501
|
Suzuki M, Cerullo V, Bertin TK, Cela R, Clarke C, Guenther M, Brunetti-Pierri N, Lee B. MyD88-dependent silencing of transgene expression during the innate and adaptive immune response to helper-dependent adenovirus. Hum Gene Ther 2010; 21:325-36. [PMID: 19824822 DOI: 10.1089/hum.2009.155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of the host innate immune response after systemic administration of adenoviral vectors constitutes a principal impediment to successful clinical gene replacement therapies. Although helper-dependent adenoviruses (HDAds) lack all viral functional genes, systemic administration of a high dose of HDAd still elicits a potent innate immune response in host animals. Toll-like receptors (TLRs) are innate receptors that sense microbial products and trigger the maturation of antigen-presenting cells and cytokine production via MyD88-dependent signaling (except TLR3). Here we show that mice lacking MyD88 exhibit a dramatic reduction in proinflammatory cytokines after intravenous injection of a high dose of HDAd, and show significantly reduced induction of the adaptive immune response when compared with wild-type and TLR2-deficient mice. Importantly, MyD88(-/-) mice also show significantly higher and longer sustained transgene expression than do wild-type mice. Chromatin immunoprecipitation studies using wild-type and MyD88-deficient primary mouse embryonic fibroblasts showed significant MyD88-dependent transcriptional silencing of the HDAd-encoded transgenes. Our results demonstrate that MyD88 signaling, activated by systemic delivery of HDAd, initiates an innate immune response that suppresses transgene expression at the transcriptional level before initiation of the adaptive immune response.
Collapse
Affiliation(s)
- Masataka Suzuki
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
502
|
Arena A, Bisignano C, Stassi G, Mandalari G, Wickham MSJ, Bisignano G. Immunomodulatory and antiviral activity of almond skins. Immunol Lett 2010; 132:18-23. [PMID: 20438761 DOI: 10.1016/j.imlet.2010.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/09/2010] [Accepted: 04/26/2010] [Indexed: 12/01/2022]
Abstract
The elimination of a viral infection requires a proinflammatory host response (type 1 immunity), characterized by activation of mononuclear cells and production of proinflammatory cytokines, such as interferons (IFNs), tumor necrosis factor (TNF)-alpha and interleukin (IL)-12. On the other hand, IL-4 and IL-10 play a role in decreasing the inflammatory response supported by helper T (Th)1 cells. In this study we evaluated the effects of almond skins on the release of cytokines by peripheral blood mononuclear cells (PBMC), either infected or not with herpes simplex virus type 2 (HSV-2). Natural (NS) and blanched almond skins (BS) were subjected to simulated gastric and duodenal digestion and used at not cytotoxic concentrations. NS induced a significant decrease in HSV-2 replication, whereas extracts obtained from BS did not significantly influence the viral replication. High levels of cytokines production, such as IFN-alpha (38+/-5.3 pg/ml), IL-12 (215+/-17.1 pg/ml), IFN-gamma (5+/-0.7 IU/ml), TNF-alpha (3940+/-201.0 pg/ml), were detected. Moreover, IL-10 (210+/-12.2 pg/ml) and IL-4 (170+/-21.4 pg/ml), representative of Th2 responses, were found. Our data suggest that almond skins improve the immune surveillance of PBMC towards viral infection, both by triggering the Th1 and Th2 subsets.
Collapse
Affiliation(s)
- Adriana Arena
- Unit of Clinical Microbiology, Policlinico Universitario, 98100 Messina, Italy
| | | | | | | | | | | |
Collapse
|
503
|
Abstract
Type I interferons, interferon-alpha and interferon-beta, are central regulators of antiviral immunity and autoimmunity, but little is known about their role in renal inflammation. Recent work documents that viral nucleic acids are potent inducers of interferon-alpha and interferon-beta in mesangial cells and glomerular endothelial cells. This review discusses the available evidence on the role of interferon-alpha and interferon-beta in viral nephropathies, in kidney diseases triggered by extrarenal infections, in lupus nephritis, and in other kidney disease entities. Finally, we propose areas of research that may help unravel the roles of type I interferons and interferon-related genes in the renal field.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany.
| | | | | |
Collapse
|
504
|
Abstract
Viruses that infect the nervous system may cause acute, chronic or latent infections. Despite the so-called immunoprivileged status of the nervous system, immunosurveillance plays an important role in the fate of viral infection of the brain. Herpes simplex virus 1 (HSV-1) persists in the nervous system for the life of the host with periodic stress induced reactivation that produces progeny viruses. Prevention of reactivation requires a complex interplay between virus neurons, and immune response. New evidence supports the view that CD8+T cells employing both lytic granule- and IFN-gamma-dependent effectors are essential in setting up and maintaining HSV-1 latency. HSV-1 infection of the nervous system can be seen as a parasitic invasion which leaves the individual at risk for subsequent reactivation and disease. The recent observation that herpes virus latency may confer protection against experimental bacterial infection suggests that unexpected symbiosis may exist between latent viruses and the infected nervous system of its host.
Collapse
Affiliation(s)
- M Lafon
- URA CNRS 3015, unité de neuro-immunologie virale, Institut Pasteur, 25, rue du Dr-Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
505
|
Karlberg H, Lindegren G, Mirazimi A. Comparison of antiviral activity of recombinant and natural interferons against crimean-congo hemorrhagic Fever virus. Open Virol J 2010; 4:38-41. [PMID: 20517491 DOI: 10.2174/1874357901004020038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 12/25/2022] Open
Abstract
As a first line of defence against a virus infection, mammalian cells elicit an innate immune response, characterized by secretion of type I interferons (IFN) and up-regulation of interferon stimulated genes (ISGs). We have previously included Crimean Congo Hemorrhagic Fever Virus (CCHFV) in the list of type I IFN-sensitive viruses. In this in vitro study, we have compared the antiviral activity of two recombinant IFN-alpha preparations (Roferon A and Intron A) with a natural IFN-alpha produced in human leukocytes (Multiferon). Our results clearly demonstrate that these commercially available IFNs have significant antiviral activities against CCHFV. However, we could show that Multiferon inhibits viral replication more efficiently than the two recombinant IFN alpha preparations.
Collapse
Affiliation(s)
- Helen Karlberg
- KCB/Swedish Institute for Infectious Disease Control, SE-172 82 Solna, Sweden
| | | | | |
Collapse
|
506
|
Abstract
TRIM (tripartite motif) proteins are a family of RING (really interesting new gene) domain-containing proteins comprising more than 70 human members, with new members still being described. In addition to their involvement in cell proliferation, differentiation, development, morphogenesis, and apoptosis, roles in immune signaling and antiviral functions are emerging. In response to viral infection, TRIM25 ubiquitinates the N terminus of the viral RNA receptor retinoic acid-inducible gene-I (RIG-I), and this modification is essential for RIG-I to interact with its downstream partner mitochondrial antiviral signaling (MAVS). TRIM25 activity thus leads to activation of the RIG-I signaling pathway, which results in type I interferon production to limit viral replication. Recently, it has been demonstrated that influenza A viruses target TRIM25 and disable its antiviral function, thereby suppressing the host interferon response. This Journal Club article highlights the emerging roles of TRIM proteins in antiviral defense mechanisms and an immune evasion strategy in which influenza viruses target a member of the TRIM family.
Collapse
Affiliation(s)
- Muhammad Munir
- Joint Research and Development Unit for Virology, Immunobiology, and Parasitology of the National Veterinary Institute (SVA) and Swedish University of Agricultural Sciences (SLU), Department of Biomedical Sciences and Veterinary Public Health, Division of Microbiology and Food Safety, SLU, 2B, SE-751 89 Uppsala, Sweden.
| |
Collapse
|
507
|
Sang Y, Rowland RRR, Hesse RA, Blecha F. Differential expression and activity of the porcine type I interferon family. Physiol Genomics 2010; 42:248-58. [PMID: 20406849 DOI: 10.1152/physiolgenomics.00198.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type I interferons (IFNs) are central to innate and adaptive immunity, and many have unique developmental and physiological functions. However, in most species, only two subtypes, IFN-alpha and IFN-beta, have been well studied. Because of the increasing importance of zoonotic viral diseases and the use of pigs to address human research questions, it is important to know the complete repertoire and activity of porcine type I IFNs. Here we show that porcine type I IFNs comprise at least 39 functional genes distributed along draft genomic sequences of chromosomes 1 and 10. These functional IFN genes are classified into 17 IFN-alpha subtypes, 11 IFN-delta subtypes, 7 IFN-omega subtypes, and single-subtype subclasses of IFN-alphaomega, IFN-beta, IFN-epsilon, and IFN-kappa. We found that porcine type I IFNs have diverse expression profiles and antiviral activities against porcine reproductive and respiratory syndrome virus (PRRSV) and vesicular stomatitis virus (VSV), with activity ranging from 0 to >10(5) U.ng(-1).ml(-1). Whereas most IFN-alpha subtypes retained the greatest antiviral activity against both PRRSV and VSV in porcine and MARC-145 cells, some IFN-delta and IFN-omega subtypes, IFN-beta, and IFN-alphaomega differed in their antiviral activity based on target cells and viruses. Several IFNs, including IFN-alpha7/11, IFN-delta2/7, and IFN-omega4, exhibited minimal or no antiviral activity in the tested target cell-virus systems. Thus comparative studies showed that antiviral activity of porcine type I IFNs is virus- and cell-dependent, and IFN-alphas are positively correlated with induction of MxA, an IFN-stimulated gene. Collectively, these data provide fundamental genomic information for porcine type I IFNs, information that is necessary for understanding porcine physiological and antiviral responses.
Collapse
Affiliation(s)
- Yongming Sang
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
508
|
Ali L, Mansoor A, Ahmad N, Siddiqi S, Mazhar K, Muazzam AG, Qamar R, Khan KM. Patient HLA-DRB1* and -DQB1* allele and haplotype association with hepatitis C virus persistence and clearance. J Gen Virol 2010; 91:1931-1938. [PMID: 20392899 DOI: 10.1099/vir.0.018119-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infection is prevalent throughout the world and interferon (IFN)-based treatments are currently the only therapeutic option. However, depending upon variations in their human leukocyte antigen (HLA), some patients do not respond well to IFN therapy. The current study evaluated the HLA allele and haplotype distribution of 204 HCV-seropositive individuals from Islamabad, Pakistan, who were receiving standard IFN therapy. In this cohort, 150 patients (74%) showed a sustained virological response to IFN therapy, whereas 54 (26%) did not. In addition to the HCV patients, 102 unrelated healthy volunteers were used as controls. DNA was isolated from the blood of the patients and controls for HLA-DRB1 and HLA-DQB1 allele typing, whilst plasma was used for HCV detection and genotyping. HLA-DRB1*04 was found to impart a significant protective advantage [Bonferroni-corrected P value (pc)=0.047] against HCV infection. In patients on IFN therapy, HLA-DRB1*11 and -DQB1*0301 (pc=0.044) were found to be associated with viral clearance. In contrast, HLA-DRB1*07 (pc=0.008) individually or in combination with HLA-DQB1*02 was found to be associated with viral persistence. These associations of HLA with HCV persistence or clearance will be beneficial in deciding the therapeutic regimen for Pakistani patients infected with HCV genotype 3a.
Collapse
Affiliation(s)
- Lubna Ali
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Atika Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Nafees Ahmad
- Institute of Developmental Genetics, HelmHoltz Zentrum München, Neuherberg, Germany.,Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Kehkashan Mazhar
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Ambreen G Muazzam
- Institute of Biomedical and Genetic Engineering (IBGE), PO Box No. 2891, Islamabad 44000, Pakistan
| | - Raheel Qamar
- Shifa College of Medicine, Pitras Bokhari Road H-8/4, Islamabad 44000, Pakistan.,COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Khalid M Khan
- Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan
| |
Collapse
|
509
|
Tang Y, Zhong G, Zhu L, Liu X, Shan Y, Feng H, Bu Z, Chen H, Wang C. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. THE JOURNAL OF IMMUNOLOGY 2010; 184:5777-90. [PMID: 20385878 DOI: 10.4049/jimmunol.0903588] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ubiquitin-like protein ISG15, which is robustly induced by IFN or virus, is implicated to inhibit influenza A virus (IAV) in vivo. But the underlying mechanism still remains largely unknown. In this study, we report that Herc5 could catalyze conjugation of ISG15 onto IAV-NS1 protein, the critical virulence factor of IAV. This modification produces two more species, respectively mapped to IAV-NS1 at lysine 20, 41, 217, 219, and 108, 110, and 126. The ISGylated IAV-NS1 fails to form homodimers and inhibits relevant antiviral processes. Knockdown of Herc5 or ISG15 could partially alleviate IFN-beta-induced antiviral activities against IAV, whereas ectopic expression of the Herc5-mediated ISGylation system could distinctly potentiate IFN-beta-induced antiviral effects against IAV. Notably, IAV-NS1s of H5N1 avian IAVs display less ISGylation species than that of IAV-PR8/34 (human H1N1). Consistently, IAV-PR8/34 mutants deprived of IAV-NS1's ISGylation exhibit augmented viral propagation and virulence in both cultured cells and mice. Our study reports the first microbial target of ISGylation and uncovers the direct antiviral function and mechanism of this novel modification.
Collapse
Affiliation(s)
- YuJie Tang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai
| | | | | | | | | | | | | | | | | |
Collapse
|
510
|
Carneiro VL, Lemaire DC, Bendicho MT, Souza SL, Cavalcante LN, Angelo AL, Freire SM, Mendes CMC, Santana N, Lyra LGC, Lyra AC. Natural killer cell receptor and HLA-C gene polymorphisms among patients with hepatitis C: a comparison between sustained virological responders and non-responders. Liver Int 2010; 30:567-73. [PMID: 20456039 DOI: 10.1111/j.1478-3231.2010.02212.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Killer cell immunoglobulin-like receptors (KIR) are involved in the activation/inhibition of NK cells through an interaction with HLA class I molecules on target cells. Our study aimed to evaluate the association between KIR gene polymorphisms and the response of patients with CHC to antiviral therapy. METHODS We compared the frequency of KIR genes, as well as that of compound KIR/HLA-C genotypes, between groups of patients with CHC who presented a sustained virological response (n=66) and who were non-responders to a combination of pegylated or standard interferon and ribavirin (n=101). KIR and HLA-C genotyping were performed using commercial kits. RESULTS We detected a greater frequency of the KIR2DL5 gene among non-responders to antiviral therapy compared with sustained virological responders (68.3 vs. 40.9%) (P<0.001). We used multiple logistic regression analysis to determine the association between therapy response and the presence of KIR2DL5, after a control for potentially confounding variables (genotype, alcohol, fibrosis, gender, age, ethnic background and route of HCV infection). The results confirmed the strong association between the presence of KIR2DL5 and the non-response to antiviral treatment (P=0.001). CONCLUSIONS Host genetic factors may be associated with a non-response to antiviral therapy. KIR2DL5 is a candidate gene involved in immunomodulation associated with non-response to antiviral therapy.
Collapse
Affiliation(s)
- Valdirene Leão Carneiro
- Postgraduate Program in Immunology, Health Sciences Institute (ICS), Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
511
|
Haralambieva IH, Dhiman N, Ovsyannikova IG, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA. 2'-5'-Oligoadenylate synthetase single-nucleotide polymorphisms and haplotypes are associated with variations in immune responses to rubella vaccine. Hum Immunol 2010; 71:383-91. [PMID: 20079393 PMCID: PMC2842477 DOI: 10.1016/j.humimm.2010.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/21/2009] [Accepted: 01/06/2010] [Indexed: 12/25/2022]
Abstract
Interferon-induced antiviral genes are crucial players in innate antiviral defense and potential determinants of immune response heterogeneity. We selected 114 candidate single-nucleotide polymorphisms (SNPs) from 12 antiviral genes using an LD tagSNP selection approach and genotyped them in a cohort of 738 school children immunized with two doses of rubella vaccine. Associations between SNPs/haplotypes and rubella virus-specific immune measures were assessed using linear regression methodologies. We identified 23 significant associations (p < 0.05) between polymorphisms within the 2'-5'-oligoadenylate synthetase (OAS) gene cluster, and rubella virus-specific IL-2, IL-10, IL-6 secretion, and antibody levels. The minor allele variants of three OAS1 SNPs (rs3741981/Ser162Gly, rs1051042/Thr361Arg, rs2660), located in a linkage disequilibrium block of functional importance, were significantly associated with an increase in rubella virus-specific IL-2/T(h)1 response (p
Collapse
Affiliation(s)
- Iana H. Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN, USA
| | - Neelam Dhiman
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN, USA
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN, USA
| | - Robert A. Vierkant
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - V. Shane Pankratz
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert M. Jacobson
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
512
|
Mazumder B, Li X, Barik S. Translation control: a multifaceted regulator of inflammatory response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:3311-9. [PMID: 20304832 PMCID: PMC2860598 DOI: 10.4049/jimmunol.0903778] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxic shock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation.
Collapse
Affiliation(s)
- Barsanjit Mazumder
- Department of Biology, Geology and Environmental Science, Center for Gene Regulation in Health and Disease, College of Science, Cleveland State University, Cleveland, OH 44115
| | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Foundation Lerner Research Institute, Cleveland, OH 44195
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688
| |
Collapse
|
513
|
|
514
|
Skjesol A, Hansen T, Shi CY, Thim HL, Jørgensen JB. Structural and functional studies of STAT1 from Atlantic salmon (Salmo salar). BMC Immunol 2010; 11:17. [PMID: 20353564 PMCID: PMC2855521 DOI: 10.1186/1471-2172-11-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/30/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type I and type II interferons (IFNs) exert their effects mainly through the JAK/STAT pathway, which is presently best described in mammals. STAT1 is involved in signaling pathways induced by both types of IFNs. It has a domain-like structure including an amino-terminus that stabilizes interaction between STAT dimers in a promoter-binding situation, a coiled coil domain facilitating interactions to other proteins, a central DNA-binding domain, a SH2 domain responsible for dimerization of phosphorylated STATs and conserved phosphorylation sites within the carboxy terminus. The latter is also the transcriptional activation domain. RESULTS A salmon (Salmo salar) STAT1 homologue, named ssSTAT1a, has been identified and was shown to be ubiquitously expressed in various cells and tissues. The ssSTAT1a had a domain-like structure with functional motifs that are similar to higher vertebrates. Endogenous STAT1 was shown to be phosphorylated at tyrosine residues both in salmon leukocytes and in TO cells treated with recombinant type I and type II IFNs. Also ectopically expressed ssSTAT1 was phosphorylated in salmon cells upon in vitro stimulation by the IFNs, confirming that the cloned gene was recognized by upstream tyrosine kinases. Treatment with IFNs led to nuclear translocation of STAT1 within one hour. The ability of salmon STAT1 to dimerize was also shown. CONCLUSIONS The structural and functional properties of salmon STAT1 resemble the properties of mammalian STAT1.
Collapse
Affiliation(s)
- Astrid Skjesol
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| | - Tom Hansen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| | - Cheng-Yin Shi
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
- Current address: Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Hanna L Thim
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| |
Collapse
|
515
|
D'agostino PM, Amenta JJ, Reiss CS. IFN-beta-induced alteration of VSV protein phosphorylation in neuronal cells. Viral Immunol 2010; 22:353-69. [PMID: 19951173 DOI: 10.1089/vim.2009.0057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vesicular stomatitis virus (VSV) replication is highly sensitive to interferon (IFN)-induced antiviral responses. VSV infection of well-known cell lines pretreated with IFN-beta results in a 10(4)-fold reduction in the release of infectious particles, with a concomitant abrogation in viral transcript and/or protein levels. However, in cell lines of neuronal lineage only a threefold reduction in viral transcript and protein levels was observed, despite the same 10(4)-fold reduction in released infectious virions, suggesting an assembly defect. Examination of VSV matrix (M) protein ubiquitination yielded no differences between mock- and IFN-beta-treated neuronal cells. Further analysis of potential post-translational modification events, by scintillation and two-dimensional electrophoretic methods, revealed IFN-beta-induced alterations in M protein and phosphoprotein (P) phosphorylation. Hypophosphorylated P protein was demonstrated by reduced (32)P counts, normalized by (35)S-cysteine/methionine incorporation, and by a shift in isoelectric focusing. Hypophosphorylation of VSV P protein was found to occur in neuronal cell lysates, but not within budded virions from the same IFN-beta-treated cells. In contrast, hyperphosphorylation of VSV M protein was observed in both cell lysates and viral particles from IFN-beta-treated neuronal cells. Hyperphosphorylated M protein was demonstrated by increased (32)P counts relative to (35)S-cysteine/methionine normalization, and by altered isoelectric focusing in protein populations from cell and viral lysates. Hyperphosphorylated VSV M protein was found to inhibit its association with VSV nucleocapsid, suggesting a possible mechanism for type I IFN-mediated misassembly through disruption of the interactions between ribonucleoprotein cores, and hyperphosphorylated M protein bound to the plasma membrane inner leaflet.
Collapse
Affiliation(s)
- Paul M D'agostino
- Biology Department, New York University, New York, New York 10003-6688, USA
| | | | | |
Collapse
|
516
|
Xirakia C, Koltsida O, Stavropoulos A, Thanassopoulou A, Aidinis V, Sideras P, Andreakos E. Toll-like receptor 7-triggered immune response in the lung mediates acute and long-lasting suppression of experimental asthma. Am J Respir Crit Care Med 2010; 181:1207-16. [PMID: 20224068 DOI: 10.1164/rccm.200908-1255oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Toll-like receptor (TLR) 7/8 ligands are promising candidate drugs for the treatment of allergic asthma and rhinitis. Although their clinical application depends on the development of strategies for topical administration to the lung, this has not been explored in preclinical disease models. OBJECTIVES To examine the therapeutic effectiveness, persistence of effect, and mode of action of intranasal TLR7 ligand administration in allergic airway disease. METHODS Wild-type, IFN-alpha receptor (IFN-alphaR)(-/-), IFN-gamma(-/-), CD8(-/-), TLR7(-/-), and radiation-induced chimeric mice deficient in hematopoietic TLR7 expression were subjected to an established model of allergic airway disease. R-848, a specific TLR7 agonist in mice, was administered prophylactically or therapeutically and effects of treatment on helper T-cell type 2 (Th2) responses, eosinophilia, goblet cell metaplasia, and airway hyperresponsiveness were assessed. MEASUREMENTS AND MAIN RESULTS Intranasal R-848 administration induced a transient immune response characterized by type I interferon production and infiltration of innate immune cells into the lung. This conferred long-term suppression of allergic airway disease via two complementary molecular processes, one mediated by type I interferons and providing acute protection by directly inhibiting effector Th2 responses, and one mediated by immunoregulatory CD8(+) T cells and inducing long-lasting protection by suppressing Th2 responses in an IFN-gamma-dependent manner. CONCLUSIONS Intranasal R-848 administration is an effective treatment for allergic airway disease. It hijacks an otherwise proinflammatory immune process triggered by TLR7 to mediate long-lasting disease suppression. This provides important insight into the efficacy and mode of action of TLR7 ligands in murine models of allergic airway disease and paves the way for their clinical application in humans.
Collapse
Affiliation(s)
- Charoula Xirakia
- Center for Immunology and Transplantation, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
517
|
Stoddart CA, Keir ME, McCune JM. IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog 2010; 6:e1000766. [PMID: 20174557 PMCID: PMC2824759 DOI: 10.1371/journal.ppat.1000766] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/13/2010] [Indexed: 01/12/2023] Open
Abstract
Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons) are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3(-)CD4(+)CD8(-)CXCR4(+)CCR5(-) intrathymic T-cell progenitors (ITTP) and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-alpha (IFN-alpha) in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-alpha in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-alpha production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression.
Collapse
Affiliation(s)
- Cheryl A Stoddart
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
518
|
Van de Walle GR, Cox E, Nauwynck H, Favoreel HW. The role of dendritic cells in alphaherpesvirus infections: archetypes and paradigms. Rev Med Virol 2010; 19:338-58. [PMID: 19750563 DOI: 10.1002/rmv.628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dendritic cells (DCs) play a critical role in orchestrating both innate and adaptive components of the immune system and are therefore of pivotal importance in the initiation of immune responses to control and eliminate viral infections. A major focus of this review is to give an overview on the recent findings that point out the importance of DCs in controlling alphaherpesvirus infections, but also indicate that these viruses have evolved several strategies to inhibit and/or exploit DC functions to delay or escape elimination by the immune system. In addition, we point out the common features and interspecies differences between DCs from man and animal, and discuss the potential use of animal alphaherpesvirus homologues to gain further insights into the interaction between alphaherpesviruses and DCs in their natural virus-host environment. Finally, recent knowledge on the potential of alphaherpesviruses as vectors for DC stimulation and their use for immunotherapy is presented.
Collapse
Affiliation(s)
- Gerlinde R Van de Walle
- Faculty of Veterinary Medicine, Department of Virology, Parasitology, and Immunology, Ghent University, Salisburylaan, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
519
|
Li S, Zhao B, Wang F, Wang M, Xie S, Wang S, Han C, Zhu L, Zhou W. Yak interferon-alpha loaded solid lipid nanoparticles for controlled release. Res Vet Sci 2010; 88:148-53. [DOI: 10.1016/j.rvsc.2009.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 05/12/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|
520
|
Monsurrò V, Beghelli S, Wang R, Barbi S, Coin S, Di Pasquale G, Bersani S, Castellucci M, Sorio C, Eleuteri S, Worschech A, Chiorini JA, Pederzoli P, Alter H, Marincola FM, Scarpa A. Anti-viral state segregates two molecular phenotypes of pancreatic adenocarcinoma: potential relevance for adenoviral gene therapy. J Transl Med 2010; 8:10. [PMID: 20113473 PMCID: PMC2845551 DOI: 10.1186/1479-5876-8-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/29/2010] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer mortality for which novel gene therapy approaches relying on tumor-tropic adenoviruses are being tested. Methods We obtained the global transcriptional profiling of primary PDAC using RNA from eight xenografted primary PDAC, three primary PDAC bulk tissues, three chronic pancreatitis and three normal pancreatic tissues. The Affymetrix GeneChip HG-U133A was used. The results of the expression profiles were validated applying immunohistochemical and western blot analysis on a set of 34 primary PDAC and 10 established PDAC cell lines. Permissivity to viral vectors used for gene therapy, Adenovirus 5 and Adeno-Associated Viruses 5 and 6, was assessed on PDAC cell lines. Results The analysis of the expression profiles allowed the identification of two clearly distinguishable phenotypes according to the expression of interferon-stimulated genes. The two phenotypes could be readily recognized by immunohistochemical detection of the Myxovirus-resistance A protein, whose expression reflects the activation of interferon dependent pathways. The two molecular phenotypes discovered in primary carcinomas were also observed among established pancreatic adenocarcinoma cell lines, suggesting that these phenotypes are an intrinsic characteristic of cancer cells independent of their interaction with the host's microenvironment. The two pancreatic cancer phenotypes are characterized by different permissivity to viral vectors used for gene therapy, as cell lines expressing interferon stimulated genes resisted to Adenovirus 5 mediated lysis in vitro. Similar results were observed when cells were transduced with Adeno-Associated Viruses 5 and 6. Conclusion Our study identified two molecular phenotypes of pancreatic cancer, characterized by a differential expression of interferon-stimulated genes and easily recognized by the expression of the Myxovirus-resistance A protein. We suggest that the detection of these two phenotypes might help the selection of patients enrolled in virally-mediated gene therapy trials.
Collapse
Affiliation(s)
- Vladia Monsurrò
- Department of Pathology, University of Verona Medical School, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
521
|
Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene. PLoS One 2010; 5:e8569. [PMID: 20052289 PMCID: PMC2797294 DOI: 10.1371/journal.pone.0008569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/11/2009] [Indexed: 01/07/2023] Open
Abstract
Background Increased levels of interferon (IFN)-inducible IFI16 protein (encoded by the IFI16 gene located at 1q22) in human normal prostate epithelial cells and diploid fibroblasts (HDFs) are associated with the onset of cellular senescence. However, the molecular mechanisms by which the IFI16 protein contributes to cellular senescence-associated cell growth arrest remain to be elucidated. Here, we report that increased levels of IFI16 protein in normal HDFs and in HeLa cells negatively regulate the expression of human telomerase reverse transcriptase (hTERT) gene. Methodology/Principal Findings We optimized conditions for real-time PCR, immunoblotting, and telomere repeat amplification protocol (TRAP) assays to detect relatively low levels of hTERT mRNA, protein, and telomerase activity that are found in HDFs. Using the optimized conditions, we report that treatment of HDFs with inhibitors of cell cycle progression, such as aphidicolin or CGK1026, which resulted in reduced steady-state levels of IFI16 mRNA and protein, was associated with increases in hTERT mRNA and protein levels and telomerase activity. In contrast, knockdown of IFI16 expression in cells increased the expression of c-Myc, a positive regulator of hTERT expression. Additionally, over-expression of IFI16 protein in cells inhibited the c-Myc-mediated stimulation of the activity of hTERT-luc-reporter and reduced the steady-state levels of c-Myc and hTERT. Conclusions/Significance These data demonstrated that increased levels of IFI16 protein in HDFs down-regulate the expression of hTERT gene. Our observations will serve basis to understand how increased cellular levels of the IFI16 protein may contribute to certain aging-dependent diseases.
Collapse
|
522
|
Vreede FT, Chan AY, Sharps J, Fodor E. Mechanisms and functional implications of the degradation of host RNA polymerase II in influenza virus infected cells. Virology 2010; 396:125-34. [PMID: 19875144 PMCID: PMC2791857 DOI: 10.1016/j.virol.2009.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/09/2009] [Accepted: 10/05/2009] [Indexed: 11/30/2022]
Abstract
Influenza viruses induce a host shut off mechanism leading to the general inhibition of host gene expression in infected cells. Here, we report that the large subunit of host RNA polymerase II (Pol II) is degraded in infected cells and propose that this degradation is mediated by the viral RNA polymerase that associates with Pol II. We detect increased ubiquitylation of Pol II in infected cells and upon the expression of the viral RNA polymerase suggesting that the proteasome pathway plays a role in Pol II degradation. Furthermore, we find that expression of the viral RNA polymerase results in the inhibition of Pol II transcription. We propose that Pol II inhibition and degradation in influenza virus infected cells could represent a viral strategy to evade host antiviral defense mechanisms. Our results also suggest a mechanism for the temporal regulation of viral mRNA synthesis.
Collapse
Affiliation(s)
| | | | | | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
523
|
Ehrhardt C, Seyer R, Hrincius ER, Eierhoff T, Wolff T, Ludwig S. Interplay between influenza A virus and the innate immune signaling. Microbes Infect 2010; 12:81-7. [PMID: 19782761 DOI: 10.1016/j.micinf.2009.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/15/2009] [Indexed: 02/07/2023]
Abstract
Pathogens such as influenza A viruses (IAV) have to overcome a number of barriers defined and maintained by the host, to successfully establish an infection. One of the initial barriers is collectively characterized as the innate immune system. This is a broad anti-pathogen defense program that ranges from the action of natural killer cells to the induction of an antiviral cytokine response. In this article we will focus on new developments and discoveries concerning the interaction of IAV with the cellular innate immune signaling. We discuss new mechanisms of interference of IAV with the pathogen recognition receptor RIG-I and the type I IFN antagonist NS1 in the background of already known and established concepts. Further we summarize progress related to recently identified IFN induced proteins and the role of RNA interference in the context of IAV infection.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), Center for Molecular Biology of Inflammation (ZMBE), Westfaelische-Wilhelms-University, Muenster, Germany
| | | | | | | | | | | |
Collapse
|
524
|
Rivas C, Aaronson SA, Munoz-Fontela C. Dual Role of p53 in Innate Antiviral Immunity. Viruses 2010; 2:298-313. [PMID: 21994612 PMCID: PMC3185551 DOI: 10.3390/v2010298] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor p53 is widely known as 'the guardian of the genome' due to its ability to prevent the emergence of transformed cells by the induction of cell cycle arrest and apoptosis. However, recent studies indicate that p53 is also a direct transcriptional target of type I interferons (IFNs) and thus, it is activated by these cytokines upon viral infection. p53 has been shown to contribute to virus-induced apoptosis, therefore dampening the ability of a wide range of viruses to replicate and spread. Interestingly, recent studies also indicate that several IFN-inducible genes such as interferon regulatory factor 9 (IRF9), IRF5, IFN-stimulated gene 15 (ISG15) and toll-like receptor 3 (TLR3) are in fact, p53 direct transcriptional targets. These findings indicate that p53 may play a key role in antiviral innate immunity by both inducing apoptosis in response to viral infection, and enforcing the type I IFN response, and provide a new insight into the evolutionary reasons why many viruses encode p53 antagonistic proteins.
Collapse
Affiliation(s)
- Carmen Rivas
- Centro Nacional de Biotecnologia, CSIC, Darwin 3, Campus Universidad Autónoma, Madrid 28049, Spain; E-Mail: (C.R.)
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| | - Cesar Munoz-Fontela
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| |
Collapse
|
525
|
Intracellular staining for analysis of the expression and phosphorylation of signal transducers and activators of transcription (STATs) in NK cells. Methods Mol Biol 2010; 612:159-75. [PMID: 20033640 DOI: 10.1007/978-1-60761-362-6_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cytokines stimulate biological responses by activating intracellular signaling pathways. We have been adapting flow cytometric techniques to measure the levels of expression and activation of signaling molecules within mixed populations containing NK cells and to characterize their differences within NK cell subpopulations. Approaches for evaluating the total levels of the signal transducers and activators of transcription STAT1 and STAT4, of STAT1 in cells expressing IFNgamma, and of the type 1 interferon (type 1 IFN) activation by phosphorylation, i.e., induction of pSTAT1 and pSTAT4, have been developed. The results of experiments using these techniques have demonstrated that an unusual feature of NK cells is high basal expression of STAT4 but reduced STAT1 levels. The condition predisposes for pSTAT4 activation by type 1 IFNs. The work has also shown, however, that total STAT1 levels are induced during viral infections as a result of IFN exposure, and that this change acts to promote the activation of STAT1 but limit both the activation of STAT4 and IFNgamma expression. The intracellular staining approaches used for the studies described here have utility in characterizing other mechanisms regulating cytokine-mediated signaling, and defining additional pathways shaping cellular responses to cytokines.
Collapse
|
526
|
Oberbarnscheidt MH, Obhrai JS, Williams AL, Rothstein DM, Shlomchik WD, Chalasani G, Lakkis FG. Type I interferons are not critical for skin allograft rejection or the generation of donor-specific CD8+ memory T cells. Am J Transplant 2010; 10:162-7. [PMID: 19951284 PMCID: PMC2806930 DOI: 10.1111/j.1600-6143.2009.02871.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Type I interferons (IFN-I) link innate to adaptive immunity in microbial infection, autoimmune disease and tumor immunity. It is not known whether IFN-I have an equally central role in alloimmunity. Here we tested this possibility by studying skin allograft survival and donor-specific CD8+ T-cell responses in mice that lack the IFN-I receptor (IFN-IR-/-). We found that IFN-IR-/- mice reject fully allogeneic wild-type skin grafts at the same rate as wild-type recipients. Similarly, allograft rejection was not delayed if IFN-IR-/- male skin was transplanted to syngeneic IFN-IR-/- female mice. Quantitation of the male (H-Y)-specific CD8+ T-cell response in these mice revealed normal generation of donor-specific CD8+ effector T cells but fourfold reduction in CD8+ memory T cells. Memory CD8+ T cells generated in the absence of IFN-IR had normal phenotype and recall function, assessed by ex vivo cytokine production and the ability of IFN-IR-/- mice to mount second set rejection. Finally, these memory T cells were maintained at a constant number despite their inability to respond to IFN-1. Our findings indicate that IFN-I cytokines are not critical for acute allograft rejection or for the expansion and differentiation of donor-specific CD8+ T cells into long-lived, functional memory T cells.
Collapse
Affiliation(s)
- Martin H. Oberbarnscheidt
- Starzl Transplantation Institute, Departments of Surgery, Immunology, and Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jagdeep S. Obhrai
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR 97239
| | - Amanda L. Williams
- Starzl Transplantation Institute, Departments of Surgery, Immunology, and Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - David M. Rothstein
- Starzl Transplantation Institute, Departments of Surgery, Immunology, and Medicine, University of Pittsburgh, Pittsburgh, PA 15261,Departments of Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Warren D. Shlomchik
- Starzl Transplantation Institute, Departments of Surgery, Immunology, and Medicine, University of Pittsburgh, Pittsburgh, PA 15261,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261,Departments of Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Fadi G. Lakkis
- Starzl Transplantation Institute, Departments of Surgery, Immunology, and Medicine, University of Pittsburgh, Pittsburgh, PA 15261,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261,Address correspondence to: Fadi G. Lakkis, MD, Starzl Transplantation Institute, BST-W1548, 200 Lothrop St., Pittsburgh, PA 15261;
| |
Collapse
|
527
|
Abstract
The capacity of varicella zoster virus (VZV) to cause varicella (chickenpox) relies upon multiple steps, beginning with inoculation of the host at mucosal sites with infectious virus in respiratory droplets. Despite the presence of a powerful immune defense system, this virus is able to disseminate from the site of initial infection to multiple sites, resulting in the emergence of distinctive cutaneous vesiculopustular lesions. Most recently, it has been proposed that the steps leading to cutaneous infection include VZV infecting human tonsillar CD4(+) T cells that express skin homing markers that allow them to transport VZV directly from the lymph node to the skin during the primary viremia. It has also been proposed that dendritic cells (DC) of the respiratory mucosa may be among the first cells to encounter VZV and these cells may transport virus to the draining lymph node. These various virus-host cell interactions would all need to occur in the face of an intact host immune response for the virus to successfully cause disease. Significantly, following primary exposure to VZV, there is a prolonged incubation period before emergence of skin lesions, during which time the adaptive immune response is delayed. For these reasons, it has been proposed that VZV must encode functions which benefit the virus by evading the immune response. This chapter will review the diverse array of immunomodulatory mechanisms identified to date that VZV has evolved to at least transiently limit immune recognition.
Collapse
|
528
|
Abstract
Dengue virus is sensed in mammalian cells by Toll-like receptors and DExD/H box RNA helicases, triggering a Type 1 interferon response. Interferon acts upon infected and noninfected cells by stimulating the JAK/STAT signaling pathway resulting in the activation of interferon stimulated genes that lead cells toward the establishment of an antiviral response. The recognition of the importance of this rapid protective response should come with the realization that dengue virus would circumvent the interferon response to propagate in the host. There is recent, mounting evidence for mechanisms encoded by the dengue virus that weaken interferon signaling. Nonstructural proteins expressed separately or in replicon vectors block phosphorylation and down-regulate expression of major components of the JAK/STAT pathway, causing reduced activation of gene expression in response to IFNalpha/beta interferon. As our understanding of viral-host interaction increases, opportunities for improved biological models and therapeutics discovery arise.
Collapse
|
529
|
Takatsuki H, Taguchi F, Nomura R, Kashiwazaki H, Watanabe M, Ikehara Y, Watanabe R. Cytopathy of an infiltrating monocyte lineage during the early phase of infection with murinecoronavirus in the brain. Neuropathology 2009; 30:361-71. [PMID: 20051016 PMCID: PMC7194124 DOI: 10.1111/j.1440-1789.2009.01082.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Viral spread during the early stages after infection was compared between a highly neurovirulent mouse hepatitis virus (MHV), JHMV cl-2 strain (cl-2), and its low-virulent mutant, soluble-receptor-resistant (srr)7. The infection of cells with srr7 (soluble-receptor-resistant mutant 7) is dependent on a known MHV receptor (MHVR), carcinoembryonic cell adhesion molecule 1a, whereas cl-2 shows MHVR-independent infection. Initial viral antigens were detected between 12 and 24 h post-inoculation (p.i) in the infiltrating cells that appeared in the subarachnoidal space of mouse brains infected with viruses. There were no significant differences in the intensity or spread of viral antigens in the inflammatory cells between the two viruses. However, 48 h after infection with cl-2, viral antigen-positive cells in the grey matter with the shape of neurons, which do not express MHVR, were detected, while srr7 infection was observed primarily in the white matter. Some of the viral antigen-positive inflammatory cells found in the subarachnoidal space during the early phase of infection reacted with anti-F4/80 or anti-CD11b monoclonal antibodies. Syncytial giant cells (SGCs) expressing viral and CD11b antigens were also detected among these inflammatory cells. These antigen-positive cells appeared in the subarachnoidal space prior to viral antigen spread into the brain parenchyma, indicating that viral encephalitis starts with the infection of infiltrating monocytes which express MHVR. Furthermore, the observation indicates that viral infection has cytopathic effects on the monocyte lineage, which plays a critical role in innate immunity, leading to the rapid spread of viruses during the early stage of infection.
Collapse
Affiliation(s)
- Hanae Takatsuki
- Department of Bioinformatics, Soka University, Hachioji, Tokyo
| | | | | | | | | | | | | |
Collapse
|
530
|
Fabricius D, Neubauer M, Mandel B, Schütz C, Viardot A, Vollmer A, Jahrsdörfer B, Debatin KM. Prostaglandin E2 Inhibits IFN-α Secretion and Th1 Costimulation by Human Plasmacytoid Dendritic Cells via E-Prostanoid 2 and E-Prostanoid 4 Receptor Engagement. THE JOURNAL OF IMMUNOLOGY 2009; 184:677-84. [DOI: 10.4049/jimmunol.0902028] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
531
|
Baranek T, Zucchini N, Dalod M. Plasmacytoid dendritic cells and the control of herpesvirus infections. Viruses 2009; 1:383-419. [PMID: 21994554 PMCID: PMC3185500 DOI: 10.3390/v1030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/01/2009] [Accepted: 10/08/2009] [Indexed: 01/04/2023] Open
Abstract
Type-I interferons (IFN-I) are cytokines essential for vertebrate antiviral defense, including against herpesviruses. IFN-I have potent direct antiviral activities and also mediate a multiplicity of immunoregulatory functions, which can either promote or dampen antiviral adaptive immune responses. Plasmacytoid dendritic cells (pDCs) are the professional producers of IFN-I in response to many viruses, including all of the herpesviruses tested. There is strong evidence that pDCs could play a major role in the initial orchestration of both innate and adaptive antiviral immune responses. Depending on their activation pattern, pDC responses may be either protective or detrimental to the host. Here, we summarize and discuss current knowledge regarding pDC implication in the physiopathology of mouse and human herpesvirus infections, and we discuss how pDC functions could be manipulated in immunotherapeutic settings to promote health over disease.
Collapse
Affiliation(s)
- Thomas Baranek
- Université de la Méditerranée, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France; E-Mails: (T.B.); (N.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
| | - Nicolas Zucchini
- Université de la Méditerranée, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France; E-Mails: (T.B.); (N.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
| | - Marc Dalod
- Université de la Méditerranée, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France; E-Mails: (T.B.); (N.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Centre d’Immunologie de Marseille-Luminy, Parc Scientifique & Technologique de Luminy, Case 906, F13288 Marseille, Cedex 09, France
| |
Collapse
|
532
|
Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation. J Virol 2009; 84:1574-84. [PMID: 19923190 DOI: 10.1128/jvi.01326-09] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection of swine leads to a serious disease characterized by a delayed and defective adaptive immune response. It is hypothesized that a suboptimal innate immune response is responsible for the disease pathogenesis. In the study presented here we tested this hypothesis and identified several nonstructural proteins (NSPs) with innate immune evasion properties encoded by the PRRS viral genome. Four of the total ten PRRSV NSPs tested were found to have strong to moderate inhibitory effects on beta interferon (IFN-beta) promoter activation. The strongest inhibitory effect was exhibited by NSP1 followed by, NSP2, NSP11, and NSP4. We focused on NSP1alpha and NSP1beta (self-cleavage products of NSP1 during virus infection) and NSP11, three NSPs with strong inhibitory activity. All of three proteins, when expressed stably in cell lines, strongly inhibited double-stranded RNA (dsRNA) signaling pathways. NSP1beta was found to inhibit both IFN regulatory factor 3 (IRF3)- and NF-kappaB-dependent gene induction by dsRNA and Sendai virus. Mechanistically, the dsRNA-induced phosphorylation and nuclear translocation of IRF3 were strongly inhibited by NSP1beta. Moreover, when tested in a porcine myelomonocytic cell line, NSP1beta inhibited Sendai virus-mediated activation of porcine IFN-beta promoter activity. We propose that this NSP1beta-mediated subversion of the host innate immune response plays an important role in PRRSV pathogenesis.
Collapse
|
533
|
Abrahamyan A, Nagy É, Golovan SP. Human H1 promoter expressed short hairpin RNAs (shRNAs) suppress avian influenza virus replication in chicken CH-SAH and canine MDCK cells. Antiviral Res 2009; 84:159-67. [DOI: 10.1016/j.antiviral.2009.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 08/23/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022]
|
534
|
Rauch A, Gaudieri S, Thio C, Bochud PY. Host genetic determinants of spontaneous hepatitis C clearance. Pharmacogenomics 2009; 10:1819-37. [DOI: 10.2217/pgs.09.121] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
535
|
Hart T, Zhao A, Garg A, Bolusani S, Marcotte EM. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays. PLoS One 2009; 4:e7088. [PMID: 19862318 PMCID: PMC2760726 DOI: 10.1371/journal.pone.0007088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/13/2009] [Indexed: 11/21/2022] Open
Abstract
Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFκB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFα, and interferon), and we demonstrate scalability by printing a chip with ∼4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.
Collapse
Affiliation(s)
- Traver Hart
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Alice Zhao
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Ankit Garg
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Swetha Bolusani
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
536
|
Bauer S, Müller T, Hamm S. Pattern recognition by Toll-like receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:15-34. [PMID: 19799109 DOI: 10.1007/978-1-4419-0901-5_2] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian immune system senses pathogens through pattern recognition receptors and responds with activation. The Toll-like receptors (TLRs) that are expressed on antigen presenting cells such as macrophages and dendritic cells play a critical role in this process. Their signaling activates these cells and leads to an innate immune response with subsequent initiation of an adaptive immune response. Each TLR recognizes specific structures and induces common inflammatory cytokines. However, some TLRs have specific functions, such as induction of Type I interferons. The TLR dependent cytokine response is reflected in the induction of common and specific signaling pathways leading to adequate immune responses for different pathogens. Some TLRs are also activated by endogenous structures that are released during infection, but these structures may promote or sustain autoimmune diseases under certain circumstances. In addition, TLRs directly shape adaptive immune responses of T and B cells and play an important role in homeostasis of gut epithelium and lung repair after injury.
Collapse
Affiliation(s)
- Stefan Bauer
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | | | | |
Collapse
|
537
|
Dauber B, Wolff T. Activation of the Antiviral Kinase PKR and Viral Countermeasures. Viruses 2009; 1:523-44. [PMID: 21994559 PMCID: PMC3185532 DOI: 10.3390/v1030523] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022] Open
Abstract
The interferon-induced double-stranded (ds)RNA-dependent protein kinase (PKR) limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5′-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology & Immunology, University of Alberta, 632 Heritage Medical Research Center, Edmonton, AB, T6G 2S2, Canada
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| | - Thorsten Wolff
- P15, Robert Koch-Institute/Nordufer 20, 13353 Berlin, Germany
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| |
Collapse
|
538
|
Conrady CD, Drevets DA, Carr DJJ. Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 2009; 220:1-9. [PMID: 19819030 DOI: 10.1016/j.jneuroim.2009.09.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) can induce a robust immune response initially thru the activation of pattern recognition receptors and subsequent type I interferon production that then shapes, along with other innate immune components, the adaptive immune response to the insult. While this response is necessary to quell virus replication, drive the pathogen into a "latent" state, and likely hinder viral reactivation, collateral damage can ensue with demonstrable cell death and foci of tissue pathology in the central nervous system (CNS) as a result of the release of inflammatory mediators including reactive oxygen species. Although rare, HSV-1 is the leading cause of frank sporadic encephalitis that, if left untreated, can result in death. A greater understanding of the contribution of resident glial cells and infiltrating leukocytes within the CNS in response to HSV-1 invasion is necessary to identify candidate molecules as targets for therapeutic intervention to reduce unwarranted inflammation coinciding with the maintenance of the anti-viral state.
Collapse
Affiliation(s)
- Christopher D Conrady
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | | | | |
Collapse
|
539
|
RNase L mediated protection from virus induced demyelination. PLoS Pathog 2009; 5:e1000602. [PMID: 19798426 PMCID: PMC2745574 DOI: 10.1371/journal.ppat.1000602] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/31/2009] [Indexed: 12/29/2022] Open
Abstract
IFN-α/β plays a critical role in limiting viral spread, restricting viral tropism and protecting mice from neurotropic coronavirus infection. However, the IFN-α/β dependent mechanisms underlying innate anti-viral functions within the CNS are poorly understood. The role of RNase L in viral encephalomyelitis was explored based on its functions in inhibiting translation, inducing apoptosis, and propagating the IFN-α/β pathway through RNA degradation intermediates. Infection of RNase L deficient (RL−/−) mice with a sub-lethal, demyelinating mouse hepatitis virus variant revealed that the majority of mice succumbed to infection by day 12 p.i. However, RNase L deficiency did not affect overall control of infectious virus, or diminish IFN-α/β expression in the CNS. Furthermore, increased morbidity and mortality could not be attributed to altered proinflammatory signals or composition of cells infiltrating the CNS. The unique phenotype of infected RL−/− mice was rather manifested in earlier onset and increased severity of demyelination and axonal damage in brain stem and spinal cord without evidence for enhanced neuronal infection. Increased tissue damage coincided with sustained brain stem infection, foci of microglia infection in grey matter, and increased apoptotic cells. These data demonstrate a novel protective role for RNase L in viral induced CNS encephalomyelitis, which is not reflected in overall viral control or propagation of IFN-α/β mediated signals. Protective function is rather associated with cell type specific and regional restriction of viral replication in grey matter and ameliorated neurodegeneration and demyelination. Initial spread of viruses is controlled by type I interferon induced antiviral molecules. Early intervention with viral replication is especially critical in central nervous system infections to reduce loss of non-renewable cells and mitigate immune pathology. One of the best characterized anti-viral mechanisms is mediated by ribonuclease L (RNase L). RNase L exerts activity at multiple levels, including degradation of viral and host RNA, induction of apoptosis, and propagation of the IFN-α/β pathway. Recent studies suggest that RNase L antiviral activity is dependent on the virus, as well as the cell type and tissue infected. This study demonstrates that RNase L protects mice infected with a sub-lethal, demyelinating neurotropic coronavirus by ameliorating encephalitis and morbidity, albeit without affecting control of infectious virus or IFN-α/β expression. RNase L specifically protected the brain stem from sustained infection and prevented spread of virus to microglia/macrophages located in spinal cord grey matter. The subtle regional alteration in tropism in the absence of RNase L coincided with increased apoptotic cells and earlier onset as well as increased severity of axonal damage and demyelination. The results demonstrate how subtle regional alterations in viral tropism within the CNS may severely affect the balance between neuroprotection and neurotoxicity mediated by microglia/macrophages.
Collapse
|
540
|
Abstract
Understanding the mechanisms by which herpes simplex virus (HSV) evades host immune defenses is critical to defining new approaches for therapy and prevention. We performed transcriptional analyses and immunocytochemistry on sequential biopsy specimens of lesional tissue from the acute through the posthealing phases of recurrent mucocutaneous HSV-2 infection. Histological analysis of these biopsy specimens during the acute stage revealed a massive infiltration of T cells, as well as monocytes/macrophages, a large amount of myeloid, and a small number of plasmacytoid dendritic cells, in the dermis of these lesional biopsy specimens. Type I interferon (IFN-beta and IFN-alpha) was poorly expressed and gamma IFN (IFN-gamma) potently induced during time periods in which we detected abundant amounts of HSV-2 antigens and HSV-2 RNA. IFN-stimulated genes were also markedly upregulated, with expression patterns that more closely matched those in primary human fibroblasts treated by IFN-gamma than those in fibroblasts treated by IFN-beta. Transcriptional arrays of the same lesional biopsy sites during healing and at 2 and 4 weeks posthealing revealed no HSV nucleic acids or antigen; however, there was persistent expression of IFN-gamma, with very low levels of IFN-beta and IFN-alpha. The findings of extremely low levels of IFN-alpha and IFN-beta, despite the presence of a large number of cells capable of synthesizing these substances, suggest a potent alteration in host defense during HSV-2 infection in vivo. HSV-2's blockade of the innate immune system's production of type I IFN may be a major factor in allowing the virus to break through host mucosal defenses.
Collapse
|
541
|
Worschech A, Haddad D, Stroncek DF, Wang E, Marincola FM, Szalay AA. The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother 2009; 58:1355-62. [PMID: 19266198 PMCID: PMC3404612 DOI: 10.1007/s00262-009-0686-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/09/2009] [Indexed: 12/20/2022]
Abstract
The concept of using replicating oncolytic viruses in cancer therapy dates to the beginning of the twentieth century. However, in the last few years, an increasing number of pre-clinical and clinical trials have been carried out with promising preliminarily results. Novel, indeed, is the suggestion that viral oncolytic therapy might not operate exclusively through an oncolysis-mediated process but additionally requires the "assistance" of the host's immune system. Originally, the host's immune response was believed to play a predominant obstructive role against viral replication, hence limiting the anti-tumor efficacy of viral vectors. Recent data, however, suggest that the immune response may also play a key role in promoting tumor destruction in association with the oncolytic process. In fact, immune effector pathways activated during oncolytic virus-induced tumor rejection seem to follow a similar pattern to those observed when the broader phenomenon of immune-mediated tissue-specific rejection occurs in other immune-related pathologies. We recently formulated the "Immunologic Constant of Rejection" hypothesis, emphasizing commonalties in transcriptional patterns observed when tissue-destruction occurs: whether with a favorable outcome, such as in tumor rejection and pathogen clearance; or a destructive one, such as in allograft rejection or autoimmunity. Here, we propose that a similar mechanism induces clearance of virally infected tumors and that such a mechanism is primarily dependent on innate immune functions.
Collapse
Affiliation(s)
- Andrea Worschech
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill St., Suite 310, San Diego, CA 92109 USA
- Institute for Biochemistry, Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Center for Human Immunology (CHI), Clinical Center, National Institutes of Health (NIH), Bldg 10, R1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - D. Haddad
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill St., Suite 310, San Diego, CA 92109 USA
- Institute for Biochemistry, Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 USA
| | - D. F. Stroncek
- Cell Therapy Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD 20892 USA
| | - E. Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Center for Human Immunology (CHI), Clinical Center, National Institutes of Health (NIH), Bldg 10, R1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Center for Human Immunology (CHI), Clinical Center, National Institutes of Health (NIH), Bldg 10, R1C711, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Aladar A. Szalay
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill St., Suite 310, San Diego, CA 92109 USA
- Institute for Biochemistry, Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
542
|
Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 2009; 83:11330-40. [PMID: 19710144 DOI: 10.1128/jvi.00763-09] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCVM) nucleoprotein (NP) counteracts the host type I interferon (IFN) response by inhibiting activation of the IFN regulatory factor 3 (IRF3). In this study, we have mapped the regions and specific amino acid residues within NP involved in its anti-IFN activity. We identified a region spanning residues 382 to 386 as playing a critical role in the IFN-counteracting activity of NP. Alanine substitutions at several positions within this region resulted in NP mutants that lacked the IFN-counteracting activity but retained their functions in virus RNA synthesis and assembly of infectious particles. We used reverse genetics to rescue a recombinant LCMV strain carrying mutation D382A in its NP [rLCMV/NP*(D382A)]. Compared to wild-type (WT) LCMV, rLCMV/NP*(D382A) exhibited a higher level of attenuation in IFN-competent than IFN-deficient cells. In addition, A549 cells infected with rLCMV/NP*(D382A), but not with WT LCMV, produced IFN and failed to rescue replication of the IFN-sensitive Newcastle disease virus.
Collapse
|
543
|
Venezuelan equine encephalitis virus disrupts STAT1 signaling by distinct mechanisms independent of host shutoff. J Virol 2009; 83:10571-81. [PMID: 19656875 DOI: 10.1128/jvi.01041-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an important human and veterinary pathogen causing sporadic epizootic outbreaks of potentially fatal encephalitis. The type I interferon (IFN) system plays a central role in controlling VEEV and other alphavirus infections, and IFN evasion is likely an important determinant of whether these viruses disseminate and cause disease within their hosts. Alphaviruses are thought to limit the induction of type I IFNs and IFN-stimulated genes by shutting off host cell macromolecular synthesis, which in the case of VEEV is partially mediated by the viral capsid protein. However, more specific strategies by which alphaviruses inhibit type I IFN signaling have not been characterized. Analyses of cells infected with VEEV and VEEV replicon particles (VRP) demonstrate that viral infection rapidly disrupts tyrosine phosphorylation and nuclear translocation of the transcription factor STAT1 in response to both IFN-beta and IFN-gamma. This effect was independent of host shutoff and expression of viral capsid, suggesting that VEEV uses novel mechanisms to interfere with type I and type II IFN signaling. Furthermore, at times when STAT1 activation was efficiently inhibited, VRP infection did not limit tyrosine phosphorylation of Jak1, Tyk2, or STAT2 after IFN-beta treatment but did inhibit Jak1 and Jak2 activation in response to IFN-gamma, suggesting that VEEV interferes with STAT1 activation by the type I and II receptor complexes through distinct mechanisms. Identification of the viral requirements for this novel STAT1 inhibition will further our understanding of alphavirus molecular pathogenesis and may provide insights into effective alphavirus-based vaccine design.
Collapse
|
544
|
Martin FJ, Gomez MI, Wetzel DM, Memmi G, O'Seaghdha M, Soong G, Schindler C, Prince A. Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A. J Clin Invest 2009; 119:1931-9. [PMID: 19603548 DOI: 10.1172/jci35879] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The activation of type I IFN signaling is a major component of host defense against viral infection, but it is not typically associated with immune responses to extracellular bacterial pathogens. Using mouse and human airway epithelial cells, we have demonstrated that Staphylococcus aureus activates type I IFN signaling, which contributes to its virulence as a respiratory pathogen. This response was dependent on the expression of protein A and, more specifically, the Xr domain, a short sequence-repeat region encoded by DNA that consists of repeated 24-bp sequences that are the basis of an internationally used epidemiological typing scheme. Protein A was endocytosed by airway epithelial cells and subsequently induced IFN-beta expression, JAK-STAT signaling, and IL-6 production. Mice lacking IFN-alpha/beta receptor 1 (IFNAR-deficient mice), which are incapable of responding to type I IFNs, were substantially protected against lethal S. aureus pneumonia compared with wild-type control mice. The profound immunological consequences of IFN-beta signaling, particularly in the lung, may help to explain the conservation of multiple copies of the Xr domain of protein A in S. aureus strains and the importance of protein A as a virulence factor in the pathogenesis of staphylococcal pneumonia.
Collapse
Affiliation(s)
- Francis J Martin
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
545
|
Zhang L, Katz JM, Gwinn M, Dowling NF, Khoury MJ. Systems-based candidate genes for human response to influenza infection. INFECTION GENETICS AND EVOLUTION 2009; 9:1148-57. [PMID: 19647099 PMCID: PMC7106103 DOI: 10.1016/j.meegid.2009.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 12/20/2022]
Abstract
Influenza A is a serious respiratory illness that can be debilitating and may cause complications leading to hospitalization and death. The outcome of infection with the influenza A virus is determined by a complex interplay of viral and host factors. With the ongoing threat of seasonal influenza and the potential emergence of new, more virulent strains of influenza viruses, we need to develop a better understanding of genetic variation in the human population and its association with severe outcomes from influenza infection. We propose a list of approximately 100 systems-based candidate genes for future study of the genetic basis of influenza disease and immunity in humans, based on evidence in the published literature for their potential role in the pathogenesis of this infection: binding of the virus to receptors on the host cell surface; cleavability of HA by host proteases; virus replication in host cells; destruction of host cells by apoptosis; state of immunocompetence of the individual host; and viral infections predisposing to bacterial infection.
Collapse
Affiliation(s)
- Lyna Zhang
- Office of Public Health Genomics, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
546
|
Abstract
Recombinant viral vectors such as adenovirus and adenovirus-associated virus have been used widely as vehicles for gene therapy applications because of the high efficiency with which they transfer genes into a wide spectrum of cells in vivo. However, enthusiasm for the use of viral vectors in gene therapy has been tempered by significant problems of attendant host cellular and humoral immune responses that limit their safety and efficacy in vivo. Advances in immunology have suggested a crucial role for the innate immune system in the induction of immune responses to viruses. Thus, a better understanding of the mechanisms by which the host's innate immune system recognizes viruses and viral vectors will help in the design of effective strategies to improve the outcome of viral vector-mediated gene therapy. In this review we first discuss our current understanding of innate immune recognition of viruses in general, and then focus on the innate immune responses to viral vectors for gene therapy.
Collapse
Affiliation(s)
- Xiaopei Huang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
547
|
Nguyen DN, Kim P, Martinez-Sobrido L, Beitzel B, García-Sastre A, Langer R, Anderson DG. A novel high-throughput cell-based method for integrated quantification of type I interferons and in vitro screening of immunostimulatory RNA drug delivery. Biotechnol Bioeng 2009; 103:664-75. [PMID: 19338049 PMCID: PMC2771114 DOI: 10.1002/bit.22312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A hallmark of immune activation by certain RNA sequences is the generation of interferon responses. However, the study of immunostimulatory RNA (isRNA) has been hindered by costly and slow methods, particularly in vitro. We have developed a cell-based assay to detect human type I interferon (IFN) that reliably senses both IFN-alpha and IFN-beta simultaneously. The human 293T cell line was stably transfected with a fusion gene of monomeric red fluorescent protein (mRFP) under the transcriptional control of an interferon-stimulated response element (ISRE). High levels of mRFP are expressed following activation of the type I IFN receptor (IFNAR). Using this method, detection limits for IFN similar to that of ELISA can be achieved but with a greater dynamic range and in a high-throughput manner. As a proof of concept, we utilized this method to screen a library of cationic lipid-like materials that form nanoparticle complexes with RNA for induction of innate immune responses in vitro. We expect the screening and detection methods described herein may provide a useful tool in elucidating mechanisms that govern the delivery of RNA molecules to effector cells and receptors of the innate immune system. We apply this tool to investigate isRNA drug delivery, but it may also find use in other applications for which high-throughput detection of type 1 IFN is desired.
Collapse
Affiliation(s)
- David N. Nguyen
- – Division of Health Sciences and Technology, MIT, Cambridge, MA
| | - Phillip Kim
- – Department of Chemical Engineering, MIT, Cambridge, MA
| | | | - Brett Beitzel
- – US Army Medical Research Institute of Infectious Disease, Ft. Detrick, MD
| | - Adolfo García-Sastre
- – Department of Microbiology, Mount Sinai School of Medicine, New York, NY
- – Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY
- – Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY
| | - Robert Langer
- – Division of Health Sciences and Technology, MIT, Cambridge, MA
- – Department of Chemical Engineering, MIT, Cambridge, MA
- – David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA
| | - Daniel G. Anderson
- – David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA
| |
Collapse
|
548
|
Kash JC. Applications of high-throughput genomics to antiviral research: evasion of antiviral responses and activation of inflammation during fulminant RNA virus infection. Antiviral Res 2009; 83:10-20. [PMID: 19375457 PMCID: PMC3457704 DOI: 10.1016/j.antiviral.2009.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/01/2009] [Accepted: 04/09/2009] [Indexed: 12/18/2022]
Abstract
Host responses can contribute to the severity of viral infection, through the failure of innate antiviral mechanisms to recognize and restrict the pathogen, the development of intense systemic inflammation leading to circulatory failure or through tissue injury resulting from overly exuberant cell-mediated immune responses. High-throughput genomics methods are now being used to identify the biochemical pathways underlying ineffective or damaging host responses in a number of acute and chronic viral infections. This article reviews recent gene expression studies of 1918 H1N1 influenza and Ebola hemorrhagic fever in cell culture and animal models, focusing on how genomics experiments can be used to increase our understanding of the mechanisms that permit those viruses to cause rapidly overwhelming infection. Particular attention is paid to how evasion of type I IFN responses in infected cells might contribute to over-activation of inflammatory responses. Reviewing recent research and describing how future studies might be tailored to understand the relationship between the infected cell and its environment, this article discusses how the rapidly growing field of high-throughput genomics can contribute to a more complete understanding of severe, acute viral infections and identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892-3203, USA.
| |
Collapse
|
549
|
Garulli B, Castrucci MR. Protective immunity to influenza: lessons from the virus for successful vaccine design. Expert Rev Vaccines 2009; 8:689-93. [PMID: 19485749 DOI: 10.1586/erv.09.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of an effective influenza vaccine would require the ability to protect against infection with multiple influenza viral strains. In particular, mucosal and T-cell-mediated immunity may offer a more cross-reactive vaccine approach for the prevention of epidemic or potentially pandemic influenza. Thus, it is imperative to more fully understand the molecular events that occur in the host upon infection with a live virus and, in particular, to better evaluate the role of the distinct signaling pathways involved in developing protective immune responses. The paper under evaluation here introduces the notion that activation of caspase-1 inflammasomes in the hematopoietic cells in vivo are required for the establishment of Th1, cytotoxic T-lymphocyte and IgA responses to influenza virus infection.
Collapse
Affiliation(s)
- Bruno Garulli
- Department of Cellular & Developmental Biology, University of Rome La Sapienza, Via dei Sardi, 70, 00185 Rome, Italy.
| | | |
Collapse
|
550
|
Romanova J, Krenn BM, Wolschek M, Ferko B, Romanovskaja-Romanko E, Morokutti A, Shurygina AP, Nakowitsch S, Ruthsatz T, Kiefmann B, König U, Bergmann M, Sachet M, Balasingam S, Mann A, Oxford J, Slais M, Kiselev O, Muster T, Egorov A. Preclinical evaluation of a replication-deficient intranasal DeltaNS1 H5N1 influenza vaccine. PLoS One 2009; 4:e5984. [PMID: 19543385 PMCID: PMC2694350 DOI: 10.1371/journal.pone.0005984] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 05/21/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We developed a novel intranasal influenza vaccine approach that is based on the construction of replication-deficient vaccine viruses that lack the entire NS1 gene (DeltaNS1 virus). We previously showed that these viruses undergo abortive replication in the respiratory tract of animals. The local release of type I interferons and other cytokines and chemokines in the upper respiratory tract may have a "self-adjuvant effect", in turn increasing vaccine immunogenicity. As a result, DeltaNS1 viruses elicit strong B- and T- cell mediated immune responses. METHODOLOGY/PRINCIPAL FINDINGS We applied this technology to the development of a pandemic H5N1 vaccine candidate. The vaccine virus was constructed by reverse genetics in Vero cells, as a 5:3 reassortant, encoding four proteins HA, NA, M1, and M2 of the A/Vietnam/1203/04 virus while the remaining genes were derived from IVR-116. The HA cleavage site was modified in a trypsin dependent manner, serving as the second attenuation factor in addition to the deleted NS1 gene. The vaccine candidate was able to grow in the Vero cells that were cultivated in a serum free medium to titers exceeding 8 log(10) TCID(50)/ml. The vaccine virus was replication deficient in interferon competent cells and did not lead to viral shedding in the vaccinated animals. The studies performed in three animal models confirmed the safety and immunogenicity of the vaccine. Intranasal immunization protected ferrets and mice from being infected with influenza H5 viruses of different clades. In a primate model (Macaca mulatta), one dose of vaccine delivered intranasally was sufficient for the induction of antibodies against homologous A/Vietnam/1203/04 and heterologous A/Indonesia/5/05 H5N1 strains. CONCLUSION/SIGNIFICANCE Our findings show that intranasal immunization with the replication deficient H5N1 DeltaNS1 vaccine candidate is sufficient to induce a protective immune response against H5N1 viruses. This approach might be attractive as an alternative to conventional influenza vaccines. Clinical evaluation of DeltaNS1 pandemic and seasonal influenza vaccine candidates are currently in progress.
Collapse
Affiliation(s)
| | | | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria
- Department of Surgery, University of Vienna Medical School, Vienna, Austria
| | - Boris Ferko
- Avir Green Hills Biotechnology AG, Vienna, Austria
| | | | | | - Anna-Polina Shurygina
- Influenza Research Institute, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | | | | | - Ulrich König
- Avir Green Hills Biotechnology AG, Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, University of Vienna Medical School, Vienna, Austria
| | - Monika Sachet
- Department of Surgery, University of Vienna Medical School, Vienna, Austria
| | - Shobana Balasingam
- Retroscreen Virology Ltd., Centre for Infectious Diseases, Bart's and the London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Alexander Mann
- Retroscreen Virology Ltd., Centre for Infectious Diseases, Bart's and the London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - John Oxford
- Retroscreen Virology Ltd., Centre for Infectious Diseases, Bart's and the London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | | | - Oleg Kiselev
- Influenza Research Institute, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Thomas Muster
- Avir Green Hills Biotechnology AG, Vienna, Austria
- Division of General Dermatology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Andrej Egorov
- Avir Green Hills Biotechnology AG, Vienna, Austria
- * E-mail:
| |
Collapse
|