501
|
Protein Arginine Methyltransferase 5 in T Lymphocyte Biology. Trends Immunol 2020; 41:918-931. [PMID: 32888819 DOI: 10.1016/j.it.2020.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the major methyltransferase (MT) catalyzing symmetric dimethylation (SDM). PRMT5 regulates developmental, homeostatic and disease processes in vertebrates and invertebrates, and a carcinogenic role has been observed in mammals. Recently, tools generated for PRMT5 loss of function have allowed researchers to demonstrate essential roles for PRMT5 in mouse and human lymphocyte biology. PRMT5 modulates CD4+ and CD8+ T cell development in the thymus, peripheral homeostasis, and differentiation into CD4+ helper T lymphocyte (Th)17 cell phenotypes. Here, we provide a timely review of the milestones leading to our current understanding of PRMT5 in T cell biology, discuss current tools to modify PRMT5 expression/activity, and highlight mechanistic pathways.
Collapse
|
502
|
Dong Y, Wang P, Yang Y, Huang J, Dai Z, Zheng W, Li Z, Yao Z, Zhang H, Zheng J. PRMT5 inhibition attenuates cartilage degradation by reducing MAPK and NF-κB signaling. Arthritis Res Ther 2020; 22:201. [PMID: 32887644 PMCID: PMC7650297 DOI: 10.1186/s13075-020-02304-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES A role for the type II arginine methyltransferase PRMT5 in various human diseases has been identified. In this study, the potential mechanism underlying the involvement of PRMT5 in the pathological process leading to osteoarthritis (OA) was investigated. METHODS PRMT5 expression in cartilage tissues from patients with OA and control individuals was assessed by immunohistochemical staining. The regulatory and functional roles of PRMT5 in the chondrocytes of patients with OA and control individuals were determined by western blotting and reverse transcription polymerase chain reaction. The effects of the PRMT5 inhibitor EPZ on interleukin-1β-induced inflammation were examined in the chondrocytes of patients with OA and in the destabilized medial meniscus (DMM) of a mouse model of OA. RESULTS PRMT5 was specifically upregulated in the cartilage of patients with OA. Moreover, adenovirus-mediated overexpression of PRMT5 in human chondrocytes caused cartilage degeneration. This degeneration was induced by elevated expression levels of matrix-degrading enzymes (matrix metalloproteinase-3 (MMP-3) and matrix metalloproteinase-13 (MMP-13)) in chondrocytes. The activation of the MAPK and nuclear factor κB signaling pathways was evidenced by elevated levels of p-p65, p-p38, and p-JNK. These effects were attenuated by inhibiting the expression of PRMT5. In the mouse model, EPZ inhibited PRMT5 expression, thus protecting mouse cartilage from DMM-induced OA. CONCLUSIONS Our results demonstrate that PRMT5 is a crucial regulator of OA pathogenesis, implying that EPZ has therapeutic value in the treatment of this cartilage-destroying disease.
Collapse
Affiliation(s)
- Yonghui Dong
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Ping Wang
- Department of pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yongguang Yang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Jincheng Huang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Wendi Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Zhen Li
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Zheng Yao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Hongjun Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China
| | - Jia Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No.7, Weiwu Road, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
503
|
Role of Arginine Methylation in Alternative Polyadenylation of VEGFR-1 (Flt-1) pre-mRNA. Int J Mol Sci 2020; 21:ijms21186460. [PMID: 32899690 PMCID: PMC7554721 DOI: 10.3390/ijms21186460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Mature mRNA is generated by the 3ʹ end cleavage and polyadenylation of its precursor pre-mRNA. Eukaryotic genes frequently have multiple polyadenylation sites, resulting in mRNA isoforms with different 3ʹ-UTR lengths that often encode different C-terminal amino acid sequences. It is well-known that this form of post-transcriptional modification, termed alternative polyadenylation, can affect mRNA stability, localization, translation, and nuclear export. We focus on the alternative polyadenylation of pre-mRNA for vascular endothelial growth factor receptor-1 (VEGFR-1), the receptor for VEGF. VEGFR-1 is a transmembrane protein with a tyrosine kinase in the intracellular region. Secreted forms of VEGFR-1 (sVEGFR-1) are also produced from the same gene by alternative polyadenylation, and sVEGFR-1 has a function opposite to that of VEGFR-1 because it acts as a decoy receptor for VEGF. However, the mechanism that regulates the production of sVEGFR-1 by alternative polyadenylation remains poorly understood. In this review, we introduce and discuss the mechanism of alternative polyadenylation of VEGFR-1 mediated by protein arginine methylation.
Collapse
|
504
|
He M, Guo J, Yang J, Yang Y, Zhao S, Xu Q, Wei T, Maria Ferraris D, Gao T, Guo Z. A highly selective electrochemical assay based on the Sakaguchi reaction for the detection of protein arginine methylation state. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
505
|
Gupta KJ, Kolbert Z, Durner J, Lindermayr C, Corpas FJ, Brouquisse R, Barroso JB, Umbreen S, Palma JM, Hancock JT, Petrivalsky M, Wendehenne D, Loake GJ. Regulating the regulator: nitric oxide control of post-translational modifications. THE NEW PHYTOLOGIST 2020; 227:1319-1325. [PMID: 32339293 DOI: 10.1111/nph.16622] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) is perfectly suited for the role of a redox signalling molecule. A key route for NO bioactivity occurs via protein S-nitrosation, and involves the addition of a NO moiety to a protein cysteine (Cys) thiol (-SH) to form an S-nitrosothiol (SNO). This process is thought to underpin a myriad of cellular processes in plants that are linked to development, environmental responses and immune function. Here we collate emerging evidence showing that NO bioactivity regulates a growing number of diverse post-translational modifications including SUMOylation, phosphorylation, persulfidation and acetylation. We provide examples of how NO orchestrates these processes to mediate plant adaptation to a variety of cellular cues.
Collapse
Affiliation(s)
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Szeged, 6726, Hungary
| | - Jorg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, München/Neuherberg, 85764, Germany
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech, INRAE, CNRS, Université Côte d'Azur, 06903, Sophia Antipolis Cedex, France
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, Jaén, 23071, Spain
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Marek Petrivalsky
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
506
|
Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, Liu J, Zhang L, Wang G, Li H, Liu DX, Huang B, Lu J, Zhang Y. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. eLife 2020; 9:57617. [PMID: 32844749 PMCID: PMC7494359 DOI: 10.7554/elife.57617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Arginine methyltransferase PRMT7 is associated with human breast cancer metastasis. Endosomal FAK signalling is critical for cancer cell migration. Here we identified the pivotal roles of PRMT7 in promoting endosomal FAK signalling activation during breast cancer metastasis. PRMT7 exerted its functions through binding to scaffold protein SHANK2 and catalyzing di-methylation of SHANK2 at R240. SHANK2 R240 methylation exposed ANK domain by disrupting its SPN-ANK domain blockade, promoting in co-accumulation of dynamin2, talin, FAK, cortactin with SHANK2 on endosomes. In addition, SHANK2 R240 methylation activated endosomal FAK/cortactin signals in vitro and in vivo. Consistently, all the levels of PRMT7, methylated SHANK2, FAK Y397 phosphorylation and cortactin Y421 phosphorylation were correlated with aggressive clinical breast cancer tissues. These findings characterize the PRMT7-dependent SHANK2 methylation as a key player in mediating endosomal FAK signals activation, also point to the value of SHANK2 R240 methylation as a target for breast cancer metastasis.
Collapse
Affiliation(s)
- Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lingling Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lu Peng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jiayuan Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lian Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
507
|
Abe Y, Tanaka N. Fine-Tuning of GLI Activity through Arginine Methylation: Its Mechanisms and Function. Cells 2020; 9:cells9091973. [PMID: 32859041 PMCID: PMC7565022 DOI: 10.3390/cells9091973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma-associated oncogene (GLI) family consists of GLI1, GLI2, and GLI3 in mammals. This family has important roles in development and homeostasis. To achieve these roles, the GLI family has widespread outputs. GLI activity is therefore strictly regulated at multiple levels, including via post-translational modifications for context-dependent GLI target gene expression. The protein arginine methyl transferase (PRMT) family is also associated with embryogenesis, homeostasis, and cancer mainly via epigenetic modifications. In the PRMT family, PRMT1, PRMT5, and PRMT7 reportedly regulate GLI1 and GLI2 activity. PRMT1 methylates GLI1 to upregulate its activity and target gene expression. Cytoplasmic PRMT5 methylates GLI1 and promotes GLI1 protein stabilization. Conversely, nucleic PRMT5 interacts with MENIN to suppress growth arrest-specific protein 1 expression, which assists Hedgehog ligand binding to Patched, indirectly resulting in downregulated GLI1 activity. PRMT7-mediated GLI2 methylation upregulates its activity through the dissociation of GLI2 and Suppressor of Fused. Together, PRMT1, PRMT5, and PRMT7 regulate GLI activity at multiple revels. Furthermore, the GLI and PRMT families have strong links with various cancers through cancer stem cell maintenance. Therefore, PRMT-mediated regulation of GLI activity would have important roles in cancer stem cell maintenance.
Collapse
|
508
|
Szulik MW, Davis K, Bakhtina A, Azarcon P, Bia R, Horiuchi E, Franklin S. Transcriptional regulation by methyltransferases and their role in the heart: highlighting novel emerging functionality. Am J Physiol Heart Circ Physiol 2020; 319:H847-H865. [PMID: 32822544 DOI: 10.1152/ajpheart.00382.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methyltransferases are a superfamily of enzymes that transfer methyl groups to proteins, nucleic acids, and small molecules. Traditionally, these enzymes have been shown to carry out a specific modification (mono-, di-, or trimethylation) on a single, or limited number of, amino acid(s). The largest subgroup of this family, protein methyltransferases, target arginine and lysine side chains of histone molecules to regulate gene expression. Although there is a large number of functional studies that have been performed on individual methyltransferases describing their methylation targets and effects on biological processes, no analyses exist describing the spatial distribution across tissues or their differential expression in the diseased heart. For this review, we performed tissue profiling in protein databases of 199 confirmed or putative methyltransferases to demonstrate the unique tissue-specific expression of these individual proteins. In addition, we examined transcript data sets from human heart failure patients and murine models of heart disease to identify 40 methyltransferases in humans and 15 in mice, which are differentially regulated in the heart, although many have never been functionally interrogated. Lastly, we focused our analysis on the largest subgroup, that of protein methyltransferases, and present a newly emerging phenomenon in which 16 of these enzymes have been shown to play dual roles in regulating transcription by maintaining the ability to both activate and repress transcription through methyltransferase-dependent or -independent mechanisms. Overall, this review highlights a novel paradigm shift in our understanding of the function of histone methyltransferases and correlates their expression in heart disease.
Collapse
Affiliation(s)
- Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Presley Azarcon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
509
|
Shen Y, Gao G, Yu X, Kim H, Wang L, Xie L, Schwarz M, Chen X, Guccione E, Liu J, Bedford MT, Jin J. Discovery of First-in-Class Protein Arginine Methyltransferase 5 (PRMT5) Degraders. J Med Chem 2020; 63:9977-9989. [PMID: 32787082 DOI: 10.1021/acs.jmedchem.0c01111] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aberrant expression of protein arginine methyltransferase 5 (PRMT5) has been associated with multiple cancers. Using the proteolysis targeting chimera technology, we discovered a first-in-class PRMT5 degrader 15 (MS4322). Here, we report the design, synthesis, and characterization of compound 15 and two structurally similar controls 17 (MS4370) and 21 (MS4369), with impaired binding to the von Hippel-Lindau E3 ligase and PRMT5, respectively. Compound 15, but not 17 and 21, effectively reduced the PRMT5 protein level in MCF-7 cells. Our mechanism studies indicate that compound 15 degraded PRMT5 in an E3 ligase- and proteasome-dependent manner. Compound 15 also effectively reduced the PRMT5 protein level and inhibited growth in multiple cancer cell lines. Moreover, compound 15 was highly selective for PRMT5 in a global proteomic study and exhibited good plasma exposure in mice. Collectively, compound 15 and its two controls 17 and 21 are valuable chemical tools for exploring the PRMT5 functions in health and disease.
Collapse
Affiliation(s)
- Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, United States
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Huensuk Kim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Megan Schwarz
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ernesto Guccione
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
510
|
He L, Hu Z, Sun Y, Zhang M, Zhu H, Jiang L, Zhang Q, Mu D, Zhang J, Gu L, Yang Y, Pan FY, Jia S, Guo Z. PRMT1 is critical to FEN1 expression and drug resistance in lung cancer cells. DNA Repair (Amst) 2020; 95:102953. [PMID: 32861926 DOI: 10.1016/j.dnarep.2020.102953] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
The up-regulation of PRMT1 is critical to the cell growth and cancer progression of lung cancer cells. In our research, we found that PRMT1 is important to the DNA repair ability and drug resistance of lung cancer cells. To demonstrate the functions of PRMT1, we identified Flap endonuclease 1 (FEN1) as a post-translationally modified downstream target protein of PRMT1. As a major component of Base Excision Repair pathway, FEN1 plays an important role in DNA replication and DNA damage repair. However, the detailed mechanism of FEN1 up-regulation in lung cancer cells remains unclear. In our study, we identified PRMT1 as a key factor that maintains the high expression levels of FEN1, which is critical to the DNA repair ability and the chemotherapeutic drug resistance of lung cancer cells.
Collapse
Affiliation(s)
- Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yuling Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Miaomiao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongqiao Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Longwei Jiang
- Jinlin Hospital of Nanjing University, Nanjing, 210002, China
| | - Qi Zhang
- Department of Infectious Diseases, Nanjing Liuhe District People's Hospital Affiliated to Yangzhou University, Nanjing, 210012, China
| | - Dan Mu
- Affiliated Drum Tower Hospital, Nanjing University School of Medicine, 210008, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lili Gu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Fei-Yan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Shaochang Jia
- Jinlin Hospital of Nanjing University, Nanjing, 210002, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
511
|
Hwang JW, Kim SN, Myung N, Song D, Han G, Bae GU, Bedford MT, Kim YK. PRMT5 promotes DNA repair through methylation of 53BP1 and is regulated by Src-mediated phosphorylation. Commun Biol 2020; 3:428. [PMID: 32759981 PMCID: PMC7406651 DOI: 10.1038/s42003-020-01157-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
PRMT5 participates in various cellular processes, including transcription regulation, signal transduction, mRNA splicing, and DNA repair; however, its mechanism of regulation is poorly understood. Here, we demonstrate that PRMT5 is phosphorylated at residue Y324 by Src kinase, a negative regulator of its activity. Either phosphorylation or substitution of the Y324 residue suppresses PRMT5 activity by preventing its binding with the methyl donor S-adenosyl-L-methionine. Additionally, we show that PRMT5 activity is associated with non-homologous end joining (NHEJ) repair by methylating and stabilizing p53-binding protein 1 (53BP1), which promotes cellular survival after DNA damage. Src-mediated phosphorylation of PRMT5 and the subsequent inhibition of its activity during the DNA damage process blocks NHEJ repair, leading to apoptotic cell death. Altogether, our findings suggest that PRMT5 regulates DNA repair through Src-mediated Y324 phosphorylation in response to DNA damage. Hwang et al. show that the activity of PRMT5 methyltransferase is regulated by Src kinase-mediated phosphorylation at Y324 in response to DNA damage. They also show that PRMT5 participates in NHEJ repair by regulating 53BP1 protein levels and is critical for cellular survival after DNA damage.
Collapse
Affiliation(s)
- Jee Won Hwang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Su-Nam Kim
- Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea
| | - Nayeon Myung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Doona Song
- Department of Biotechnology, Department of Biomedical Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, Department of Biomedical Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.
| | - Yong Kee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
512
|
Tang J, Meng Q, Shi R, Xu Y. PRMT6 serves an oncogenic role in lung adenocarcinoma via regulating p18. Mol Med Rep 2020; 22:3161-3172. [PMID: 32945431 PMCID: PMC7453511 DOI: 10.3892/mmr.2020.11402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Lung adenocarcinoma (LUAD), a major subtype of lung cancer, is the leading cause of cancer‑related mortality worldwide. Previous studies have determined the role of the protein arginine methyltransferases (PRMTs) in the physiology and pathology of LUAD. However, to the best of our knowledge, no empirical studies have been performed determining the association between protein arginine methyltransferase 6 (PRMT6) and LUAD. The present study aimed to determine the expression levels of PRMT6 in LUAD and its association with the clinicopathological characteristics. The effect of PRMT6 knockdown on cell growth was analyzed and chromatin immunoprecipitation (ChIP) assay was used to investigate the regulatory mechanisms of PRMT6 on downstream gene expression. In addition, a xenograft model was used to determine whether the PRMT6‑regulated expression levels of p18 in vitro could be validated in vivo. PRMT6 overexpression in LUAD is associated with high clinical stage, lymph node metastasis and poor clinical outcomes. Furthermore, the silencing of PRMT6 significantly reduced the enrichment of Histone H3 asymmetric demethylation at arginine 2 in the promoter region of the p18 gene, thereby activating the expression of the gene. This, in turn, induced G1/S phase cell cycle arrest, resulting in the inhibition of cell proliferation. The xenograft model also suggested that PRMT6 suppressed LUAD development by activating p18 expression in vivo. In conclusion, the findings of the present study suggested that PRMT6 may serve as an oncogene in the progression of LUAD through epigenetically suppressing p18 expression. Thus, PRMT6 may represent a novel potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Jie Tang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210017, P.R. China
| | - Qinge Meng
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210017, P.R. China
| | - Ruirui Shi
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210017, P.R. China
| | - Youqi Xu
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210017, P.R. China
| |
Collapse
|
513
|
The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther 2020; 5:143. [PMID: 32747629 PMCID: PMC7398912 DOI: 10.1038/s41392-020-00252-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Digestive cancers are the leading cause of cancer-related death worldwide and have high risks of morbidity and mortality. Histone methylation, which is mediated mainly by lysine methyltransferases, lysine demethylases, and protein arginine methyltransferases, has emerged as an essential mechanism regulating pathological processes in digestive cancers. Under certain conditions, aberrant expression of these modifiers leads to abnormal histone methylation or demethylation in the corresponding cancer-related genes, which contributes to different processes and phenotypes, such as carcinogenesis, proliferation, metabolic reprogramming, epithelial–mesenchymal transition, invasion, and migration, during digestive cancer development. In this review, we focus on the association between histone methylation regulation and the development of digestive cancers, including gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer, as well as on its clinical application prospects, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
514
|
Zhu J, Liu X, Cai X, Ouyang G, Zha H, Zhou Z, Liao Q, Wang J, Xiao W. Zebrafish prmt3 negatively regulates antiviral responses. FASEB J 2020; 34:10212-10227. [PMID: 32643209 DOI: 10.1096/fj.201902569r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 12/06/2024]
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in histone and nonhistone proteins, which regulates many cellular functions. Protein arginine methyltransferase 3 (prmt3), a type I arginine methyltransferase, has been shown to carry out the formation of stable monomethylarginine as an intermediate before the establishment of asymmetric dimethylarginine. To date, however, the role of PRMT3 in antiviral innate immunity has not been elucidated. This study showed that zebrafish prmt3 was upregulated by virus infection and that the overexpression of prmt3 suppressed cellular antiviral response. The PRMT3 inhibitor, SGC707, enhanced antiviral capability. Consistently, prmt3-null zebrafish were more resistant to Spring Viremia of Carp Virus (SVCV) and Grass Carp Reovirus (GCRV) infection. Further assays showed that the overexpression of prmt3 diminished the phosphorylation of irf3 and prmt3 interacted with rig-i. In addition, both zinc-finger domain and catalytic domain of prmt3 were required for the suppressive function of prmt3 on IFN activation. Our findings suggested that zebrafish prmt3 negatively regulated the antiviral responses, implicating the vital role of prmt3-or even arginine methylation-in antiviral innate immunity.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- Dalian Ocean University, Dalian, P.R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, P.R. China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P.R. China
- The Key of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
515
|
Prieto M, Folci A, Martin S. Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction. Mol Psychiatry 2020; 25:1688-1703. [PMID: 31822816 DOI: 10.1038/s41380-019-0629-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein essential to the regulation of local translation at synapses. In the mammalian brain, synapses are constantly formed and eliminated throughout development to achieve functional neuronal networks. At the molecular level, thousands of proteins cooperate to accomplish efficient neuronal communication. Therefore, synaptic protein levels and their functional interactions need to be tightly regulated. FMRP generally acts as a translational repressor of its mRNA targets. FMRP is the target of several post-translational modifications (PTMs) that dynamically regulate its function. Here we provide an overview of the PTMs controlling the FMRP function and discuss how their spatiotemporal interplay contributes to the physiological regulation of FMRP. Importantly, FMRP loss-of-function leads to Fragile X syndrome (FXS), a rare genetic developmental condition causing a range of neurological alterations including intellectual disability (ID), learning and memory impairments, autistic-like features and seizures. Here, we also explore the possibility that recently reported missense mutations in the FMR1 gene disrupt the PTM homoeostasis of FMRP, thus participating in the aetiology of FXS. This suggests that the pharmacological targeting of PTMs may be a promising strategy to develop innovative therapies for patients carrying such missense mutations.
Collapse
Affiliation(s)
- Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France.
| |
Collapse
|
516
|
Nitika, Porter CM, Truman AW, Truttmann MC. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem 2020; 295:10689-10708. [PMID: 32518165 PMCID: PMC7397107 DOI: 10.1074/jbc.rev120.011666] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Corey M Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
517
|
Protein Arginine Methyltransferase 5 as a Therapeutic Target for KRAS Mutated Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12082091. [PMID: 32731506 PMCID: PMC7465151 DOI: 10.3390/cancers12082091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Nearly 45% of colorectal cancer (CRC) patients harbor a mutation in their KRAS gene for which, despite many years of research, there are still no targeted therapies available. Protein Arginine Methyltransferase 5 (PRMT5) is a transcription regulator for multiple cellular processes that is currently being tested as a potential target in several cancer types. PRMT5 has been previously shown to be overexpressed in approximately 75% of CRC patient tumor samples, as well as negatively correlated with CRC patient survival. Here, we provide evidence that PRMT5 can act as a surrogate target for mutated KRAS in CRC. Our findings show that PRMT5 expression is upregulated, as well as positively correlated with KRAS expression, in CRC patient datasets. Moreover, our results reveal that PRMT5 is further overexpressed in KRAS mutant CRC cells when compared to KRAS wild type (WT) CRC cells at both the transcriptional and translational levels. Additionally, our data demonstrate that this further overexpression of PRMT5 in the KRAS mutant CRC cells affects an even greater degree of growth inhibition, apoptosis, and cell cycle arrest, following treatment with PRMT5 inhibitor, when compared to the KRAS WT CRC cells. Our research therefore suggests for the first time that PRMT5 and KRAS may crosstalk, and thus, PRMT5 can potentially be used as a surrogate target for mutated KRAS in CRC.
Collapse
|
518
|
Demetriadou C, Koufaris C, Kirmizis A. Histone N-alpha terminal modifications: genome regulation at the tip of the tail. Epigenetics Chromatin 2020; 13:29. [PMID: 32680559 PMCID: PMC7367250 DOI: 10.1186/s13072-020-00352-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023] Open
Abstract
Histone proteins are decorated with numerous post-(PTMs) or co-(CTMs) translational modifications mainly on their unstructured tails, but also on their globular domain. For many decades research on histone modifications has been focused almost solely on the biological role of modifications occurring at the side-chain of internal amino acid residues. In contrast, modifications on the terminal N-alpha amino group of histones-despite being highly abundant and evolutionarily conserved-have been largely overlooked. This oversight has been due to the fact that these marks were being considered inert until recently, serving no regulatory functions. However, during the past few years accumulating evidence has drawn attention towards the importance of chemical marks added at the very N-terminal tip of histones and unveiled their role in key biological processes including aging and carcinogenesis. Further elucidation of the molecular mechanisms through which these modifications are regulated and by which they act to influence chromatin dynamics and DNA-based processes like transcription is expected to enlighten our understanding of their emerging role in controlling cellular physiology and contribution to human disease. In this review, we clarify the difference between N-alpha terminal (Nt) and internal (In) histone modifications; provide an overview of the different types of known histone Nt-marks and the associated histone N-terminal transferases (NTTs); and explore how they function to shape gene expression, chromatin architecture and cellular phenotypes.
Collapse
Affiliation(s)
- Christina Demetriadou
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Costas Koufaris
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus
| | - Antonis Kirmizis
- Epigenetics Laboratory, Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.
| |
Collapse
|
519
|
Abstract
Protein methyl transferases play critical roles in numerous regulatory pathways that underlie cancer development, progression and therapy-response. Here we discuss the function of PRMT5, a member of the nine-member PRMT family, in controlling oncogenic processes including tumor intrinsic, as well as extrinsic microenvironmental signaling pathways. We discuss PRMT5 effect on histone methylation and methylation of regulatory proteins including those involved in RNA splicing, cell cycle, cell death and metabolic signaling. In all, we highlight the importance of PRMT5 regulation and function in cancer, which provide the foundation for therapeutic modalities targeting PRMT5.
Collapse
Affiliation(s)
- Hyungsoo Kim
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
520
|
Xie VK, He J, Xie K. Protein arginine methylation promotes therapeutic resistance in human pancreatic cancer. Cytokine Growth Factor Rev 2020; 55:58-69. [PMID: 32739260 DOI: 10.1016/j.cytogfr.2020.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.
Collapse
Affiliation(s)
- Victoria Katie Xie
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jie He
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Keping Xie
- Department of Gastroenterology, Guangzhou First People's Hospital Affiliated to The South China University of Technology School of Medicine, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
521
|
Hartley AV, Lu T. Modulating the modulators: regulation of protein arginine methyltransferases by post-translational modifications. Drug Discov Today 2020; 25:1735-1743. [PMID: 32629172 DOI: 10.1016/j.drudis.2020.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic potential of targeting protein arginine methyltransferases (PRMTs) is inextricably linked to their key roles in various cellular functions, including splicing, proliferation, cell cycle regulation, differentiation, and DNA damage signaling. Unsurprisingly, the development of inhibitors against these enzymes has become a rapidly expanding research area. However, effective targeting of PRMTs requires a deeper understanding of the mechanistic details behind their regulation at multiple levels, involving those mechanisms that alter their activity, interactions, and localization. Recently, post-translational modifications (PTMs) of PRMTs have emerged as another crucial aspect of this regulation. Here, we review the regulatory role of PTMs in the activity and function of PRMTs, with emphasis on the contribution of these PTMs to pathological states, such as cancer.
Collapse
Affiliation(s)
- Antja-Voy Hartley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, 975 W. Walnut Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
522
|
Rugo HS, Jacobs I, Sharma S, Scappaticci F, Paul TA, Jensen-Pergakes K, Malouf GG. The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Adv Ther 2020; 37:3059-3082. [PMID: 32445185 PMCID: PMC7467409 DOI: 10.1007/s12325-020-01379-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic processes are essential for normal development and the maintenance of tissue-specific gene expression in mammals. Changes in gene expression and malignant cellular transformation can result from disruption of epigenetic mechanisms, and global disruption in the epigenetic landscape is a key feature of cancer. The study of epigenetics in cancer has revealed that human cancer cells harbor both genetic alterations and epigenetic abnormalities that interplay at all stages of cancer development. Unlike genetic mutations, epigenetic aberrations are potentially reversible through epigenetic therapy, providing a therapeutically relevant treatment option. Histone methyltransferase inhibitors are emerging as an epigenetic therapy approach with great promise in the field of clinical oncology. The recent accelerated approval of the enhancer of zeste homolog 2 (EZH2; also known as histone-lysine N-methyltransferase EZH2) inhibitor tazemetostat for metastatic or locally advanced epithelioid sarcoma marks the first approval of such a compound for the treatment of cancer. Many other histone methyltransferase inhibitors are currently in development, some of which are being tested in clinical studies. This review focuses on histone methyltransferase inhibitors, highlighting their potential in the treatment of cancer. We also discuss the role for such epigenetic drugs in overcoming epigenetically driven drug resistance mechanisms, and their value in combination with other therapeutic approaches such as immunotherapy.
Collapse
|
523
|
Zhang L, Valizadeh H, Alipourfard I, Bidares R, Aghebati-Maleki L, Ahmadi M. Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review. COPD 2020; 17:333-342. [PMID: 32558592 DOI: 10.1080/15412555.2020.1780576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) that is one of the most prevalent chronic adult diseases and the third leading cause of fatality until 2020. Elastase/anti-elastase hypothesis, chronic inflammation, apoptosis, oxidant-antioxidant balance and infective repair cause pathogenesis of COPD are among the factors at play. Epigenetic changes are post-translational modifications in histone proteins and DNA such as methylation and acetylation as well as dysregulation of miRNAs expression. In this update review, we have examined recent studies on the upregulation or downregulation of methylation in different genes associated with COPD. Dysregulation of HDAC activity which is caused by some factors and miRNAs plays a key role in the suppression and reduction of COPD development. Also, some therapeutic approaches are proposed against COPD by targeting HDAC2 and miRNAs, which have therapeutic effects.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hamed Valizadeh
- Department of Internal Medicine and Pulmonology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Faculty of Life Sciences, Center of pharmaceutical sciences, University of Vienna, Vienna, Austria.,Faculty of Sciences, School of Pharmacy, University of Rome Tor Vergata, Roma, Italy
| | - Ramtin Bidares
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
524
|
Urinary Dimethylamine (DMA) and Its Precursor Asymmetric Dimethylarginine (ADMA) in Clinical Medicine, in the Context of Nitric Oxide (NO) and Beyond. J Clin Med 2020; 9:jcm9061843. [PMID: 32545708 PMCID: PMC7356952 DOI: 10.3390/jcm9061843] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Asymmetric protein-arginine dimethylation is a major post-translational modification (PTM) catalyzed by protein-arginine methyltransferase (PRMT). Regular proteolysis releases asymmetric dimethylarginine (ADMA). Of the daily produced ADMA, about 10% are excreted unchanged in the urine. The remaining 90% are hydrolyzed by dimethylarginine dimethylaminohydrolase (DDAH) to L-citrulline and dimethylamine (DMA), which is readily excreted in the urine. The PRMT/DDAH pathway is almost the exclusive origin of urinary ADMA and the major source of urinary DMA. Dietary fish and seafood represent additional abundant sources of urinary DMA. The present article provides an overview of urinary ADMA and DMA reported thus far in epidemiological, clinical and pharmacological studies, in connection with the L-arginine/nitric oxide (NO) pathway and beyond, in neonates, children and adolescents, young and elderly subjects, males and females. Discussed diseases mainly include those relating to the renal and cardiovascular systems such as peripheral arterial occlusive disease, coronary artery disease, chronic kidney disease, rheumatoid arthritis, Becker muscular disease, Duchenne muscular disease (DMD), attention deficit hyperactivity disorder (ADHD), and type I diabetes. Under standardized conditions involving the abstinence of DMA-rich fresh and canned fish and seafood, urinary DMA and ADMA are useful as measures of whole-body asymmetric arginine-dimethylation in health and disease. The creatinine-corrected excretion rates of DMA range from 10 to 80 µmol/mmol in adults and up to 400 µmol/mmol in children and adolescents. The creatinine-corrected excretion rates of ADMA are on average 10 times lower. In general, diseases are associated with higher urinary DMA and ADMA excretion rates, and pharmacological treatment, such as with steroids and creatine (in DMD), decreases their excretion rates, which may be accompanied by a decreased urinary excretion of nitrate, the major metabolite of NO. In healthy subjects and in rheumatoid arthritis patients, the urinary excretion rate of DMA correlates positively with the excretion rate of dihydroxyphenylglycol (DHPG), the major urinary catecholamines metabolite, suggesting a potential interplay in the PRMT/DDAH/NO pathway.
Collapse
|
525
|
PRMT1 Is Critical for the Transcriptional Activity and the Stability of the Progesterone Receptor. iScience 2020; 23:101236. [PMID: 32563156 PMCID: PMC7305383 DOI: 10.1016/j.isci.2020.101236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in female reproductive processes and in several aspects of breast cancer tumorigenesis. Our report describes the type I protein arginine methyltransferase 1 (PRMT1) as a cofactor controlling progesterone pathway, through the direct methylation of PR. Mechanistic assays in breast cancer cells indicate that PRMT1 methylates PR at the arginine 637 and reduces the stability of the receptor, thereby accelerating its recycling and finally its transcriptional activity. Depletion of PRMT1 decreases the expression of a subset of progesterone-inducible genes, controlling breast cancer cells proliferation and migration. Consistently, Kaplan-Meier analysis revealed that low expression of PRMT1 predicts a longer survival among the subgroup with high PR. Our study highlights PR methylation as a molecular switch adapting the transcription requirement of breast cells during tumorigenesis.
Collapse
|
526
|
Wu D, He J, Zhang W, Wang K, Jin S, Li J, Gao W. CARM1 promotes non-small cell lung cancer progression through upregulating CCNE2 expression. Aging (Albany NY) 2020; 12:10578-10593. [PMID: 32487779 PMCID: PMC7346078 DOI: 10.18632/aging.103280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
The underlying molecular mechanisms of tumorigenesis and progression of non-small cell lung cancer (NSCLC) are not yet fully elucidated. In the present study, invitro functional dissections suggest that siRNA-mediated silencing of CCNE2 profoundly attenuated the proliferative and colony-formative abilities of NSCLC PC9 and HCC827 cells, while forced overexpression of CCNE2 significantly strengthened the proliferative and colony-formative capabilities of these cells. Intriguingly, by ChIP and luciferase reporter gene assays, we observed that CARM1 is recruited to the promoter regions of CCNE2 gene and acts as a transcriptional activator. Mechanically, the asymmetric di-methylation of H3R17me2a and H3R26me2a, as the catalytic substrates of CARM1, were highly enriched at the core promoter regions of CCNE2 gene, thereby activating the expression of CCNE2. In vitro and in vivo rescue experiments demonstrated that restoration of CCNE2 expression significantly abolished the CARM1 shRNA-mediated inhibition of cell proliferation, indicating that the oncogenic function of CARM1, at least partially, depended on the activation of CCNE2. Inhibition of CARM1 enzymatic activity could significantly repress CCNE2 expression in NSCLC cells. In addition, the expression of CARM1 was significantly elevated and positively correlated with CCNE2 levels in 20 cases of NSCLC patients. Both CARM1 and CCNE2 are highly associated with shorter 10-year overall survival of at a large cohort of 461 cases of NSCLC patients from the Kaplan-Meier plotter database. To summarize, these findings provide compelling evidence that CARM1 could promote NSCLC progression via activation of CCNE2, paving the way for future therapeutic strategies in NSCLC.
Collapse
Affiliation(s)
- Deqin Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Wang
- Department of Radiotherapy Oncology, Nanjing Benq Medical center, Nanjing 210019, China
| | - Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
527
|
Raveendran VV, Al-Haffar K, Kunhi M, Belhaj K, Al-Habeeb W, Al-Buraiki J, Eyjolsson A, Poizat C. Protein arginine methyltransferase 6 mediates cardiac hypertrophy by differential regulation of histone H3 arginine methylation. Heliyon 2020; 6:e03864. [PMID: 32420474 PMCID: PMC7218648 DOI: 10.1016/j.heliyon.2020.e03864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Heart failure remains a major cause of hospitalization and death worldwide. Heart failure can be caused by abnormalities in the epigenome resulting from dysregulation of histone-modifying enzymes. While chromatin enzymes catalyzing lysine acetylation and methylation of histones have been the topic of many investigations, the role of arginine methyltransferases has been overlooked. In an effort to understand regulatory mechanisms implicated in cardiac hypertrophy and heart failure, we assessed the expression of protein arginine methyltransferases (PRMTs) in the left ventricle of failing human hearts and control hearts. Our results show a significant up-regulation of protein arginine methyltransferase 6 (PRMT6) in failing human hearts compared to control hearts, which also occurs in the early phase of cardiac hypertrophy in mouse hearts subjected to pressure overload hypertrophy induced by trans-aortic constriction (TAC), and in neonatal rat ventricular myocytes (NRVM) stimulated with the hypertrophic agonist phenylephrine (PE). These changes are associated with a significant increase in arginine 2 asymmetric methylation of histone H3 (H3R2Me2a) and reduced lysine 4 tri-methylation of H3 (H3K4Me3) observed both in NRVM and in vivo. Importantly, forced expression of PRMT6 in NRVM enhances the expression of the hypertrophic marker, atrial natriuretic peptide (ANP). Conversely, specific silencing of PRMT6 reduces ANP protein expression and cell size, indicating that PRMT6 is critical for the PE-mediated hypertrophic response. Silencing of PRMT6 reduces H3R2Me2a, a mark normally associated with transcriptional repression. Furthermore, evaluation of cardiac contractility and global ion channel activity in live NRVM shows a striking reduction of spontaneous beating rates and prolongation of extra-cellular field potentials in cells expressing low-level PRMT6. Altogether, our results indicate that PRMT6 is a critical regulator of cardiac hypertrophy, implicating H3R2Me2a as an important histone modification. This study identifies PRMT6 as a new epigenetic regulator and suggests a new point of control in chromatin to inhibit pathological cardiac remodeling.
Collapse
Affiliation(s)
- Vineesh Vimala Raveendran
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kamar Al-Haffar
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muhammed Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Karim Belhaj
- College of Medicine, Al Faisal University, PO Box 50927, Riyadh 11211, Saudi Arabia
| | | | | | - Atli Eyjolsson
- Heart Centre, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Masonic Medical Research Institute, Utica, NY 13501, USA
| |
Collapse
|
528
|
Liu MY, Hua WK, Chen CJ, Lin WJ. The MKK-Dependent Phosphorylation of p38α Is Augmented by Arginine Methylation on Arg49/Arg149 during Erythroid Differentiation. Int J Mol Sci 2020; 21:ijms21103546. [PMID: 32429593 PMCID: PMC7278938 DOI: 10.3390/ijms21103546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
The activation of p38 mitogen-activated protein kinases (MAPKs) through a phosphorylation cascade is the canonical mode of regulation. Here, we report a novel activation mechanism for p38α. We show that Arg49 and Arg149 of p38α are methylated by protein arginine methyltransferase 1 (PRMT1). The non-methylation mutations of Lys49/Lys149 abolish the promotive effect of p38α on erythroid differentiation. MAPK kinase 3 (MKK3) is identified as the major p38α upstream kinase and MKK3-mediated activation of the R49/149K mutant p38α is greatly reduced. This is due to a profound reduction in the interaction of p38α and MKK3. PRMT1 can enhance both the methylation level of p38α and its interaction with MKK3. However, the phosphorylation of p38α by MKK3 is not a prerequisite for methylation. MAPK-activated protein kinase 2 (MAPKAPK2) is identified as a p38α downstream effector in the PRMT1-mediated promotion of erythroid differentiation. The interaction of MAPKAPK2 with p38α is also significantly reduced in the R49/149K mutant. Together, this study unveils a novel regulatory mechanism of p38α activation via protein arginine methylation on R49/R149 by PRMT1, which impacts partner interaction and thus promotes erythroid differentiation. This study provides a new insight into the complexity of the regulation of the versatile p38α signaling and suggests new directions in intervening p38α signaling.
Collapse
Affiliation(s)
- Mei-Yin Liu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
| | - Wei-Kai Hua
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan;
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
- Correspondence: ; Tel.: +886-2-28267257
| |
Collapse
|
529
|
Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nat Commun 2020; 11:2396. [PMID: 32409666 PMCID: PMC7224190 DOI: 10.1038/s41467-020-16271-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response. Protein arginine methyltransferases (PRMTs) are increasingly recognized as potential therapeutic targets but PRMT7 remains an understudied member of this enzyme family. Here, the authors develop a chemical probe for PRMT7 and apply it to elucidate the role of PRMT7 in the cellular stress response.
Collapse
|
530
|
Tan L, Xiao K, Ye Y, Liang H, Chen M, Luo J, Qin Z. High PRMT5 expression is associated with poor overall survival and tumor progression in bladder cancer. Aging (Albany NY) 2020; 12:8728-8741. [PMID: 32392182 PMCID: PMC7244052 DOI: 10.18632/aging.103198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Arginine methyltransferase 5 (PRMT5) is involved in a variety of cancers. We used bioinformatics analysis to investigate PRMT5 overexpression in bladder urothelial cancer (BUC) and its clinical significance. We also conducted molecular biology experiments to investigate the effect of PRMT5 on the phenotype of BUC cells in vitro and in vivo. PRMT5 was found to be upregulated in BUC tissue in the Oncomine and The Cancer Genome Atlas databases. We validated the results from these databases in a cohort of BUC samples. Kaplan-Meier and Cox multivariate analyses demonstrated that PRMT5 upregulation is an independent prognostic risk factor for BUC. The in vitro and in vivo phenotypic experiments found that downregulated expression of PRMT5 in BUC cells inhibits BUC cell proliferation and aggression. In addition, gene set enrichment analysis demonstrated that PRMT5 knockdown leads to cell cycle G1/S arrest, deactivation of Akt, and mTOR phosphorylation in BUC cells. These results suggest that PRMT5 could be used as a potential molecular marker for BUC in the future.
Collapse
Affiliation(s)
- Lei Tan
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kanghua Xiao
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunlin Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haitao Liang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zike Qin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
531
|
Kim E, Jang J, Park JG, Kim KH, Yoon K, Yoo BC, Cho JY. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21093058. [PMID: 32357521 PMCID: PMC7246892 DOI: 10.3390/ijms21093058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N′-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jiwon Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Keejung Yoon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
532
|
Snyder KJ, Zitzer NC, Gao Y, Choe HK, Sell NE, Neidemire-Colley L, Ignaci A, Kale C, Devine RD, Abad MG, Pietrzak M, Wang M, Lin H, Zhang YW, Behbehani GK, Jackman JE, Garzon R, Vaddi K, Baiocchi RA, Ranganathan P. PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight 2020; 5:131099. [PMID: 32191634 DOI: 10.1172/jci.insight.131099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Anora Ignaci
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Charuta Kale
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Raymond D Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Min Wang
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Hong Lin
- Prelude Therapeutics, Wilmington, Delaware, USA
| | | | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | | | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, Delaware, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center
| |
Collapse
|
533
|
Wang YC, Chang CP, Tsai YJ, Lee YJ, Li C. Alternative 3' splice site selection of intron 5 within the prmt8 gene results in a novel variant widely distributed in vertebrates and specifically abundant in Aves. Gene 2020; 747:144684. [PMID: 32311412 DOI: 10.1016/j.gene.2020.144684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/18/2022]
Abstract
PRMT8 is a neuron-specific protein arginine methyltransferase in vertebrates. From data mining, we found a novel prmt8e6+43 splicing variant with a 43-nucleotide (nt) extension at the 5' of exon 6 in chicken. RT-PCR analyses confirmed the existence of two splicing variants but also detected a third upper signal. The triplet pattern detected in chicken suggests that one strand from the prmt8e6+43 transcript and one strand from the regular splicing products form a heteroduplex with a bulb conformation and the two transcripts are of similar abundance. One short plus one faint upper heteroduplex signal detected in mouse and human indicate that the level of the variant is much less than the normal one in mammals. The relative expression of the normal and prmt8e6+43 variants in different species can be inferred from the reads of intron 5 that contains the 43-nt extension or not in the RNA-seq data of NCBI Gene database. The results of the analyses showed that the prmt8e6+43 variant is relatively abundant in birds but much less or even not detected in mammalian species. As conserved intron 5 sequences and evidences of alternative splicing (AS) are detected in elephant shark, a cartilaginous fish with the slowest-evolving genome, we propose that the prmt8e6+43 variant is present in the common ancestor of jawed vertebrates. The prmt8e6+43 variant includes a premature termination codon and thus should encode a truncated PRMT8 with deletion from the dimerization arm. Western blot analyses showed very weak low-molecular-weight signals in chicken, which might be the C-terminal truncated PRMT8. Why avian species maintain high RNA but not protein levels of the prmt8e6+43 variant and whether the evolutionary conserved sequence and AS might regulate PRMT8 expression require further investigation.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ping Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yun-Jung Tsai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Jen Lee
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
534
|
Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol 2020; 17:457-474. [PMID: 32303702 DOI: 10.1038/s41571-020-0350-x] [Citation(s) in RCA: 462] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Removal of introns from messenger RNA precursors (pre-mRNA splicing) is an essential step for the expression of most eukaryotic genes. Alternative splicing enables the regulated generation of multiple mRNA and protein products from a single gene. Cancer cells have general as well as cancer type-specific and subtype-specific alterations in the splicing process that can have prognostic value and contribute to every hallmark of cancer progression, including cancer immune responses. These splicing alterations are often linked to the occurrence of cancer driver mutations in genes encoding either core components or regulators of the splicing machinery. Of therapeutic relevance, the transcriptomic landscape of cancer cells makes them particularly vulnerable to pharmacological inhibition of splicing. Small-molecule splicing modulators are currently in clinical trials and, in addition to splice site-switching antisense oligonucleotides, offer the promise of novel and personalized approaches to cancer treatment.
Collapse
|
535
|
Yoo A, Jang YJ, Ahn J, Jung CH, Seo HD, Ha TY. Chrysanthemi Zawadskii var. Latilobum Attenuates Obesity-Induced Skeletal Muscle Atrophy via Regulation of PRMTs in Skeletal Muscle of Mice. Int J Mol Sci 2020; 21:ijms21082811. [PMID: 32316567 PMCID: PMC7215836 DOI: 10.3390/ijms21082811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
As obesity promotes ectopic fat accumulation in skeletal muscle, resulting in impaired skeletal muscle and mitochondria function, it is associated with skeletal muscle loss and dysfunction. This study investigated whether Chrysanthemi zawadskii var. latilobum (CZH) protected mice against obesity-induced skeletal muscle atrophy and the underlying molecular mechanisms. High-fat diet (HFD)-induced obese mice were orally administered either distilled water, low-dose CZH (125 mg/kg), or high-dose CZH (250 mg/kg) for 8 w. CZH reduced obesity-induced increases in inflammatory cytokines levels and skeletal muscle atrophy, which is induced by expression of atrophic genes such as muscle RING-finger protein 1 and muscle atrophy F-box. CZH also improved muscle function according to treadmill running results and increased the muscle fiber size in skeletal muscle. Furthermore, CZH upregulated mRNA and protein levels of protein arginine methyltransferases (PRMT)1 and PRMT7, which subsequently attenuated mitochondrial dysfunction in the skeletal muscle of obese mice. We also observed that CZH significantly decreased PRMT6 mRNA and protein expression, which resulted in decreased muscle atrophy. These results suggest that CZH ameliorated obesity-induced skeletal muscle atrophy in mice via regulation of PRMTs in skeletal muscle.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Korea; (A.Y.); (Y.J.J.); (J.A.); (C.H.J.); (H.D.S.)
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Young Jin Jang
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Korea; (A.Y.); (Y.J.J.); (J.A.); (C.H.J.); (H.D.S.)
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Korea; (A.Y.); (Y.J.J.); (J.A.); (C.H.J.); (H.D.S.)
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Korea; (A.Y.); (Y.J.J.); (J.A.); (C.H.J.); (H.D.S.)
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hyo Deok Seo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Korea; (A.Y.); (Y.J.J.); (J.A.); (C.H.J.); (H.D.S.)
| | - Tae Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Korea; (A.Y.); (Y.J.J.); (J.A.); (C.H.J.); (H.D.S.)
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-63-219-9054
| |
Collapse
|
536
|
Tanaka Y, Nagai Y, Okumura M, Greene MI, Kambayashi T. PRMT5 Is Required for T Cell Survival and Proliferation by Maintaining Cytokine Signaling. Front Immunol 2020; 11:621. [PMID: 32328070 PMCID: PMC7160866 DOI: 10.3389/fimmu.2020.00621] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Arginine methylation is a post-translational modification that regulates many biological processes. However, the role of arginine methylation in immune cells is not well studied. Here we report an essential role of protein arginine methyltransferase 5 (PRMT5) in T cell homeostasis and activation-induced expansion. Using T cell-specific PRMT5 conditional knockout mice, we found that PRMT5 is required for natural killer T (NKT) cell but not for conventional or regulatory T (Treg) cell development after the double positive (DP) stage in the thymus. In contrast, PRMT5 was required for optimal peripheral T cell maintenance, for the transition of naïve T cells to effector/memory phenotype, and for early T cell development before the DP stage in a cell-intrinsic manner. Accordingly, PRMT5-deleted T cells showed impaired IL-7-mediated survival and TCR-induced proliferation in vitro. The latter was more pronounced and attributed to reduced responsiveness to IL-2. Acute deletion of PRMT5 revealed that not only naïve but also effector/memory T cells were impaired in TCR-induced proliferation in a development-independent manner. Reduced expression of common γ chain (γc), a shared receptor component for several cytokines including IL-7 and IL-2, on PRMT5-deleted T cells may be in part responsible for the defect. We further showed that PRMT5 was partially required for homeostatic T cell survival but absolutely required for lymphopenic T cell expansion in vivo. Thus, we propose that PRMT5 is required for T cell survival and proliferation by maintaining cytokine signaling, especially during proliferation. The inhibition of PRMT5 may provide a novel strategy for the treatment of diseases where uncontrolled T cell activation has a role, such as autoimmunity.
Collapse
Affiliation(s)
- Yukinori Tanaka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
537
|
Liu F, Xu Y, Lu X, Hamard PJ, Karl DL, Man N, Mookhtiar AK, Martinez C, Lossos IS, Sun J, Nimer SD. PRMT5-mediated histone arginine methylation antagonizes transcriptional repression by polycomb complex PRC2. Nucleic Acids Res 2020; 48:2956-2968. [PMID: 32025719 PMCID: PMC7102951 DOI: 10.1093/nar/gkaa065] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes the symmetric di-methylation of arginine residues in histones H3 and H4, marks that are generally associated with transcriptional repression. However, we found that PRMT5 inhibition or depletion led to more genes being downregulated than upregulated, indicating that PRMT5 can also act as a transcriptional activator. Indeed, the global level of histone H3K27me3 increases in PRMT5 deficient cells. Although PRMT5 does not directly affect PRC2 enzymatic activity, methylation of histone H3 by PRMT5 abrogates its subsequent methylation by PRC2. Treating AML cells with an EZH2 inhibitor partially restored the expression of approximately 50% of the genes that are initially downregulated by PRMT5 inhibition, suggesting that the increased H3K27me3 could directly or indirectly contribute to the transcription repression of these genes. Indeed, ChIP-sequencing analysis confirmed an increase in the H3K27me3 level at the promoter region of a quarter of these genes in PRMT5-inhibited cells. Interestingly, the anti-proliferative effect of PRMT5 inhibition was also partially rescued by treatment with an EZH2 inhibitor in several leukemia cell lines. Thus, PRMT5-mediated crosstalk between histone marks contributes to its functional effects.
Collapse
Affiliation(s)
- Fan Liu
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Ye Xu
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Xiaoqing Lu
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Pierre-Jacques Hamard
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel L Karl
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Adnan K Mookhtiar
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Concepcion Martinez
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Izidore S Lossos
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Stephen D Nimer
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
538
|
Radwan M, Ang CS, Ormsby AR, Cox D, Daly JC, Reid GE, Hatters DM. Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity. Mol Cell Proteomics 2020; 19:640-654. [PMID: 32086375 PMCID: PMC7124463 DOI: 10.1074/mcp.ra119.001888] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
C9ORF72-associated Motor Neuron Disease patients feature abnormal expression of 5 dipeptide repeat (DPR) polymers. Here we used quantitative proteomics in a mouse neuronal-like cell line (Neuro2a) to demonstrate that the Arg residues in the most toxic DPRS, PR and GR, leads to a promiscuous binding to the proteome compared with a relative sparse binding of the more inert AP and GA. Notable targets included ribosomal proteins, translation initiation factors and translation elongation factors. PR and GR comprising more than 10 repeats appeared to robustly stall on ribosomes during translation suggesting Arg-rich peptide domains can electrostatically jam the ribosome exit tunnel during synthesis. Poly-GR also recruited arginine methylases, induced hypomethylation of endogenous proteins, and induced a profound destabilization of the actin cytoskeleton. Our findings point to arginine in GR and PR polymers as multivalent toxins to translation as well as arginine methylation that may explain the dysfunction of biological processes including ribosome biogenesis, mRNA splicing and cytoskeleton assembly.
Collapse
Affiliation(s)
- Mona Radwan
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia; Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Angelique R Ormsby
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Dezerae Cox
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - James C Daly
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia; School of Chemistry, The University of Melbourne, VIC 3010, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
539
|
Wong TL, Ng KY, Tan KV, Chan LH, Zhou L, Che N, Hoo RLC, Lee TK, Richard S, Lo CM, Man K, Khong PL, Ma S. CRAF Methylation by PRMT6 Regulates Aerobic Glycolysis-Driven Hepatocarcinogenesis via ERK-Dependent PKM2 Nuclear Relocalization and Activation. Hepatology 2020; 71:1279-1296. [PMID: 31469916 DOI: 10.1002/hep.30923] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Most tumor cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and promote tumorigenicity and drug resistance. Intriguingly, the molecular mechanisms underlying this phenomenon are not well understood. In this work, using gain-of-function and loss-of-function in vitro studies in patient-derived organoid and cell cultures as well as in vivo positron emission tomography-magnetic resonance imaging animal models, we showed that protein arginine N-methyltransferase 6 (PRMT6) regulates aerobic glycolysis in human hepatocellular carcinoma (HCC) through nuclear relocalization of pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. APPROACH AND RESULTS We found PRMT6 to methylate CRAF at arginine 100, interfering with its RAS/RAF binding potential, and therefore altering extracellular signal-regulated kinase (ERK)-mediated PKM2 translocation into the nucleus. This altered PRMT6-ERK-PKM2 signaling axis was further confirmed in both a HCC mouse model with endogenous knockout of PRMT6 as well as in HCC clinical samples. We also identified PRMT6 as a target of hypoxia through the transcriptional repressor element 1-silencing transcription factor, linking PRMT6 with hypoxia in driving glycolytic events. Finally, we showed as a proof of concept the therapeutic potential of using 2-deoxyglucose, a glycolysis inhibitor, to reverse tumorigenicity and sorafenib resistance mediated by PRMT6 deficiency in HCC. CONCLUSIONS Our findings indicate that the PRMT6-ERK-PKM2 regulatory axis is an important determinant of the Warburg effect in tumor cells, and provide a mechanistic link among tumorigenicity, sorafenib resistance, and glucose metabolism.
Collapse
Affiliation(s)
- Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kel Vin Tan
- Department of Diagnostic Radiology, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Lok-Hei Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Noélia Che
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ruby L C Hoo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, the Hong Kong Polytechnic University, Hong Kong
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute, Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, Canada
| | - Chung-Mau Lo
- Department of Surgery, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Stephanie Ma
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| |
Collapse
|
540
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
541
|
Murakami H, Suzuki T, Tsuchiya K, Gatanaga H, Taura M, Kudo E, Okada S, Takei M, Kuroda K, Yamamoto T, Hagiwara K, Dohmae N, Aida Y. Protein Arginine N-methyltransferases 5 and 7 Promote HIV-1 Production. Viruses 2020; 12:355. [PMID: 32210193 PMCID: PMC7150949 DOI: 10.3390/v12030355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 12/17/2022] Open
Abstract
Current therapies for human immunodeficiency virus type 1 (HIV-1) do not completely eliminate viral reservoirs in cells, such as macrophages. The HIV-1 accessory protein viral protein R (Vpr) promotes virus production in macrophages, and the maintenance of Vpr is essential for HIV-1 replication in these reservoir cells. We identified two novel Vpr-binding proteins, i.e., protein arginine N-methyltransferases (PRMTs) 5 and 7, using human monocyte-derived macrophages (MDMs). Both proteins found to be important for prevention of Vpr degradation by the proteasome; in the context of PRMT5 and PRMT7 knockdowns, degradation of Vpr could be prevented using a proteasome inhibitor. In MDMs infected with a wild-type strain, knockdown of PRMT5/PRMT7 and low expression of PRMT5 resulted in inefficient virus production like Vpr-deficient strain infections. Thus, our findings suggest that PRMT5 and PRMT7 support HIV-1 replication via maintenance of Vpr protein stability.
Collapse
Affiliation(s)
- Hironobu Murakami
- Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.M.); (M.T.); (K.H.)
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN CSRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; (K.T.); (H.G.); (N.D.)
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; (K.T.); (H.G.); (N.D.)
| | - Manabu Taura
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; (M.T.); (E.K.); (S.O.)
| | - Eriko Kudo
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; (M.T.); (E.K.); (S.O.)
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; (M.T.); (E.K.); (S.O.)
| | - Masami Takei
- Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.M.); (M.T.); (K.H.)
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nihon University School of Medicine, 30-1 Oyaguchi, Itabashi, Tokyo 173-8610, Japan; (K.K.); (T.Y.)
| | - Kazumichi Kuroda
- Nihon University School of Medicine, 30-1 Oyaguchi, Itabashi, Tokyo 173-8610, Japan; (K.K.); (T.Y.)
| | - Tatsuo Yamamoto
- Nihon University School of Medicine, 30-1 Oyaguchi, Itabashi, Tokyo 173-8610, Japan; (K.K.); (T.Y.)
| | - Kyoji Hagiwara
- Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.M.); (M.T.); (K.H.)
| | - Naoshi Dohmae
- AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan; (K.T.); (H.G.); (N.D.)
| | - Yoko Aida
- Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (H.M.); (M.T.); (K.H.)
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nihon University School of Medicine, 30-1 Oyaguchi, Itabashi, Tokyo 173-8610, Japan; (K.K.); (T.Y.)
| |
Collapse
|
542
|
An Ethnic Comparison of Arginine Dimethylation and Cardiometabolic Factors in Healthy Black and White Youth: The ASOS and African-PREDICT Studies. J Clin Med 2020; 9:jcm9030844. [PMID: 32244968 PMCID: PMC7141317 DOI: 10.3390/jcm9030844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Proteinic arginine dimethylation (PADiMe) is a major post-translational modification. Proteolysis of asymmetric and symmetric PADiMe products releases asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), respectively, two endogenous atherogenic substances. SDMA, ADMA, and its major metabolite dimethylamine (DMA) are eliminated by the kidney. The urinary concentrations of DMA+ADMA, SDMA, and DMA+ADMA+SDMA are useful measures of the whole-body asymmetric and symmetric PADiMe, respectively. Urinary (DMA+ADMA)/SDMA is an index of the asymmetric to symmetric PADiMe balance. In two bi-ethnic studies, the ASOS (39 black boys, 41 white boys) and the African-PREDICT (292 black young men, 281 white young men) studies, we investigated whether ethnicity is a major determinant of PADiMe, and whether PADiMe is associated with blood pressure and ethnicity-dependent growth and inflammatory factors, including HDL. DMA, ADMA, and SDMA were measured in spot urine samples by gas chromatography-mass spectrometry, and their excretion was corrected for creatinine excretion. In black boys, creatinine-corrected DMA, DMA+ADMA, and DMA+ADMA+SDMA concentrations were lower by 11.7%, 9.5%, and 7.6% (all p < 0.05), respectively, compared to the white boys, and 3.4%, 2.0%, and 1.8% lower (all p < 0.05), respectively, in black compared to white men. (DMA+ADMA)/SDMA did not differ between black boys and black men, but was higher in white boys compared to white men. ADMA did not differ between black and white boys, or between black and white men. Creatinine-corrected SDMA excretion was lower in black boys compared to white boys (by 8%) and to white men (by 3.1%). None of the PADiMe indices were associated with blood pressure in either study. IGF-binding protein 3 correlated inversely with all PADiMe indices in the black men only. Our study showed that asymmetric proteinic arginine dimethylation is higher in white boys than in black boys, and that this difference disappears in adulthood. ADMA metabolism and SDMA excretion were lower in the black subjects compared to the white subjects, suggesting ethnicity-dependent hepatic and renal elimination of ADMA and SDMA in the childhood. The results of our study may have clinical relevance beyond atherosclerosis, such as in growth and inflammation, which have not been sufficiently addressed thus far.
Collapse
|
543
|
Liu M, Yao B, Gui T, Guo C, Wu X, Li J, Ma L, Deng Y, Xu P, Wang Y, Yang D, Li Q, Zeng X, Li X, Hu R, Ge J, Yu Z, Chen Y, Chen B, Ju J, Zhao Q. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics 2020; 10:4437-4452. [PMID: 32292506 PMCID: PMC7150477 DOI: 10.7150/thno.42047] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
The proto-oncogene c-Myc regulates multiple biological processes mainly through selectively activating gene expression. However, the mechanisms underlying c-Myc-mediated gene repression in the context of cancer remain less clear. This study aimed to clarify the role of PRMT5 in the transcriptional repression of c-Myc target genes in gastric cancer. Methods: Immunohistochemistry was used to evaluate the expression of PRMT5, c-Myc and target genes in gastric cancer patients. PRMT5 and c-Myc interaction was assessed by immunofluorescence, co-immunoprecipitation and GST pull-down assays. Bioinformatics analysis, immunoblotting, real-time PCR, chromatin immunoprecipitation, and rescue experiments were used to evaluate the mechanism. Results: We found that c-Myc directly interacts with protein arginine methyltransferase 5 (PRMT5) to transcriptionally repress the expression of a cohort of genes, including PTEN, CDKN2C (p18INK4C), CDKN1A (p21CIP1/WAF1), CDKN1C (p57KIP2) and p63, to promote gastric cancer cell growth. Specifically, we found that PRMT5 was required to promote gastric cancer cell growth in vitro and in vivo, and for transcriptional repression of this cohort of genes, which was dependent on its methyltransferase activity. Consistently, the promoters of this gene cohort were enriched for both PRMT5-mediated symmetric di-methylation of histone H4 on Arg 3 (H4R3me2s) and c-Myc, and c-Myc depletion also upregulated their expression. H4R3me2s also colocalized with the c-Myc-binding E-box motif (CANNTG) on these genes. We show that PRMT5 directly binds to c-Myc, and this binding is required for transcriptional repression of the target genes. Both c-Myc and PRMT5 expression levels were upregulated in primary human gastric cancer tissues, and their expression levels inversely correlated with clinical outcomes. Conclusions: Taken together, our study reveals a novel mechanism by which PRMT5-dependent transcriptional repression of c-Myc target genes is required for gastric cancer progression, and provides a potential new strategy for therapeutic targeting of gastric cancer.
Collapse
|
544
|
Brown JI, Page BDG, Frankel A. The application of differential scanning fluorimetry in exploring bisubstrate binding to protein arginine N-methyltransferase 1. Methods 2020; 175:10-23. [PMID: 31726226 DOI: 10.1016/j.ymeth.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Protein arginine N-methyltransferases (PRMTs) are a family of 9 enzymes that catalyze mono- or di-methylation of arginine residues using S-adenosyl-l-methionine (SAM). Arginine methylation is an important post-translational modification that can regulate the activity and structure of target proteins. Altered PRMT activity can lead to a variety of health issues including neurodevelopmental disease, autoimmune disorders, cancer, and cardiovascular disease. Thus, developing a robust mechanistic understanding of PRMT function may provide insight into these various disease states and enable the development of potential therapeutic agents. Although PRMTs have been studied for nearly two decades, a consensus regarding the mechanism of action for this class of enzymes has remained noticeably elusive. To address this shortcoming, differential scanning fluorimetry (DSF) was used to gain mechanistic insight into the order of PRMT substrate and cofactor binding. This methodology confirms that PRMT cofactor binding precedes target substrate binding and supports the use of DSF to study bisubstrate enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada; Department of Oncology and Pathology, Karolinska Institutet, Tomtebodavagen 23A, Stockholm, Sweden.
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada.
| |
Collapse
|
545
|
Park SW, Jun YW, Choi HE, Lee JA, Jang DJ. Deciphering the molecular mechanisms underlying the plasma membrane targeting of PRMT8. BMB Rep 2020. [PMID: 30670150 PMCID: PMC6827574 DOI: 10.5483/bmbrep.2019.52.10.272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine methylation plays crucial roles in many cellular functions including signal transduction, RNA transcription, and regulation of gene expression. Protein arginine methyltransferase 8 (PRMT8), a unique brain-specific protein, is localized to the plasma membrane. However, the detailed molecular mechanisms underlying PRMT8 plasma membrane targeting remain unclear. Here, we demonstrate that the N-terminal 20 amino acids of PRMT8 are sufficient for plasma membrane localization and that oligomerization enhances membrane localization. The basic amino acids, combined with myristoylation within the N-terminal 20 amino acids of PRMT8, are critical for plasma membrane targeting. We also found that substituting Gly-2 with Ala [PRMT8(G2A)] or Cys-9 with Ser [PRMT8(C9S)] induces the formation of punctate structures in the cytosol or patch-like plasma membrane localization, respectively. Impairment of PRMT8 oligomerization/dimerization by Cterminal deletion induces PRMT8 mis-localization to the mitochondria, prevents the formation of punctate structures by PRMT8(G2A), and inhibits PRMT8(C9S) patch-like plasma membrane localization. Overall, these results suggest that oligomerization/dimerization plays several roles in inducing the efficient and specific plasma membrane localization of PRMT8. [BMB Reports 2019; 52(10): 601-606].
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | - Ha-Eun Choi
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 34054, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
546
|
Samudyata, Castelo-Branco G, Liu J. Epigenetic regulation of oligodendrocyte differentiation: From development to demyelinating disorders. Glia 2020; 68:1619-1630. [PMID: 32154951 DOI: 10.1002/glia.23820] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of progenitor states or the differentiation of progenitors into specific lineages requires epigenetic remodeling of the gene expression program. In the central nervous system, oligodendrocyte progenitors (OPCs) give rise to oligodendrocytes (OLs), whose main function has been thought to be to produce myelin, a lipid-rich structure insulating the axons. However, recent findings suggest diverse OL transcriptional states, which might imply additional functions. The differentiation of OPCs into postmitotic OLs is a highly regulated and sensitive process and requires temporal waves of gene expression through epigenetic remodeling of the genome. In this review, we will discuss recent advances in understanding the events shaping the chromatin landscape through histone modifications and long noncoding RNAs during OPC differentiation, in physiological and pathological conditions. We suggest that epigenetic regulation plays a fundamental role in governing the accessibility of transcriptional machinery to DNA sequences, which ultimately determines functional outcomes in OLs.
Collapse
Affiliation(s)
- Samudyata
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, New York, USA
| |
Collapse
|
547
|
Mamani-Huanca M, Gradillas A, Gil de la Fuente A, López-Gonzálvez Á, Barbas C. Unveiling the Fragmentation Mechanisms of Modified Amino Acids as the Key for Their Targeted Identification. Anal Chem 2020; 92:4848-4857. [DOI: 10.1021/acs.analchem.9b04313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maricruz Mamani-Huanca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Alberto Gil de la Fuente
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
548
|
Kim H, Yoon BH, Oh CM, Lee J, Lee K, Song H, Kim E, Yi K, Kim MY, Kim H, Kim YK, Seo EH, Heo H, Kim HJ, Lee J, Suh JM, Koo SH, Seong JK, Kim S, Ju YS, Shong M, Kim M, Kim H. PRMT1 Is Required for the Maintenance of Mature β-Cell Identity. Diabetes 2020; 69:355-368. [PMID: 31848151 DOI: 10.2337/db19-0685] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022]
Abstract
Loss of functional β-cell mass is an essential feature of type 2 diabetes, and maintaining mature β-cell identity is important for preserving a functional β-cell mass. However, it is unclear how β-cells achieve and maintain their mature identity. Here we demonstrate a novel function of protein arginine methyltransferase 1 (PRMT1) in maintaining mature β-cell identity. Prmt1 knockout in fetal and adult β-cells induced diabetes, which was aggravated by high-fat diet-induced metabolic stress. Deletion of Prmt1 in adult β-cells resulted in the immediate loss of histone H4 arginine 3 asymmetric dimethylation (H4R3me2a) and the subsequent loss of β-cell identity. The expression levels of genes involved in mature β-cell function and identity were robustly downregulated as soon as Prmt1 deletion was induced in adult β-cells. Chromatin immunoprecipitation sequencing and assay for transposase-accessible chromatin sequencing analyses revealed that PRMT1-dependent H4R3me2a increases chromatin accessibility at the binding sites for CCCTC-binding factor (CTCF) and β-cell transcription factors. In addition, PRMT1-dependent open chromatin regions may show an association with the risk of diabetes in humans. Together, our results indicate that PRMT1 plays an essential role in maintaining β-cell identity by regulating chromatin accessibility.
Collapse
Affiliation(s)
- Hyunki Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byoung-Ha Yoon
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Joonyub Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kanghoon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Heein Song
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Mi-Young Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun-Hye Seo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Jin Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Junguee Lee
- Department of Pathology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
549
|
Krzystek-Korpacka M, G. Fleszar M, Bednarz-Misa I, Lewandowski Ł, Szczuka I, Kempiński R, Neubauer K. Transcriptional and Metabolomic Analysis of L-Arginine/Nitric Oxide Pathway in Inflammatory Bowel Disease and Its Association with Local Inflammatory and Angiogenic Response: Preliminary Findings. Int J Mol Sci 2020; 21:ijms21051641. [PMID: 32121248 PMCID: PMC7084352 DOI: 10.3390/ijms21051641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
L-arginine/nitric oxide pathway in Crohn's disease (CD) and ulcerative colitis (UC) is poorly investigated. The aim of current study is to quantify pathway serum metabolites in 52 CD (40 active), 48 UC (33 active), and 18 irritable bowel syndrome patients and 40 controls using mass spectrometry and at determining mRNA expression of pathway-associated enzymes in 91 bowel samples. Arginine and symmetric dimethylarginine decreased (p < 0.05) in active-CD (129 and 0.437 µM) compared to controls (157 and 0.494 µM) and active-UC (164 and 0.52 µM). Citrulline and dimethylamine increased (p < 0.05) in active-CD (68.7 and 70.9 µM) and active-UC (65.9 and 73.9 µM) compared to controls (42.7 and 50.4 µM). Compared to normal, CD-inflamed small bowel had downregulated (p < 0.05) arginase-2 by 2.4-fold and upregulated dimethylarginine dimethylaminohydrolase (DDAH)-2 (1.5-fold) and arginine N-methyltransferase (PRMT)-2 (1.6-fold). Quiescent-CD small bowel had upregulated (p < 0.05) arginase-2 (1.8-fold), DDAH1 (2.9-fold), DDAH2 (1.5-fold), PRMT1 (1.5-fold), PRMT2 (1.7-fold), and PRMT5 (1.4-fold). Pathway enzymes were upregulated in CD-inflamed/quiescent and UC-inflamed colon as compared to normal. Compared to inflamed, quiescent CD-colon had upregulated DDAH1 (5.7-fold) and ornithine decarboxylase (1.6-fold). Concluding, the pathway is deregulated in CD and UC, also in quiescent bowel, reflecting inflammation severity and angiogenic potential. Functional analysis of PRMTs and DDAHs as potential targets for therapy is warranted.
Collapse
Affiliation(s)
- Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
- Correspondence: ; Tel.: +48-71-784-1375
| | - Mariusz G. Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Izabela Szczuka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| |
Collapse
|
550
|
Structural and biochemical evaluation of bisubstrate inhibitors of protein arginine N-methyltransferases PRMT1 and CARM1 (PRMT4). Biochem J 2020; 477:787-800. [PMID: 32011657 PMCID: PMC7054760 DOI: 10.1042/bcj20190826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
Attenuating the function of protein arginine methyltransferases (PRMTs) is an objective for the investigation and treatment of several diseases including cardiovascular disease and cancer. Bisubstrate inhibitors that simultaneously target binding sites for arginine substrate and the cofactor (S-adenosylmethionine (SAM)) have potential utility, but structural information on their binding is required for their development. Evaluation of bisubstrate inhibitors featuring an isosteric guanidine replacement with two prominent enzymes PRMT1 and CARM1 (PRMT4) by isothermal titration calorimetry (ITC), activity assays and crystallography are reported. Key findings are that 2-aminopyridine is a viable replacement for guanidine, providing an inhibitor that binds more strongly to CARM1 than PRMT1. Moreover, a residue around the active site that differs between CARM1 (Asn-265) and PRMT1 (Tyr-160) is identified that affects the side chain conformation of the catalytically important neighbouring glutamate in the crystal structures. Mutagenesis data supports its contribution to the difference in binding observed for this inhibitor. Structures of CARM1 in complex with a range of seven inhibitors reveal the binding modes and show that inhibitors with an amino acid terminus adopt a single conformation whereas the electron density for equivalent amine-bearing inhibitors is consistent with preferential binding in two conformations. These findings inform the molecular basis of CARM1 ligand binding and identify differences between CARM1 and PRMT1 that can inform drug discovery efforts.
Collapse
|