501
|
Abstract
Alternative splicing is a major source of diversity in the human proteome. The regulation of alternative splicingmodulates the composition of this diversity to fulfill the physiological requirements of a cell. When control of alternative splicing is disrupted, the result can be a failure to meet cellular and tissue requirements resulting in dysfunction and disease. There are several well-characterized examples in which disruption of alternative splicing is a cause of disease. Investigations into how the mis-regulation of alternative splicing causes disease complements investigations of normal regulatory processes and enhances our understanding of regulatory mechanisms in general Ultimately, an understanding of how alternative splicing is altered in disease will facilitate strategies directed at reversing or circumventing mis-regulated splicing events.
Collapse
|
502
|
Lueck JD, Lungu C, Mankodi A, Osborne RJ, Welle SL, Dirksen RT, Thornton CA. Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. Am J Physiol Cell Physiol 2006; 292:C1291-7. [PMID: 17135300 DOI: 10.1152/ajpcell.00336.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transmembrane chloride ion conductance in skeletal muscle increases during early postnatal development. A transgenic mouse model of myotonic dystrophy type 1 (DM1) displays decreased sarcolemmal chloride conductance. Both effects result from modulation of chloride channel 1 (CLCN1) expression, but the respective contributions of transcriptional vs. posttranscriptional regulation are unknown. Here we show that alternative splicing of CLCN1 undergoes a physiological splicing transition during the first 3 wk of postnatal life in mice. During this interval, there is a switch to production of CLCN1 splice products having an intact reading frame, an upregulation of CLCN1 mRNA encoding full-length channel protein, and an increase of CLCN1 function, as determined by patch-clamp analysis of single muscle fibers. In a transgenic mouse model of DM1, however, the splicing transition does not occur, CLCN1 channel function remains low throughout the postnatal interval, and muscle fibers display myotonic discharges. Thus alternative splicing is a posttranscriptional mechanism regulating chloride conductance during muscle development, and the chloride channelopathy in a transgenic mouse model of DM1 results from a failure to execute a splicing transition for CLCN1.
Collapse
Affiliation(s)
- John D Lueck
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
503
|
van Koningsbruggen S, Straasheijm KR, Sterrenburg E, de Graaf N, Dauwerse HG, Frants RR, van der Maarel SM. FRG1P-mediated aggregation of proteins involved in pre-mRNA processing. Chromosoma 2006; 116:53-64. [PMID: 17103222 DOI: 10.1007/s00412-006-0083-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/03/2006] [Accepted: 09/08/2006] [Indexed: 11/24/2022]
Abstract
FRG1 is considered a candidate gene for facioscapulohumeral muscular dystrophy (FSHD) based on its location at chromosome 4qter and its upregulation in FSHD muscle. The FRG1 protein (FRG1P) localizes to nucleoli, Cajal bodies (and speckles), and has been suggested to be a component of the human spliceosome but its exact function is unknown. Recently, transgenic mice overexpressing high levels of FRG1P in skeletal muscle were described to present with muscular dystrophy. Moreover, upregulation of FRG1P was demonstrated to correlate with missplicing of specific pre-mRNAs. In this study, we have combined colocalization studies with yeast two-hybrid screens to identify proteins that associate with FRG1P. We demonstrate that artificially induced nucleolar aggregates of VSV-FRG1P specifically sequester proteins involved in pre-mRNA processing. In addition, we have identified SMN, PABPN1, and FAM71B, a novel speckle and Cajal body protein, as binding partners of FRG1P. All these proteins are, or seem to be, involved in RNA biogenesis. Our data confirm the presence of FRG1P in protein complexes containing human spliceosomes and support a potential role of FRG1P in either splicing or another step in nuclear RNA biogenesis. Intriguingly, among FRG1P-associated proteins are SMN and PABPN1, both being involved in neuromuscular disorders, possibly through RNA biogenesis-related processes.
Collapse
Affiliation(s)
- Silvana van Koningsbruggen
- Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
504
|
Abstract
Several examples have come to light in which mutations in non-protein-coding regions give rise to a deleterious gain-of-function by non-coding RNA. Expression of the toxic RNA is associated with formation of nuclear inclusions and late-onset degenerative changes in brain, heart or skeletal muscle. In the best studied example, myotonic dystrophy, it appears that the main pathogenic effect of the toxic RNA is to sequester binding proteins and compromise the regulation of alternative splicing. This review describes some of the recent advances in understanding the pathophysiology of RNA-dominant diseases.
Collapse
Affiliation(s)
- Robert J Osborne
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
505
|
Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C, Robins DM, Lieberman AP. Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model. J Clin Invest 2006; 116:2663-72. [PMID: 16981011 PMCID: PMC1564432 DOI: 10.1172/jci28773] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 07/25/2006] [Indexed: 01/26/2023] Open
Abstract
Kennedy disease, a degenerative disorder characterized by androgen-dependent neuromuscular weakness, is caused by a CAG/glutamine tract expansion in the androgen receptor (Ar) gene. We developed a mouse model of Kennedy disease, using gene targeting to convert mouse androgen receptor (AR) to human sequence while introducing 113 glutamines. AR113Q mice developed hormone and glutamine length-dependent neuromuscular weakness characterized by the early occurrence of myopathic and neurogenic skeletal muscle pathology and by the late development of neuronal intranuclear inclusions in spinal neurons. AR113Q males unexpectedly died at 2-4 months. We show that this androgen-dependent death reflects decreased expression of skeletal muscle chloride channel 1 (CLCN1) and the skeletal muscle sodium channel alpha-subunit, resulting in myotonic discharges in skeletal muscle of the lower urinary tract. AR113Q limb muscles show similar myopathic features and express decreased levels of mRNAs encoding neurotrophin-4 and glial cell line-derived neurotrophic factor. These data define an important myopathic contribution to the Kennedy disease phenotype and suggest a role for muscle in non-cell autonomous toxicity of lower motor neurons.
Collapse
MESH Headings
- Androgens/metabolism
- Androgens/pharmacology
- Animals
- Chloride Channels/genetics
- Chloride Channels/metabolism
- Disease Models, Animal
- Female
- Gene Expression/genetics
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Mutation/genetics
- Myogenin/genetics
- NAV1.4 Voltage-Gated Sodium Channel
- Nerve Growth Factors/genetics
- Orchiectomy
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Cholinergic/genetics
- Sodium Channels/genetics
- Sodium Channels/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Survival Analysis
- Testis/pathology
- Testosterone/pharmacology
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0605, USA
| | | | | | | | | | | | | |
Collapse
|
506
|
Mahadevan MS, Yadava RS, Yu Q, Balijepalli S, Frenzel-McCardell CD, Bourne TD, Phillips LH. Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy. Nat Genet 2006; 38:1066-70. [PMID: 16878132 PMCID: PMC2909745 DOI: 10.1038/ng1857] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 06/30/2006] [Indexed: 12/24/2022]
Abstract
Myotonic dystrophy (DM1), the most common muscular dystrophy in adults, is caused by an expanded (CTG)n tract in the 3' UTR of the gene encoding myotonic dystrophy protein kinase (DMPK), which results in nuclear entrapment of the 'toxic' mutant RNA and interacting RNA-binding proteins (such as MBNL1) in ribonuclear inclusions. It is unclear if therapy aimed at eliminating the toxin would be beneficial. To address this, we generated transgenic mice expressing the DMPK 3' UTR as part of an inducible RNA transcript encoding green fluorescent protein (GFP). We were surprised to find that mice overexpressing a normal DMPK 3' UTR mRNA reproduced cardinal features of myotonic dystrophy, including myotonia, cardiac conduction abnormalities, histopathology and RNA splicing defects in the absence of detectable nuclear inclusions. However, we observed increased levels of CUG-binding protein (CUG-BP1) in skeletal muscle, as seen in individuals with DM1. Notably, these effects were reversible in both mature skeletal and cardiac muscles by silencing transgene expression. These results represent the first in vivo proof of principle for a therapeutic strategy for treatment of myotonic dystrophy by ablating or silencing expression of the toxic RNA molecules.
Collapse
Affiliation(s)
- Mani S Mahadevan
- Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA.
| | | | | | | | | | | | | |
Collapse
|
507
|
Paul S, Dansithong W, Kim D, Rossi J, Webster NJG, Comai L, Reddy S. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J 2006; 25:4271-83. [PMID: 16946708 PMCID: PMC1570429 DOI: 10.1038/sj.emboj.7601296] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 07/25/2006] [Indexed: 12/17/2022] Open
Abstract
In myotonic dystrophy (DM1), both inactivation of muscleblind proteins and increased levels of CUG-BP1 are reported. These events have been shown to contribute independently to aberrant splicing of a subset RNAs. We demonstrate that steady-state levels of the splice regulator, hnRNP H, are elevated in DM1 myoblasts and that increased hnRNP H levels in normal myoblasts results in the inhibition of insulin receptor (IR) exon 11 splicing in a manner similar to that observed in DM1. In normal myoblasts, overexpression of either hnRNP H or CUG-BP1 results in the formation of an RNA-dependent suppressor complex consisting of both hnRNP H and CUG-BP1, which is required to maximally inhibit IR exon 11 inclusion. Elevated levels of MBNL1 show RNA-independent interaction with hnRNP H and dampen the inhibitory activity of increased hnRNP H levels on IR splicing in normal myoblasts. In DM1 myoblasts, overexpression of MBNL1 in conjunction with si-RNA mediated depletion of hnRNP H contributes to partial rescue of the IR splicing defect. These data demonstrate that coordinated physical and functional interactions between hnRNP H, CUG-BP1 and MBNL1 dictate IR splicing in normal and DM1 myoblasts.
Collapse
Affiliation(s)
- Sharan Paul
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Warunee Dansithong
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dongho Kim
- Division of Molecular Biology, City of Hope, Duarte, CA, USA
| | - John Rossi
- Division of Molecular Biology, City of Hope, Duarte, CA, USA
| | - Nicholas J G Webster
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA
| | - Lucio Comai
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Institute for Genetic Medicine (IGM), Keck School of Medicine, University of Southern California, Room 240, 2250 Alcazar Street, Los Angeles, CA 90033, USA. Tel.: +1 323 442 2457/3950; Fax: +1 323 442 2764;
| | - Sita Reddy
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Institute for Genetic Medicine (IGM), Keck School of Medicine, University of Southern California, Room 240, 2250 Alcazar Street, Los Angeles, CA 90033, USA. Tel.: +1 323 442 2457/3950; Fax: +1 323 442 2764; E-mails:
| |
Collapse
|
508
|
Abstract
Recent analyses of sequence and microarray data have suggested that alternative splicing plays a major role in the generation of proteomic and functional diversity in metazoan organisms. Efforts are now being directed at establishing the full repertoire of functionally relevant transcript variants generated by alternative splicing, the specific roles of such variants in normal and disease physiology, and how alternative splicing is coordinated on a global level to achieve cell- and tissue-specific functions. Recent progress in these areas is summarized in this review.
Collapse
Affiliation(s)
- Benjamin J Blencowe
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, Centre for Cellular and Biomolecular Research, Donnelly CCBR Building, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
509
|
Machuca-Tzili L, Thorpe H, Robinson TE, Sewry C, Brook JD. Flies deficient in Muscleblind protein model features of myotonic dystrophy with altered splice forms of Z-band associated transcripts. Hum Genet 2006; 120:487-99. [PMID: 16927100 DOI: 10.1007/s00439-006-0228-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 07/03/2006] [Indexed: 11/24/2022]
Abstract
Myotonic dystrophy (DM) is a dominantly inherited neuromuscular disorder characterised by muscle weakness and wasting. There are two forms of DM; both of which are caused by the expansion of repeated DNA sequences. DM1 is associated with a CTG repeat located in the 3' untranslated region of a gene, DMPK and DM2 with a tetranucleotide repeat expansion, CCTG, located in the first intron of a different gene, ZNF9. Recent data suggest a dominant RNA gain-of-function mechanism underlying DM, as transcripts containing either CUG or CCUG repeat expansions accumulate as foci in the nuclei of DM1 and DM2 cells respectively, where they exert a toxic effect, sequestering specific RNA binding proteins such as Muscleblind, which leads to splicing defects and the disruption of normal cellular functions. Z-band disruption is a well-known histological feature of DM1 muscle, which has also been reported in Muscleblind deficient flies. In order to determine whether there is a common molecular basis for this abnormality we have examined the alternative splicing pattern of transcripts that encode proteins associated with the Z-band in both organisms. Our results demonstrate that the missplicing of ZASP/LDB3 leads to the expression of an isoform in DM1 patient muscle, which is not present in normal controls, nor in other myopathies. Furthermore the Drosophila homologue, CG30084, is also misspliced, in Muscleblind deficient flies. Another Z-band transcript, alpha actinin, is misspliced in mbl mutant flies, but not in DM1 patient samples. These results point to similarities but subtle differences in the molecular breakdown of Z-band structures in flies and DM patients and emphasise the relevance of Muscleblind proteins in DM pathophysiology.
Collapse
Affiliation(s)
- Laura Machuca-Tzili
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | |
Collapse
|
510
|
Wakamiya M, Matsuura T, Liu Y, Schuster GC, Gao R, Xu W, Sarkar PS, Lin X, Ashizawa T. The role of ataxin 10 in the pathogenesis of spinocerebellar ataxia type 10. Neurology 2006; 67:607-13. [PMID: 16924013 DOI: 10.1212/01.wnl.0000231140.26253.eb] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant disorder characterized by cerebellar ataxia and seizures. SCA10 is caused by an expansion of an ATTCT pentanucleotide repeat in intron 9 of the ataxin 10 (ATXN10) gene encoding an approximately 55-kd protein of unknown function. However, how this mutation leads to SCA10 is unknown. METHODS In an effort to understand the pathogenic mechanism of SCA10, the authors conducted a series of experiments to address the effect of repeat expansion on the transcription and RNA processing of the ATXN10 gene. In addition, we generated Sca10 (mouse ataxin 10 homolog)-null mice and addressed the role of Sca10 gene dosage on the cerebellum. RESULTS Mutant ATXN10 allele is transcribed at the normal level, and the pre-mRNA containing an expanded repeat is processed normally in patient-derived cells. Sca10-null mice exhibited embryonic lethality. Heterozygous mutants were overtly normal and did not develop SCA10 phenotype CONCLUSION A simple gain of function or loss of function of ATXN10 is unlikely to be the major pathogenic mechanism contributing to the spinocerebellar ataxia type 10 phenotype.
Collapse
Affiliation(s)
- M Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston 77555-0539, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
511
|
Ge WW, Leystra-Lantz C, Sanelli TR, McLean J, Wen W, Strong W, Strong MJ. Neuronal tissue-specific ribonucleoprotein complex formation on SOD1 mRNA: Alterations by ALS SOD1 mutations. Neurobiol Dis 2006; 23:342-50. [PMID: 16730180 DOI: 10.1016/j.nbd.2006.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of unknown etiology. Mutations in copper/zinc superoxide dismutase (SOD1) are the most commonly associated genetic abnormality. Given that SOD1 is ubiquitously expressed, the exclusive vulnerability of motor neurons is one of the most puzzling issues in ALS research. We here report that wild-type SOD1 mRNA forms ribonucleoprotein (RNP) complexes with protein homogenates of neuronal tissue but not with homogenates of non-neuronal tissues. 3' Untranslated region of SOD1 mRNA-dependent RNP complexes functioned to stabilize SOD1 mRNA. Moreover, SOD1 mRNAs harboring ALS-associated mutations, including silent mutations, were deficient in forming RNP complexes. In contrast, SOD1 mRNAs harboring artificial mutations, not known to be associated with ALS, demonstrated preserved RNP complex formation. This paper reports RNP complex formation on SOD1 mRNA as a neuronal tissue-specific and ALS-associated mutation sensitive feature.
Collapse
Affiliation(s)
- Wei-wen Ge
- Cell Biology Research Group, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
512
|
Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A 2006; 103:11748-53. [PMID: 16864772 PMCID: PMC1544241 DOI: 10.1073/pnas.0604970103] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Indexed: 01/19/2023] Open
Abstract
RNA-mediated pathogenesis is a recently developed disease model that proposes that certain types of mutant genes produce toxic transcripts that inhibit the activities of specific proteins. This pathogenesis model was proposed first for the neuromuscular disease myotonic dystrophy (DM), which is associated with the expansion of structurally related (CTG)(n) and (CCTG)(n) microsatellites in two unrelated genes. At the RNA level, these expansions form stable hairpins that alter the pre-mRNA splicing activities of two antagonistic factor families, the MBNL and CELF proteins. It is unclear which altered activity is primarily responsible for disease pathogenesis and whether other factors and biochemical pathways are involved. Here, we show that overexpression of Mbnl1 in vivo mediated by transduction of skeletal muscle with a recombinant adeno-associated viral vector rescues disease-associated muscle hyperexcitability, or myotonia, in the HSA(LR) poly(CUG) mouse model for DM. Myotonia reversal occurs concurrently with restoration of the normal adult-splicing patterns of four pre-mRNAs that are misspliced during postnatal development in DM muscle. Our results support the hypothesis that the loss of MBNL1 activity is a primary pathogenic event in the development of RNA missplicing and myotonia in DM and provide a rationale for therapeutic strategies designed either to overexpress MBNL1 or inhibit MBNL1 interactions with CUG and CCUG repeat expansions.
Collapse
Affiliation(s)
- Rahul N. Kanadia
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Jihae Shin
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Yuan Yuan
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Stuart G. Beattie
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| | - Thurman M. Wheeler
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642
| | - Charles A. Thornton
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology
- Genetics Institute, University of Florida College of Medicine, 1600 Southwest Archer Road, Gainesville, FL 32610; and
| |
Collapse
|
513
|
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG expansion mutation located in the 3' untranslated portion of the dystrophica myotonin protein kinase gene. The identification and characterization of RNA-binding proteins that interact with expanded CUG repeats and the discovery that a similar transcribed but untranslated CCTG expansion in an intron causes myotonic dystrophy type 2 (DM2) have uncovered a new type of mechanism in which microsatellite expansion mutations cause disease through an RNA gain-of-function mechanism. This review discusses RNA pathogenesis in DM1 and DM2 and evidence that similar mechanisms may play a role in a growing number of dominant noncoding expansion disorders, including fragile X tremor ataxia syndrome (FXTAS), spinocerebellar ataxia type 8 (SCA8), SCA10, SCA12, and Huntington's disease-like 2 (HDL2).
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics and Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
514
|
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LPW. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006; 38:758-69. [PMID: 16804541 DOI: 10.1038/ng1827] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/22/2006] [Indexed: 11/08/2022]
Abstract
We previously reported that a (CTG)n expansion causes spinocerebellar ataxia type 8 (SCA8), a slowly progressive ataxia with reduced penetrance. We now report a transgenic mouse model in which the full-length human SCA8 mutation is transcribed using its endogenous promoter. (CTG)116 expansion, but not (CTG)11 control lines, develop a progressive neurological phenotype with in vivo imaging showing reduced cerebellar-cortical inhibition. 1C2-positive intranuclear inclusions in cerebellar Purkinje and brainstem neurons in SCA8 expansion mice and human SCA8 autopsy tissue result from translation of a polyglutamine protein, encoded on a previously unidentified antiparallel transcript (ataxin 8, ATXN8) spanning the repeat in the CAG direction. The neurological phenotype in SCA8 BAC expansion but not BAC control lines demonstrates the pathogenicity of the (CTG-CAG)n expansion. Moreover, the expression of noncoding (CUG)n expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and the discovery of intranuclear polyglutamine inclusions suggests SCA8 pathogenesis involves toxic gain-of-function mechanisms at both the protein and RNA levels.
Collapse
Affiliation(s)
- Melinda L Moseley
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
515
|
Udd B, Meola G, Krahe R, Thornton C, Ranum LPW, Bassez G, Kress W, Schoser B, Moxley R. 140th ENMC International Workshop: Myotonic Dystrophy DM2/PROMM and other myotonic dystrophies with guidelines on management. Neuromuscul Disord 2006; 16:403-13. [PMID: 16684600 DOI: 10.1016/j.nmd.2006.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 03/09/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Affiliation(s)
- B Udd
- Neurology Department, Tampere University Hospital and Tampere Medical School, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
516
|
de Haro M, Al-Ramahi I, De Gouyon B, Ukani L, Rosa A, Faustino NA, Ashizawa T, Cooper TA, Botas J. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum Mol Genet 2006; 15:2138-45. [PMID: 16723374 DOI: 10.1093/hmg/ddl137] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a CTG expansion in the 3' UTR of the dystrophia myotonica protein kinase (DMPK) gene. It has been hypothesized that the pathogenesis in DM1 is triggered by a toxic gain of function of the expanded DMPK RNA. This expanded RNA is retained in nuclear foci where it sequesters and induces alterations in the levels of RNA-binding proteins (RNA-BP). To model DM1 and study the implication of RNA-BP in CUG-induced toxicity, we have generated a Drosophila DM1 model expressing a non-coding mRNA containing 480 interrupted CUG repeats; i.e. [(CUG)20CUCGA]24. This (iCUG)480 transcript accumulates in nuclear foci and its expression leads to muscle wasting and degeneration in Drosophila. We also report that altering the levels of two RNA-BP known to be involved in DM1 pathogenesis, MBNL1 and CUGBP1, modify the (iCUG)480 degenerative phenotypes. Expanded CUG-induced toxicity in Drosophila is suppressed when MBNL1 expression levels are increased, and enhanced when MBNL1 levels are reduced. In addition, (iCUG)480 also causes a decrease in the levels of soluble MBNL1 that is sequestered in the CUG-containing nuclear foci. In contrast, increasing the levels of CUGBP1 worsens (iCUG)480-induced degeneration even though CUGBP1 distribution is not altered by the expression of the expanded triplet repeat. Our data supports a mechanism for DM1 pathogenesis in which decreased levels of MBNL and increased levels of CUGBP mediate the RNA-induced toxicity observed in DM1. Perhaps more importantly, they also provide proof of the principle that CUG-induced muscle toxicity can be suppressed.
Collapse
Affiliation(s)
- María de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
517
|
Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 2006; 15:2087-97. [PMID: 16717059 DOI: 10.1093/hmg/ddl132] [Citation(s) in RCA: 398] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In myotonic dystrophy (DM), expression of RNA containing expanded CUG or CCUG repeats leads to misregulated alternative splicing of pre-mRNA. The repeat-bearing transcripts accumulate in nuclear foci, together with proteins in the muscleblind family, MBNL1 and MBNL2. In transgenic mice that express expanded CUG repeats, we show that the splicing defect selectively targets a group of exons that share a common temporal pattern of developmental regulation. These exons undergo a synchronized splicing switch between post-natal day 2 and 20 in wild-type mice. During this post-natal interval, MBNL1 protein translocates from a predominantly cytoplasmic to nuclear distribution. In the absence of MBNL1, these physiological splicing transitions do not occur. The splicing defect induced by expanded CUG repeats in mature muscle fibers is closely reproduced by deficiency of MBNL1 but not by deficiency of MBNL2. A parallel situation exists in human DM type 1 and type 2. MBNL1 is depleted from the muscle nucleoplasm because of sequestration in nuclear foci, and the associated splicing defects are remarkably similar to those observed in MBNL1 knockout mice. These results indicate that MBNL1 participates in the post-natal remodeling of skeletal muscle by controlling a key set of developmentally regulated splicing switches. Sequestration of MBNL1, and failure to maintain these splicing transitions, has a pivotal role in the pathogenesis of muscle disease in DM.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
518
|
Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 2006; 74:65-80. [PMID: 16533306 DOI: 10.1111/j.1432-0436.2006.00060.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alternative splicing is widely used to generate protein diversity and to control gene expression in many biological processes, including cell fate determination and apoptosis. In this review, we focus on the Muscleblind family of tissue-specific alternative splicing regulators. Muscleblind proteins bind pre-mRNA through an evolutionarily conserved tandem CCCH zinc finger domain. Human Muscleblind homologs MBNL1, MBNL2 and MBNL3 promote inclusion or exclusion of specific exons on different pre-mRNAs by antagonizing the activity of CUG-BP and ETR-3-like factors (CELF proteins) bound to distinct intronic sites. The relative activities of Muscleblind and CELF proteins control a key developmental switch. Defined transcripts follow an embryonic splice pattern when CELF activity predominates, whereas they follow an adult pattern when Muscleblind activity prevails. Human MBNL proteins show functional specializations. While MBNL1 seems to promote muscle differentiation, MBNL3 appears to function in an opposing manner inhibiting expression of muscle differentiation markers. MBNL2, on the other hand, participates in a new RNA-dependent protein localization mechanism involving recruitment of integrin alpha3 protein to focal adhesions. Both muscleblind mutant Drosophila embryos and Mbnl1 knockout mice show muscle abnormalities and altered splicing of specific transcripts. In addition to regulating terminal muscle differentiation through alternative splicing control, results by several groups suggest that Muscleblind participates in the differentiation of photoreceptors, neurons, adipocytes and blood cell types. Misregulation of MBNL activity can lead to human pathologies. Through mechanisms not completely identified yet, expression of transcripts containing large non-coding CUG or CCUG repeat expansions mimics muscleblind loss-of-function phenotypes. Archetypical within this class of disorders are myotonic dystrophies. Our understanding of the biology of Muscleblind proteins has increased dramatically over the last few years, but several key issues remain unsolved. Defining the mechanism of the activity of Muscleblind proteins, their splicing partners, and the functional relevance of its several protein isoforms are just a few examples.
Collapse
Affiliation(s)
- Maya Pascual
- Department of Genetics, University of Valencia, Doctor Moliner, 50, 46100 Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
519
|
Puljak L, Kilic G. Emerging roles of chloride channels in human diseases. Biochim Biophys Acta Mol Basis Dis 2006; 1762:404-13. [PMID: 16457993 DOI: 10.1016/j.bbadis.2005.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/18/2005] [Accepted: 12/12/2005] [Indexed: 01/22/2023]
Abstract
In the past decade, there has been remarkable progress in understanding of the roles of Cl(-) channels in the development of human diseases. Genetic studies in humans have identified mutations in the genes encoding Cl(-) channels which lead to a loss of Cl(-) channel activity. These mutations are responsible for the development of a variety of deleterious diseases in muscle, kidney, bone and brain including myotonia congenita, dystrophia myotonica, cystic fibrosis, osteopetrosis and epilepsy. Recent studies indicate that some diseases may develop as a result of Cl(-) channel activation. There is growing evidence that the progression of glioma in the brain and the growth of the malaria parasite in red blood cells may be mediated through Cl(-) channel activation. These findings suggest that Cl(-) channels may be novel targets for the pharmacological treatment of a broad spectrum of diseases. This review discusses the proposed roles of abnormal Cl(-) channel activity in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Livia Puljak
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA
| | | |
Collapse
|
520
|
Abstract
Recent excitement over SNPs has tended to obscure the real advantages of studying tandemly repeated loci. In this commentary, I make the case for studying tandem repeats, concentrating on two major arguments. Firstly, tandemly repeated loci are unrivalled as a source of detailed mechanistic information in studies of variation and mutation, and are highly informative reporters of genomic instability in studies of induced mutation. Secondly, changes at many tandem repeats have important functional consequences, and in addition to examples of "strong" single-gene effects such as those at the triplet repeat disease loci, there may well be a much larger number of loci at which subtler functional effects remain to be discovered.
Collapse
Affiliation(s)
- John A L Armour
- Institute of Genetics, University of Nottingham, Queen's Medical Center, Nottingham NG7 2UH, UK.
| |
Collapse
|
521
|
Gabellini D, D'Antona G, Moggio M, Prelle A, Zecca C, Adami R, Angeletti B, Ciscato P, Pellegrino MA, Bottinelli R, Green MR, Tupler R. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 2006; 439:973-7. [PMID: 16341202 DOI: 10.1038/nature04422] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/11/2005] [Indexed: 11/08/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is not due to a classical mutation within a protein-coding gene. Instead, almost all FSHD patients carry deletions of an integral number of tandem 3.3-kilobase repeat units, termed D4Z4, located on chromosome 4q35 (ref. 3). D4Z4 contains a transcriptional silencer whose deletion leads to inappropriate overexpression in FSHD skeletal muscle of 4q35 genes located upstream of D4Z4 (ref. 4). To identify the gene responsible for FSHD pathogenesis, we generated transgenic mice selectively overexpressing in skeletal muscle the 4q35 genes FRG1, FRG2 or ANT1. We find that FRG1 transgenic mice develop a muscular dystrophy with features characteristic of the human disease; by contrast, FRG2 and ANT1 transgenic mice seem normal. FRG1 is a nuclear protein and several lines of evidence suggest it is involved in pre-messenger RNA splicing. We find that in muscle of FRG1 transgenic mice and FSHD patients, specific pre-mRNAs undergo aberrant alternative splicing. Collectively, our results suggest that FSHD results from inappropriate overexpression of FRG1 in skeletal muscle, which leads to abnormal alternative splicing of specific pre-mRNAs.
Collapse
Affiliation(s)
- Davide Gabellini
- Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Gallo JM, Jin P, Thornton CA, Lin H, Robertson J, D'Souza I, Schlaepfer WW. The role of RNA and RNA processing in neurodegeneration. J Neurosci 2006; 25:10372-5. [PMID: 16280575 PMCID: PMC6725807 DOI: 10.1523/jneurosci.3453-05.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jean-Marc Gallo
- Medical Research Council Centre for Neurodegeneration Research, Department of Neurology, Institute of Psychiatry, King's College London, SE5 8AF, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
523
|
Leroy O, Dhaenens CM, Schraen-Maschke S, Belarbi K, Delacourte A, Andreadis A, Sablonnière B, Buée L, Sergeant N, Caillet-Boudin ML. ETR-3 represses Tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. J Neurosci Res 2006; 84:852-9. [PMID: 16862542 DOI: 10.1002/jnr.20980] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered splicing of transcripts, including the insulin receptor (IR) and the cardiac troponin (cTNT), is a key feature of myotonic dystrophy type I (DM1). CELF and MBNL splicing factor members regulate the splicing of those transcripts. We have previously described an alteration of Tau exon 2 splicing in DM1 brain, resulting in the favored exclusion of exon 2. However, the factors required for alternative splicing of Tau exon 2 remain undetermined. Here we report a decreased expression of CELF family member and MBNL transcripts in DM1 brains as assessed by RT-PCR. By using cellular models with a control- or DM1-like splicing pattern of Tau transcripts, we demonstrate that ETR-3 promotes selectively the exclusion of Tau exon 2. These results together with the analysis of Tau exon 6 and IR exon 11 splicing in brain, muscle, and cell models suggest that DM1 splicing alteration of several transcripts involves various factors.
Collapse
|
524
|
Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:133-59. [PMID: 17076268 PMCID: PMC4127983 DOI: 10.1007/978-3-540-34449-0_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy (DM), the most common form of adult onset muscular dystrophy, affects skeletal muscle, heart, and the central nervous system (CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias. There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98% of cases, is caused by a CTG expansion in the 3' untranslated region (UTR) of the DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9 gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are retained in the nucleus in foci. Disease pathogenesis results primarily from a gain of function of the expanded RNAs, which alter developmentally regulated alternative splicing as well as pathways of muscle differentiation. The toxic RNA has been implicated in sequestration of splicing regulators and transcription factors thereby causing specific symptoms of the disease. Here we review the proposed mechanisms for the toxic effects of the expanded repeats and discuss the molecular mechanisms of splicing misregulation and disease pathogenesis.
Collapse
|
525
|
Abstract
Several studies have suggested the presence of central nervous system involvement manifesting as cognitive impairment in diseases traditionally confined to the peripheral nervous system. The aim of this review is to highlight the character of clinical, genetic, neurofunctional, cognitive, and psychiatric deficits in neuromuscular disorders. A high correlation between cognitive features and cerebral protein expression or function is evident in Duchenne muscular dystrophy, myotonic dystrophy (Steinert disease), and mitochondrial encephalomyopathies; direct correlation between tissue-specific protein expression and cognitive deficits is still elusive in certain neuromuscular disorders presenting with or without a cerebral abnormality, such as congenital muscular dystrophies, congenital myopathies, amyotrophic lateral sclerosis, adult polyglucosan body disease, and limb-girdle muscular dystrophies. No clear cognitive deficits have been found in spinal muscular atrophy and facioscapulohumeral dystrophy.
Collapse
Affiliation(s)
- Maria Grazia D'Angelo
- Istituto di Ricerca e Cura a Carattere Scientifico E. Medea, La Nostra Famiglia, Via don Luigi Monza 20, 23842 Bosisio Parini, Italy.
| | | |
Collapse
|
526
|
Abstract
A new molecular mechanism of trinucleotide expansion diseases is suggested. The mechanism involves the formation of double-helical RNA hairpins by transcripts carrying (CNG)(n) sequences, which are processed via the RNAi pathway with subsequent RNA silencing of genes containing (CNG)(n) sequences. Depletion of proteins encoded by these genes leads to the specific disease phenotype. The available data on human myotonic dystrophy 1, which results from the (CTG)(n) expansion, support the hypothesis.
Collapse
Affiliation(s)
- L Malinina
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
527
|
Abstract
The disease mechanism underlying myotonic dystrophy type 1 (DM1) pathogenesis in skeletal muscle may involve sequestration of RNA binding proteins in nuclear foci of expanded poly(CUG) RNA. Here we report evidence for a parallel mechanism in the heart. Accumulation of expanded poly(CUG) RNA in nuclear foci is associated with sequestration of muscleblind proteins and abnormal regulation of alternative splicing in DM1 cardiac muscle. A toxic effect of RNA with an expanded repeat may contribute to cardiac disease in DM1.
Collapse
Affiliation(s)
- Ami Mankodi
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
528
|
Mooers BHM, Logue JS, Berglund JA. The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Proc Natl Acad Sci U S A 2005; 102:16626-31. [PMID: 16269545 PMCID: PMC1283809 DOI: 10.1073/pnas.0505873102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy (DM) type 1 is associated with an expansion of (>50) CTG repeats within the 3' untranslated region (UTR) of the dystrophin myotonin protein kinase gene (dmpk). In the corresponding mRNA transcript, the CUG repeats form an extended stem-loop structure. The double-stranded RNA of the stem sequesters RNA binding proteins away from their normal cellular targets resulting in aberrant transcription, alternative splicing patterns, or both, thereby leading to DM. To better understand the structural basis of DM type 1, we determined to 1.58-A resolution the x-ray crystal structure of an 18-bp RNA containing six CUG repeats. The CUG repeats form antiparallel double-stranded helices that stack end-on-end in the crystal to form infinite, pseudocontinuous helices similar to the long CUG stem loops formed by the expanded CUG repeats in DM type 1. The CUG helix is very similar in structure to A-form RNA with the exception of the unique U-U mismatches. This structure provides a high-resolution view of a toxic, trinucleotide repeat RNA.
Collapse
Affiliation(s)
- Blaine H M Mooers
- Department of Chemistry, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | |
Collapse
|
529
|
Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ. Antisense Transcription and Heterochromatin at the DM1 CTG Repeats Are Constrained by CTCF. Mol Cell 2005; 20:483-9. [PMID: 16285929 DOI: 10.1016/j.molcel.2005.09.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/17/2005] [Accepted: 09/02/2005] [Indexed: 11/30/2022]
Abstract
Prior studies of the DM1 locus have shown that the CTG repeats are a component of a CTCF-dependent insulator element and that repeat expansion results in conversion of the region to heterochromatin. We now show that the DM1 insulator is maintained in a local heterochromatin context: an antisense transcript emanating from the adjacent SIX5 regulatory region extends into the insulator element and is converted into 21 nucleotide (nt) fragments with associated regional histone H3 lysine 9 (H3-K9) methylation and HP1gamma recruitment that is embedded within a region of euchromatin-associated H3 lysine 4 (H3-K4) methylation. CTCF restricts the extent of the antisense RNA at the wild-type (wt) DM1 locus and constrains the H3-K9 methylation to the nucleosome associated with the CTG repeat, whereas the expanded allele in congenital DM1 is associated with loss of CTCF binding, spread of heterochromatin, and regional CpG methylation.
Collapse
Affiliation(s)
- Diane H Cho
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
530
|
Ladd AN, Stenberg MG, Swanson MS, Cooper TA. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn 2005; 233:783-93. [PMID: 15830352 DOI: 10.1002/dvdy.20382] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac troponin T (cTNT) exon 5 splicing is developmentally regulated such that it is included in embryonic but not adult heart. CUG-BP and ETR-3-like factor (CELF) proteins promote exon inclusion, whereas polypyrimidine tract binding protein (PTB) and muscleblind-like (MBNL) proteins repress inclusion. In this study, we addressed what happens to these regulatory proteins during heart development to shift the regulatory balance of cTNT alternative splicing. Using dominant-negative proteins, we found that both CELF and PTB activities are required for appropriate splicing in cardiomyocytes. Two CELF proteins, CUG-BP and ETR-3, are nuclear and cytoplasmic in embryonic heart but are down-regulated in adult heart concomitant with loss of exon inclusion. In contrast, PTB and MBNL1 are expressed throughout heart development. The patterns of cTNT splicing and expression of its regulatory factors are conserved between mouse and chicken. Thus, alternative splicing is determined by a balance between positive and negative regulation, and modulation of expression levels of auxiliary splicing regulators may drive developmental splicing changes. ETR-3 and CUG-BP proteins are also down-regulated in other tissues during development, suggesting that CELF proteins play a broad role in developmental splicing regulation.
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
531
|
Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 2005; 6:743-55. [PMID: 16205714 DOI: 10.1038/nrg1691] [Citation(s) in RCA: 569] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The list of developmental and degenerative diseases that are caused by expansion of unstable repeats continues to grow, and is now approaching 20 disorders. The pathogenic mechanisms that underlie these disorders involve either loss of protein function or gain of function at the protein or RNA level. Common themes have emerged within and between these different classes of disease; for example, among disorders that are caused by gain-of-function mechanisms, altered protein conformations are central to pathogenesis, leading to changes in protein activity or abundance. In all these diseases, the context of the expanded repeat and the abundance, subcellular localization and interactions of the proteins and RNAs that are affected have key roles in disease-specific phenotypes.
Collapse
Affiliation(s)
- Jennifer R Gatchel
- Department of Neuroscience, Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
532
|
Nissim-Rafinia M, Kerem B. The splicing machinery is a genetic modifier of disease severity. Trends Genet 2005; 21:480-3. [PMID: 16039004 DOI: 10.1016/j.tig.2005.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/06/2005] [Accepted: 07/05/2005] [Indexed: 11/18/2022]
Abstract
Disease severity correlates with the level of correctly spliced RNA transcribed from genes carrying splicing mutations and with the ratio of alternatively spliced isoforms. Hence, a role for splicing regulation as a genetic modifier has been suggested. Here we discuss recent experiments that provide direct evidence that changes in the level of splicing factors modulate the splicing pattern of disease-associated genes. Importantly, modulation of the splicing pattern led to regulation of the protein function and modification of disease severity.
Collapse
Affiliation(s)
- Malka Nissim-Rafinia
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
533
|
Berg J, Jiang H, Thornton CA, Cannon SC. Truncated ClC-1 mRNA in myotonic dystrophy exerts a dominant-negative effect on the Cl current. Neurology 2005; 63:2371-5. [PMID: 15623702 DOI: 10.1212/01.wnl.0000148482.40683.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Muscle fiber degeneration and myotonic discharges are the hallmarks of myotonic dystrophy (DM). The molecular basis for the myotonia was recently tied to abnormal splicing of the chloride channel (ClC-1) pre-mRNA, often resulting in UAG premature termination, which leads to decreased channel protein and therefore a reduced resting chloride conductance. METHODS The authors assessed the functional properties of two commonly occurring DM mRNA splice variants by expression in oocytes. RESULTS Neither splice variant coded for a functional Cl- channel. Co-injection of alternative splice variants with wild-type ClC-1 cRNA reduced the current density and accelerated channel closure upon repolarization of the membrane. CONCLUSIONS These data show that the aberrantly spliced chloride channel message exerts a dominant negative effect that may contribute to the development of myotonia.
Collapse
Affiliation(s)
- Jim Berg
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
534
|
Mastroyiannopoulos NP, Feldman ML, Uney JB, Mahadevan MS, Phylactou LA. Woodchuck post-transcriptional element induces nuclear export of myotonic dystrophy 3' untranslated region transcripts. EMBO Rep 2005; 6:458-63. [PMID: 15832171 PMCID: PMC1299300 DOI: 10.1038/sj.embor.7400390] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/07/2005] [Accepted: 03/15/2005] [Indexed: 11/09/2022] Open
Abstract
The woodchuck post-transcriptional regulatory element (WPRE) can naturally accumulate hepatitis transcripts in the cytoplasm, and has been recently exploited as an enhancer of transgene expression. The retention of mutant myotonic dystrophy protein kinase (DMPK) transcripts in the nucleus of myotonic dystrophy (DM) cells has an important pathogenic role in the disease, resulting in pleiotropic effects including delayed myoblast differentiation. In this study, we report the first use of WPRE as a tool to enhance nuclear export of an aberrantly retained messenger RNA. Stable cell lines expressing the normal and mutant DMPK 3' UTR (3' untranslated region) complementary DNA, with or without WPRE, were produced. It is noteworthy that WPRE stimulated extensive transport of mutant transcripts to the cytoplasm. This was associated with repair of the defective cellular MyoD levels and a subsequent increase in myoblast differentiation. These results provide the basis for a cellular model that can be exploited in DM and in the study of RNA transport mechanisms.
Collapse
Affiliation(s)
| | - Mariana L Feldman
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683, Nicosia, Cyprus
| | - James B Uney
- The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA
| | - Leonidas A Phylactou
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683, Nicosia, Cyprus
- Tel: +357 22 358600; Fax +357 22 358237; E-mail:
| |
Collapse
|
535
|
Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve 2005; 32:1-18. [PMID: 15770660 DOI: 10.1002/mus.20301] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type 1 myotonic dystrophy or DM1 (Steinert's disease), which is the commonest muscular dystrophy in adults, has intrigued physicians for over a century. Unusual features, compared with other dystrophies, include myotonia, anticipation, and involvement of other organs, notably the brain, eyes, smooth muscle, cardiac conduction apparatus, and endocrine system. Morbidity is high, with a substantial mortality relating to cardiorespiratory dysfunction. More recently a second form of multisystem myotonic disorder has been recognized and variously designated as proximal myotonic myopathy (PROMM), proximal myotonic dystrophy (PDM), or DM2. For both DM1 and DM2 the molecular basis is expansion of an unstable repeat sequence in a noncoding part of a gene (DMPK in DM1 and ZNF9 in DM2). There is accumulating evidence that the basic molecular mechanism is disruption of mRNA metabolism, which has far-reaching effects on many other genes, in part through the induction of aberrant splicing, explaining the multisystemic nature of the disease. The unstable nature of the expansion provides a molecular explanation for anticipation. This review emphasizes the clinical similarities and differences between DM1 and DM2. It examines current views about the molecular basis of these disorders, and contrasts them with other repeat expansion disorders that have increasingly been recognized as a cause of neurological disease.
Collapse
Affiliation(s)
- Laura Machuca-Tzili
- Department of Genetics, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
536
|
Drenth JPH, te Morsche RHM, Guillet G, Taieb A, Kirby RL, Jansen JBMJ. SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels. J Invest Dermatol 2005; 124:1333-8. [PMID: 15955112 DOI: 10.1111/j.0022-202x.2005.23737.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primary erythermalgia is a rare disorder characterized by recurrent attacks of red, warm and painful hands, and/or feet. We previously localized the gene for primary erythermalgia to a 7.94 cM region on chromosome 2q. Recently, Yang et al identified two missense mutations of the sodium channel alpha subunit SCN9A in patients with erythermalgia. The presence of voltage-gated sodium channels in sensory neurons is thought to play a crucial role in several chronic painful neuropathies. We examined four different families and two sporadic cases and detected missense sequence variants in SCN9A to be present in primary erythermalgia patients. A total of five of six mutations were located in highly conserved regions. One family with autosomal dominantly inherited erythermalgia was double heterozygous for two separate SCN9A mutations. These data establish primary erythermalgia as a neuropathic disorder and offers hope for treatment of this incapacitating painful disorder.
Collapse
Affiliation(s)
- Joost P H Drenth
- Department of Medicine, Division of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
537
|
Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J, Darnell RB. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005; 37:844-52. [PMID: 16041372 DOI: 10.1038/ng1610] [Citation(s) in RCA: 395] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 06/17/2005] [Indexed: 01/27/2023]
Abstract
Alternative RNA splicing greatly increases proteome diversity and may thereby contribute to tissue-specific functions. We carried out genome-wide quantitative analysis of alternative splicing using a custom Affymetrix microarray to assess the role of the neuronal splicing factor Nova in the brain. We used a stringent algorithm to identify 591 exons that were differentially spliced in the brain relative to immune tissues, and 6.6% of these showed major splicing defects in the neocortex of Nova2-/- mice. We tested 49 exons with the largest predicted Nova-dependent splicing changes and validated all 49 by RT-PCR. We analyzed the encoded proteins and found that all those with defined brain functions acted in the synapse (34 of 40, including neurotransmitter receptors, cation channels, adhesion and scaffold proteins) or in axon guidance (8 of 40). Moreover, of the 35 proteins with known interaction partners, 74% (26) interact with each other. Validating a large set of Nova RNA targets has led us to identify a multi-tiered network in which Nova regulates the exon content of RNAs encoding proteins that interact in the synapse.
Collapse
Affiliation(s)
- Jernej Ule
- Howard Hughes Medical Institute and Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
538
|
Kim DH, Langlois MA, Lee KB, Riggs AD, Puymirat J, Rossi JJ. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acids Res 2005; 33:3866-74. [PMID: 16027111 PMCID: PMC1176012 DOI: 10.1093/nar/gki698] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disorder associated with a (CUG)n expansion in the 3′-untranslated region of the DMPK (DM1 protein kinase) gene. Mutant DMPK mRNAs containing the trinucleotide expansion are retained in the nucleus of DM1 cells and form discrete foci. The nuclear sequestration of RNA binding proteins and associated factors binding to the CUG expansions is believed to be responsible for several of the splicing defects observed in DM1 patients and could ultimately be linked to DM1 muscular pathogenesis. Several RNA binding proteins capable of co-localizing with the nuclear-retained mutant DMPK mRNAs have already been identified but none can account for the nuclear retention of the mutant transcripts. Here, we have employed a modified UV crosslinking assay to isolate proteins bound to mutant DMPK-derived RNA and have identified hnRNP H as an abundant candidate. The specific binding of hnRNP H requires not only a CUG repeat expansion but also a splicing branch point distal to the repeats. Suppression of hnRNP H expression by RNAi rescued nuclear retention of RNA with CUG repeat expansions. The identification of hnRNP H as a factor capable of binding and possibly modulating nuclear retention of mutant DMPK mRNA may prove to be an important link in our understanding of the molecular mechanisms that lead to DM1 pathogenesis.
Collapse
Affiliation(s)
| | - Marc-Andre Langlois
- Department of Human Genetics, CHUQ, Pavillon CHUL and Laval UniversityQuebec City, Canada
| | - Kwang-Back Lee
- Department of Human Genetics, CHUQ, Pavillon CHUL and Laval UniversityQuebec City, Canada
| | - Arthur D. Riggs
- Department of Biology, Beckman Research Institute of the City of HopeDuarte, CA, USA
| | - Jack Puymirat
- Department of Human Genetics, CHUQ, Pavillon CHUL and Laval UniversityQuebec City, Canada
| | - John J. Rossi
- To whom correspondence should be addressed. Tel: +1 626 301 8360; Fax: +1 626 301 8271;
| |
Collapse
|
539
|
Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 2005; 14:2189-200. [PMID: 15972723 DOI: 10.1093/hmg/ddi223] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene. Aberrant splicing of several genes has been reported to contribute to some symptoms of DM1, but the cause of muscle weakness in DM1 and elevated Ca2+ concentrations in cultured DM muscle cells is unknown. Here, we investigated the alternative splicing of mRNAs of two major proteins of the sarcoplasmic reticulum, the ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 1 or 2. The fetal variants, ASI(-) of RyR1 which lacks residue 3481-3485, and SERCA1b which differs at the C-terminal were significantly increased in skeletal muscles from DM1 patients and the transgenic mouse model of DM1 (HSA(LR)). In addition, a novel variant of SERCA2 was significantly decreased in DM1 patients. The total amount of mRNA for RyR1, SERCA1 and SERCA2 in DM1 and the expression levels of their proteins in HSA(LR) mice were not significantly different. However, heterologous expression of ASI(-) in cultured cells showed decreased affinity for [3H]ryanodine but similar Ca2+ dependency, and decreased channel activity in single-channel recording when compared with wild-type (WT) RyR1. In support of this, RyR1-knockout myotubes expressing ASI(-) exhibited a decreased incidence of Ca2+ oscillations during caffeine exposure compared with that observed for myotubes expressing WT-RyR1. We suggest that aberrant splicing of RyR1 and SERCA1 mRNAs might contribute to impaired Ca2+ homeostasis in DM1 muscle.
Collapse
Affiliation(s)
- Takashi Kimura
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
540
|
Ho TH, Savkur RS, Poulos MG, Mancini MA, Swanson MS, Cooper TA. Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 2005; 118:2923-33. [PMID: 15961406 DOI: 10.1242/jcs.02404] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type I (DM1), which is caused by a non-coding CTG-repeat expansion in the dystrophia myotonica-protein kinase (DMPK) gene, is an RNA-mediated disease. Expanded CUG repeats in transcripts of mutant DMPK form nuclear foci that recruit muscleblind-like (MBNL) proteins, a family of alternative splicing factors. Although transcripts of mutant DMPK and MBNL proteins accumulate in nuclear RNA foci, it is not clear whether foci formation is required for splicing mis-regulation. Here, we use a co-transfection strategy to show that both CUG and CAG repeats form RNA foci that colocalize with green fluorescent protein (GFP)-MBNL1 and endogenous MBNL1. However, only CUG repeats alter splicing of the two tested pre-mRNAs, cardiac troponin T (cTNT) and insulin receptor (IR). Using FRAP, we demonstrate that GFP-MBNL1 in CUG and CAG foci have similar half-times of recovery and fractions of immobile molecules, suggesting that GFP-MBNL1 is bound by both CUG and CAG repeats. We also find an immobile fraction of GFP-MBNL1 in DM1 fibroblasts and a similar rapid exchange in endogenous CUG RNA foci. Therefore, formation of RNA foci and disruption of MBNL1-regulated splicing are separable events.
Collapse
Affiliation(s)
- Thai H Ho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
541
|
Jentsch TJ, Poët M, Fuhrmann JC, Zdebik AA. Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 2005; 67:779-807. [PMID: 15709978 DOI: 10.1146/annurev.physiol.67.032003.153245] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CLC gene family encodes nine different Cl() channels in mammals. These channels perform their functions in the plasma membrane or in intracellular organelles such as vesicles of the endosomal/lysosomal pathway or in synaptic vesicles. The elucidation of their cellular roles and their importance for the organism were greatly facilitated by mouse models and by human diseases caused by mutations in their respective genes. Human mutations in CLC channels are known to cause diseases as diverse as myotonia (muscle stiffness), Bartter syndrome (renal salt loss) with or without deafness, Dent's disease (proteinuria and kidney stones), osteopetrosis and neurodegeneration, and possibly epilepsy. Mouse models revealed blindness and infertility as further consequences of CLC gene disruptions. These phenotypes firmly established the roles CLC channels play in stabilizing the plasma membrane voltage in muscle and possibly in neurons, in the transport of salt and fluid across epithelia, in the acidification of endosomes and synaptic vesicles, and in the degradation of bone by osteoclasts.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany.
| | | | | | | |
Collapse
|
542
|
van Engelen BGM, Eymard B, Wilcox D. 123rd ENMC International Workshop: Management and Therapy in Myotonic Dystrophy, 6–8 February 2004, Naarden, The Netherlands. Neuromuscul Disord 2005; 15:389-94. [PMID: 15833434 DOI: 10.1016/j.nmd.2005.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Indexed: 02/07/2023]
Affiliation(s)
- Baziel G M van Engelen
- Neuromuscular Centre Nijmegen, Institute of Neurology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
543
|
Ho TH, Bundman D, Armstrong DL, Cooper TA. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet 2005; 14:1539-47. [PMID: 15843400 DOI: 10.1093/hmg/ddi162] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is an RNA-mediated disease caused by a non-coding CTG repeat expansion. A key feature of the RNA-mediated pathogenesis model for DM is the disrupted splicing of specific pre-mRNA targets. A link has been established between splicing regulation by CUG-BP1, a member of the CELF family of proteins, and DM1 pathogenesis. To determine whether increased CUG-BP1 function was sufficient to model DM, transgenic mice overexpressing CUG-BP1 (MCKCUG-BP1) in heart and skeletal muscle, two tissues affected in DM1, were generated. Histological and electron microscopic analyses of skeletal muscle reveal common pathological features with DM tissues: chains of central nuclei, degenerating fibers and centralized NADH reactivity. MCKCUG-BP1 mice have disrupted splicing of three CELF target pre-mRNAs, cardiac troponin T (Tnnt2), myotubularin-related 1 gene (Mtmr1) and the muscle-specific chloride channel (Clcn1), consistent with that observed in DM heart and skeletal muscle. The results are consistent with a mechanism for DM pathogenesis in which expanded repeats result in increased CUG-BP1 activity and/or other CELF family members and have trans-dominant effects on specific pre-mRNA targets.
Collapse
Affiliation(s)
- Thai H Ho
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
544
|
Personius KE, Nautiyal J, Reddy S. Myotonia and muscle contractile properties in mice with SIX5 deficiency. Muscle Nerve 2005; 31:503-5. [PMID: 15536612 DOI: 10.1002/mus.20239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myotonic dystrophy (DM1) is an autosomal-dominant multisystem disease characterized by progressive skeletal muscle weakness, myotonia, cataracts, cardiac arrhythmias, mild mental retardation, and endocrinopathies. Heterozygous loss of SIX5 in mice causes cataracts and cardiac conduction disease, and homozygous loss also leads to sterility and decreased testicular mass, reminiscent of DM1 in humans. The effect of SIX5 deficiency in muscle is unknown. In this study, we found that muscle contractile properties, electromyographic insertional activity, and muscle histology were normal in SIX5 deficient mice. The implications of these findings for the pathogenesis of DM1 are discussed.
Collapse
Affiliation(s)
- Kirkwood E Personius
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Kimball Tower Room 405, 3435 Main Street, Buffalo, New York 14214-3079, USA.
| | | | | |
Collapse
|
545
|
Nakahata S, Kawamoto S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res 2005; 33:2078-89. [PMID: 15824060 PMCID: PMC1075922 DOI: 10.1093/nar/gki338] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 03/16/2005] [Indexed: 12/13/2022] Open
Abstract
An intronic hexanucleotide UGCAUG has been shown to play a critical role in the regulation of tissue-specific alternative splicing of pre-mRNAs in a wide range of tissues. Vertebrate Fox-1 has been shown to bind to this element, in a highly sequence-specific manner, through its RNA recognition motif (RRM). In mammals, there are at least two Fox-1-related genes, ataxin-2 binding protein 1 (A2BP1)/Fox-1 and Fxh/Rbm9, which encode an identical RRM. Here, we demonstrate that both mouse Fxh and A2BP1 transcripts undergo tissue-specific alternative splicing, generating protein isoforms specific to brain and muscle. These tissue-specific isoforms are characterized for their abilities to regulate neural cell-specific alternative splicing of a cassette exon, N30, in the non-muscle myosin heavy chain II-B pre-mRNA, previously shown to be regulated through an intronic distal downstream enhancer (IDDE). All Fxh and A2BP1 isoforms with the RRM are capable of binding to the IDDE in vitro through the UGCAUG elements. Each isoform, however, shows quantitative differences in splicing activity and nuclear distribution in transfected cells. All Fxh isoforms and a brain isoform of A2BP1 show a predominant nuclear localization. Brain isoforms of both Fxh and A2BP1 promote N30 splicing much more efficiently than do the muscle-specific isoforms. Skeletal muscles express additional isoforms that lack a part of the RRM. These isoforms are incapable of activating neural cell-specific splicing and, moreover, can inhibit UGCAUG-dependent N30 splicing. These findings suggest that tissue-specific isoforms of Fxh and A2BP1 play an important role in determining tissue specificity of UGCAUG-mediated alternative splicing.
Collapse
Affiliation(s)
- Shingo Nakahata
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Sachiyo Kawamoto
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
546
|
Abstract
SR proteins serve multiple roles in the posttranscriptional control of gene expression, including as regulators of alternative splicing. In this issue of Cell, Xu et al. (2005) demonstrate that a heart-specific knockout of one SR protein, ASF/SF2, produces cardiomyopathy and misregulation of specific alternative splicing events during early postnatal development.
Collapse
Affiliation(s)
- Thomas A Cooper
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
547
|
Houseley JM, Wang Z, Brock GJR, Soloway J, Artero R, Perez-Alonso M, O'Dell KMC, Monckton DG. Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila. Hum Mol Genet 2005; 14:873-83. [PMID: 15703191 DOI: 10.1093/hmg/ddi080] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 is an autosomal dominant disorder associated with the expansion of a CTG repeat in the 3' untranslated region (UTR) of the DMPK gene. Recent data suggest that pathogenesis is predominantly mediated by a gain of function of the mutant transcript. In patients, these expanded CUG repeat-containing transcripts are sequestered into ribonuclear foci that also contain the muscleblind-like proteins. To provide further insights into muscleblind function and the pathogenesis of myotonic dystrophy, we generated Drosophila incorporating CTG repeats in the 3'-UTR of a reporter gene. As in patients, expanded CUG repeats form discrete ribonuclear foci in Drosophila muscle cells that co-localize with muscleblind. Unexpectedly, however, foci are not observed in all cell types and muscleblind is neither necessary nor sufficient for their formation. The foci are dynamic transient structures with short half-lifes that do not co-localize with the proteasome, suggesting they are unlikely to contain mis-folded proteins. However, they do co-localize with non-A, the human orthologs of which are implicated in both RNA splicing and attachment of dsRNA to the nuclear matrix. Muscleblind is also revealed as having a previously unrecognized role in stabilizing CUG transcripts. Most interestingly, Drosophila expressing (CUG)162 repeats has no detectable pathological phenotype suggesting that in contrast to expanded polyglutamine-containing proteins, neither the expanded CUG repeat RNA nor the ribonuclear foci are directly toxic.
Collapse
|
548
|
Furuya H, Shinnoh N, Ohyagi Y, Ikezoe K, Kikuchi H, Osoegawa M, Fukumaki Y, Nakabeppu Y, Hayashi T, Kira JI. Some flavonoids and DHEA-S prevent the cis-effect of expanded CTG repeats in a stable PC12 cell transformant. Biochem Pharmacol 2005; 69:503-16. [PMID: 15652241 DOI: 10.1016/j.bcp.2004.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/20/2004] [Indexed: 01/03/2023]
Abstract
Expanded CUG triplet repeats carrying mRNA seem to be responsible for myotonic dystrophy type 1 (DM1). To study the pathogenesis of DM1, we constructed a DM1 cell culture model using a PC12 neuronal cell line and screened flavonoids that ameliorate this mRNA gain of function. The expanded 250 CTG repeat was subcloned into the 3'-untranslated region of the luciferase gene yielding a stable transformant of PC12 (CTG-250). The cytotoxicity of CTG-250 was evaluated by intracellular LDH activity, and the cis-effect by luciferase activity. To find agents that alter CTG-250 toxic effects, 235 bioflavonoids were screened. An increased cis-effect and cytotoxicity were found when CTG-250 was treated with nerve growth factor to induce differentiation. Western blotting with anti-caspase-3 antibody suggested that cell death was caused by apoptosis. Screening analysis confirmed that a flavone (toringin), an isoflavones (genistein and formononetin), a flavanone (isosakuranetin), and DHEA-S prevent both the cytotoxicity and cis-effect of CTG-250 and that a flavanone (naringenin), isoflavone (ononin), and xanthylatin strongly inhibit the cis-effect of CTG repeats. In conclusion, we found that this neuronal cell line, which expresses the CUG repeat-bearing mRNA, showed cis-effects through the reporter gene and neuronal death after cell differentiation in vitro. However, some flavonoids and DHEA-S inhibit both the cis-effect and cytotoxicity, indicating that their chemical structures work to ameliorate both these toxic effects. This system makes it easy to evaluate the toxic effects of expanded CTG repeats and therefore should be useful for screening other DM1 treatments for their efficacies.
Collapse
Affiliation(s)
- Hirokazu Furuya
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
549
|
Faustino NA, Cooper TA. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol Cell Biol 2005; 25:879-87. [PMID: 15657417 PMCID: PMC544011 DOI: 10.1128/mcb.25.3.879-887.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/30/2004] [Accepted: 11/01/2004] [Indexed: 01/24/2023] Open
Abstract
ETR-3 (also know as BRUNOL3, NAPOR, and CUGBP2) is one of six members of the CELF (CUG-BP1- and ETR-3-like factor) family of splicing regulators. ETR-3 regulates splicing by direct binding to the pre-mRNA. We performed systematic evolution of ligands by exponential enrichment (SELEX) to identify the preferred binding sequence of ETR-3. After five rounds of SELEX, ETR-3 selected UG-rich sequences, in particular UG repeats and UGUU motifs. Either of these selected motifs was able to restore ETR-3 binding and responsiveness to a nonresponsive splicing reporter in vivo. Moreover, this effect was not specific to ETR-3 since minigenes containing either of the two motifs were responsive to two other CELF proteins (CUG-BP1 and CELF4), indicating that different members of the CELF family can mediate their effects via a common binding site. Using the SELEX-identified motifs to search the human genome, we identified several possible new ETR-3 targets. We created minigenes for two of these genes, the CFTR and MTMR1 genes, and confirmed that ETR-3 regulates their splicing patterns. For the CFTR minigene this regulation was demonstrated to be dependent on the presence of the putative binding site identified in our screen. These results validate this approach to search for new targets for RNA processing proteins.
Collapse
Affiliation(s)
- Nuno André Faustino
- Department of Pathology, Baylor College of Medicine, One Baylor Place, Houston, TX 77030, USA
| | | |
Collapse
|
550
|
Wagner EJ, Baraniak AP, Sessions OM, Mauger D, Moskowitz E, Garcia-Blanco MA. Characterization of the intronic splicing silencers flanking FGFR2 exon IIIb. J Biol Chem 2005; 280:14017-27. [PMID: 15684416 DOI: 10.1074/jbc.m414492200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell type-specific alternative splicing of FGFR2 pre-mRNA results in the mutually exclusive use of exons IIIb and IIIc, which leads to critically important differences in receptor function. The choice of exon IIIc in mesenchymal cells involves activation of this exon and repression of exon IIIb. This repression is mediated by the function of upstream and downstream intronic splicing silencers (UISS and DISS). Here we present a detailed characterization of the determinants of silencing function within UISS and DISS. We used a systematic mutational analysis, introducing deletions and substitutions to define discrete elements within these two silencers of exon IIIb. We show that UISS requires polypyrimidine tract-binding protein (PTB)-binding sites, which define the UISS1 sub-element, and an eight nucleotide sequence 5'-GCAGCACC-3' (UISS2) that is also required. Even though UISS2 does not bind PTB, the full UISS can be replaced with a synthetic silencer designed to provide optimal PTB binding. DISS is composed of a 5'-conserved sub-element (5'-CE) and two regions that contain multiple PTB sites and are functionally redundant (DISS1 and DISS2). DISS1 and DISS2 are separated by the activator sequence IAS2, and together these opposing elements form the intronic control element. Deletion of DISS in the FGFR2 exon IIIb context resulted in the near full inclusion of exon IIIb, and insertion of this silencer downstream of a heterologous exon with a weak 5' splice site was capable of repressing exon inclusion. Extensive deletion analysis demonstrated that the majority of silencing activity could be mapped to the conserved octamer CUCGGUGC within the 5'CE. Replacement of 5'CE and DISS1 with PTB-binding elements failed to restore repression of exon IIIb. We tested the importance of the relative position of the silencers and of the subelements within each silencer. Whereas UISS1, UISS2, DISS1, and DISS2 appear somewhat malleable, the 5'CE is rigid in terms of relative position and redundancy. Our data defined elements of function within the ISSs flanking exon IIIb and suggested that silencing of this exon is mediated by multiple trans-acting factors.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|