factor in various human diseases. During the UPR, numerous genes are activated that sustain and protect the ER. These responses are known to involve the canonical UPR transcription factors XBP1, ATF4, and ATF6. Here, we show in C. elegans that the conserved stress defense factor SKN-1/Nrf plays a central and essential role in the transcriptional UPR. While SKN-1/Nrf has a well-established function in protection against oxidative and xenobiotic stress, we find that it also mobilizes an overlapping but distinct response to ER stress. SKN-1/Nrf is regulated by the UPR, directly controls UPR signaling and transcription factor genes, binds to common downstream targets with XBP-1 and ATF-6, and is present at the ER. SKN-1/Nrf is also essential for resistance to ER stress, including reductive stress. Remarkably, SKN-1/Nrf-mediated responses to oxidative stress depend upon signaling from the ER. We conclude that SKN-1/Nrf plays a critical role in the UPR, but orchestrates a distinct oxidative stress response that is licensed by ER signaling. Regulatory integration through SKN-1/Nrf may coordinate ER and cytoplasmic homeostasis. Proteins that are placed in membranes or secreted are produced in a cellular structure called the endoplasmic reticulum (ER). An accumulation of misfolded proteins in the ER contributes to many disease states, including diabetes and neurodegeneration. The ER protects against a toxic buildup of misfolded proteins by activating the unfolded protein response (UPR), which maintains ER homeostasis by slowing protein synthesis and enhancing ER functions such as protein folding and degradation. Many of these processes are controlled by three canonical ER/UPR gene regulatory factors. Here we identify the gene regulator SKN-1/Nrf as also playing a critical role in the UPR. SKN-1/Nrf is well known for its functions in oxidative stress defense and longevity. We now report that SKN-1/Nrf mobilizes an ER stress gene network that is distinct from its oxidative stress response, and includes regulation of other central UPR factors. Surprisingly, we also find that ER- and UPR-associated mechanisms are needed to “license” SKN-1/Nrf to defend against oxidative stresses. Our findings show that UPR and oxidative stress defense mechanisms are integrated through SKN-1/Nrf, and suggest that this integration may help maintain a healthy balance between ER and cytoplasmic functions, and stress defenses.
Collapse
Affiliation(s)
- Kira M. Glover-Cutter
- Joslin Diabetes Center, Harvard Stem Cell Institute, and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - Stephanie Lin
- Joslin Diabetes Center, Harvard Stem Cell Institute, and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - T. Keith Blackwell
- Joslin Diabetes Center, Harvard Stem Cell Institute, and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
502
|
Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12:703-19. [DOI: 10.1038/nrd3976] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
503
|
Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 2013; 153:1435-47. [PMID: 23791175 DOI: 10.1016/j.cell.2013.05.042] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 01/04/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The ability to ensure proteostasis is critical for maintaining proper cell function and organismal viability but is mitigated by aging. We analyzed the role of the endoplasmic reticulum unfolded protein response (UPR(ER)) in aging of C. elegans and found that age-onset loss of ER proteostasis could be reversed by expression of a constitutively active form of XBP-1, XBP-1s. Neuronally derived XBP-1s was sufficient to rescue stress resistance, increase longevity, and activate the UPR(ER) in distal, non-neuronal cell types through a cell-nonautonomous mechanism. Loss of UPR(ER) signaling components in distal cells blocked cell-nonautonomous signaling from the nervous system, thereby blocking increased longevity of the entire animal. Reduction of small clear vesicle (SCV) release blocked nonautonomous signaling downstream of xbp-1s, suggesting that the release of neurotransmitters is required for this intertissue signaling event. Our findings point toward a secreted ER stress signal (SERSS) that promotes ER stress resistance and longevity.
Collapse
Affiliation(s)
- Rebecca C Taylor
- The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
504
|
Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3507-3517. [PMID: 23988738 DOI: 10.1016/j.bbamcr.2013.07.024] [Citation(s) in RCA: 355] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common feature of several physiological and pathological conditions affecting the function of the secretory pathway. To restore ER homeostasis, an orchestrated signaling pathway is engaged that is known as the unfolded protein response (UPR). The UPR has a primary function in stress adaptation and cell survival; however, under irreversible ER stress a switch to pro-apoptotic signaling events induces apoptosis of damaged cells. The mechanisms that initiate ER stress-dependent apoptosis are not fully understood. Several pathways have been described where we highlight the participation of the BCL-2 family of proteins and ER calcium release. In addition, recent findings also suggest that microRNAs and oxidative stress are relevant players on the transition from adaptive to cell death programs. Here we provide a global and integrated overview of the signaling networks that may determine the elimination of a cell under chronic ER stress. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Hery Urra
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Estefanie Dufey
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernanda Lisbona
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
505
|
Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 2013; 5:1465-83. [PMID: 24039130 PMCID: PMC3799574 DOI: 10.1002/emmm.201201773] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/19/2013] [Accepted: 07/04/2013] [Indexed: 12/17/2022] Open
Abstract
We survive because we adapted to a world of microorganisms. All our epithelial surfaces participate in keeping up an effective barrier against microbes while not initiating ongoing inflammatory processes and risking collateral damage to the host. Major players in this scenario are antimicrobial peptides (AMPs). Such broad-spectrum innate antibiotics are in part produced by specialized cells but also widely sourced from all epithelia as well as circulating inflammatory cells. AMPs belong to an ancient defense system found in all organisms and participated in a preservative co-evolution with a complex microbiome. Particularly interesting interactions between host barrier and microbiota can be found in the gut. The intestinal cell lining not only has to maintain a tightly regulated homeostasis during its high-throughput regeneration, but also a balanced relationship towards an extreme number of mutualistic or commensal inhabitants. Recent research suggests that advancing our understanding of the circumstances of such balanced and sometimes imbalanced interactions between gut microbiota and host AMPs should have therapeutic implications for different intestinal disorders.
Collapse
Affiliation(s)
- Maureen J Ostaff
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Germany
| | | | | |
Collapse
|
506
|
Valentine CD, Anderson MO, Papa FR, Haggie PM. X-box binding protein 1 (XBP1s) is a critical determinant of Pseudomonas aeruginosa homoserine lactone-mediated apoptosis. PLoS Pathog 2013; 9:e1003576. [PMID: 23990788 PMCID: PMC3749957 DOI: 10.1371/journal.ppat.1003576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/06/2013] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa infections are associated with high mortality rates and occur in diverse conditions including pneumonias, cystic fibrosis and neutropenia. Quorum sensing, mediated by small molecules including N-(3-oxo-dodecanoyl) homoserine lactone (C12), regulates P. aeruginosa growth and virulence. In addition, host cell recognition of C12 initiates multiple signalling responses including cell death. To gain insight into mechanisms of C12-mediated cytotoxicity, we studied the role of endoplasmic reticulum stress in host cell responses to C12. Dramatic protection against C12-mediated cell death was observed in cells that do not produce the X-box binding protein 1 transcription factor (XBP1s). The leucine zipper and transcriptional activation motifs of XBP1s were sufficient to restore C12-induced caspase activation in XBP1s-deficient cells, although this polypeptide was not transcriptionally active. The XBP1s polypeptide also regulated caspase activation in cells stimulated with N-(3-oxo-tetradecanoyl) homoserine lactone (C14), produced by Yersinia enterolitica and Burkholderia pseudomallei, and enhanced homoserine lactone-mediated caspase activation in the presence of endogenous XBP1s. In C12-tolerant cells, responses to C12 including phosphorylation of p38 MAPK and eukaryotic initiation factor 2α were conserved, suggesting that C12 cytotoxicity is not heavily dependent on these pathways. In summary, this study reveals a novel and unconventional role for XBP1s in regulating host cell cytotoxic responses to bacterial acyl homoserine lactones. Chronic and acute infections associated with P. aeruginosa constitute a major healthcare burden. Antimicrobial approaches are currently used against P. aeruginosa; however, infections are typically refractory to treatment and drug resistant strains have been isolated. As such, there is urgent need to understand mechanisms of P. aeruginosa virulence and for new strategies to fight infections. The P. aeruginosa-derived quorum-sensing molecule C12 is recognized by host cells and initiates stress responses including cytotoxicity. In this study, the X-box binding protein 1 transcription factor (XBP1s) was identified as a host factor critical for apoptotic responses initiated by C12 and other similar quorum sensing molecules. Additional C12-initiated host responses, including phosphorylation of p38 MAPK and eIF2α were found to be of lesser importance for C12-initiated cytotoxicity. These studies have broad implications for our understanding of bacterial virulence mechanisms and for development of potential new strategies to combat infections.
Collapse
Affiliation(s)
- Cathleen D. Valentine
- Department of Nephrology, University of California, San Francisco, San Francisco, California, United States of America
| | - Marc O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, United States of America
| | - Feroz R. Papa
- Lung Biology Center, Diabetes Center, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Peter M. Haggie
- Department of Nephrology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
507
|
Skeletal diseases caused by mutations that affect collagen structure and function. Int J Biochem Cell Biol 2013; 45:1556-67. [DOI: 10.1016/j.biocel.2013.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
508
|
Kadowaki H, Nishitoh H. Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes (Basel) 2013; 4:306-33. [PMID: 24705207 PMCID: PMC3924831 DOI: 10.3390/genes4030306] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle in which newly synthesized secretory and transmembrane proteins are assembled and folded into their correct tertiary structures. However, many of these ER proteins are misfolded as a result of various stimuli and gene mutations. The accumulation of misfolded proteins disrupts the function of the ER and induces ER stress. Eukaryotic cells possess a highly conserved signaling pathway, termed the unfolded protein response (UPR), to adapt and respond to ER stress conditions, thereby promoting cell survival. However, in the case of prolonged ER stress or UPR malfunction, apoptosis signaling is activated. Dysfunction of the UPR causes numerous conformational diseases, including neurodegenerative disease, metabolic disease, inflammatory disease, diabetes mellitus, cancer, and cardiovascular disease. Thus, ER stress-induced signaling pathways may serve as potent therapeutic targets of ER stress-related diseases. In this review, we will discuss the molecular mechanisms of the UPR and ER stress-induced apoptosis, as well as the possible roles of ER stress in several diseases.
Collapse
Affiliation(s)
- Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
509
|
Maurel M, Chevet E. Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol 2013; 304:C1117-26. [DOI: 10.1152/ajpcell.00061.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER)-induced unfolded protein response (ERUPR) is an adaptive mechanism that is activated upon accumulation of misfolded proteins in the ER and aims at restoring ER homeostasis. The ERUPR is transduced by three major ER-resident stress sensors, namely PKR-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring enzyme 1 (IRE1). Activation of these ER stress sensors leads to transcriptional reprogramming of the cells. Recently, microRNAs (miRNAs), small noncoding RNAs that generally repress gene expression, have emerged as key regulators of ER homeostasis and important players in ERUPR-dependent signaling. Moreover, the miRNAs biogenesis machinery appears to also be regulated upon ER stress. Herein we extensively review the relationships existing between “canonical” ERUPR signaling, control of ER homeostasis, and miRNAs. We reveal an intricate signaling network that might confer specificity and selectivity to the ERUPR in tissue- or stress-dependent fashion. We discuss these issues in the context of the physiological and pathophysiological roles of ERUPR signaling.
Collapse
Affiliation(s)
- Marion Maurel
- INSERM U1053, Bordeaux, France; and
- Université Bordeaux-Segalen, Bordeaux, France
| | - Eric Chevet
- INSERM U1053, Bordeaux, France; and
- Université Bordeaux-Segalen, Bordeaux, France
| |
Collapse
|
510
|
Abstract
BACKGROUND Currently available plasma cell markers include CD138 and CD38. However, CD38 is not specific to plasma cells. It is also expressed by many epithelial cells and other hematopoietic cells. In addition, rare CD138-negative PCNs may be exceedingly difficult to diagnose. MIST1 is a transcription factor expressed by mouse and human neoplastic and non-neoplastic plasma cells. Our goals were to compare MIST1 expression to CD38/CD138 in neoplasms with plasmacytic differentiation, assess reactivity in normal samples and nonplasmacytic cell lineages, and to determine whether MIST1 is expressed in CD138-negative PCNs. DESIGN Eighty-five neoplasms with plasma cell differentiation [marginal zone lymphoma (MZL), lymphoplasmacytic lymphoma (LPL), plasmablastic lymphoma (PB), plasma cell neoplasm (PCN)] and 2 non-neoplastic cases (normal marrow) were tested with MIST1 immunohistochemistry. CD138/38 expression for each case was compared with MIST1 reactivity. RESULTS Plasma cells were MIST1 positive in all cases interrogated. CD38 and/or CD138 expression was reviewed in all cases and found to be concordant in 46/47 (97.8%) of tested cases, with the exception of 1 case of PB that showed MIST1 positivity and no CD138 expression. All other cell lineages were negative, with the exception of MZL and LPL, in which MIST1 highlighted a subset of the lymphocytes, with plasmacytic differentiation. CONCLUSIONS MIST1 is a sensitive and specific marker of plasmacytic differentiation. CD138+ plasma cells expressed MIST1 in all tested cases; however, 1 PB showed MIST1 positivity and no CD138 expression, suggesting MIST1 may be useful in certain CD138-negative cases. In MZL and LPL, MIST1 highlights a subset of the lymphocytes in lymphomas with plasmacytic differentiation.
Collapse
|
511
|
Vincenz L, Jäger R, O'Dwyer M, Samali A. Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol Cancer Ther 2013; 12:831-43. [PMID: 23729400 DOI: 10.1158/1535-7163.mct-12-0782] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is characterized by the malignant proliferating antibody-producing plasma cells in the bone marrow. Despite recent advances in therapy that improve the survival of patients, multiple myeloma remains incurable and therapy resistance is the major factor causing lethality. Clearly, more effective treatments are necessary. In recent years it has become apparent that, as highly secretory antibody-producing cells, multiple myeloma cells require an increased capacity to cope with unfolded proteins and are particularly sensitive to compounds targeting proteostasis such as proteasome inhibitors, which represent one of the most prominent new therapeutic strategies. Because of the increased requirement for dealing with secretory proteins within the endoplasmic reticulum, multiple myeloma cells are heavily reliant for survival on a set of signaling pathways, known as the unfolded protein response (UPR). Thus, directly targeting the UPR emerges as a new promising therapeutic strategy. Here, we provide an overview of the current understanding of the UPR signaling in cancer, and outline its important role in myeloma pathogenesis and treatment. We discuss new therapeutic approaches based on targeting the protein quality control machinery and particularly the IRE1α/XBP1 axis of the UPR.
Collapse
Affiliation(s)
- Lisa Vincenz
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland
| | | | | | | |
Collapse
|
512
|
Cornejo VH, Hetz C. The unfolded protein response in Alzheimer’s disease. Semin Immunopathol 2013; 35:277-92. [DOI: 10.1007/s00281-013-0373-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
513
|
Oikawa D, Iwawaki T. Positive contribution of IRE1α-XBP1 pathway to the expression of placental cathepsins. Biochem Biophys Res Commun 2013; 433:426-31. [PMID: 23541586 DOI: 10.1016/j.bbrc.2013.02.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/26/2013] [Indexed: 11/17/2022]
Abstract
IRE1α is an ER-located transmembrane RNase whose activation leads to the production of the transcriptional factor, XBP1. Recently, many studies report that IRE1α-XBP1 pathway has novel and significant roles in placenta. However, its molecular details have been still unknown. To address this point, we have focused on the molecular linkage between IRE1α-XBP1 pathway and Cts7 and Cts8, which are essential cathepsins for placenta formation. In cellular model, this pathway positively contributed to their expression at transcriptional level. In addition, the disruption of IRE1α or XBP1 in animal model significantly attenuated their transcripts in placenta. These results indicated that IRE1α-XBP1 pathway function as a specific program supporting the placenta formation by ensuring the moderate expression of specific subset of placental cathepsins.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Iwawaki Lab, Advanced Scientific Research Leaders Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | |
Collapse
|
514
|
Cho YM, Kim DH, Kwak SN, Jeong SW, Kwon OJ. X-box binding protein 1 enhances adipogenic differentiation of 3T3-L1 cells through the downregulation of Wnt10b expression. FEBS Lett 2013; 587:1644-9. [PMID: 23603388 DOI: 10.1016/j.febslet.2013.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 11/24/2022]
Abstract
Differentiation of preadipocytes into adipocytes is controlled by various transcription factors. Recently, the pro-adipogenic function of XBP1, a transcription factor upregulated by endoplasmic reticulum stress, has been reported. In this study, we demonstrated that XBP1 suppresses the expression of Wnt10b, an anti-adipogenic Wnt, during the differentiation of 3T3-L1 preadipocytes. The expression pattern of XBP1 was reciprocal to that of Wnt10b during the early stage of adipogenesis. The intracellular protein levels of β-catenin were negatively regulated by XBP1. Direct binding of XBP1 to the Wnt10b promoter and the subsequent decrease of the β-catenin signalling pathway represent a novel adipogenic differentiation mechanism.
Collapse
Affiliation(s)
- Yoon Mi Cho
- Department of Biochemistry, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | |
Collapse
|
515
|
Kaser A, Adolph TE, Blumberg RS. The unfolded protein response and gastrointestinal disease. Semin Immunopathol 2013; 35:307-19. [PMID: 23588234 DOI: 10.1007/s00281-013-0377-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
Abstract
As the inner lining of the gastrointestinal tract, the intestinal epithelium serves an essential role in innate immune function at the interface between the host and microbiota. Given the unique environmental challenges and thus physiologic secretory functions of this surface, it is exquisitely sensitive to perturbations that affect its capacity to resolve endoplasmic reticulum (ER) stress. Genetic deletion of factors involved in the unfolded protein response (UPR), which functions in the resolution of ER stress that arises from misfolded proteins, result in spontaneous intestinal inflammation closely mimicking human inflammatory bowel disease (IBD). This is demonstrated by observations wherein deletion of genes such as Xbp1 and Agr2 profoundly affects the intestinal epithelium and results in spontaneous intestinal inflammation. Moreover, both genes, along with others (e.g., ORDML3) represent genetic risk factors for human IBD, both Crohn's disease and ulcerative colitis. Here, we review the current mechanistic understanding for how unresolved ER stress can lead to intestinal inflammation and highlight the findings that implicate ER stress as a genetically affected biological pathway in IBD. We further discuss environmental and microbial factors that might impact on the epithelium's capacity to resolve ER stress and which may constitute exogenous factors that may precipitate disease in genetically susceptible individuals.
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | |
Collapse
|
516
|
Montalbano R, Waldegger P, Quint K, Jabari S, Neureiter D, Illig R, Ocker M, Di Fazio P. Endoplasmic reticulum stress plays a pivotal role in cell death mediated by the pan-deacetylase inhibitor panobinostat in human hepatocellular cancer cells. Transl Oncol 2013; 6:143-157. [PMID: 23544167 PMCID: PMC3610545 DOI: 10.1593/tlo.12271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
Panobinostat, a pan-deacetylase inhibitor, represents a novel therapeutic option for cancer diseases. Besides its ability to block histone deacetylases (HDACs) by promoting histone hyperacetylation, panobinostat interferes with several cell death pathways providing a potential efficacy against tumors. We have previously demonstrated that panobinostat has a potent apoptotic activity in vitro and causes a significant growth delay of hepatocellular carcinoma (HCC) tumor xenografts in nude mice models. Here, we show that treatment with panobinostat is able to induce noncanonical apoptotic cell death in HepG2 and in Hep3B cells, involving the endoplasmic reticulum (ER) stress by up-regulation of the molecular chaperone binding immunoglobulin protein/glucose-regulated protein 78, activation of eukaryotic initiation factor 2α-activating transcription factor 4 (tax-responsive enhancer element B67) and inositol requiring 1α-X-box binding protein 1 factors, strong increase and nuclear translocation of the transcription factor C/EBP homologous protein/growth arrest and DNA damage-inducible gene 153, and involvement of c-Jun N-terminal kinase. These signaling cascades culminate into the activation of the ER-located caspase-4/12 and of executioner caspases, which finally lead to cell demise. Our results clearly show that panobinostat induces an alternative ER stress-mediated cell death pathway in HCC cells, independent of the p53 status.
Collapse
Affiliation(s)
- Roberta Montalbano
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Petra Waldegger
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Karl Quint
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Samir Jabari
- Institute for Anatomy I, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Private Medical University, Salzburg, Austria
| | - Romana Illig
- Institute of Pathology, Paracelsus Private Medical University, Salzburg, Austria
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
517
|
Abstract
The respiratory tract has a surface area of approximately 70 m(2) that is in direct contact with the external environment. Approximately 12,000 l of air are inhaled daily, exposing the airway epithelium to up to 25 million particles an hour. Several inhaled environmental triggers, like cigarette smoke, diesel exhaust, or allergens, are known inducers of endoplasmatic reticulum (ER) stress and cause a dysregulation in ER homeostasis. Furthermore, some epithelial cell types along the respiratory tract have a secretory function, producing large amounts of mucus or pulmonary surfactant, as well as innate host defense molecules like defensins. To keep up with their secretory demands, these cells must rely on the appropriate functioning and folding capacity of the ER, and they are particularly more vulnerable to conditions of unresolved ER stress. In the lung interstitium, triggering of ER stress pathways has a major impact on the functioning of vascular smooth muscle cells and fibroblasts, causing aberrant dedifferentiation and proliferation. Given the large amounts of foreign material inhaled, the lung is densely populated by various types of immune cells specialized in engulfing and killing pathogens and in secreting cytokines/chemokines for efficient microbial clearance. Unfolded protein response signaling cascades have been shown to intersect with the functioning of immune cells at all levels. The current review aims to highlight the role of ER stress in health and disease in the lung, focusing on its impact on different structural and inflammatory cell types.
Collapse
|
518
|
Duplan E, Giaime E, Viotti J, Sévalle J, Corti O, Brice A, Ariga H, Qi L, Checler F, Alves da Costa C. ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. J Cell Sci 2013; 126:2124-33. [PMID: 23447676 DOI: 10.1242/jcs.127340] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parkin and DJ-1 are two multi-functional proteins linked to autosomal recessive early-onset Parkinson's disease (PD) that have been shown to functionally interact by as-yet-unknown mechanisms. We have delineated the mechanisms by which parkin controls DJ-1. Parkin modulates DJ-1 transcription and protein levels via a signaling cascade involving p53 and the endoplasmic reticulum (ER)-stress-induced active X-box-binding protein-1S (XBP-1S). Parkin triggers the transcriptional repression of p53 while p53 downregulates DJ-1 protein and mRNA expressions. We show that parkin-mediated control of DJ-1 is fully p53-dependent. Furthermore, we establish that p53 lowers the protein and mRNA levels of XBP-1S. Accordingly, we show that parkin ultimately upregulates XBP-1 levels. Subsequently, XBP-1S physically interacts with the DJ-1 promoter, thereby enhancing its promoter trans-activation, mRNA levels and protein expression. This data was corroborated by the examination of DJ-1 in both parkin- and p53-null mice brains. This transcriptional cascade is abolished by pathogenic parkin mutations and is independent of its ubiquitin-ligase activity. Our data establish a parkin-dependent ER-stress-associated modulation of DJ-1 and identifies p53 and XBP-1 as two major actors acting downstream of parkin in this signaling cascade in cells and in vivo. This work provides a mechanistic explanation for the increase in the unfolded protein response observed in PD pathology, i.e. that it is due to a defect in parkin-associated control of DJ-1.
Collapse
Affiliation(s)
- Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, Team Fondation pour la Recherche Médicale and Labex Distalz, 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Liu SY, Wang W, Cai ZY, Yao LF, Chen ZW, Wang CY, Zhao B, Li KS. Polymorphism -116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer's disease. CNS Neurosci Ther 2013; 19:229-34. [PMID: 23421912 DOI: 10.1111/cns.12064] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/14/2023] Open
Abstract
AIM Alzheimer's disease (AD) is a multifactor disease that has been reported to have a close association with endoplasmic reticulum (ER) stress response. In the response, the regulator factor human X-box-binding protein 1 (XBP1) has been shown to facilitate the refolding and degradation of misfolded proteins, prevent neurotoxicity of amyloid-beta (Aβ) and tau, and play an important role in the survival of neurons. The aim in the study was to analyze the potential association between the -116C/G polymorphism of XBP1 and the risk of AD. METHODS The association between -116C/G polymorphism of XBP1 promoter and possible risk of AD was assessed among 276 patients with AD and 254 matched healthy individuals in a case-control study. RESULTS Overall, there was a significantly statistical difference in genotype (P = 0.0354) and allele frequencies (P = 0.0150, OR = 1.3642, 95% CI = 1.0618-1.7528) between the AD subjects and control subjects, showing that the -116C/G polymorphism of XBP1 might lead to increased susceptibility for AD in a Chinese Han population. In addition, the -116CG and -116GG genotypes were significantly associated with increased AD risk in female (P = 0.0217) and in subjects with APOE є4 (-) (P = 0.0070) in stratified analyses, and the -116CC genotype was significantly associated with fast cognitive deterioration in the AD patients (P = 0.0270). CONCLUSION The study supports a role for the -116C/G polymorphism of XBP1 gene in the pathogenesis of AD, and further studies with a larger sample size and detailed data should be performed in other populations.
Collapse
Affiliation(s)
- Sheng-Yuan Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
520
|
Shao D, Liu J, Ni J, Wang Z, Shen Y, Zhou L, Huang Y, Wang J, Xue H, Zhang W, Lu L. Suppression of XBP1S mediates high glucose-induced oxidative stress and extracellular matrix synthesis in renal mesangial cell and kidney of diabetic rats. PLoS One 2013; 8:e56124. [PMID: 23457509 PMCID: PMC3573021 DOI: 10.1371/journal.pone.0056124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Recent evidences suggest that endoplasmic reticulum (ER) stress was involved in multi pathological conditions, including diabetic nephropathy (DN). X-box binding protein 1(XBP1), as a key mediator of ER stress, has been proved having the capability of preventing oxidative stress. In this study, we investigated the effects of spliced XBP1 (XBP1S), the dominant active form of XBP1, on high glucose (HG)-induced reactive oxygen species (ROS) production and extracellular matrix (ECM) synthesis in cultured renal mesangial cells (MCs) and renal cortex of STZ-induced diabetic rats. Real time PCR and Western blot were used to evaluate the mRNA and protein levels respectively. Transfection of recombinant adenovirus vector carrying XBP1S gene (Ad-XBP1S) was used to upregulate XBP1S expression. XBP1S siRNA was used to knockdown XBP1S expression. ROS level was detected by dihydroethidium (DHE) fluorescent probe assay. The results showed that HG treatment significantly reduced XBP1S protein and mRNA level in the cultured MCs while no obvious change was observed in unspliced XBP1 (XBP1U). In the mean time, the ROS production, collagen IV and fibronectin expressions were increased. Diphenylene-chloride iodonium (DPI), a NADPH oxidase inhibtor, prevented HG-induced increases in ROS as well as collagen IV and fibronectin expressions. Transfection of Ad-XBP1S reversed HG-induced ROS production and ECM expressions. Knockdown intrinsic XBP1S expression induced increases in ROS production and ECM expressions. Supplementation of supreoxide reversed the inhibitory effect of Ad-XBP1S transfection on ECM synthesis. P47phox was increased in HG-treated MCs. Ad-XBP1S transfection reversed HG-induced p47phox increase while XBP1S knockdown upregulated p47phox expression. In the renal cortex of diabetic rats, the expression of XBP1S was reduced while p47phox, collagen IV and fibronectin expression were elevated. These results suggested that XBP1S pathway of ER stress was involved in HG-induced oxidative stress and ECM synthesis. A downstream target of XBP1S in regulating ROS formation might be NADPH oxidase.
Collapse
Affiliation(s)
- Decui Shao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Ni
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Huang
- School of Biomedical Sciences and Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Jun Wang
- Department of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
521
|
He Y, Beatty A, Han X, Ji Y, Ma X, Adelstein RS, Yates JR, Kemphues K, Qi L. Nonmuscle myosin IIB links cytoskeleton to IRE1α signaling during ER stress. Dev Cell 2013; 23:1141-52. [PMID: 23237951 DOI: 10.1016/j.devcel.2012.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/19/2012] [Accepted: 11/12/2012] [Indexed: 01/05/2023]
Abstract
Here we identify and characterize a cytoskeletal myosin protein required for IRE1α oligomerization, activation, and signaling. Proteomic screening identified nonmuscle myosin heavy chain IIB (NMHCIIB), a subunit of nonmuscle myosin IIB (NMIIB), as an ER stress-dependent interacting protein specific to IRE1α. Loss of NMIIB compromises XBP1s and UPR target gene expression with no effect on the PERK pathway. Mechanistically, NMIIB is required for IRE1α aggregation and foci formation under ER stress. The NMIIB-mediated effect on IRE1α signaling is in part dependent on the phosphorylation of myosin regulatory light chain and the actomyosin contractility of NMIIB. Biologically, the function of NMIIB in ER stress response is conserved as both mammalian cells and C. elegans lacking NMIIB exhibit hypersensitivity to ER stress. Thus, optimal IRE1α activation and signaling require concerted coordination between the ER and cytoskeleton.
Collapse
Affiliation(s)
- Yin He
- Graduate Program in Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Griffiths B, Lewis CA, Bensaad K, Ros S, Zhang Q, Ferber EC, Konisti S, Peck B, Miess H, East P, Wakelam M, Harris AL, Schulze A. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab 2013; 1:3. [PMID: 24280005 PMCID: PMC3835903 DOI: 10.1186/2049-3002-1-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/12/2012] [Indexed: 12/28/2022] Open
Abstract
Background Regulation of lipid metabolism via activation of sterol regulatory element binding proteins (SREBPs) has emerged as an important function of the Akt/mTORC1 signaling axis. Although the contribution of dysregulated Akt/mTORC1 signaling to cancer has been investigated extensively and altered lipid metabolism is observed in many tumors, the exact role of SREBPs in the control of biosynthetic processes required for Akt-dependent cell growth and their contribution to tumorigenesis remains unclear. Results We first investigated the effects of loss of SREBP function in non-transformed cells. Combined ablation of SREBP1 and SREBP2 by siRNA-mediated gene silencing or chemical inhibition of SREBP activation induced endoplasmic reticulum (ER)-stress and engaged the unfolded protein response (UPR) pathway, specifically under lipoprotein-deplete conditions in human retinal pigment epithelial cells. Induction of ER-stress led to inhibition of protein synthesis through increased phosphorylation of eIF2α. This demonstrates for the first time the importance of SREBP in the coordination of lipid and protein biosynthesis, two processes that are essential for cell growth and proliferation. SREBP ablation caused major changes in lipid composition characterized by a loss of mono- and poly-unsaturated lipids and induced accumulation of reactive oxygen species (ROS) and apoptosis. Alterations in lipid composition and increased ROS levels, rather than overall changes to lipid synthesis rate, were required for ER-stress induction. Next, we analyzed the effect of SREBP ablation in a panel of cancer cell lines. Importantly, induction of apoptosis following SREBP depletion was restricted to lipoprotein-deplete conditions. U87 glioblastoma cells were highly susceptible to silencing of either SREBP isoform, and apoptosis induced by SREBP1 depletion in these cells was rescued by antioxidants or by restoring the levels of mono-unsaturated fatty acids. Moreover, silencing of SREBP1 induced ER-stress in U87 cells in lipoprotein-deplete conditions and prevented tumor growth in a xenograft model. Conclusions Taken together, these results demonstrate that regulation of lipid composition by SREBP is essential to maintain the balance between protein and lipid biosynthesis downstream of Akt and to prevent resultant ER-stress and cell death. Regulation of lipid metabolism by the Akt/mTORC1 signaling axis is required for the growth and survival of cancer cells.
Collapse
Affiliation(s)
- Beatrice Griffiths
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Caroline A Lewis
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.,Present address: Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Karim Bensaad
- CRUK Growth Factor Group, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Susana Ros
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Qifeng Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Emma C Ferber
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Sofia Konisti
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.,Present address: Kennedy Institute of Rheumatology, Imperial College, 65 Aspenlea Road, London, Hammersmith, W6 8LH, UK
| | - Barrie Peck
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Heike Miess
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Philip East
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Michael Wakelam
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Adrian L Harris
- CRUK Growth Factor Group, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Almut Schulze
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| |
Collapse
|
523
|
Lafleur MA, Stevens JL, Lawrence JW. Xenobiotic perturbation of ER stress and the unfolded protein response. Toxicol Pathol 2013; 41:235-62. [PMID: 23334697 DOI: 10.1177/0192623312470764] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proper folding, assembly, and maintenance of cellular proteins is a highly regulated process and is critical for cellular homeostasis. Multiple cellular compartments have adapted their own systems to ensure proper protein folding, and quality control mechanisms are in place to manage stress due to the accumulation of unfolded proteins. When the accumulation of unfolded proteins exceeds the capacity to restore homeostasis, these systems can result in a cell death response. Unfolded protein accumulation in the endoplasmic reticulum (ER) leads to ER stress with activation of the unfolded protein response (UPR) governed by the activating transcription factor 6 (ATF6), inositol requiring enzyme-1 (IRE1), and PKR-like endoplasmic reticulum kinase (PERK) signaling pathways. Many xenobiotics have been shown to influence ER stress and UPR signaling with either pro-survival or pro-death features. The ultimate outcome is dependent on many factors including the mechanism of action of the xenobiotic, concentration of xenobiotic, duration of exposure (acute vs. chronic), cell type affected, nutrient levels, oxidative stress, state of differentiation, and others. Assessing perturbations in activation or inhibition of ER stress and UPR signaling pathways are likely to be informative parameters to measure when analyzing mechanisms of action of xenobiotic-induced toxicity.
Collapse
Affiliation(s)
- Marc A Lafleur
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | |
Collapse
|
524
|
Tohmonda T, Yoda M, Mizuochi H, Morioka H, Matsumoto M, Urano F, Toyama Y, Horiuchi K. The IRE1α-XBP1 pathway positively regulates parathyroid hormone (PTH)/PTH-related peptide receptor expression and is involved in pth-induced osteoclastogenesis. J Biol Chem 2012; 288:1691-5. [PMID: 23235147 DOI: 10.1074/jbc.c112.424606] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To address the "endoplasmic reticulum stress" triggered by the burden of protein synthesis, the unfolded protein response is induced during osteoblast differentiation. In this study, we show that the transcription of parathyroid hormone (PTH)/PTH-related peptide receptor (PTH1R) is regulated by one of the endoplasmic reticulum-stress mediators, the IRE1α-XBP1 pathway, in osteoblasts. We found that the increase in Pth1r transcription upon BMP2 treatment is significantly suppressed in mouse embryonic fibroblasts lacking IRE1α. As expected, gene silencing of Ire1α and Xbp1 resulted in a decrease in Pth1r transcripts in BMP2-treated embryonic fibroblasts. We identified two potential binding sites for XBP1 in the promoter region of Pth1r and found that XBP1 promotes the transcription of Pth1r by directly binding to those sites. Moreover, we confirmed that the gene silencing of Xbp1 suppresses PTH-induced Rankl expression in primary osteoblasts and thereby abolishes osteoclast formation in an in vitro model of osteoclastogenesis. Thus, the present study reveals potential involvement of the IRE1α-XBP1 pathway in PTH-induced osteoclastogenesis through the regulation of PTH1R expression.
Collapse
Affiliation(s)
- Takahide Tohmonda
- Department of Anti-aging Orthopedic Research, Keio University, School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
525
|
Zhang Y, Zhang M, Wu J, Lei G, Li H. Transcriptional Regulation of the Ufm1 Conjugation System in Response to Disturbance of the Endoplasmic Reticulum Homeostasis and Inhibition of Vesicle Trafficking. PLoS One 2012; 7:e48587. [PMID: 23152784 PMCID: PMC3496721 DOI: 10.1371/journal.pone.0048587] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/03/2012] [Indexed: 01/22/2023] Open
Abstract
Homeostasis of the endoplasmic reticulum (ER) is essential for normal cellular functions. Disturbance of this homeostasis causes ER stress and activates the Unfolded Protein Response (UPR). The Ufm1 conjugation system is a novel Ubiquitin-like (Ubl) system whose physiological target(s) and biological functions remain largely undefined. Genetic study has demonstrated that the Ufm1-activating enzyme Uba5 is indispensible for erythroid differentiation in mice, highlighting the importance of this novel system in animal development. In this report we present the evidence for involvement of RCAD/Ufl1, a putative Ufm1-specific E3 ligase, and its binding partner C53/LZAP protein in ufmylation of endogenous Ufm1 targets. Moreover, we found that the Ufm1 system was transcriptionally up-regulated by disturbance of the ER homeostasis and inhibition of vesicle trafficking. Using luciferase reporter and ChIP assays, we dissected the Ufm1 promoter and found that Ufm1 was a potential target of Xbp-1, one of crucial transcription factors in UPR. We further examined the effect of Xbp-1 deficiency on the expression of the Ufm1 components. Interestingly, the expression of Ufm1, Uba5, RCAD/Ufl1 and C53/LZAP in wild-type mouse embryonic fibroblasts (MEFs) was significantly induced by inhibition of vesicle trafficking, but the induction was negated by Xbp-1 deficiency. Finally, we found that knockdown of the Ufm1 system in U2OS cells triggered UPR and amplification of the ER network. Taken together, our study provided critical insight into the regulatory mechanism of the Ufm1 system and established a direct link between this novel Ubl system and the ER network.
Collapse
Affiliation(s)
- Yinghua Zhang
- Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Mingsheng Zhang
- Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianchun Wu
- Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Guohua Lei
- Department of Biophysics, Southern Medical University, Guangzhou, Guangdong, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
526
|
Mann MJ, Pereira ER, Liao N, Hendershot LM. UPR-induced resistance to etoposide is downstream of PERK and independent of changes in topoisomerase IIα levels. PLoS One 2012; 7:e47931. [PMID: 23144714 PMCID: PMC3483293 DOI: 10.1371/journal.pone.0047931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022] Open
Abstract
Background The unfolded protein response (UPR) is regulated by three ER-localized, transmembrane signal transducers that control distinct aspects of the UPR. We previously reported that both increased resistance to etoposide and a reduction in Topoisomerase IIα protein levels were a direct response of UPR activation, and the latter occurred independent of changes in Topo IIα mRNA levels. We have now examined the contribution of each of the three up-stream transducers of the UPR, as well as some of their downstream targets in affecting decreased expression of Topo IIα protein and increased drug resistance. Principal Findings Our data revealed that while Ire1 activation led to Topo IIα loss at the protein level it did not contribute to changes in sensitivity to etoposide. The decreased expression of Topo IIα protein was not downstream of XBP-1, in keeping with the fact that Topo IIα transcription was not affected by ER stress. Conversely, PERK activation did not contribute to changes in Topo IIα protein levels, but it did play a significant role in the UPR-induced decreased sensitivity to etoposide. Several cellular responses downstream of PERK were examined for their potential to contribute to resistance. The ATF6 arm of the UPR did not significantly contribute to etoposide resistance within the time frame of our experiments. Conclusions and Significance In toto, our data demonstrate that UPR-induced changes in Topo IIα protein levels are not responsible for resistance to etoposide as has been previously hypothesized, and instead demonstrate that the PERK branch plays a Topo IIα-independent role in altered sensitivity to this drug.
Collapse
Affiliation(s)
- Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Ethel R. Pereira
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tenessee, United States of America
| | - Nan Liao
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tenessee, United States of America
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tenessee, United States of America
- * E-mail:
| |
Collapse
|
527
|
So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, Koteliansky V, Lichtman AH, Iwawaki T, Glimcher LH, Lee AH. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice. Cell Metab 2012; 16:487-99. [PMID: 23040070 PMCID: PMC3475419 DOI: 10.1016/j.cmet.2012.09.004] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 09/10/2012] [Indexed: 12/14/2022]
Abstract
XBP1 is a key regulator of the unfolded protein response (UPR), which is involved in a wide range of physiological and pathological processes. XBP1 ablation in liver causes profound hypolipidemia in mice, highlighting its critical role in lipid metabolism. XBP1 deficiency triggers feedback activation of its upstream enzyme IRE1α, instigating regulated IRE1-dependent decay (RIDD) of cytosolic mRNAs. Here, we identify RIDD as a crucial control mechanism of lipid homeostasis. Suppression of RIDD by RNA interference or genetic ablation of IRE1α reversed hypolipidemia in XBP1-deficient mice. Comprehensive microarray analysis of XBP1 and/or IRE1α-deficient liver identified genes involved in lipogenesis and lipoprotein metabolism as RIDD substrates, which might contribute to the suppression of plasma lipid levels by activated IRE1α. Ablation of XBP1 ameliorated hepatosteatosis, liver damage, and hypercholesterolemia in dyslipidemic animal models, suggesting that direct targeting of either IRE1α or XBP1 might be a feasible strategy to treat dyslipidemias.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
528
|
Chen YH, Zhao L, Pang LR, Li XY, Weng SP, He JG. Identification and characterization of Inositol-requiring enzyme-1 and X-box binding protein 1, two proteins involved in the unfolded protein response of Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:66-77. [PMID: 22554476 DOI: 10.1016/j.dci.2012.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 05/31/2023]
Abstract
The inositol-requiring enzyme-1 (IRE1)-X-box binding protein 1 (IRE1-XBP1) pathway is the key branch of the unfolded protein response (UPR). To investigate the role of the IRE1-XBP1 pathway in reducing environmental stress and increasing anti-viral immunity in Litopenaeus vannamei, homologues of IRE1 (designated as LvIRE1) and XBP1 (designated as LvXBP1) were identified and characterized. The full-length cDNA of LvIRE1 is 4908bp long, with an open reading frame (ORF) that encodies a putative 1174 amino acid protein. The full-length cDNA of LvXBP1 is 1746bp long. It contains two ORFs that encode putative 278 amino acid and 157 amino acid proteins, respectively. LvXBP1 mRNA has the predicted IRE1 splicing motifs CNG'CNGN located within the loop regions of two short hairpins. Sequencing of the splicing fragment induced by endoplasmic reticulum (ER)-stress showed a 3bp or 4bp frame shift from the predicted sites. The spliced form LvXBP1 (LvXBP1s) contained an ORF encodes a putative 463 amino acid protein. The reporter gene assays indicated that LvXBP1s activates the promoter of L. vannamei immunoglobulin heavy chain binding protein (LvBip), an important UPR effector. RT-PCR showed that LvXBP1 was spliced during the experiments. For heat shock treatment, the total LvXBP1 expression was increased and peaked at about 36h, whereas the percentages of the two isoforms were relatively stable. For the WSSV challenge, LvXBP1 was upregulated during the experiment and the percentage of the spliced form continuously declined after 18h of infection. Knock-down of LvXBP1 by RNA interference resulted in a lower cumulative mortality of L. vannamei under WSSV infection. Furthermore, the expression profiles of LvIRE1 and LvXBP1 in the gills, hemocytes, intestines, and hepatopancreas of the WSSV-challenged shrimp were detected using real-time RT-PCR. Taken together, these results confirm that the IRE1-XBP1 pathway is important for L. vannamei environmental stress resistance, suggest that L. vannamei IRE1-XBP1 may activated by WSSV and be annexed to serve the virus.
Collapse
Affiliation(s)
- Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
529
|
Abstract
A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease.
Collapse
Affiliation(s)
- Shiyu Wang
- Degenerative Disease Research Program, Neuroscience, Aging, and Stem Cell Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
530
|
Abstract
The endoplasmic reticulum (ER) controls many important aspects of cellular function, including processing of secreted and membrane proteins, synthesis of membranes, and calcium storage. Maintenance of ER function is controlled through a network of signaling pathways collectively known as the unfolded protein response (UPR). The UPR balances the load of incoming proteins with the folding capacity of the ER and allows cells to adapt to situations that disrupt this balance. This disruption is referred to as ER stress. Although ER stress often arises in pathological situations, the UPR plays a central role in the normal development and function of cells specializing in secretion. Many aspects of this response are conserved broadly across eukaryotes; most organisms use some subset of a group of ER transmembrane proteins to signal to the nucleus and induce a broad transcriptional upregulation of genes involved in ER function. However, new developments in metazoans, plants, and fungi illustrate interesting variations on this theme. Here, we summarize mechanisms for detecting and counteracting ER stress, the role of the UPR in normal secretory cell function, and how these pathways vary across organisms and among different tissues and cell types.
Collapse
Affiliation(s)
- Kristin A Moore
- Department of Biology and the Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | | |
Collapse
|
531
|
Pehar M, Jonas MC, Hare TM, Puglielli L. SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway. J Biol Chem 2012; 287:29921-30. [PMID: 22787145 PMCID: PMC3436137 DOI: 10.1074/jbc.m112.363911] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/29/2012] [Indexed: 01/31/2023] Open
Abstract
One of the main functions of the unfolded protein response is to ensure disposal of large protein aggregates that accumulate in the lumen of the endoplasmic reticulum (ER) whereas avoiding, at least under nonlethal levels of ER stress, cell death. When tightly controlled, autophagy-dependent ER-associated degradation (ERAD(II)) allows the cell to recover from the transient accumulation of protein aggregates; however, when unchecked, it can be detrimental and cause autophagic cell death/type 2 cell death. Here we show that IRE1/XBP1 controls the induction of autophagy/ERAD(II) during the unfolded protein response by activating the ER membrane transporter SLC33A1/AT-1, which ensures continuous supply of acetyl-CoA into the lumen of the ER. Failure to induce AT-1 leads to widespread autophagic cell death. Mechanistically, the regulation of the autophagic process involves N(ε)-lysine acetylation of Atg9A.
Collapse
Affiliation(s)
| | - Mary Cabell Jonas
- From the Department of Medicine and
- the Cellular and Molecular Biology Program, University of Wisconsin, Madison, Wisconsin 53705 and
| | | | - Luigi Puglielli
- From the Department of Medicine and
- the Cellular and Molecular Biology Program, University of Wisconsin, Madison, Wisconsin 53705 and
- the Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin 53705
| |
Collapse
|
532
|
Andreu CI, Woehlbier U, Torres M, Hetz C. Protein disulfide isomerases in neurodegeneration: from disease mechanisms to biomedical applications. FEBS Lett 2012; 586:2826-34. [PMID: 22828277 DOI: 10.1016/j.febslet.2012.07.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Abstract
Protein disulfide isomerases (PDIs) are a family of foldases and chaperones primarily located at the endoplasmic reticulum that catalyze the formation and isomerization of disulfide bonds thereby facilitating protein folding. PDIs also perform important physiological functions in protein quality control, cell death, and cell signaling. Protein misfolding is involved in the etiology of the most common neurodegenerative diseases, including Alzheimer, Parkinson, amyotrophic lateral sclerosis, Prion-related disorders, among others. Accumulating evidence indicate altered expression of PDIs as a prominent and common feature of these neurodegenerative conditions. Here we overview most recent advances in our understanding of the possible functional contribution of PDIs to neurodegeneration, depicting a complex and poorly understood scenario. Possible therapeutic benefits of targeting PDIs in a disease context and their use as biomarkers are discussed.
Collapse
Affiliation(s)
- Catherine I Andreu
- Institute of Biomedical Sciences, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
533
|
Kyöstilä K, Cizinauskas S, Seppälä EH, Suhonen E, Jeserevics J, Sukura A, Syrjä P, Lohi H. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet 2012; 8:e1002759. [PMID: 22719266 PMCID: PMC3375262 DOI: 10.1371/journal.pgen.1002759] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/30/2012] [Indexed: 11/23/2022] Open
Abstract
Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (praw = 1.1×10−7, pgenome = 7.5×10−4). Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L), revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER)–associated protein degradation (ERAD) machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD–mediated neurodegenerative disease model, and proposes SEL1L as a new candidate gene in progressive childhood ataxias. Furthermore, our results have enabled the development of a genetic test for breeders. Hereditary ataxias are a heterogeneous group of rare disorders characterized by progressive cerebellar neurodegeneration. Several causative mutations have been identified in various forms of human ataxias. In addition to humans, inherited ataxias have been described in several other species, including the domestic dog. In this study, we have studied the clinical and genetic properties of cerebellar ataxia in the Finnish Hound dog breed. The breed suffers from a progressive ataxia that has an early onset before the age of 3 months. Affected puppies have difficulties in coordinating their movements and balance, and have to be euthanized due to rapidly worsening symptoms. Our pedigree analysis suggested an autosomal recessive mode of inheritance, which was confirmed by identifying a homozygous mutation in the SEL1L gene through genome-wide association and linkage analyses. The SEL1L protein functions in a protein quality control pathway that targets misfolded proteins to degradation in the endoplasmic reticulum. Mutations in the SEL1L gene have not been previously found in ataxias. Our study indicates SEL1L as a novel candidate gene for human childhood ataxias, establishes a large animal model to investigate mechanisms of cerebellar neurodegeneration, and enables carrier screening for breeding purposes.
Collapse
Affiliation(s)
- Kaisa Kyöstilä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Eija H. Seppälä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Esko Suhonen
- Small Animal Clinic Kontiolahti, Kontiolahti, Finland
| | | | - Antti Sukura
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Genetics, Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
534
|
Overexpression of TCL1 activates the endoplasmic reticulum stress response: a novel mechanism of leukemic progression in mice. Blood 2012; 120:1027-38. [PMID: 22692508 DOI: 10.1182/blood-2011-11-394346] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) represents 30% of adult leukemia. TCL1 is expressed in ~ 90% of human CLL. Transgenic expression of TCL1 in murine B cells (Eμ-TCL1) results in mouse CLL. Here we show for the first time that the previously unexplored endoplasmic reticulum (ER) stress response is aberrantly activated in Eμ-TCL1 mouse and human CLL. This includes activation of the IRE-1/XBP-1 pathway and the transcriptionally up-regulated expression of Derlin-1, Derlin-2, BiP, GRP94, and PDI. TCL1 associates with the XBP-1 transcription factor, and causes the dysregulated expression of the transcription factors, Pax5, IRF4, and Blimp-1, and of the activation-induced cytidine deaminase. In addition, TCL1-overexpressing CLL cells manufacture a distinctly different BCR, as we detected increased expression of membrane-bound IgM and altered N-linked glycosylation of Igα and Igβ, which account for the hyperactive BCR in malignant CLL. To demonstrate that the ER stress-response pathway is a novel molecular target for the treatment of CLL, we blocked the IRE-1/XBP-1 pathway using a novel inhibitor, and observed apoptosis and significantly stalled growth of CLL cells in vitro and in mice. These studies reveal an important role of TCL1 in activating the ER stress response in support for malignant progression of CLL.
Collapse
|
535
|
Michaeli S. Spliced leader RNA silencing (SLS) - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress. Parasit Vectors 2012; 5:107. [PMID: 22650251 PMCID: PMC3414811 DOI: 10.1186/1756-3305-5-107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 03/23/2012] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite cycles between its insect (procyclic form) and mammalian hosts (bloodstream form). Trypanosomes lack conventional transcription regulation, and their genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon, the spliced leader (SL) is added to all mRNAs from a small RNA, the SL RNA. Trypanosomes lack the machinery for the unfolded protein response (UPR), which in other eukaryotes is induced under endoplasmic reticulum (ER) stress. Trypanosomes respond to such stress by changing the stability of mRNAs, which are essential for coping with the stress. However, under severe ER stress that is induced by blocking translocation of proteins to the ER, treatment of cells with chemicals that induce misfolding in the ER, or extreme pH, trypanosomes elicit the spliced leader silencing (SLS) pathway. In SLS, the transcription of the SL RNA gene is extinguished, and tSNAP42, a specific SL RNA transcription factor, fails to bind to its cognate promoter. SLS leads to complete shut-off of trans-splicing. In this review, I discuss the UPR in mammals and compare it to the ER stress response in T. brucei leading to SLS. I summarize the evidence supporting the notion that SLS is a programmed cell death (PCD) pathway that is utilized by the parasites to substitute for the apoptosis observed in higher eukaryotes under prolonged ER stress. I present the hypothesis that SLS evolved to expedite the death process, and rapidly remove from the population unfit parasites that, by elimination via SLS, cause minimal damage to the parasite population.
Collapse
Affiliation(s)
- Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
536
|
Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 2012; 15:623-34. [PMID: 22560215 DOI: 10.1016/j.cmet.2012.03.007] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) is a critical site of protein, lipid, and glucose metabolism, lipoprotein secretion, and calcium homeostasis. Many of the sensing, metabolizing, and signaling mechanisms for these pathways exist within or on the ER membrane domain. Here, we review the cellular functions of ER, how perturbation of ER homeostasis contributes to metabolic dysregulation and potential causative mechanisms of ER stress in obesity, with a particular focus on lipids, metabolic adaptations of ER, and the maintenance of its membrane homeostasis. We also suggest a conceptual framework of metabolic roundabout to integrate key mechanisms of insulin resistance and metabolic diseases.
Collapse
Affiliation(s)
- Suneng Fu
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
537
|
Differential activation of the ER stress factor XBP1 by oligomeric assemblies. Neurochem Res 2012; 37:1707-17. [PMID: 22528838 PMCID: PMC3387497 DOI: 10.1007/s11064-012-0780-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/23/2012] [Accepted: 04/04/2012] [Indexed: 12/25/2022]
Abstract
Several neurodegenerative disorders are characterized by protein misfolding, a phenomenon that results in perturbation of cellular homeostasis. We recently identified the protective activity of the ER stress response factor XBP1 (X-box binding protein 1) against Amyloid-ß1-42 (Aß42) neurotoxicity in cellular and Drosophila models of Alzheimer’s disease. Additionally, subtoxic concentrations of Aß42 soluble aggregates (oligomers) induced accumulation of spliced (active) XBP1 transcripts, supporting the involvement of the ER stress response in Aß42 neurotoxicity. Here, we tested the ability of three additional disease-related amyloidogenic proteins to induce ER stress by analyzing XBP1 activation at the RNA level. Treatment of human SY5Y neuroblastoma cells with homogeneous preparations of α-Synuclein (α-Syn), Prion protein (PrP106–126), and British dementia amyloid peptide (ABri1-34) confirmed the high toxicity of oligomers compared to monomers and fibers. Additionally, α-Syn oligomers, but not monomers or fibers, demonstrated potent induction of XBP1 splicing. On the other hand, PrP106–126 and ABri1-34 did not activate XBP1. These results illustrate the biological complexity of these structurally related assemblies and argue that oligomer toxicity depends on the activation of amyloid-specific cellular responses.
Collapse
|
538
|
BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1α. EMBO J 2012; 31:2322-35. [PMID: 22510886 DOI: 10.1038/emboj.2012.84] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/13/2012] [Indexed: 12/12/2022] Open
Abstract
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein response (UPR) stress sensor inositol-requiring enzyme 1α (IRE1α), which functions as an endoribonuclease that splices the mRNA of the transcription factor XBP-1 (X-box-binding protein-1). Through a global proteomic approach we identified the BCL-2 family member PUMA as a novel IRE1α interactor. Immun oprecipitation experiments confirmed this interaction and further detected the association of IRE1α with BIM, another BH3-only protein. BIM and PUMA double-knockout cells failed to maintain sustained XBP-1 mRNA splicing after prolonged ER stress, resulting in early inactivation. Mutation in the BH3 domain of BIM abrogated the physical interaction with IRE1α, inhibiting its effects on XBP-1 mRNA splicing. Unexpectedly, this regulation required BCL-2 and was antagonized by BAD or the BH3 domain mimetic ABT-737. The modulation of IRE1α RNAse activity by BH3-only proteins was recapitulated in a cell-free system suggesting a direct regulation. Moreover, BH3-only proteins controlled XBP-1 mRNA splicing in vivo and affected the ER stress-regulated secretion of antibodies by primary B cells. We conclude that a subset of BCL-2 family members participates in a new UPR-regulatory network, thus assuming apoptosis-unrelated functions.
Collapse
|
539
|
Zuleta A, Vidal RL, Armentano D, Parsons G, Hetz C. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease. Biochem Biophys Res Commun 2012; 420:558-63. [PMID: 22445760 DOI: 10.1016/j.bbrc.2012.03.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is caused by mutations that expand a polyglutamine region in the amino-terminal domain of Huntingtin (Htt), leading to the accumulation of intracellular inclusions and progressive neurodegeneration. Recent reports indicate the engagement of endoplasmic reticulum (ER) stress responses in human HD post mortem samples and animal models of the disease. Adaptation to ER stress is mediated by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that attenuates protein folding stress by controlling the expression of distinct transcription factors including X-Box binding protein 1 (XBP1). Here we targeted the expression of XBP1 on a novel viral-based model of HD. We delivered an active form of XBP1 locally into the striatum of adult mice using adeno-associated vectors (AAVs) and co-expressed this factor with a large fragment of mutant Htt as a fusion protein with RFP (Htt588(Q95)-mRFP) to directly visualize the accumulation of Htt inclusions in the brain. Using this approach, we observed a significant reduction in the accumulation of Htt588(Q95)-mRFP intracellular inclusion when XBP1 was co-expressed in the striatum. These results contrast with recent findings indicating a protective effect of XBP1 deficiency in neurodegeneration using knockout mice, and suggest a potential use of gene therapy strategies to manipulate the UPR in the context of HD.
Collapse
Affiliation(s)
- Amparo Zuleta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
540
|
Jafari S, Alkhori L, Schleiffer A, Brochtrup A, Hummel T, Alenius M. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression. PLoS Biol 2012; 10:e1001280. [PMID: 22427741 PMCID: PMC3302810 DOI: 10.1371/journal.pbio.1001280] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/26/2012] [Indexed: 01/22/2023] Open
Abstract
The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR) from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Liza Alkhori
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Anna Brochtrup
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
541
|
Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, Segura-Aguilar J, Cuervo AM, Glimcher LH, Hetz C. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 2012; 21:2245-62. [PMID: 22337954 DOI: 10.1093/hmg/dds040] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels.
Collapse
Affiliation(s)
- Rene L Vidal
- Faculty of Medicine, Neuroscience Biomedical Institute, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
542
|
The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 2012; 32:1248-59. [PMID: 22290431 DOI: 10.1128/mcb.06351-11] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Starvation, like many other catabolic conditions, induces loss of skeletal muscle mass by promoting fiber atrophy. In addition to the canonical processes, the starvation-induced response employs many distinct pathways that make it a unique atrophic program. However, in the multiplex of the underlying mechanisms, several components of starvation-induced atrophy have yet to be fully understood and their roles and interplay remain to be elucidated. Here we unveiled the role of tumor necrosis factor receptor-associated factor 6 (TRAF6), a unique E3 ubiquitin ligase and adaptor protein, in starvation-induced muscle atrophy. Targeted ablation of TRAF6 suppresses the expression of key regulators of atrophy, including MAFBx, MuRF1, p62, LC3B, Beclin1, Atg12, and Fn14. Ablation of TRAF6 also improved the phosphorylation of Akt and FoxO3a and inhibited the activation of 5' AMP-activated protein kinase in skeletal muscle in response to starvation. In addition, our study provides the first evidence of the involvement of endoplasmic reticulum stress and unfolding protein response pathways in starvation-induced muscle atrophy and its regulation through TRAF6. Finally, our results also identify lysine 63-linked autoubiquitination of TRAF6 as a process essential for its regulatory role in starvation-induced muscle atrophy.
Collapse
|
543
|
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13:89-102. [PMID: 22251901 DOI: 10.1038/nrm3270] [Citation(s) in RCA: 3017] [Impact Index Per Article: 232.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-folding stress at the endoplasmic reticulum (ER) is a salient feature of specialized secretory cells and is also involved in the pathogenesis of many human diseases. ER stress is buffered by the activation of the unfolded protein response (UPR), a homeostatic signalling network that orchestrates the recovery of ER function, and failure to adapt to ER stress results in apoptosis. Progress in the field has provided insight into the regulatory mechanisms and signalling crosstalk of the three branches of the UPR, which are initiated by the stress sensors protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF6). In addition, novel physiological outcomes of the UPR that are not directly related to protein-folding stress, such as innate immunity, metabolism and cell differentiation, have been revealed.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, P.O. BOX 70086, Chile.
| |
Collapse
|
544
|
Dynamic loss of H2B ubiquitylation without corresponding changes in H3K4 trimethylation during myogenic differentiation. Mol Cell Biol 2012; 32:1044-55. [PMID: 22252316 DOI: 10.1128/mcb.06026-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitylation of H2B on lysine 120 (H2Bub) is associated with active transcriptional elongation. H2Bub has been implicated in histone cross talk and is generally regarded to be a prerequisite for trimethylation of histone 3 lysine 4 (H3K4me3) and H3K79 in both yeast and mammalian cells. We performed a genome-wide analysis of epigenetic marks during muscle differentiation, and strikingly, we observed a near-complete loss of H2Bub in the differentiated state. We examined the basis for global loss of this mark and found that the H2B ubiquitin E3 ligase, RNF20, was depleted from chromatin in differentiated myotubes, indicating that recruitment of this protein to genes substantially decreases upon differentiation. Remarkably, during the course of myogenic differentiation, we observed retention and acquisition of H3K4 trimethylation on a large number of genes in the absence of detectable H2Bub. The Set1 H3K4 trimethylase complex was efficiently recruited to a subset of genes in myotubes in the absence of detectable H2Bub, accounting in part for H3K4 trimethylation in myotubes. Our studies suggest that H3K4me3 deposition in the absence of detectable H2Bub in myotubes is mediated via Set1 and, perhaps, MLL complexes, whose recruitment does not require H2Bub. Thus, muscle cells represent a novel setting in which to explore mechanisms that regulate histone cross talk.
Collapse
|
545
|
Fullwood MJ, Zhou W, Shenolikar S. Targeting Phosphorylation of Eukaryotic Initiation Factor-2α to Treat Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:75-106. [DOI: 10.1016/b978-0-12-396456-4.00005-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
546
|
Minchenko DO, Kubaichuk KI, Ratushna OO, Komisarenko SV, Minchenko OH. The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from ERN1 signaling enzyme function. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abc.2012.22024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
547
|
Chen Y, Brandizzi F. AtIRE1A/AtIRE1B and AGB1 independently control two essential unfolded protein response pathways in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:266-77. [PMID: 21914012 DOI: 10.1111/j.1365-313x.2011.04788.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The endoplasmic reticulum (ER) has the ability to maintain the balance between demand for and synthesis of secretory proteins. To ensure protein-folding homeostasis in the ER, cells invoke signaling pathways known as the unfolded protein response (UPR). To initiate UPR, yeasts largely rely on a conserved sensor, IRE1. In metazoans, there are at least three independent UPR signalling pathways. Some UPR transducers have been identified in plants, but no genetic interaction among them has yet been examined. The Arabidopsis genome encodes two IRE1 sequence homologs, AtIRE1A and AtIRE1B. Here we provide evidence that AtIRE1A and AtIRE1B have overlapping functions that are essential for the plant UPR. A double mutant of AtIRE1A and AtIRE1B, atire1a atire1b, showed reduced ER stress tolerance and a compromised UPR activation phenotype. We have also established that Arabidopsis AGB1, a subunit of the ubiquitous heterotrimeric GTP-binding protein family, and AtIRE1A/AtIRE1B independently control two essential plant UPR pathways. By demonstrating that atire1a atire1b has a short root phenotype that is enhanced by an agb1 loss-of-function mutation, we have identified a role for UPR transducers in organ growth regulation.
Collapse
Affiliation(s)
- Yani Chen
- Michigan State University/Department of Energy Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
548
|
Sanecka A, Ansems M, van Hout-Kuijer MA, Looman MWG, Prosser AC, Welten S, Gilissen C, Sama IE, Huynen MA, Veltman JA, Jansen BJH, Eleveld-Trancikova D, Adema GJ. Analysis of genes regulated by the transcription factor LUMAN identifies ApoA4 as a target gene in dendritic cells. Mol Immunol 2011; 50:66-73. [PMID: 22209087 DOI: 10.1016/j.molimm.2011.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 10/14/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells of the immune system that play a crucial role in initiating immune responses and maintaining self tolerance. Better understanding of the molecular basis of DC immunobiology is required to improve DC-based immunotherapies. We previously described the interaction of transcription factor LUMAN (also known as CREB3 or LZIP) with the DC-specific transmembrane protein DC-STAMP in DCs. Target genes of LUMAN and its role in DCs are currently unknown. In this study we set out to identify genes regulated by LUMAN in DCs using microarray analysis. Expression of a constitutively active form of LUMAN in mouse DC cell line D2SC/1 identified Apolipoprotein A4 (ApoA4) as its target gene. Subsequent validation experiments, bioinformatics-based promoter analysis, and silencing studies confirmed that ApoA4 is a true target gene of LUMAN in bone marrow-derived DCs (BMDCs).
Collapse
Affiliation(s)
- Anna Sanecka
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
549
|
Alter J, Bengal E. Stress-induced C/EBP homology protein (CHOP) represses MyoD transcription to delay myoblast differentiation. PLoS One 2011; 6:e29498. [PMID: 22242125 PMCID: PMC3248460 DOI: 10.1371/journal.pone.0029498] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022] Open
Abstract
When mouse myoblasts or satellite cells differentiate in culture, the expression of myogenic regulatory factor, MyoD, is downregulated in a subset of cells that do not differentiate. The mechanism involved in the repression of MyoD expression remains largely unknown. Here we report that a stress-response pathway repressing MyoD transcription is transiently activated in mouse-derived C2C12 myoblasts growing under differentiation-promoting conditions. We show that phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) is followed by expression of C/EBP homology protein (CHOP) in some myoblasts. ShRNA-driven knockdown of CHOP expression caused earlier and more robust differentiation, whereas its constitutive expression delayed differentiation relative to wild type myoblasts. Cells expressing CHOP did not express the myogenic regulatory factors MyoD and myogenin. These results indicated that CHOP directly repressed the transcription of the MyoD gene. In support of this view, CHOP associated with upstream regulatory region of the MyoD gene and its activity reduced histone acetylation at the enhancer region of MyoD. CHOP interacted with histone deacetylase 1 (HDAC1) in cells. This protein complex may reduce histone acetylation when bound to MyoD regulatory regions. Overall, our results suggest that the activation of a stress pathway in myoblasts transiently downregulate the myogenic program.
Collapse
Affiliation(s)
- Joel Alter
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Bengal
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
550
|
Alahari S, Mehmood R, Johnson CL, Pin CL. The absence of MIST1 leads to increased ethanol sensitivity and decreased activity of the unfolded protein response in mouse pancreatic acinar cells. PLoS One 2011; 6:e28863. [PMID: 22216129 PMCID: PMC3247225 DOI: 10.1371/journal.pone.0028863] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/16/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol abuse is a leading cause of pancreatitis in humans. However, rodent models suggest that alcohol only sensitizes the pancreas to subsequent insult, indicating that additional factors play a role in alcohol-induced pancreatic injury. The goal of this study was to determine if an absence of MIST1, a transcription factor required for complete differentiation of pancreatic acinar cells in mice, increased the sensitivity to alcohol. METHODS Two to four month-old mice lacking MIST1 (Mist1(-/-)) or congenic C57 Bl6 mice were placed on a Lieber-DeCarli diet (36% of total kcal from ethanol and fat), a control liquid diet (36% kcal from fat) or a regular breeding chow diet (22% kcal from fat). After six weeks, pancreatic morphology was assessed. Biochemical and immunofluorescent analysis was used to assess mediators of the unfolded protein response (UPR). RESULTS Ethanol-fed Mist1(-/-) mice developed periductal accumulations of inflammatory cells that did not appear in wild type or control-fed Mist1(-/-) mice. Wild type mice fed diets high in ethanol or fat showed enhancement of the UPR based on increased accumulation of peIF2α and spliced XBP1. These increases were not observed in Mist1(-/-) pancreatic tissue, which had elevated levels of UPR activity prior to diet exposure. Indeed, exposure to ethanol resulted in a reduction of UPR activity in Mist1(-/-) mice. CONCLUSIONS Our findings suggest that an absence of MIST1 increases the sensitivity to ethanol that correlated with decreased activity of the UPR. Therefore, events that affect the expression and/or function of MIST1 may be confounding factors in pancreatitis.
Collapse
Affiliation(s)
- Sruthi Alahari
- Children's Health Research Institute, London, Ontario, Canada
- Departments of Paediatrics and Physiology and Pharmacology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | - Rashid Mehmood
- Children's Health Research Institute, London, Ontario, Canada
- Departments of Paediatrics and Physiology and Pharmacology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | - Charis L. Johnson
- Children's Health Research Institute, London, Ontario, Canada
- Departments of Paediatrics and Physiology and Pharmacology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | - Christopher L. Pin
- Children's Health Research Institute, London, Ontario, Canada
- Departments of Paediatrics and Physiology and Pharmacology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|