501
|
Meehl M, Herbert S, Götz F, Cheung A. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51:2679-89. [PMID: 17502406 PMCID: PMC1932546 DOI: 10.1128/aac.00209-07] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/19/2007] [Accepted: 05/07/2007] [Indexed: 11/20/2022] Open
Abstract
Current treatment for serious infections caused by methicillin-resistant Staphylococcus aureus relies heavily upon the glycopeptide antibiotic vancomycin. Unfortunately, this practice has led to an intermediate resistance phenotype that is particularly difficult to treat in invasive staphylococcal diseases, such as septicemia and its metastatic complications, including endocarditis. Although the vancomycin-intermediate resistance phenotype has been linked to abnormal cell wall structures and autolytic rates, the corresponding genetic changes have not been fully elucidated. Previously, whole-genome array studies listed numerous genes that are overexpressed in vancomycin-intermediate sensitive strains, including graRS (SACOL0716 to -0717), encoding a two-component regulatory system (TCRS), as well as the adjacent vraFG (SACOL0718 to -0720), encoding an ATP-binding cassette (ABC) transporter; but the exact contribution of these genes to increased vancomycin resistance has not been defined. In this study, we showed that isogenic strains with mutations in genes encoding the GraRS TCRS and the VraFG ABC transporter are hypersensitive to vancomycin as well as polymyxin B. Moreover, GraRS regulates the expression of the adjacent VraFG pump, reminiscent of gram-positive bacteriocin-immunity regulons. Mutations of graRS and vraFG also led to increased autolytic rates and a more negative net surface charge, which may explain, in part, to their increased sensitivity to cationic antimicrobial peptides. Taken together, these data reveal an important genetic mediator to the vancomycin-intermediate S. aureus phenotype and may hold clues to the selective pressures on staphylococci upon exposure to selective cationic peptide antibiotics used in clinical practice.
Collapse
Affiliation(s)
- Michael Meehl
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
502
|
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 2007; 24:708-34. [PMID: 17653356 DOI: 10.1039/b516237h] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microcins are gene-encoded antibacterial peptides, with molecular masses below 10 kDa, produced by enterobacteria. They are secreted under conditions of nutrient depletion and exert potent antibacterial activity against closely related species. Typical gene clusters encoding the microcin precursor, the self-immunity factor, the secretion proteins and frequently the post-translational modification enzymes are located either on plasmids or on the chromosome. In contrast to most of the antibiotics of microbial origin, which are non-ribosomally synthesized by multimodular enzymes termed peptide synthetases, microcins are ribosomally synthesized as precursors, which are further modified enzymatically. They form a restricted class of potent antibacterial peptides. Fourteen microcins have been reported so far, among which only seven have been isolated and characterized. Despite the low number of known representatives, microcins exhibit a diversity of structures and antibacterial mechanisms. This review provides an updated overview of microcin structures, antibacterial activities, genetic systems and biosyntheses, as well as of their mechanisms of action.
Collapse
Affiliation(s)
- Sophie Duquesne
- Laboratory of Chemistry and Biochemistry of Natural Substances, UMR 5154 CNRS, Department of Regulations, Development and Molecular Diversity, National Museum of Natural History, CP 54, 57 rue Cuvier, 75005, Paris, France
| | | | | | | |
Collapse
|
503
|
Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJM, Kuipers OP, Moll GN. Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl Environ Microbiol 2007; 73:5809-16. [PMID: 17660303 PMCID: PMC2074915 DOI: 10.1128/aem.01104-07] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nisin A is a pentacyclic antibiotic peptide produced by various Lactococcus lactis strains. Nisin displays four different activities: (i) it autoinduces its own synthesis; (ii) it inhibits the growth of target bacteria by membrane pore formation; (iii) it inhibits bacterial growth by interfering with cell wall synthesis; and, in addition, (iv) it inhibits the outgrowth of spores. Here we investigate the structural requirements and relevance of the N-terminal thioether rings of nisin by randomization of the ring A and B positions. The data demonstrate that: (i) mutation of ring A results in variants with enhanced activity and a modulated spectrum of target cells; (ii) for the cell growth-inhibiting activity of nisin, ring A is rather promiscuous with respect to its amino acid composition, whereas the bulky amino acid residues in ring B abolish antimicrobial activity; (iii) C-terminally truncated nisin A mutants lacking rings D and E retain significant antimicrobial activity but are unable to permeabilize the target membrane; (iv) the dehydroalanine in ring A is not essential for the inhibition of the outgrowth of Bacillus cells; (v) some ring A mutants have significant antimicrobial activities but have decreased autoinducing activities; (vi) the opening of ring B eliminates antimicrobial activity while retaining autoinducing activity; and (vii) some ring A mutants escape the nisin immune system(s) and are toxic to the nisin-producing strain NZ9700. These data demonstrate that the various activities of nisin can be engineered independently and provide a basis for the design and synthesis of tailor-made analogs with desired activities.
Collapse
Affiliation(s)
- Rick Rink
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
504
|
Abstract
Dehydroalanine is a nonproteinogenic amino acid, but it is a component of a wide variety of natural products with therapeutic activities. Indeed, this alpha,beta-unsaturated residue is a highly versatile building block due to its rigidifying effect on peptide backbones and its electrophilicity which allows site-specific thiol ligations of peptides with small molecules or proteins. To harness such versatility in genetically encoded, combinatorial peptide libraries, we report a simple and robust method for the ribosomal synthesis of dehydroalanine-containing peptides. Selenalysine, a selenium-containing lysine analogue, was recruited as a masked dehydroalanine equivalent. This residue is efficiently incorporated by a reconstituted Escherichia coli translation system at high fidelity and efficiency despite the presence of low levels of lysine. Mild oxidative conditions were used to convert selenalysine into dehydroalanine post-translationally. Using this method, we demonstrate the preparation of polyunsaturated and highly decorated peptides. This report is an important step toward the preparation and selection of large libraries of protein-reactive compounds with potential use as novel drugs or as analytical tools.
Collapse
Affiliation(s)
- Florian P Seebeck
- Howard Hughes Medical Institute and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
505
|
Li B, van der Donk WA. Identification of essential catalytic residues of the cyclase NisC involved in the biosynthesis of nisin. J Biol Chem 2007; 282:21169-75. [PMID: 17513866 DOI: 10.1074/jbc.m701802200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nisin is a post-translationally modified antimicrobial peptide that has been widely used in the food industry for several decades. It contains five cyclic thioether cross-links of varying sizes that are installed by a single enzyme, NisC, that catalyzes the addition of cysteines to dehydroamino acids. The recent x-ray crystal structure of NisC has provided the first insights into the catalytic residues responsible for the cyclization step during nisin biosynthesis. In this study, the conserved residues His(212), Arg(280), Asp(141), and Tyr(285) as well as the ligands to the zinc in the active site (Cys(284), Cys(330), and His(331)) were substituted by site-directed mutagenesis. Binding studies showed that all mutants had similar affinities for NisA. Activity assays showed that whereas His(212) and Asp(141) were essential for correct cyclization as judged by the antimicrobial activity of the final product, Arg(280) and Tyr(285) were not. Mutation of zinc ligands to alanine also abolished the enzymatic activity, and these mutant proteins were shown to contain decreased levels of zinc. These results show that the zinc is essential for activity and support a model in which the zinc is used to activate the cysteines in the substrate for nucleophilic attack. These findings also argue against an essential role of Arg(280) and Tyr(285) as an active site general acid/base in the mechanism of cyclization.
Collapse
Affiliation(s)
- Bo Li
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
506
|
Kopp F, Marahiel MA. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep 2007; 24:735-49. [PMID: 17653357 DOI: 10.1039/b613652b] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonribosomal peptides and polyketides have attracted considerable attention in basic and applied research and have given rise to a multitude of therapeutic agents. The biological activity of many of these complex natural products, including for example the peptide antibiotics daptomycin and bacitracin or the polyketide anticancer agents epothilone and geldanamycin, specifically relies on the macrocyclization of linear acyl chains that form the backbone of these highly valuable molecules. The construction of the linear acyl precursors is accomplished by modular protein templates that follow comparable assembly line logic. As an enzymatic key step, macrocyclization is introduced after the consecutive condensation of amino acid or acyl-CoA building blocks by dedicated catalysts, and the mature product is released from the biosynthetic machinery. The diverse chain termination strategies of nonribosomal peptide and polyketide assembly lines, the structures and mechanisms of the versatile macrocyclization catalysts, and chemoenzymatic approaches for the development of new therapeutics are the focus of this review. Further, it is illustrated that macrocyclization is not restricted to secondary metabolites, but represents a commonly found structural motif of other biologically active proteins and peptides.
Collapse
Affiliation(s)
- Florian Kopp
- Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043, Marburg, Germany
| | | |
Collapse
|
507
|
Paul M, Patton GC, van der Donk WA. Mutants of the zinc ligands of lacticin 481 synthetase retain dehydration activity but have impaired cyclization activity. Biochemistry 2007; 46:6268-76. [PMID: 17480057 PMCID: PMC2517114 DOI: 10.1021/bi7000104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics. The modifications involve dehydration of Ser and Thr residues to generate dehydroalanines and dehydrobutyrines, followed by intramolecular attack of cysteines onto the newly formed dehydro amino acids to produce cyclic thioethers. LctM performs both processes during the biosynthesis of lacticin 481. Mutation of the zinc ligands Cys781 and Cys836 to alanine did not affect the dehydration activity of LctM. However, these mutations compromised cyclization activity when investigated with full length or truncated peptide substrates. Mutation of His725, another residue that is fully conserved in lantibiotic cyclases, to Asn resulted in a protein that still catalyzed dehydration of the substrate peptide and also retained cyclization activity, but at a decreased level compared to that of the wild type enzyme. Collectively, these results show that the C-terminal domain of LctM is responsible for cyclization, that the zinc ligands are critical for cyclization, and that dehydration takes place independently from the cyclization activity. Furthermore, these mutant proteins are excellent dehydratases and provide useful tools to investigate the dehydration activity as well as generate dehydrated peptides for study of the cyclization reaction by wild type LctM.
Collapse
|
508
|
Burkard M, Entian KD, Stein T. Development and application of a microtiter plate-based autoinduction bioassay for detection of the lantibiotic subtilin. J Microbiol Methods 2007; 70:179-85. [PMID: 17532072 DOI: 10.1016/j.mimet.2007.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Production of the lantibiotic subtilin in Bacillus subtilis ATCC 6633 is regulated in a quorum sensing-like mechanism with subtilin acting as autoinducer and signal transduction via the subtilin-specific two-component regulation system SpaRK. Here, we report the construction and application of a subtilin reporter strain in which subtilin induced lacZ gene expression in a B. subtilis ATCC 6633 spaS gene deletion mutant is monitored and visualized by the beta-galactosidase in a chromogenic plate assay. A quantitative microtiter plate subtilin bioassay was developed and optimized. Maximal sensitivity of the system was achieved after 6 h of incubation of the reporter strain together with subtilin in a medium containing 300 mM NaCl. This sensitive and unsusceptible method was applied to identify subtilin producing B. subtilis wild type strains from both, culture collections and soil samples. The B. subtilis lantibiotic ericin S with four amino acid exchanges compared to subtilin induces the subtilin reporter strain, in contrast to the structurally closely related Lactococcus lactis lantibiotic nisin. These observations suggest a certain substrate specificity of the histidine kinase SpaK, which however, also would allow the identification of subtilin-isoform producing microorganisms.
Collapse
Affiliation(s)
- Michael Burkard
- Center of Excellence, Macromolecular Complexes, Johann Wolfgang Goethe-University, Institute of Molecular Biosciences, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | | | | |
Collapse
|
509
|
Castiglione F, Cavaletti L, Losi D, Lazzarini A, Carrano L, Feroggio M, Ciciliato I, Corti E, Candiani G, Marinelli F, Selva E. A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 2007; 46:5884-95. [PMID: 17469849 DOI: 10.1021/bi700131x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Important classes of antibiotics acting on bacterial cell wall biosynthesis, such as beta-lactams and glycopeptides, are used extensively in therapy and are now faced with a challenge because of the progressive spread of resistant pathogens. A discovery program was devised to target novel peptidoglycan biosynthesis inhibitors capable of overcoming these resistance mechanisms. The microbial products were first screened according to their differential activity against Staphylococcus aureus and its L-form. Then, activities insensitive to the addition of a beta-lactamase cocktail or d-alanyl-d-alanine affinity resin were selected. Thirty-five lantibiotics were identified from a library of broth extracts produced by 40,000 uncommon actinomycetes. Five of them showed structural characteristics that did not match with any known microbial metabolite. In this study, we report on the production, structure determination, and biological activity of one of these novel lantibiotics, namely, planosporicin, which is produced by the uncommon actinomycete Planomonospora sp. Planosporicin is a 2194 Da polypeptide originating from 24 proteinogenic amino acids. It contains lanthionine and methyllanthionine amino acids generating five intramolecular thioether bridges. Planosporicin selectively blocks peptidoglycan biosynthesis and causes accumulation of UDP-linked peptidoglycan precursors in growing bacterial cells. On the basis of its mode of action and globular structure, planosporicin can be assigned to the mersacidin (20 amino acids, 1825 Da) and the actagardine (19 amino acids, 1890 Da) subgroup of type B lantibiotics. Considering its spectrum of activity against Gram-positive pathogens of medical importance, including multi-resistant clinical isolates, and its efficacy in vivo, planosporicin represents a potentially new antibiotic to treat emerging pathogens.
Collapse
|
510
|
Nguyen VD, Wolf C, Mäder U, Lalk M, Langer P, Lindequist U, Hecker M, Antelmann H. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds inBacillus subtilis. Proteomics 2007; 7:1391-408. [PMID: 17407181 DOI: 10.1002/pmic.200700008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus subtilis is exposed to a variety of antimicrobial compounds in the soil. In this paper, we report on the response of B. subtilis to the fungal-related antimicrobials 6-brom-2-vinyl-chroman-4-on (chromanon) and 2-methylhydroquinone (2-MHQ) using proteome and transcriptome analyses. Chromanon, a derivative of aposphaerins from Aposphaeria species caused predominant protein damage in B. subtilis as indicated by the induction of the HrcA, CtsR, and Spx regulons. The expression profile of the ganomycin-related substance 2-MHQ was similar to that of catechol as reflected by the common induction of the thiol-specific oxidative stress response. Several putative ring-cleavage dioxygenases and oxidoreductases were differentially up-regulated by 2-MHQ, catechol, and chromanon including yfiDE, ydfNOP, yodED, ycnDE, yodC, and ykcA. The nitroreductase encoding yodC gene is induced in response to catechol, 2-MHQ, and chromanon, which depend on the MarR-type repressor YodB. The yfiDE (catDE) operon encodes a catechol-2,3-dioxygenase which is most strongly induced by catechol. The yodED (mhqED), ydfNOP (mhqNOP) operons, and ykcA (mhqA) respond most strongly to 2-MHQ and encode putative hydroquinone-specific extradiol dioxygenases. The ycnDE operon was most strongly induced by chromanon. Mutational analyses revealed that the putative hydroquinone-specific dioxygenases MhqO and MhqA confer resistance to 2-MHQ in B. subtilis.
Collapse
Affiliation(s)
- Van Duy Nguyen
- Institute for Microbiology, Ernst-Moritz-Arndt University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
511
|
You YO, van der Donk WA. Mechanistic investigations of the dehydration reaction of lacticin 481 synthetase using site-directed mutagenesis. Biochemistry 2007; 46:5991-6000. [PMID: 17455908 PMCID: PMC2517115 DOI: 10.1021/bi602663x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotic synthetases catalyze the dehydration of Ser and Thr residues in their peptide substrates to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, followed by the conjugate addition of Cys residues to the Dha and Dhb residues to generate the thioether cross-links lanthionine and methyllanthionine, respectively. In this study ten conserved residues were mutated in the dehydratase domain of the best characterized family member, lacticin 481 synthetase (LctM). Mutation of His244 and Tyr408 did not affect dehydration activity with the LctA substrate whereas mutation of Asn247, Glu261, and Glu446 considerably slowed down dehydration and resulted in incomplete conversion. Mutation of Lys159 slowed down both steps of the net dehydration: phosphorylation of Ser/Thr residues and the subsequent phosphate elimination step to form the dehydro amino acids. Mutation of Arg399 to Met or Leu resulted in mutants that had phosphorylation activity but displayed greatly decreased phosphate elimination activity. The Arg399Lys mutant retained both activities, however. Similarly, the Thr405Ala mutant phosphorylated the LctA substrate but had compromised elimination activity. Finally, mutation of Asp242 or Asp259 to Asn led to mutant enzymes that lacked detectable dehydration activity. Whereas the Asp242Asn mutant retained phosphate elimination activity, the Asp259Asn mutant was not able to eliminate phosphate from a phosphorylated substrate peptide. A model is presented that accounts for the observed phenotypes of these mutant enzymes.
Collapse
Affiliation(s)
- Young Ok You
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois, telephone (217) 244 5360, FAX (217) 244 8533
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois, telephone (217) 244 5360, FAX (217) 244 8533
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois, telephone (217) 244 5360, FAX (217) 244 8533
- To whom correspondence should be addressed. Phone: (217) 244-5360 FAX (217) 244 8024 E-mail:
| |
Collapse
|
512
|
|
513
|
Takala TM, Saris PEJ. C terminus of NisI provides specificity to nisin. MICROBIOLOGY-SGM 2007; 152:3543-3549. [PMID: 17159206 DOI: 10.1099/mic.0.29083-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nisin-producing Lactococcus lactis protects its own cell membrane against the bacteriocin with the ABC transporter NisFEG, and the immunity lipoprotein NisI. In this study, in order to localize a site for specific nisin interaction in NisI, a C-terminal deletion series of NisI was constructed, and the C-terminally truncated NisI proteins were expressed in L. lactis. The shortest deletion (5 aa) decreased the nisin immunity capacity considerably in the nisin-negative strain MG1614, resulting in approximately 78% loss of immunity function compared with native NisI. A deletion of 21 aa decreased the immunity level even more, but longer deletions, up to 74 aa, provided the same level of nisin immunity as the 21 aa deletion, i.e. approximately 14% of the immunity provided by native NisI. Similar to native NisI, all the C-terminally truncated NisI proteins provided higher immunity to nisin in the NisFEG-expressing strain NZ9840 than in MG1614, i.e. approximately 40-50% of the immunity capacity of native NisI. Then, it was determined whether the NisI C-terminal 21 aa fragment could protect cells against nisin. To target the 21 aa fragment to its natural location, 21 C-terminal amino acids from the subtilin-specific immunity lipoprotein SpaI were replaced by 21 C-terminal amino acids from NisI. The expression of the SpaI'-'NisI fusion in L. lactis strains significantly increased their nisin immunity. This is the first time the immunity function of a lantibiotic immunity protein has been transferred to another protein. However, unlike native NisI, and the C-terminally truncated NisI fragments, the increase in nisin immunity conferred by the SpaI'-'NisI fusion was the same in both the NisFEG strain NZ9840 and MG1614. In conclusion, the SpaI'-'NisI fusion could not enhance nisin immunity by interacting with NisFEG, whereas the C-terminally truncated NisI fragments and native NisI were able to enhance nisin immunity, probably by co-operation with NisFEG. The results made it evident that the C terminus of NisI is involved in specific interaction with nisin, and that it confers specificity for the NisI immunity lipoprotein.
Collapse
Affiliation(s)
- Timo M Takala
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, PO Box 56, FI-00014 University of Helsinki, Finland
| | - Per E J Saris
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, PO Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
514
|
Serafin SV, Maranan R, Zhang K, Morton TH. Mass spectrometric differentiation of linear peptides composed of L-amino acids from isomers containing one D-amino acid residue. Anal Chem 2007; 77:5480-7. [PMID: 16131056 DOI: 10.1021/ac050490j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MS/MS of electrosprayed ions is shown to have the capacity to discriminate between peptides that differ by configuration about their alpha-carbons. It is not necessary for the peptides to possess tertiary structures that are affected by stereochemistry, since five epimers of the pentapeptide, H2N-Gly-Leu-Ser-Phe-Ala-OH (GLSFA) all display different collisionally activated dissociation (CAD) patterns of their protonated parent ions. The figure of merit, r, is a ratio of ratios of fragment ion abundances between stereoisomers, where r = 1 corresponds to no stereochemical effect. Values of r as high as 3.8 are seen for diastereomer pairs. Stereochemical effects are also seen for the diprotonated dodecapeptide H2N-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-OH (LVFFAEDVGSNK), a tryptic fragment from the amyloid beta-protein. Triply charged complexes of the protonated dodecapeptide with cobalt(II) ions undergo CAD at lower collision energies than do doubly protonated LVFFAEDVGSNK ions. Statistically significant (p < 0.01) differences between the all-L-dodecapeptide and the ones containing a d-serine or a D-aspartic acid are observed.
Collapse
Affiliation(s)
- Scott V Serafin
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | | | | | | |
Collapse
|
515
|
He H, Lipowska M, Xu X, Taylor AT, Marzilli LG. Rhenium analogues of promising renal imaging agents with a [99mTc(CO)3]+ core bound to cysteine-derived dipeptides, including lanthionine. Inorg Chem 2007; 46:3385-94. [PMID: 17375908 DOI: 10.1021/ic0619299] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coordination chemistry of lanthionine (LANH2) and cystathionine (CSTH2) dipeptides, which respectively consist of two cysteines and one cysteine and one homocysteine linked by a thioether bridge, is almost unstudied. Recently for fac-[99mTc(CO)3(LAN)]- isomers, the first small 99mTc(CO)3 agents evaluated in humans were found to give excellent renal images and to have a high specificity for renal excretion. Herein we report the synthesis and characterization of Re complexes useful for interpreting the nature of tracer 99mTc radiopharmaceuticals. Treatment of [Re(CO)3(H2O)3]OTf with commercially available LANH2 (a mixture of meso (d,l) and chiral (dd,ll) isomers) gave three HPLC peaks, 1A, 1B, and 1C, but treatment with CSTH2 (l,l isomer) gave one major product, Re(CO)3(CSTH) (2). Crystalline Re(CO)3(LANH) products were best obtained with synthetic LANH2, richer in meso or chiral isomers. X-ray crystallography showed that these dipeptides coordinate as tridentate N2S-bound ligands with two dangling carboxyls. The LANH ligand is meso in 1A and 1C and chiral in 1B. While 1A (kinetically favored) is stable at ambient temperature for days, it converted into 1C (thermodynamically favored) at 100 degrees C; after 6 h, equilibrium was reached at a 1A:1C ratio of 1:2 at pH 8. The structures provide a rationale for this behavior and for the fact that 1A and 1C have simple NMR spectra. This simplicity results from fluxional interchange between an enantiomer with both chelate rings having the same delta pucker and an enantiomer with both chelate rings having the same lambda pucker. Agents with the [99mTc(CO)3]+ core and N2S ligands show promise of becoming an important class of 99mTc radiopharmaceuticals. The chemistry of Re analogues with these ligands, such as the LAN2- complexes reported here, provides a useful background for designing new small agents and also tagged large agents because two uncoordinated carboxyl groups are available for conjugation with biological molecules such as proteins.
Collapse
Affiliation(s)
- Haiyang He
- Department of Radiology, Emory University, Atlanta, Georgia 30322, and Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
| | | | | | | | | |
Collapse
|
516
|
Sosunov V, Mischenko V, Eruslanov B, Svetoch E, Shakina Y, Stern N, Majorov K, Sorokoumova G, Selishcheva A, Apt A. Antimycobacterial activity of bacteriocins and their complexes with liposomes. J Antimicrob Chemother 2007; 59:919-25. [PMID: 17347179 DOI: 10.1093/jac/dkm053] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Bacteriocins (Bcn) are natural peptides that are secreted by several taxonomically distant bacteria and exert bactericidal activity against other bacterial species. Their capacity to inhibit growth of virulent Mycobacterium tuberculosis H37Rv was evaluated in this study. METHODS Five different Bcn were isolated and purified from bacterial culture supernatants, their amino acid sequence was determined, and activity against mycobacteria assessed in three different models: in vitro mycobacterial cultures, in vitro infection of mouse macrophages and in vivo high-dose infection of inbred mice. RESULTS In the in vitro model, four out of five Bcn exhibited stronger antimycobacterial activity than equal concentrations of a widely used anti-TB antibiotic, rifampicin. These Bcn were non-toxic for mouse macrophages at a concentration of 0.1 mg/L (>MIC(90) of these compounds). Pure Bcn did not inhibit mycobacterial growth within murine macrophages when added at 0.01-0.1 mg/L, suggesting that at physiologically tolerable concentrations these molecules do not penetrate through the membrane of eukaryotic cells. However, when administered as a complex with phosphatidylcholine-cardiolipin liposomes, Bcn5 (selected as a model compound due to its cytotoxicity and antimycobacterial activity regular titration curves) demonstrated capacity both to inhibit intracellular growth of M. tuberculosis and to prolong survival of mice in an acute TB model. CONCLUSIONS Given that the mechanism of Bcn bactericidal activity differs from that of all commonly used antibiotics, their possible involvement in complex TB therapies deserves further study.
Collapse
Affiliation(s)
- Vasily Sosunov
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
517
|
Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJM, Kuipers OP, Moll GN. Production of dehydroamino acid-containing peptides by Lactococcus lactis. Appl Environ Microbiol 2007; 73:1792-6. [PMID: 17261515 PMCID: PMC1828803 DOI: 10.1128/aem.02350-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/09/2007] [Indexed: 11/20/2022] Open
Abstract
Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.
Collapse
Affiliation(s)
- Rick Rink
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
518
|
Yuksel S, Hansen JN. Transfer of nisin gene cluster from Lactococcus lactis ATCC 11454 into the chromosome of Bacillus subtilis 168. Appl Microbiol Biotechnol 2007; 74:640-9. [PMID: 17143619 DOI: 10.1007/s00253-006-0713-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/18/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Nisin is an antimicrobial peptide produced by certain strains of Lactococcus lactis. It is a gene-encoded peptide that contains unusual amino acid residues. These novel residues are introduced by posttranslational modification machinery and confer unique chemical and physical properties that are not attainable by regular amino acid residues. To study the modification mechanisms and to create structural analogs with superior properties, it would be advantageous to insert the nisin genes into a bacterial strain that is amenable to genetic manipulation. In this study, we report the cloning and integration of the complete and intact nisin gene cluster into the Bacillus subtilis 168 chromosome. Furthermore, we demonstrate that the nisin genes are transcriptionally active. These results should greatly facilitate the studies of the genes and proteins involved in nisin expression, as well as provide a standard system for the manipulation and expression of genes involved in other members of the lantibiotic family of antimicrobial peptides.
Collapse
Affiliation(s)
- Sahru Yuksel
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| | | |
Collapse
|
519
|
Zhang X, van der Donk WA. On the substrate specificity of dehydration by lacticin 481 synthetase. J Am Chem Soc 2007; 129:2212-3. [PMID: 17266311 PMCID: PMC2517113 DOI: 10.1021/ja067672v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dehydroamino acids are valuable building blocks that are a challenge to incorporate synthetically into unprotected peptides. Lantibiotic synthetases possess dehydration activity that converts Ser and Thr residues in their peptide substrates into dehydroalanine and dehydrobutyrine residues, respectively. We show here that lacticin 481 synthetase can convert the Thr analogs (R )-3-EtSer, (R )-3-vinylSer, (R )-3-ethynylSer, and (R )-3-[(E )-propenyl]Ser into the corresponding dehydro amino acids when incorporated into its peptide substrate. This relaxed substrate specificity holds promise for using the enzyme for synthetic purposes and for lantibiotic engineering. On the other hand, (R )-3-PrSer, (R )-3-i PrSer, and allo -Thr are not substrates for the enzyme.
Collapse
Affiliation(s)
- Xingang Zhang
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801
| | - Wilfred A. van der Donk
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801
| |
Collapse
|
520
|
Li G, van der Donk WA. Efficient synthesis of suitably protected beta-difluoroalanine and gamma-difluorothreonine from L-ascorbic acid. Org Lett 2007; 9:41-4. [PMID: 17192080 PMCID: PMC2593874 DOI: 10.1021/ol062401a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Fluorinated amino acids are useful building blocks for the preparation of biologically active peptides and peptidomimetics with increased metabolic stability. We report here the synthesis of two fluorinated amino acids, beta-difluoroalanine and gamma-difluorothreonine, as analogues of Ser and Thr, respectively. These compounds were suitably protected for Fmoc-based solid-phase peptide synthesis. Once incorporated into peptides, they may serve as alternative substrates or inhibitors of lantibiotic synthetases that posttranslationally dehydrate Ser and Thr residues to dehydroalanine and dehydrobutyrine, respectively.
Collapse
|
521
|
Chung CHY, Kurien BT, Mehta P, Mhatre M, Mou S, Pye QN, Stewart C, West M, Williamson KS, Post J, Liu L, Wang R, Hensley K. Identification of lanthionine synthase C-like protein-1 as a prominent glutathione binding protein expressed in the mammalian central nervous system. Biochemistry 2007; 46:3262-9. [PMID: 17305318 DOI: 10.1021/bi061888s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomic experiments were performed to identify novel glutathione (GSH) binding proteins expressed in the mammalian central nervous system. Bovine brain lysate was affinity purified using an immobilized glutathione-Sepharose column. Proteins that bound the immobilized glutathione were eluted with free glutathione and identified by one- and two-dimensional electrophoresis coupled with mass spectrometric analysis of tryptic fragments. Major proteins purified by this technique were glutathione S-transferase-mu (GST-mu) and GST-pi and lanthionine synthase C-like protein-1 (LanCL1). LanCL1 is a mammalian homologue of a prokaryotic enzyme responsible for the synthesis of thioether (lanthionine) cross-links within nascent polypeptide chains, yielding macrocyclic proteins with potent microbicidal activity. An antibody against LanCL1 was generated and applied to immunochemical studies of spinal cord tissue from SOD1G93A transgenic mice, a model for amyotrophic lateral sclerosis (ALS), wherein LanCL1 expression was found to be increased at presymptomatic stages of the disease. These results indicate LanCL1 is a glutathione binding protein possibly significant to neurodegenerative disease.
Collapse
Affiliation(s)
- Charlotte H Y Chung
- Oklahoma Medical Research Foundation, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Helfrich M, Entian KD, Stein T. Structure−Function Relationships of the Lanthionine Cyclase SpaC Involved in Biosynthesis of the Bacillus subtilis Peptide Antibiotic Subtilin. Biochemistry 2007; 46:3224-33. [PMID: 17305367 DOI: 10.1021/bi062124f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biosynthesis of the lantibiotic subtilin in Bacillus subtilis is accomplished by a synthetase complex consisting of the dehydratase SpaB, cyclase SpaC, and transporter SpaT. Genetically engineered subtilin cyclases SpaC and related NisC and EriC proteins involved in biosynthesis of the lantibiotics nisin and ericin A/S, respectively, were analyzed to functionally substitute native SpaC in vivo. We could show for the first time posttranslational modification of a lantibiotic precursor peptide (subtilin) by a hybrid lantibiotic synthetase (SpaBT/EriC). Genetically engineered SpaC alanine replacement mutants revealed the essentiality of residues His231, Trp302, Cys303, Tyr304, Gly305, Cys349, and His350, as well as the conserved C-terminal motif Lys437-Ala438-Leu439-Leu440-Ile441 for subtilin biosynthesis. Assignment of these strictly conserved lantibiotic cyclase residues to the NisC structure [Li, B., Yu, J. B., Brunzelle, J. S., Moll, G. N., van der Donk, W. A., and Nair, S. K. (2006) Science, 311, 1464-1467] revealed the first experimental evidence for structure-function relationships in catalytic centers of lantibiotic cyclases. SpaC residues His231, Cys303, and Cys349 are involved in coordination of the central zinc ion. The pair His231/Tyr304 is discussed to act as general acid/base catalysts in lanthionine formation. Furthermore, pull-down experiments revealed that functional inactive SpaC mutants were still able to interact with the hexahistidine-tagged subtilin precursor peptide in vitro. Our results suggest that Trp302 and the C-terminal residues of SpaC are constituents of a hydrophobic cluster which is involved in stabilization of the catalytic center and binding of the subtilin precursor peptide.
Collapse
Affiliation(s)
- Markus Helfrich
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | | | | |
Collapse
|
523
|
Cobb SL, Vederas JC. A concise stereoselective synthesis of orthogonally protected lanthionine and beta-methyllanthionine. Org Biomol Chem 2007; 5:1031-8. [PMID: 17377656 DOI: 10.1039/b618178c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lantibiotics such as nisin are active against most Gram-positive bacteria and constitute an important class of antibacterial agents. These ribosomally synthesized peptides contain either one or both of the unusual amino acids meso-lanthionine (m-Lan) or beta-methyllanthionine (beta-MeLan). Nucleophilic ring opening of sulfamidates allows facile preparation of stereochemically pure derivatives of m-Lan and beta-MeLan with orthogonal protection for solid phase synthesis of lantibiotic analogues.
Collapse
Affiliation(s)
- Steven L Cobb
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
524
|
Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 2007; 104:2384-9. [PMID: 17284603 PMCID: PMC1892938 DOI: 10.1073/pnas.0608775104] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of target cell recognition and producer cell self-protection (immunity) are both important yet poorly understood issues in the biology of peptide bacteriocins. In this report, we provide genetic and biochemical evidence that lactococcin A, a permeabilizing peptide-bacteriocin from Lactococcus lactis, uses components of the mannose phosphotransferase system (man-PTS) of susceptible cells as target/receptor. We present experimental evidence that the immunity protein LciA forms a strong complex with the receptor proteins and the bacteriocin, thereby preventing cells from being killed. Importantly, the complex between LciA and the man-PTS components (IIAB, IIC, and IID) appears to involve an on-off type mechanism that allows complex formation only in the presence of bacteriocin; otherwise no complexes were observed between LciA and the receptor proteins. Deletion of the man-PTS operon combined with biochemical studies revealed that the presence of the membrane-located components IIC and IID was sufficient for sensitivity to lactococcin A as well as complex formation with LciA. The cytoplasmic component of the man-PTS, IIAB, was not required for the biological sensitivity or for complex formation. Furthermore, heterologous expression of the lactococcal man-PTS operon rendered the insensitive Lactobacillus sakei susceptible to lactococcin A. We also provide evidence that, not only lactococcin A, but other class II peptide-bacteriocins including lactococcin B and some Listeria-active pediocin-like bacteriocins also target the man-PTS components IIC and IID on susceptible cells and that their immunity proteins involve a mechanism in producer cell self-protection similar to that observed for LciA.
Collapse
Affiliation(s)
- Dzung B Diep
- Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, N-1432 As, Norway.
| | | | | | | | | |
Collapse
|
525
|
Holtsmark I, Mantzilas D, Eijsink VGH, Brurberg MB. The tomato pathogen Clavibacter michiganensis ssp. michiganensis: producer of several antimicrobial substances. J Appl Microbiol 2007; 102:416-23. [PMID: 17241347 DOI: 10.1111/j.1365-2672.2006.03091.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To purify and analyse antimicrobial substances produced by the tomato pathogen Clavibacter michiganensis ssp. michiganensis (Cmm), with potential application in control of Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. METHODS AND RESULTS After selection of a suitable producer and indicator strain, antimicrobial compounds were isolated using chromatographic techniques. The resulting preparations were analysed with respect to heat and protease sensitivity, amino acid composition, amino acid sequence and mass. Using this procedure we discovered one post-translationally modified 2145 Da peptide bacteriocin, one 14 kDa antimicrobial protein as well as low molecular weight (<1000 Da) antimicrobial compounds, putatively belonging to the tunicamycin family. CONCLUSIONS Clavibacter michiganensis ssp. michiganensis produces various antibacterial substances that are active against Cms. SIGNIFICANCE AND IMPACT OF THE STUDY This study describes the first attempt to characterize antimicrobial substances from Cmm at the molecular level. This is an important step towards investigation of the possible use of these compounds to control the potato ring rot pathogen.
Collapse
Affiliation(s)
- I Holtsmark
- Plant Health and Plant Protection Division, Norwegian Institute for Agricultural and Environmental Research, As, Norway.
| | | | | | | |
Collapse
|
526
|
Cotter PD, Deegan LH, Lawton EM, Draper LA, O'Connor PM, Hill C, Ross RP. Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol Microbiol 2007; 62:735-47. [PMID: 17076667 DOI: 10.1111/j.1365-2958.2006.05398.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotics are post-translationally modified antimicrobial peptides which are active at nanomolar concentrations. Some lantibiotics have been shown to function by targeting lipid II, the essential precursor of cell wall biosynthesis. Given that lantibiotics are ribosomally synthesized and amenable to site-directed mutagenesis, they have the potential to serve as biological templates for the production of novel peptides with improved functionalities. However, if a rational approach to novel lantibiotic design is to be adopted, an appreciation of the roles of each individual amino acid (and each domain) is required. To date no lantibiotic has been subjected to such rigorous analysis. To address this issue we have carried out complete scanning mutagenesis of each of the 59 amino acids in lacticin 3147, a two-component lantibiotic which acts through the synergistic activity of the peptides LtnA1 (30 amino acids) and LtnA2 (29 amino acids). All mutations were performed in situ in the native 60 kb plasmid, pMRC01. A number of mutations resulted in the elimination of detectable bioactivity and seem to represent an invariable core within these and related peptides. Significantly however, of the 59 amino acids, at least 36 can be changed without resulting in a complete loss of activity. Many of these are clustered to form variable domains within the peptides. The information generated in this study represents a blue-print that will be critical for the rational design of lantibiotic-based antimicrobial compounds.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
527
|
Pattabiraman VR, Stymiest JL, Derksen DJ, Martin NI, Vederas JC. Multiple On-Resin Olefin Metathesis to Form Ring-Expanded Analogues of the Lantibiotic Peptide, Lacticin 3147 A2. Org Lett 2007; 9:699-702. [PMID: 17286377 DOI: 10.1021/ol063133j] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical synthesis of lantibiotic analogues wherein monosulfide bridges are replaced with other groups can shed light on structure-activity relationships and generate variants that are resistant to aerobic oxidation and have better metabolic stability. This work describes the first complete synthesis of a carbocyclic lantibiotic analogue 2, using sequential on-resin ring-closing olefin metathesis and solution-phase peptide synthesis. The methodology described should find wide application for the preparation of rigidified peptidomimetics containing multiple carbocyclic rings. [structure: see text].
Collapse
|
528
|
Ghalit N, Kemmink J, Hilbers HW, Versluis C, Rijkers DTS, Liskamp RMJ. Step-wise and pre-organization induced synthesis of a crossed alkene-bridged nisin Z DE-ring mimic by ring-closing metathesis. Org Biomol Chem 2007; 5:924-34. [PMID: 17340008 DOI: 10.1039/b618085j] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes two approaches for the synthesis of a crossed alkene-bridged mimic of the thioether ring system of the nisin Z DE-fragment. The first approach comprised the stepwise total synthesis featuring a cross metathesis and a macrolactamization on a solid support followed by a ring-closing metathesis in solution. Via this route the title compound was obtained in an overall yield of 7% (85% on average for 16 reaction steps). In the second approach, the linear precursor peptide was subjected to ring-closing metathesis and the bicyclic peptide with the correct side chain connectivity pattern was obtained in yields up to 95%. The preferred formation of the bicyclic crossed alkene-bridged mimic of the DE-ring suggests a favorable pre-organization of the linear precursor peptide.
Collapse
Affiliation(s)
- Nourdin Ghalit
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
529
|
Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 2006; 73:1107-13. [PMID: 17194838 PMCID: PMC1828679 DOI: 10.1128/aem.02265-06] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The commercial probiotic Streptococcus salivarius strain K12 is the prototype of those S. salivarius strains that are the most strongly inhibitory in a standardized test of streptococcal bacteriocin production and has been shown to produce the 2,368-Da salivaricin A2 (SalA2) and the 2,740-Da salivaricin B (SboB) lantibiotics. The previously uncharacterized SboB belongs to the type AII class of lantibiotic bacteriocins and is encoded by an eight-gene cluster. The genetic loci encoding SalA2 and SboB in strain K12 have been fully characterized and are localized to nearly adjacent sites on pSsal-K12, a 190-kb megaplasmid. Of 61 strongly inhibitory strains of S. salivarius, 19 (31%) were positive for the sboB structural gene. All but one (strain NR) of these 19 strains were also positive for salA2, and in each of these cases of double positivity, the two loci were separated by fewer than 10 kb. This is the first report of a single streptococcus strain producing two distinct lantibiotics.
Collapse
Affiliation(s)
- Otto Hyink
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
530
|
Chatterjee C, Patton GC, Cooper L, Paul M, van der Donk WA. Engineering dehydro amino acids and thioethers into peptides using lacticin 481 synthetase. ACTA ACUST UNITED AC 2006; 13:1109-17. [PMID: 17052615 DOI: 10.1016/j.chembiol.2006.08.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 08/23/2006] [Accepted: 08/23/2006] [Indexed: 11/28/2022]
Abstract
Lantibiotics are peptide antimicrobials containing the thioether-bridged amino acids lanthionine (Lan) and methyllanthionine (MeLan) and often the dehydrated residues dehydroalanine (Dha) and dehydrobutyrine (Dhb). While biologically advantageous, the incorporation of these residues into peptides is synthetically daunting, and their production in vivo is limited to peptides containing proteinogenic amino acids. The lacticin 481 synthetase LctM offers versatile control over the installation of dehydro amino acids and thioether rings into peptides. In vitro processing of semisynthetic substrates unrelated to the prelacticin 481 peptide demonstrated the broad substrate tolerance of LctM. Furthermore, a chemoenzymatic strategy was employed to generate novel thioether linkages by cyclization of peptidic substrates containing the nonproteinogenic cysteine analogs homocysteine and beta-homocysteine. These findings are promising with respect to the utility of LctM toward preparation of conformationally constrained peptide therapeutics.
Collapse
Affiliation(s)
- Champak Chatterjee
- Department of Chemistry and University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | | | | | | | | |
Collapse
|
531
|
Abstract
This Perspective provides an overview of the progress in two of the original programs in my research group focused on the biosynthesis of the antibiotics nisin, lacticin 481, fosfomycin, and bialaphos. The path from start-up funds to tenure and beyond offers insights into the opportunities realized and missed along the road.
Collapse
Affiliation(s)
- Wilfred A van der Donk
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
532
|
Nagao JI, Asaduzzaman SM, Aso Y, Okuda KI, Nakayama J, Sonomoto K. Lantibiotics: insight and foresight for new paradigm. J Biosci Bioeng 2006; 102:139-49. [PMID: 17046525 DOI: 10.1263/jbb.102.139] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 05/18/2006] [Indexed: 11/17/2022]
Abstract
Lantibiotics are a unique type of antimicrobial peptide produced by a large number of gram-positive bacteria that contain unusual amino acids, such as lanthionine and dehydrated amino acids. Ribosomally synthesized lantibiotic prepeptide consists of an N-terminal leader peptide followed by a C-terminal propeptide moiety that undergoes several post-translational modification events to yield a biologically active lantibiotic. Research on lantibiotics has drawn much attention in recent years and has undergone extensive progress as a step forward to the next paradigm. Unusual amino acids in lantibiotics solely contribute to their biological activity and also enhance their structural stability. Thus, enzymes involved in lantibiotic biosynthesis would have a high potential for peptide engineering by introducing unusual amino acids into desired peptides, which may establish a universal approach to advance the structural design of novel peptides, termed lantibiotic engineering. In this review, we focus on recent development with contemporary innovations and perspective of lantibiotic research.
Collapse
Affiliation(s)
- Jun-ichi Nagao
- Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
533
|
Affiliation(s)
- Ingolf F Nes
- Laboratory of Microbial Gene Technology, Norwegian University of Life Sciences, N-1432 As, Norway.
| | | | | |
Collapse
|
534
|
Dufour A, Hindré T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 2006; 31:134-67. [PMID: 17096664 DOI: 10.1111/j.1574-6976.2006.00045.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups.
Collapse
Affiliation(s)
- Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne Sud, Lorient, France.
| | | | | | | |
Collapse
|
535
|
Holtsmark I, Mantzilas D, Eijsink VGH, Brurberg MB. Purification, characterization, and gene sequence of michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. michiganensis. Appl Environ Microbiol 2006; 72:5814-21. [PMID: 16957199 PMCID: PMC1563628 DOI: 10.1128/aem.00639-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the actinomycete genus Clavibacter are known to produce antimicrobial compounds, but so far none of these compounds has been purified and characterized. We have isolated an antimicrobial peptide, michiganin A, from the tomato pathogen Clavibacter michiganensis subsp. michiganensis, using ammonium sulfate precipitation followed by cation-exchange and reversed-phase chromatography steps. Upon chemical derivatization of putative dehydrated amino acids and lanthionine bridges by alkaline ethanethiol, Edman degradation yielded sequence information that proved to be sufficient for cloning of the gene by a genome-walking strategy. The mature unmodified peptide consists of 21 amino acids, SSSGWLCTLTIECGTIICACR. All of the threonine residues undergo dehydration, and three of them interact with cysteines via thioether bonds to form methyllanthionine bridges. Michiganin A resembles actagardine, a type B lantibiotic with a known three-dimensional structure, produced by Actinoplanes liguriae, which is a filamentous actinomycete. The DNA sequence of the gene showed that the michiganin A precursor contains an unusual putative signal peptide with no similarity to well-known secretion signals and only very limited similarity to the (only two) available leader peptides of other type B lantibiotics. Michiganin A inhibits the growth of Clavibacter michiganensis subsp. sepedonicus, the causal agent of ring rot of potatoes, with MICs in the low nanomolar range. Thus, michiganin A may have some potential in biological control of potato ring rot.
Collapse
Affiliation(s)
- I Holtsmark
- Norwegian Institute for Agricultural and Environmental Research, Plant Health and Protection Division, As, Norway.
| | | | | | | |
Collapse
|
536
|
McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci U S A 2006; 103:17243-8. [PMID: 17085596 PMCID: PMC1859917 DOI: 10.1073/pnas.0606088103] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lantibiotics are ribosomally synthesized peptides that undergo posttranslational modifications to their mature, antimicrobial form. They are characterized by the unique amino acids lanthionine and methyllanthionine, introduced by means of dehydration of Ser/Thr residues followed by reaction of the resulting dehydro amino acids with cysteines to form thioether linkages. Two-component lantibiotics use two peptides that are each posttranslationally modified to yield two functionally distinct products that act in synergy to provide bactericidal activity. By using genetic data instead of isolation, a two-component lantibiotic, haloduracin, was identified in the genome of the Gram-positive alkaliphilic bacterium Bacillus halodurans C-125. We show that heterologously expressed and purified precursor peptides HalA1 and HalA2 are processed by the purified modification enzymes HalM1 and HalM2 in an in vitro reconstitution of the biosynthesis of a two-component lantibiotic. The activity of each HalM enzyme is substrate-specific, and the assay products exhibit antimicrobial activity after removal of their leader sequences at an engineered Factor Xa cleavage site, indicating that correct thioether formation has occurred. Haloduracin's biological activity depends on the presence of both modified peptides. The structures of the two mature haloduracin peptides Halalpha and Halbeta were investigated, indicating that they have similarities as well as some distinct differences compared with other two-component lantibiotics.
Collapse
Affiliation(s)
| | - Lisa E. Cooper
- Biochemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Chao Quan
- Biochemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | | | | | - Wilfred A. van der Donk
- Departments of *Chemistry and
- Biochemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
537
|
He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 2006; 73:168-78. [PMID: 17071789 PMCID: PMC1797129 DOI: 10.1128/aem.02023-06] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A new bacterial strain, displaying potent antimicrobial properties against gram-negative and gram-positive pathogenic bacteria, was isolated from food. Based on its phenotypical and biochemical properties as well as its 16S rRNA gene sequence, the bacterium was identified as Paenibacillus polymyxa and it was designated as strain OSY-DF. The antimicrobials produced by this strain were isolated from the fermentation broth and subsequently analyzed by liquid chromatography-mass spectrometry. Two antimicrobials were found: a known antibiotic, polymyxin E1, which is active against gram-negative bacteria, and an unknown 2,983-Da compound showing activity against gram-positive bacteria. The latter was purified to homogeneity, and its antimicrobial potency and proteinaceous nature were confirmed. The antimicrobial peptide, designated paenibacillin, is active against a broad range of food-borne pathogenic and spoilage bacteria, including Bacillus spp., Clostridium sporogenes, Lactobacillus spp., Lactococcus lactis, Leuconostoc mesenteroides, Listeria spp., Pediococcus cerevisiae, Staphylococcus aureus, and Streptococcus agalactiae. Furthermore, it possesses the physico-chemical properties of an ideal antimicrobial agent in terms of water solubility, thermal resistance, and stability against acid/alkali (pH 2.0 to 9.0) treatment. Edman degradation, mass spectroscopy, and nuclear magnetic resonance were used to sequence native and chemically modified paenibacillin. While details of the tentative sequence need to be elucidated in future work, the peptide was unequivocally characterized as a novel lantibiotic, with a high degree of posttranslational modifications. The coproduction of polymyxin E1 and a lantibiotic is a finding that has not been reported earlier. The new strain and associated peptide are potentially useful in food and medical applications.
Collapse
Affiliation(s)
- Zengguo He
- Parker Food Science Building, The Ohio State University, 2015 Fyffe Road, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
538
|
Abstract
AIMS Lactic acid bacteria (LAB) were isolated and sequenced from the faeces of healthy dogs. Five of these strains were selected and further characterized to clarify the potential of these strains as probiotics for canine. METHODS AND RESULTS LAB were found in 67% (14/21) of the canine faeces samples when plated on Lactobacilli Selective Media without acetic acid. Out of 13 species identified with partial 16S rRNA gene sequencing, Lactobacillus fermentum LAB8, L. mucosae LAB12, L. rhamnosus LAB11, L. salivarius LAB9 and Weissella confusa LAB10 were selected as candidate probiotic strains based on their frequency, quantity in faeces, growth density, acid tolerance and antimicrobial activity. The minimal inhibitory concentration values of these isolates were determined for 14 antibiotics. L. salivarius LAB9, W. confusa LAB10 and L. mucosae LAB12 were viable in pH 2 for 4 h (mLBS), indicating tolerance to acidity and thus the potential to survive in gastrointestinal tract of the canine. The LAB8-LAB12 strains showed antimicrobial activity against Micrococcus luteus A1 NCIMB86166. CONCLUSIONS Thirteen different LAB species were found from the faecal microbiota of the healthy canines. Five acid tolerant and antimicrobially active LAB strains with the capacity to grow to high densities both aerobically and anaerobically were chosen to serve as candidate probiotics. SIGNIFICANCE AND IMPACT OF THE STUDY The selected LAB strains are among the first host-specific LAB with antimicrobial activity isolated from canines that could serve as potential probiotics for canine use.
Collapse
Affiliation(s)
- S S Beasley
- Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
539
|
Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 2006; 313:1636-7. [PMID: 16973881 DOI: 10.1126/science.1129818] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lantibiotics are polycyclic peptides containing unusual amino acids, which have binding specificity for bacterial cells, targeting the bacterial cell wall component lipid II to form pores and thereby lyse the cells. Yet several members of these lipid II-targeted lantibiotics are too short to be able to span the lipid bilayer and cannot form pores, but somehow they maintain their antibacterial efficacy. We describe an alternative mechanism by which members of the lantibiotic family kill Gram-positive bacteria by removing lipid II from the cell division site (or septum) and thus block cell wall synthesis.
Collapse
Affiliation(s)
- Hester E Hasper
- Department of Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
540
|
Horswill AR, Stoodley P, Stewart PS, Parsek MR. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 2006; 387:371-80. [PMID: 17047948 PMCID: PMC1797063 DOI: 10.1007/s00216-006-0720-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/25/2006] [Accepted: 07/28/2006] [Indexed: 11/04/2022]
Abstract
As researchers attempt to study quorum sensing in relevant clinical or environmental settings, it is apparent that many factors have the potential to affect signaling. These factors span a range of physical, chemical, and biological variables that can impact signal production, stability and distribution. Optimizing experimental systems to natural or clinical environments may be crucial for defining when and where quorum sensing occurs. These points are illustrated in our case study of S. aureus signaling in biofilms, where signal stability may be affected by the host environment. The basic signaling schemes have been worked out at the molecular level for a few of the major quorum-sensing systems. As these studies continue to refine our understanding of these mechanisms, an emerging challenge is to identify if and when the local environment can affect signaling.
Collapse
Affiliation(s)
| | - Paul Stoodley
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA 15212 USA
| | - Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717-3980 USA
| | - Matthew R. Parsek
- Department of Microbiology, School of Medicine, University of Washington, 1959 NE Pacific Street, Box 357242, Seattle, WA 98195-7242 USA
| |
Collapse
|
541
|
|
542
|
Affiliation(s)
- Günther Jung
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72075 Tübingen, Germany.
| |
Collapse
|
543
|
Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2005.10.026] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
544
|
Cotter PD, Draper LA, Lawton EM, McAuliffe O, Hill C, Ross RP. Overproduction of wild-type and bioengineered derivatives of the lantibiotic lacticin 3147. Appl Environ Microbiol 2006; 72:4492-6. [PMID: 16751576 PMCID: PMC1489664 DOI: 10.1128/aem.02543-05] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lacticin 3147 is a broad-spectrum two-peptide lantibiotic whose genetic determinants are located on two divergent operons on the lactococcal plasmid pMRC01. Here we introduce each of 14 subclones, containing different combinations of lacticin 3147 genes, into MG1363 (pMRC01) and determine that a number of them can facilitate overproduction of the lantibiotic. Based on these studies it is apparent that while the provision of additional copies of genes encoding the biosynthetic/production machinery and the regulator LtnR is a requirement for high-level overproduction, the presence of additional copies of the structural genes (i.e., ltnA1A2) is not.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
545
|
Heng NCK, Ragland NL, Swe PM, Baird HJ, Inglis MA, Tagg JR, Jack RW. Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. MICROBIOLOGY-SGM 2006; 152:1991-2001. [PMID: 16804174 DOI: 10.1099/mic.0.28823-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dysgalacticin is a novel bacteriocin produced by Streptococcus dysgalactiae subsp. equisimilis strain W2580 that has a narrow spectrum of antimicrobial activity directed primarily against the principal human streptococcal pathogen Streptococcus pyogenes. Unlike many previously described bacteriocins of Gram-positive bacteria, dysgalacticin is a heat-labile 21.5 kDa anionic protein that kills its target without inducing lysis. The N-terminal amino acid sequence of dysgalacticin [Asn-Glu-Thr-Asn-Asn-Phe-Ala-Glu-Thr-Gln-Lys-Glu-Ile-Thr-Thr-Asn-(Asn)-Glu-Ala] has no known homologue in publicly available sequence databases. The dysgalacticin structural gene, dysA, is located on the indigenous plasmid pW2580 of strain W2580 and encodes a 220 aa preprotein which is probably exported via a Sec-dependent transport system. Natural dysA variants containing conservative amino acid substitutions were also detected by sequence analyses of dysA elements from S. dysgalactiae strains displaying W2580-like inhibitory profiles. Production of recombinant dysgalacticin by Escherichia coli confirmed that this protein is solely responsible for the inhibitory activity exhibited by strain W2580. A combination of in silico secondary structure prediction and reductive alkylation was employed to demonstrate that dysgalacticin has a novel structure containing a disulphide bond essential for its biological activity. Moreover, dysgalacticin displays similarity in predicted secondary structure (but not primary amino acid sequence or inhibitory spectrum) with another plasmid-encoded streptococcal bacteriocin, streptococcin A-M57 from S. pyogenes, indicating that dysgalacticin represents a prototype of a new class of antimicrobial proteins.
Collapse
Affiliation(s)
- Nicholas C K Heng
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Nancy L Ragland
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Pearl M Swe
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Hayley J Baird
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Megan A Inglis
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - John R Tagg
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Ralph W Jack
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
546
|
Butcher BG, Helmann JD. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol Microbiol 2006; 60:765-82. [PMID: 16629676 DOI: 10.1111/j.1365-2958.2006.05131.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus subtilis produces many antibiotics of varying structures and specificity. Here we identify a prominent role for sigma(W), an extracytoplasmic function (ECF) sigma factor, in providing intrinsic resistance to antimicrobial compounds produced by other Bacilli. By using a panel of B. subtilis mutants disrupted for each of the 30 known sigma(W)-dependent operons we identified resistance genes for at least three different antimicrobial compounds. The ydbST and fosB genes contribute to resistance to antimicrobial compound(s) produced by B. amyloliquefaciens FZB42, the yqeZyqfAB operon provides resistance to the SPbeta prophage-encoded bacteriocin sublancin, and the yknWXYZ operon and yfhL provide resistance to the antimicrobial peptide SdpC. YfhL encodes a paralogue of SdpI, a membrane protein that provides immunity to SdpC. In competition experiments, we identify sigma(W) as a key factor in allowing B. subtilis to resist antibiotic killing and encroachment by competing strains. Together with the previous observation that sigma(W) provides inducible resistance against the Streptomyces antibiotic fosfomycin, these studies support the notion that sigma(W) controls an antibiosis regulon important in the microbial ecology of soil bacteria.
Collapse
Affiliation(s)
- Bronwyn G Butcher
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
547
|
|
548
|
Abstract
Cyanobacterial secondary metabolites have attracted increasing scientific interest due to bioactivity of many compounds in various test systems. Among the known structures, oligopeptides are often found with many congeners sharing conserved substructures, while being highly variable in others. A major part of known oligopeptides are of non-ribosomal origin and can be grouped into classes with conserved structural properties. Thus, the overall structural diversity of cyanobacterial oligopeptides only seemingly suggests an equally high diversity of biosynthetic pathways and respective genes. For each class of peptides, some of which have been found in all major branches of the cyanobacterial evolutionary tree, homologous synthetases and genes can be inferred. This implies that non-ribosomal peptide synthetase genes are a very ancient part of the cyanobacterial genome and presumably have evolved by recombination and duplication events to reach the present structural diversity of cyanobacterial oligopeptides. In addition, peptide synthetases would appear to be an essential part of the cyanobacterial evolution and physiology. The present review presents an overview of the biosynthesis of cyanobacterial peptides and corresponding gene clusters, the structural diversity of structural types and structural variations within peptide classes, and implications for the evolution and plasticity of biosynthetic genes and the potential function of cyanobacterial peptides.
Collapse
Affiliation(s)
- Martin Welker
- Technische Universität Berlin, Institut für Chemie, AG Biochemie, Berlin, Germany.
| | | |
Collapse
|
549
|
Abstract
The combined activity of the constituents of two-component antibiotic systems is always significantly higher than the sum of the activities of the individual pieces. Understanding the principles behind this phenomenon might provide new ways to design new antibiotics. In this issue of Molecular Microbiology, Wiedemann and coworkers have made a big step towards understanding the mechanism of action of the two-component lanthionine-containing antibiotic lacticin 3147. It has now become clear that this two-component system specifically targets the bacterial cell wall precursor Lipid II. This makes this essential bacterial lipid one of the most sought-after targets in nature. Surprisingly, in view of its small size (MW 1875 Da), this is now the fifth different way that this key molecule is known to be targeted.
Collapse
Affiliation(s)
- Eefjan Breukink
- Department of Biochemistry of Membranes, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 83584 CH, Utrecht, the Netherlands.
| |
Collapse
|
550
|
Abstract
Lipid II is a membrane-anchored cell-wall precursor that is essential for bacterial cell-wall biosynthesis. The effectiveness of targeting Lipid II as an antibacterial strategy is highlighted by the fact that it is the target for at least four different classes of antibiotic, including the clinically important glycopeptide antibiotic vancomycin. However, the growing problem of bacterial resistance to many current drugs, including vancomycin, has led to increasing interest in the therapeutic potential of other classes of compound that target Lipid II. Here, we review progress in understanding of the antibacterial activities of these compounds, which include lantibiotics, mannopeptimycins and ramoplanin, and consider factors that will be important in exploiting their potential as new treatments for bacterial infections.
Collapse
Affiliation(s)
- Eefjan Breukink
- Department of Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands.
| | | |
Collapse
|