501
|
O'Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA. Nitrate Transport, Sensing, and Responses in Plants. MOLECULAR PLANT 2016; 9:837-56. [PMID: 27212387 DOI: 10.1016/j.molp.2016.05.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture.
Collapse
Affiliation(s)
- José A O'Brien
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, 8331150, Chile; Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Andrea Vega
- Departamento de Ciencias Vegetales, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Eléonore Bouguyon
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS, INRA, SupAgro, UM, 2 Place Viala, 34060 Montpellier Cedex, France
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS, INRA, SupAgro, UM, 2 Place Viala, 34060 Montpellier Cedex, France
| | - Alain Gojon
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS, INRA, SupAgro, UM, 2 Place Viala, 34060 Montpellier Cedex, France
| | - Gloria Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, 8331150, Chile.
| |
Collapse
|
502
|
Borghi L, Liu GW, Emonet A, Kretzschmar T, Martinoia E. The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. PLANTA 2016; 243:1351-60. [PMID: 27040840 PMCID: PMC4875938 DOI: 10.1007/s00425-016-2503-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
This review presents the role of strigolactone transport in regulating plant root and shoot architecture, plant-fungal symbiosis and the crosstalk with several phytohormone pathways. The authors, based on their data and recently published results, suggest that long-distance, as well local strigolactone transport might occur in a cell-to-cell manner rather than via the xylem stream. Strigolactones (SLs) are recently characterized carotenoid-derived phytohormones. They play multiple roles in plant architecture and, once exuded from roots to soil, in plant-rhizosphere interactions. Above ground SLs regulate plant developmental processes, such as lateral bud outgrowth, internode elongation and stem secondary growth. Below ground, SLs are involved in lateral root initiation, main root elongation and the establishment of the plant-fungal symbiosis known as mycorrhiza. Much has been discovered on players and patterns of SL biosynthesis and signaling and shown to be largely conserved among different plant species, however little is known about SL distribution in plants and its transport from the root to the soil. At present, the only characterized SL transporters are the ABCG protein PLEIOTROPIC DRUG RESISTANCE 1 from Petunia axillaris (PDR1) and, in less detail, its close homologue from Nicotiana tabacum PLEIOTROPIC DRUG RESISTANCE 6 (PDR6). PDR1 is a plasma membrane-localized SL cellular exporter, expressed in root cortex and shoot axils. Its expression level is regulated by its own substrate, but also by the phytohormone auxin, soil nutrient conditions (mainly phosphate availability) and mycorrhization levels. Hence, PDR1 integrates information from nutrient availability and hormonal signaling, thus synchronizing plant growth with nutrient uptake. In this review we discuss the effects of PDR1 de-regulation on plant development and mycorrhization, the possible cross-talk between SLs and other phytohormone transporters and finally the need for SL transporters in different plant species.
Collapse
Affiliation(s)
- Lorenzo Borghi
- Institute of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
| | - Guo-Wei Liu
- Institute of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Aurélia Emonet
- Faculté de biologie et médecine, Département de biologie moléculaire végétale, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Tobias Kretzschmar
- International Rice Research Institute (IRRI), Plant Breeding Genetics and Biotechnology, 4031, Laguna, Philippines
| | - Enrico Martinoia
- Institute of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| |
Collapse
|
503
|
Wallner ES, López-Salmerón V, Greb T. Strigolactone versus gibberellin signaling: reemerging concepts? PLANTA 2016; 243:1339-50. [PMID: 26898553 PMCID: PMC4875939 DOI: 10.1007/s00425-016-2478-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/22/2016] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION In this review, we compare knowledge about the recently discovered strigolactone signaling pathway and the well established gibberellin signaling pathway to identify gaps of knowledge and putative research directions in strigolactone biology. Communication between and inside cells is integral for the vitality of living organisms. Hormonal signaling cascades form a large part of this communication and an understanding of both their complexity and interactive nature is only beginning to emerge. In plants, the strigolactone (SL) signaling pathway is the most recent addition to the classically acting group of hormones and, although fundamental insights have been made, knowledge about the nature and impact of SL signaling is still cursory. This narrow understanding is in spite of the fact that SLs influence a specific spectrum of processes, which includes shoot branching and root system architecture in response, partly, to environmental stimuli. This makes these hormones ideal tools for understanding the coordination of plant growth processes, mechanisms of long-distance communication and developmental plasticity. Here, we summarize current knowledge about SL signaling and employ the well-characterized gibberellin (GA) signaling pathway as a scaffold to highlight emerging features as well as gaps in our knowledge in this context. GA signaling is particularly suitable for this comparison because both signaling cascades share key features of hormone perception and of immediate downstream events. Therefore, our comparative view demonstrates the possible level of complexity and regulatory interfaces of SL signaling.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Vadir López-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
504
|
Pacheco-Villalobos D, Díaz-Moreno SM, van der Schuren A, Tamaki T, Kang YH, Gujas B, Novak O, Jaspert N, Li Z, Wolf S, Oecking C, Ljung K, Bulone V, Hardtke CS. The Effects of High Steady State Auxin Levels on Root Cell Elongation in Brachypodium. THE PLANT CELL 2016; 28:1009-24. [PMID: 27169463 PMCID: PMC4904674 DOI: 10.1105/tpc.15.01057] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/02/2016] [Indexed: 05/02/2023]
Abstract
The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.
Collapse
Affiliation(s)
| | - Sara M Díaz-Moreno
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Alja van der Schuren
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Takayuki Tamaki
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Yeon Hee Kang
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Bojan Gujas
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ondrej Novak
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Nina Jaspert
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany
| | - Zhenni Li
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Wolf
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Claudia Oecking
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72074 Tübingen, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
505
|
Zhang S, de Boer AH, van Duijn B. Auxin effects on ion transport in Chara corallina. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:37-44. [PMID: 26943501 DOI: 10.1016/j.jplph.2016.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 05/26/2023]
Abstract
The plant hormone auxin has been widely studied with regard to synthesis, transport, signaling and functions among the land plants while there is still a lack of knowledge about the possible role for auxin regulation mechanisms in algae with "plant-like" structures. Here we use the alga Chara corallina as a model to study aspects of auxin signaling. In this respect we measured auxin on membrane potential changes and different ion fluxes (K(+), H(+)) through the plasma membrane. Results showed that auxin, mainly IAA, could hyperpolarize the membrane potential of C. corallina internodal cells. Ion flux measurements showed that the auxin-induced membrane potential change may be based on the change of K(+) permeability and/or channel activity rather than through the activation of proton pumps as known in land plants.
Collapse
Affiliation(s)
- Suyun Zhang
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Albertus H de Boer
- Department of Structural Biology, Faculty Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085-1087, 1081HV Amsterdam, The Netherlands
| | - Bert van Duijn
- Plant Biodynamics Laboratory, Institute Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Fytagoras, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
506
|
Fan G, Li X, Deng M, Zhao Z, Yang L. Comparative Analysis and Identification of miRNAs and Their Target Genes Responsive to Salt Stress in Diploid and Tetraploid Paulownia fortunei Seedlings. PLoS One 2016; 11:e0149617. [PMID: 26894691 PMCID: PMC4764520 DOI: 10.1371/journal.pone.0149617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/03/2016] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a global environmental problem that affects plant growth and development. Paulownia fortunei is an adaptable and fast-growing deciduous tree native to China that is environmentally and economically important. MicroRNAs (miRNAs) play important regulatory roles in growth, development, and stress responses in plants. MiRNAs that respond to biotic stresses have been identified; however, how miRNAs in P. fortunei respond to salt stress has not yet been reported. To identify salt-stress-responsive miRNAs and predict their target genes, four small RNA and four degradome libraries were constructed from NaCl-treated and NaCl-free leaves of P. fortunei seedlings. The results indicated that salt stress had different physiological effects on diploid and tetraploid P. fortunei. We detected 53 conserved miRNAs belonging to 17 miRNA families and 134 novel miRNAs in P. fortunei. Comparing their expression levels in diploid and tetraploid P. fortunei, we found 10 conserved and 10 novel miRNAs that were significantly differentially expressed under salt treatment, among them eight were identified as miRNAs probably associated with higher salt tolerance in tetraploid P. fortunei than in diploid P. fortunei. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to predict the functions of the target genes of the conserved and novel miRNAs. The expressions of 10 differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report on P. fortunei miRNAs and their target genes under salt stress. The results provided information at the physiological and molecular levels for further research into the response mechanisms of P. fortunei to salt stress.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
- * E-mail:
| | - Xiaoyu Li
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| | - Lu Yang
- Institute of Paulownia, Henan Agricultural University, 450002 Zhengzhou, Henan, P.R. China
| |
Collapse
|
507
|
Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells. Protein Cell 2016; 7:81-8. [PMID: 26687389 PMCID: PMC4742386 DOI: 10.1007/s13238-015-0233-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/31/2015] [Indexed: 12/16/2022] Open
Abstract
Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
508
|
Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, Pasternak T, Palme K, Mironova VV. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC PLANT BIOLOGY 2016; 16 Suppl 1:5. [PMID: 26821586 PMCID: PMC4895256 DOI: 10.1186/s12870-015-0685-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Theauxin efflux carrier PIN1 is a key mediator of polar auxin transport in developing plant tissues. This is why factors that are supposed to be involved in auxin distribution are frequently tested in the regulation of PIN1 expression. As a result, diverse aspects of PIN1 expression are dispersed across dozens of papers entirely devoted to other specific topics related to the auxin pathway. Integration of these puzzle pieces about PIN1 expression revealed that, along with a recurring pattern, some features of PIN1 expression varied from article to article. To determine if this uncertainty is related to the specific foci of articles or has a basis in the variability of PIN1 gene activity, we performed a comprehensive 3D analysis of PIN1 expression patterns in Arabidopsis thaliana roots. RESULTS We provide here a detailed map of PIN1 expression in the primary root, in the lateral root primordia and at the root-shoot junction. The variability in PIN1 expression pattern observed in individual roots may occur due to differences in auxin distribution between plants. To simulate this effect, we analysed PIN1 expression in the roots from wild type seedlings treated with different IAA concentrations and pin mutants. Most changes in PIN1 expression after exogenous IAA treatment and in pin mutants were also recorded in wild type but with lower frequency and intensity. Comparative studies of exogenous auxin effects on PIN1pro:GUS and PIN1pro:PIN1-GFP plants indicated that a positive auxin effect is explicit at the level of PIN1 promoter activity, whereas the inhibitory effect relates to post-transcriptional regulation. CONCLUSIONS Our results suggest that the PIN1 expression pattern in the root meristem accurately reflects changes in auxin content. This explains the variability of PIN1 expression in the individual roots and makes PIN1 a good marker for studying root meristem activity.
Collapse
Affiliation(s)
- N A Omelyanchuk
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - V V Kovrizhnykh
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - E A Oshchepkova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - T Pasternak
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis (ZBSA), BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
| | - K Palme
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis (ZBSA), BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany.
| | - V V Mironova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
509
|
Han X, Kim JY. Integrating Hormone- and Micromolecule-Mediated Signaling with Plasmodesmal Communication. MOLECULAR PLANT 2016; 9:46-56. [PMID: 26384246 DOI: 10.1016/j.molp.2015.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
Intercellular and supracellular communications through plasmodesmata are involved in vital processes for plant development and physiological responses. Micro- and macromolecules, including hormones, RNA, and proteins, serve as biological information vectors that traffic through the plasmodesmata between cells. Previous studies demonstrated that the plasmodesmata are elaborately regulated, whereby a long queue of multiple signaling molecules forms. However, the mechanism by which these signals are coupled or coordinated in terms of simultaneous transport in a single channel remains a puzzle. In the last few years, several phytohormones that could function as both non-cell-autonomous signals and plasmodesmal regulators have been disclosed. Plasmodesmal regulators such as auxin, salicylic acid, reactive oxygen species, gibberellic acids, chitin, and jasmonic acid could regulate intercellular trafficking by adjusting plasmodesmal permeability. Here, callose, along with β-glucan synthase and β-glucanase, plays a critical role in regulating plasmodesmal permeability. Interestingly, most of the previously identified regulators are capable of diffusing through the plasmodesmata. Given the small sizes of these molecules, the plasmodesmata are prominent intercellular channels that allow diffusion-based movement of those signaling molecules. Obviously, intercellular communication is under the control of a major mechanism, named a feedback loop, at the plasmodesmata, which mediates complicated biological behaviors. Prospective research on the mechanism of coupling micromolecules at the plasmodesmata for developmental signaling and nutrient provision will help us to understand how plants coordinate their development and photosynthetic assimilation, which is important for agriculture.
Collapse
Affiliation(s)
- Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 plus program), Plant Molecular Biology & Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
510
|
Kou Y, Yuan C, Zhao Q, Liu G, Nie J, Ma Z, Cheng C, Teixeira da Silva JA, Zhao L. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-Like Bodies by Changing Incipient Cell Fate. FRONTIERS IN PLANT SCIENCE 2016; 7:557. [PMID: 27200031 PMCID: PMC4855734 DOI: 10.3389/fpls.2016.00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/11/2016] [Indexed: 05/23/2023]
Abstract
Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.
Collapse
Affiliation(s)
- Yaping Kou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Cunquan Yuan
- National Engineering Research Center for Floriculture, Beijing Forestry UniversityBeijing, China
| | - Qingcui Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Jing Nie
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Zhimin Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Chenxia Cheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | | | - Liangjun Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
- *Correspondence: Liangjun Zhao,
| |
Collapse
|
511
|
Pan X, Chen J, Yang Z. Auxin regulation of cell polarity in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:144-53. [PMID: 26599954 PMCID: PMC7513928 DOI: 10.1016/j.pbi.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/04/2023]
Abstract
Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.
Collapse
Affiliation(s)
- Xue Pan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Jisheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
512
|
Wang Y, Chai C, Valliyodan B, Maupin C, Annen B, Nguyen HT. Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean (Glycine max). BMC Genomics 2015; 16:951. [PMID: 26572792 PMCID: PMC4647520 DOI: 10.1186/s12864-015-2149-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The plant phytohormone auxin controls many aspects of plant growth and development, which largely depends on its uneven distribution in plant tissues. Transmembrane proteins of the PIN family are auxin efflux facilitators. They play a key role in polar auxin transport and are associated with auxin asymmetrical distribution in plants. PIN genes have been characterized in several plant species, while comprehensive analysis of this gene family in soybean has not been reported yet. RESULTS In this study, twenty-three members of the PIN gene family were identified in the soybean genome through homology searches. Analysis of chromosome distribution and phylogenetic relationships of the soybean PIN genes indicated nine pairs of duplicated genes and a legume specific subfamily. Organ/tissue expression patterns and promoter activity assays of the soybean PINs suggested redundant functions for most duplicated genes and complementary and tissue-specific functions during development for non-duplicated genes. The soybean PIN genes were differentially regulated by various abiotic stresses and phytohormone stimuli, implying crosstalk between auxin and abiotic stress signaling pathways. This was further supported by the altered auxin distribution under these conditions as revealed by DR5::GUS transgenic soybean hairy root. Our data indicates that GmPIN9, a legume-specific PIN gene, which was responsive to several abiotic stresses, might play a role in auxin re-distribution in soybean root under abiotic stress conditions. CONCLUSIONS This study provided the first comprehensive analysis of the soybean PIN gene family. Information on phylogenetic relationships, gene structure, protein profiles and expression profiles of the soybean PIN genes in different tissues and under various abiotic stress treatments helps to identity candidates with potential roles in specific developmental processes and/or environmental stress conditions. Our study advances our understanding of plant responses to abiotic stresses and serves as a basis for uncovering the biological role of PIN genes in soybean development and adaption to adverse environments.
Collapse
Affiliation(s)
- Yongqin Wang
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Chenglin Chai
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Christine Maupin
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Brad Annen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
513
|
Wu D, Shen H, Yokawa K, Baluška F. Overexpressing OsPIN2 enhances aluminium internalization by elevating vesicular trafficking in rice root apex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6791-801. [PMID: 26254327 PMCID: PMC4623688 DOI: 10.1093/jxb/erv385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aluminium (Al) sequestration is required for internal detoxification of Al in plant cells. In this study, it was found that the rice OsPIN2 overexpression line (OX1) had significantly reduced Al content in its cell wall and increased Al concentration in cell sap only in rice root tips relative to the wild-type (WT). In comparison with WT, OX1 reduced morin staining of cytosolic Al, enhanced FM 4-64 staining of membrane vesicular trafficking in root tip sections (0-1mm), and showed morin-FM 4-64 fluorescence overlap. Recovery treatment showed that cell-wall-bound Al was internalized into vacuoles via endocytic vesicular trafficking after removal of external Al. In this process, OX1 showed a higher rate of Al internalization than WT. Brefeldin A (BFA) interfered with vesicular trafficking and resulted in inhibition of Al internalization. This inhibitory effect could be alleviated when BFA was washed out, and the process of alleviation was slower in the cells of WT than in those of OX1. Microscopic observations revealed that, upon Al exposure, numerous multilamellar endosomes were detected between the cell wall and plasma membrane in the cells of OX1. Moreover, more vesicles enriched with Al complexes accumulated in the cells of OX1 than in those of WT, and these vesicles transformed into larger structures in the cells of OX1. Taken together, the data indicate that endocytic vesicular trafficking might contribute to Al internalization, and that overexpressing OsPIN2 enhances rice Al tolerance via elevated endocytic vesicular trafficking and Al internalization.
Collapse
Affiliation(s)
- Daoming Wu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Shen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Ken Yokawa
- Department of Plant Cell Biology, IZMB, Univerisity of Bonn, Bonn D-53115, Germany
| | - František Baluška
- Department of Plant Cell Biology, IZMB, Univerisity of Bonn, Bonn D-53115, Germany
| |
Collapse
|
514
|
Hayashi KI, Kusaka N, Yamasaki S, Zhao Y, Nozaki H. Development of 4-methoxy-7-nitroindolinyl (MNI)-caged auxins which are extremely stable in planta. Bioorg Med Chem Lett 2015; 25:4464-71. [PMID: 26364943 PMCID: PMC4683155 DOI: 10.1016/j.bmcl.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/09/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Phytohormone auxin is a master regulator in plant growth and development. Regulation of cellular auxin level plays a central role in plant development. Auxin polar transport system modulates an auxin gradient that determines plant developmental process in response to environmental conditions and developmental programs. Photolabile caged auxins allow optical control of artificial auxin gradients at cellular resolution. Especially, two-photon uncaging system achieves high spatiotemporal control of photolysis reaction at two-photon cross-section. However, the development of caged versions of auxin has been limited by the instability of the caged auxins to higher plant metabolic activities. Here, we describe the synthesis and application of highly stable caged auxins, 4-methoxy-7-nitroindolinyl (MNI)-caged auxins. Natural auxin, indole 3-acetic acid, and two synthetic auxins, 1-NAA and 2,4-D were caged by MNI caging group. MNI-caged auxins showed a high stability in planta and a rapid release the original auxin when photolyzed. We demonstrated that optical control of auxin-responsive gene expression and auxin-related physiological responses by using MNI-caged auxins. We anticipate that MNI-caged auxins will be an effective tool for high-resolution control of endogenous auxin level.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan.
| | - Naoyuki Kusaka
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Soma Yamasaki
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093-0116, United States
| | - Hiroshi Nozaki
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| |
Collapse
|
515
|
Korasick DA, Jez JM, Strader LC. Refining the nuclear auxin response pathway through structural biology. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:22-8. [PMID: 26048079 PMCID: PMC4618177 DOI: 10.1016/j.pbi.2015.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/12/2015] [Indexed: 05/03/2023]
Abstract
Auxin is a key regulator of plant growth and development. Classical molecular and genetic techniques employed over the past 20 years identified the major players in auxin-mediated gene expression and suggest a canonical auxin response pathway. In recent years, structural and biophysical studies clarified the molecular details of auxin perception, the recognition of DNA by auxin transcription factors, and the interaction of auxin transcription factors with repressor proteins. These studies refine the auxin signal transduction model and raise new questions that increase the complexity of auxin signaling.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
516
|
Bennett T. PIN proteins and the evolution of plant development. TRENDS IN PLANT SCIENCE 2015; 20:498-507. [PMID: 26051227 DOI: 10.1016/j.tplants.2015.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 05/05/2023]
Abstract
Many aspects of development in the model plant Arabidopsis thaliana involve regulated distribution of the hormone auxin by the PIN-FORMED (PIN) family of auxin efflux carriers. The role of PIN-mediated auxin transport in other plants is not well understood, but studies in a wider range of species have begun to illuminate developmental mechanisms across land plants. In this review, I discuss recent progress in understanding the evolution of PIN-mediated auxin transport, and its role in development across the green plant lineage. I also discuss the idea that changes in auxin biology led to morphological novelty in plant development: currently available evidence suggests major innovations in auxin transport are rare and not associated with the evolution of new developmental mechanisms.
Collapse
Affiliation(s)
- Tom Bennett
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
| |
Collapse
|
517
|
Rodríguez-Sanz H, Solís MT, López MF, Gómez-Cadenas A, Risueño MC, Testillano PS. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus. PLANT & CELL PHYSIOLOGY 2015; 56:1401-17. [PMID: 25907568 DOI: 10.1093/pcp/pcv058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/07/2015] [Indexed: 05/17/2023]
Abstract
Isolated microspores are reprogrammed in vitro by stress, becoming totipotent cells and producing embryos and plants via a process known as microspore embryogenesis. Despite the abundance of data on auxin involvement in plant development and embryogenesis, no data are available regarding the dynamics of auxin concentration, cellular localization and the expression of biosynthesis genes during microspore embryogenesis. This work involved the analysis of auxin concentration and cellular accumulation; expression of TAA1 and NIT2 encoding enzymes of two auxin biosynthetic pathways; expression of the PIN1-like efflux carrier; and the effects of inhibition of auxin transport and action by N-1-naphthylphthalamic acid (NPA) and α-(p-chlorophenoxy) isobutyric acid (PCIB) during Brassica napus microspore embryogenesis. The results indicated de novo auxin synthesis after stress-induced microspore reprogramming and embryogenesis initiation, accompanying the first cell divisions. The progressive increase of auxin concentration during progression of embryogenesis correlated with the expression patterns of TAA1 and NIT2 genes of auxin biosynthetic pathways. Auxin was evenly distributed in early embryos, whereas in heart/torpedo embryos auxin was accumulated in apical and basal embryo regions. Auxin efflux carrier PIN1-like gene expression was induced in early multicellular embryos and increased at the globular/torpedo embryo stages. Inhibition of polar auxin transport (PAT) and action, by NPA and PCIB, impaired embryo development, indicating that PAT and auxin action are required for microspore embryo progression. NPA also modified auxin embryo accumulation patterns. These findings indicate that endogenous auxin biosynthesis, action and polar transport are required in stress-induced microspore reprogramming, embryogenesis initiation and progression.
Collapse
Affiliation(s)
- Héctor Rodríguez-Sanz
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María-Teresa Solís
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María-Fernanda López
- Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I, Campus Riu Sec, 12071, Castellón, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universidad Jaume I, Campus Riu Sec, 12071, Castellón, Spain
| | - María C Risueño
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
518
|
Sluis A, Hake S. Organogenesis in plants: initiation and elaboration of leaves. Trends Genet 2015; 31:300-6. [PMID: 26003219 DOI: 10.1016/j.tig.2015.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/24/2022]
Abstract
Plant organs initiate from meristems and grow into diverse forms. After initiation, organs enter a morphological phase where they develop their shape, followed by differentiation into mature tissue. Investigations into these processes have revealed numerous factors necessary for proper development, including transcription factors such as the KNOTTED-LIKE HOMEOBOX (KNOX) genes, the hormone auxin, and miRNAs. Importantly, these factors have been shown to play a role in organogenesis in various diverse model species, revealing both deep conservation of regulatory strategies and evolutionary novelties that led to new plant forms. We review here recent work in understanding the regulation of organogenesis and in particular leaf formation, highlighting how regulatory modules are often redeployed in different organ types and stages of development to achieve diverse forms through the balance of growth and differentiation.
Collapse
Affiliation(s)
- Aaron Sluis
- Plant Gene Expression Center, UC Berkeley and USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Sarah Hake
- Plant Gene Expression Center, UC Berkeley and USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
519
|
Eckardt NA. The Plant Cell reviews dynamic aspects of plant hormone signaling and crosstalk. THE PLANT CELL 2015; 27:1-2. [PMID: 25604446 PMCID: PMC4330592 DOI: 10.1105/tpc.115.136291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
520
|
Salehin M, Bagchi R, Estelle M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. THE PLANT CELL 2015; 27:9-19. [PMID: 25604443 PMCID: PMC4330579 DOI: 10.1105/tpc.114.133744] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/14/2014] [Accepted: 12/26/2014] [Indexed: 05/18/2023]
Abstract
Auxin regulates a vast array of growth and developmental processes throughout the life cycle of plants. Auxin responses are highly context dependent and can involve changes in cell division, cell expansion, and cell fate. The complexity of the auxin response is illustrated by the recent finding that the auxin-responsive gene set differs significantly between different cell types in the root. Auxin regulation of transcription involves a core pathway consisting of the TIR1/AFB F-box proteins, the Aux/IAA transcriptional repressors, and the ARF transcription factors. Auxin is perceived by a transient coreceptor complex consisting of a TIR1/AFB protein and an Aux/IAA protein. Auxin binding to the coreceptor results in degradation of the Aux/IAAs and derepression of ARF-based transcription. Although the basic outlines of this pathway are now well established, it remains unclear how specificity of the pathway is conferred. However, recent results, focusing on the ways that these three families of proteins interact, are starting to provide important clues.
Collapse
Affiliation(s)
- Mohammad Salehin
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| | - Rammyani Bagchi
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| | - Mark Estelle
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
521
|
Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. THE PLANT CELL 2015; 27:44-63. [PMID: 25604447 PMCID: PMC4330578 DOI: 10.1105/tpc.114.133595] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 05/18/2023]
Abstract
The phytohormones auxin and cytokinin interact to regulate many plant growth and developmental processes. Elements involved in the biosynthesis, inactivation, transport, perception, and signaling of these hormones have been elucidated, revealing the variety of mechanisms by which signal output from these pathways can be regulated. Recent studies shed light on how these hormones interact with each other to promote and maintain plant growth and development. In this review, we focus on the interaction of auxin and cytokinin in several developmental contexts, including its role in regulating apical meristems, the patterning of the root, the development of the gynoecium and female gametophyte, and organogenesis and phyllotaxy in the shoot.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|