501
|
Saminathan M, Rai RB, Dhama K, Jangir BL, Suresh S, Ranganath GJ, Sophia I, Karuppanas K, Barathiraj S, Gopalakris A. Effect of Morinda citrifolia (Noni) Fruit Juice on Antioxidant, Hematological and Biochemical Parameters in N-Methyl-N-Nitrosourea(NMU) Induced Mammary Carcinogenesis in Sprague-Dawley Rats. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.109.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
502
|
Chaiswing L, Zhong W, Oberley TD. Increasing discordant antioxidant protein levels and enzymatic activities contribute to increasing redox imbalance observed during human prostate cancer progression. Free Radic Biol Med 2014; 67:342-52. [PMID: 24269899 PMCID: PMC3945156 DOI: 10.1016/j.freeradbiomed.2013.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/21/2013] [Accepted: 11/08/2013] [Indexed: 12/25/2022]
Abstract
A metabolomics study demonstrated a decrease in glutathione and an increase in cysteine (Cys) levels in human prostate cancer (PCa) tissues as Gleason scores increased, indicating redox imbalance with PCa progression. These results were extended in the present study by analyzing the redox state of the protein thioredoxin 1 (Trx1) and sulfinylation (SO3) of peroxiredoxins (Prxs) (PrxSO3) in PCa tissues and cell lines. Lysates of paired human PCa tissues with varying degrees of aggressiveness and adjacent benign (BN) tissues were used for analysis. Redox Western blot analysis of Trx1 demonstrated low levels of reduced and high levels of oxidized Trx1 (functional and nonfunctional, respectively) in high-grade PCa (Gleason scores 4+4 to 4+5) in comparison to intermediate-grade PCa (Gleason scores 3+3 to 3+4) or BN tissues. PrxSO3 were increased in high-grade PCa. Oxidized Trx1 and PrxSO3 are indicators of oxidative stress. To study whether redox imbalance may potentially affect enzyme activities of antioxidant proteins (APs), we determined the levels of selected APs in PCa tissues by Western blot analysis and found that mitochondrial manganese superoxide dismutase (MnSOD), Prx3, and Trx1 were increased in high-grade PCa tissues compared with BN tissues. Enzyme activities of MnSOD in high-grade PCa tissues were significantly increased but at a lower magnitude compared with the levels of MnSOD protein (0.5-fold vs 2-fold increase). Trx1 activity was not changed in high-grade PCa tissues despite a large increase in Trx1 protein expression. Further studies demonstrated a significant increase in posttranslational modifications of tyrosine and lysine residues in MnSOD protein and oxidation of Cys at the active site (Cys32 and Cys35) and the regulatory site (Cys62 and Cys69) of Trx1 in high-grade PCa compared to BN tissues. These discordant changes between protein levels and enzyme activities are consistent with protein inactivation by redox imbalance and/or posttranslational modifications. In contrast, the protein level and activity of extracellular superoxide dismutase were significantly decreased in high-grade PCa compared with adjacent BN tissues. Results from cell lines mirror those from PCa tissues. Knowledge of redox-state profiles in specific cancers may help to predict the behavior and response of each cancer to chemotherapeutic drugs and radiation.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Pathology and Laboratory Medicine, Madison, WI 53705, USA.
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, Madison, WI 53705, USA; Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Terry D Oberley
- Department of Pathology and Laboratory Medicine, Madison, WI 53705, USA; Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
503
|
Na HK, Surh YJ. Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic Biol Med 2014; 67:353-65. [PMID: 24200599 DOI: 10.1016/j.freeradbiomed.2013.10.819] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a vast variety of endogenous and exogenous insults, including oxidative stress. Nrf2 acts as a master switch in the circuits upregulating the expression of various stress-response proteins, especially heme oxygenase-1 (HO-1). Paradoxically, however, recent studies have demonstrated oncogenic functions of Nrf2 and its major target protein HO-1. Levels of Nrf2 and HO-1 are elevated in many different types of human malignancies, which may facilitate the remodeling of the tumor microenvironment making it advantageous for the autonomic growth of cancer cells, metastasis, angiogenesis, and tolerance to chemotherapeutic agents and radiation and photodynamic therapy. In this context, the cellular stress response or cytoprotective signaling mediated via the Nrf2-HO-1 axis is hijacked by cancer cells for their growth advantage and survival of anticancer treatment. Therefore, Nrf2 and HO-1 may represent potential therapeutic targets in the management of cancer. This review highlights the roles of Nrf2 and HO-1 in proliferation of cancer cells, their tolerance/resistance to anticancer treatments, and metastasis or angiogenesis in tumor progression.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food & Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 142-732, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea; Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, South Korea; Cancer Research Institute, Seoul National University, Seoul 110-744, South Korea.
| |
Collapse
|
504
|
Yuan L, Dietrich AK, Nardulli AM. 17β-Estradiol alters oxidative stress response protein expression and oxidative damage in the uterus. Mol Cell Endocrinol 2014; 382:218-226. [PMID: 24103313 PMCID: PMC3900311 DOI: 10.1016/j.mce.2013.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
The steroid hormone 17β-estradiol (E2) has profound effects on the uterus. However, with the E2-induced increase in uterine cell proliferation and metabolism comes increased production of reactive oxygen species (ROS). We examined the expression of an interactive network of oxidative stress response proteins including thioredoxin (Trx), Cu/Zn superoxide dismutase (SOD1), apurinic endonuclease (Ape1), and protein disulfide isomerase (PDI). We demonstrated that treatment of ovariectomized C57BL/6J female mice with E2 increased the mRNA and protein levels of Trx, but decreased SOD1 and Ape1 mRNA and protein expression. In contrast, E2 treatment increased PDI protein levels but had no effect on PDI transcript levels. Interestingly, E2 treatment also increased two markers of cellular damage, lipid peroxidation and protein carbonylation. Our studies suggest that the decreased expression of SOD1 and Ape1 caused by E2 treatment may in the long term result in disruption of ROS regulation and play a role in endometrial carcinogenesis.
Collapse
Affiliation(s)
- Lisi Yuan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
505
|
Khlifi R, Chakroun A, Hamza-Chaffai A, Rebai A. Association of CYP1A1 and CYP2D6 gene polymorphisms with head and neck cancer in Tunisian patients. Mol Biol Rep 2014; 41:2591-600. [PMID: 24449363 DOI: 10.1007/s11033-014-3117-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the relationship between head and neck cancer (HNC) and environmental agents and polymorphisms in CYP1A1, CYP2D6, NAT1 and NAT2 metabolic enzymes genes. To the best of our knowledge, this is the first report on polymorphisms in CYP1A1 6310C>T, CYP2D6 Arg365His, NAT1 52936A>T and NAT2 Arg268Lys (NAT2*12A) genes and susceptibility to HNC in Tunisian population. We study the prevalence of these polymorphisms in 169 patients with HNC and 261 control subjects using polymerase chain reaction based methods in a Tunisian population. We detected an association between HNC and CYP1A1 6310C>T (TT) and CYP2D6 Arg365His (His/His) variant carriers (OR 1.75, P = 0.008 and OR 1.66, P = 0.016, respectively). No association was found between the polymorphisms genotypes of NAT1 52936T>A and NAT2 Arg268Lys and risk of HNC. An association between HNC and CYP1A1 (TT) genotype was found among patients with smoking (P = 0.011) and drinking habit (P = 0.009). The combinations of NAT1 (AT or AA) and NAT2 (AA) at-risk genotypes increased HNC risk (OR 4.23, P = 0.005 and OR 3.60, P = 0.048, respectively). However, the combinations of CYP1A1 (AA) and CYP2D6 (CC) genotypes decreased risk of HNC (OR 0.20; P = 0.006). Genetic polymorphisms in CYP1A1 and CYP2D6 may significantly associate with HNC in the Tunisian population. The results of this study suggest a possible gene-environment interaction for certain carcinogen metabolizing enzymes, but larger studies that fully evaluate the interaction are needed.
Collapse
Affiliation(s)
- Rim Khlifi
- Unit of Marine and Environmental Toxicology, UR 09-03, IPEIS, Sfax University, BP 1172, 3018, Sfax, Tunisia,
| | | | | | | |
Collapse
|
506
|
Wallenberg M, Misra S, Wasik AM, Marzano C, Björnstedt M, Gandin V, Fernandes AP. Selenium induces a multi-targeted cell death process in addition to ROS formation. J Cell Mol Med 2014; 18:671-84. [PMID: 24400844 PMCID: PMC4000118 DOI: 10.1111/jcmm.12214] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022] Open
Abstract
Selenium compounds inhibit neoplastic growth. Redox active selenium compounds are evolving as promising chemotherapeutic agents through tumour selectivity and multi-target response, which are of great benefit in preventing development of drug resistance. Generation of reactive oxygen species is implicated in selenium-mediated cytotoxic effects on cancer cells. Recent findings indicate that activation of diverse intracellular signalling leading to cell death depends on the chemical form of selenium applied and/or cell line investigated. In the present study, we aimed at deciphering different modes of cell death in a single cell line (HeLa) upon treatment with three redox active selenium compounds (selenite, selenodiglutathione and seleno-DL-cystine). Both selenite and selenodiglutathione exhibited equipotent toxicity (IC50 5 μM) in these cells with striking differences in toxicity mechanisms. Morphological and molecular alterations provided evidence of necroptosis-like cell death in selenite treatment, whereas selenodiglutathione induced apoptosis-like cell death. We demonstrate that selenodiglutathione efficiently glutathionylated free protein thiols, which might explain the early differences in cytotoxic effects induced by selenite and selenodiglutathione. In contrast, seleno-DL-cystine treatment at an IC50 concentration of 100 μM induced morphologically two distinct different types of cell death, one with apoptosis-like phenotype, while the other was reminiscent of paraptosis-like cell death, characterized by induction of unfolded protein response, ER-stress and occurrence of large cytoplasmic vacuoles. Collectively, the current results underline the diverse cytotoxic effects and variable potential of redox active selenium compounds on the survival of HeLa cells and thereby substantiate the potential of chemical species-specific usage of selenium in the treatment of cancers.
Collapse
Affiliation(s)
- Marita Wallenberg
- Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
507
|
Maier I, Berry DM, Schiestl RH. Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons. Radiat Res 2014; 181:45-53. [PMID: 24397477 DOI: 10.1667/rr13352.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing space radiation causes oxidative DNA damage and triggers oxidative stress responses, and compromised DNA repair mechanisms can lead to increased risk of carcinogenesis. Young adult mice with developed innate and adaptive immune systems that harbored either a conventional intestinal microbiota (CM) or an intestinal microbiota with a restricted microbial composition (RM) were irradiated with a total dose of 1 Gy delivered by high-energy protons (2.5 GeV/n, LET = 0.2-2 keV/μm) or silicon or iron ions (850 MeV/n, LET ≈ 50 keV/μm and 1 GeV/n, LET = 150 keV/μm, respectively). Six hours after whole-body irradiation, acute chromosomal DNA lesions were observed for RM mice but not CM mice. High-throughput rRNA gene sequencing of intestinal mucosal bacteria showed that Barnesiella intestinihominis and unclassified Bacterodiales were significantly more abundant in male RM mice than CM mice, and phylotype densities changed in irradiated mice. In addition, Helicobacter hepaticus and Bacteroides stercoris were higher in CM than RM mice. Elevated levels of persistently phosphorylated γ-H2AX were observed in RM mice exposed to high-energy protons compared to nonirradiated RM mice, and they also were associated with a decrease of the antioxidant glutathione in peripheral blood measured at four weeks after irradiation. After radiation exposure, CM mice showed lower levels of γ-H2AX phosphorylation than RM mice and an increase in specific RM-associated phylotypes, indicating a down-regulating force on DNA repair by differentially abundant phylotypes in RM versus a radiation-sensitive complex CM.
Collapse
Affiliation(s)
- Irene Maier
- a Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California
| | | | | |
Collapse
|
508
|
YAMANASHI H, HASHIZUME O, YONEKAWA H, NAKADA K, HAYASHI JI. Administration of an Antioxidant Prevents Lymphoma Development in Transmitochondrial Mice Overproducing Reactive Oxygen Species. Exp Anim 2014. [DOI: 10.1538/expanim.14-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Haruka YAMANASHI
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Osamu HASHIZUME
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiromichi YONEKAWA
- Center for Basic Technology Research, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Kazuto NAKADA
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jun-Ichi HAYASHI
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
509
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
510
|
Abstract
Nrf2:INrf2 (Keap1) are cellular sensors of oxidative and electrophilic stress. Nrf2 is a nuclear factor that controls the expression and coordinated induction of a battery of genes that encode detoxifying enzymes, drug transporters, antiapoptotic proteins, and proteasomes. In the basal state, Nrf2 is constantly degraded in the cytoplasm by its inhibitor, INrf2. INrf2 functions as an adapter for Cul3/Rbx1 E3 ubiquitin ligase-mediated degradation of Nrf2. Chemicals, including antioxidants, tocopherols including α-tocopherol (vitamin E), and phytochemicals, and radiation antagonize the Nrf2:INrf2 interaction and lead to the stabilization and activation of Nrf2. The signaling events involve preinduction, induction, and postinduction responses that tightly control Nrf2 activation and repression back to the basal state. Oxidative/electrophilic signals activate unknown tyrosine kinases in a preinduction response that phosphorylates specific residues on Nrf2 negative regulators, INrf2, Fyn, and Bach1, leading to their nuclear export, ubiquitination, and degradation. This prepares nuclei for unhindered import of Nrf2. Oxidative/electrophilic modification of INrf2 cysteine 151 followed by PKC phosphorylation of Nrf2 serine 40 in the induction response results in the escape or release of Nrf2 from INrf2. Nrf2 is thus stabilized and translocates to the nucleus, resulting in a coordinated activation of gene expression. This is followed by a postinduction response that controls the "switching off" of Nrf2-activated gene expression. GSK3β, under the control of AKT and PI3K, phosphorylates Fyn, leading to Fyn nuclear localization. Fyn phosphorylates Nrf2 Y568, resulting in nuclear export and degradation of Nrf2. The activation and repression of Nrf2 provide protection against oxidative/electrophilic stress and associated diseases, including cancer. However, deregulation of INrf2 and Nrf2 due to mutations may lead to nuclear accumulation of Nrf2 that reduces apoptosis and promotes oncogenesis and drug resistance.
Collapse
Affiliation(s)
- Suryakant K Niture
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Raju Khatri
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anil K Jaiswal
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
511
|
Yang CB, Pei WJ, Zhao J, Cheng YY, Zheng XH, Rong JH. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. Acta Pharmacol Sin 2014; 35:113-23. [PMID: 24335836 DOI: 10.1038/aps.2013.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/29/2013] [Indexed: 12/13/2022]
Abstract
AIM The purpose of the present study was to investigate the anticancer activity of bornyl caffeate in the human breast cancer cell line MCF-7. METHODS The cell viability was determined using the MTT assay, and apoptosis was initially defined by monitoring the morphology of the cell nuclei and staining an early apoptotic biomarker with Annexin V-FITC. The mitochondrial membrane potential was visualized by JC-1 under fluorescence microscopy, whereas intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. RESULTS Bornyl caffeate induced apoptosis in MCF-7 cells in a dose- and time-dependent manner. Consistently, bornyl caffeate increased Bax and decreased Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and the activation of the mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). Antioxidants attenuated the activation of MAP kinase p38 but barely affected the activation of JNK. Importantly, the cytotoxicity of bornyl caffeate was partially attenuated by scavenging ROS and inhibited by MAP kinases and caspases. CONCLUSION The present study demonstrated that bornyl caffeate induced apoptosis in the cancer cell line MCF-7 via activating the ROS- and JNK-mediated pathways. Thus, bornyl caffeate may be a potential anticancer lead compound.
Collapse
|
512
|
Bao B, Azmi AS, Li Y, Ahmad A, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther 2014; 9:22-35. [PMID: 23957937 PMCID: PMC4493722 DOI: 10.2174/1574888x113089990053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as critical cellular signaling molecules involving in various biological processes such as cell growth, differentiation, proliferation, apoptosis, and angiogenesis. The homeostasis of ROS is critical to maintain normal biological processes. Increased production of ROS, namely oxidative stress, due to either endogenous or exogenous sources causes irreversible damage of bio-molecules such as DNA, proteins, lipids, and sugars, leading to genomic instability, genetic mutation, and altered gene expression, eventually contributing to tumorigenesis. A great amount of experimental studies in vitro and in vivo have produced solid evidence supporting that oxidative stress is strongly associated with increased tumor cell growth, treatment resistance, and metastasis, and all of which contribute to tumor aggressiveness. More recently, the data have indicated that altered production of ROS is also associated with cancer stem cells (CSCs), epithelial-to-mesenchymal transition (EMT), and hypoxia, the most common features or phenomena in tumorigenesis and tumor progression. However, the exact mechanism by which ROS is involved in the regulation of CSC and EMT characteristics as well as hypoxia- and, especially, HIF-mediated pathways is not well known. Emerging evidence suggests the role of miRNAs in tumorigenesis and progression of human tumors. Recently, the data have indicated that altered productions of ROS are associated with deregulated expression of miRNAs, suggesting their potential roles in the regulation of ROS production. Therefore, targeting ROS mediated through the deregulation of miRNAs by novel approaches or by naturally occurring anti-oxidant agents such as genistein could provide a new therapeutic approach for the prevention and/or treatment of human malignancies. In this article, we will discuss the potential role of miRNAs in the regulation of ROS production during tumorigenesis. Finally, we will discuss the role of genistein, as a potent anti-tumor agent in the regulation of ROS production during tumorigenesis and tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fazlul H Sarkar
- Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 John R Street, Detroit, MI 48201, USA.
| |
Collapse
|
513
|
Vasantha Rupasinghe H, Nair SV, Robinson RA. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
514
|
Yuan L, Lu CL, Wang Y, Li Y, Li XY. Ang (1-7) protects islet endothelial cells from palmitate-induced apoptosis by AKT, eNOS, p38 MAPK, and JNK pathways. J Diabetes Res 2014; 2014:391476. [PMID: 24804268 PMCID: PMC3996957 DOI: 10.1155/2014/391476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/28/2022] Open
Abstract
This study aimed to explore the effect of angiotensin (1-7) (Ang (1-7)) on palmitate-induced apoptosis in islet endothelial cells and the mechanism of action. MS-1 cells were treated with palmitate in the presence or absence of Ang (1-7). The percentage of apoptotic cells was determined by DNA fragmentation and flow cytometry. Reactive oxygen species (ROS) production was measured using a Reactive Oxygen Species Assay Kit. Expression of AKT, eNOS, C-Jun N-terminal kinase (JNK), and p38 was detected by western blotting. Compared with palmitate treated group, palmitate-induced apoptosis was decreased in MS-1 cells which were preincubated with Ang (1-7) (P < 0.05). Palmitate decreased the phosphorylation of AKT and eNOS, and Ang (1-7) increased the phosphorylation of these kinases (P < 0.05), with a concomitant reduction in MS-1 cells apoptosis. Ang (1-7) also inhibited the palmitate-induced ROS production and attenuated the apoptosis-related signaling molecule JNK and p38 activation (all P < 0.05). PI3K/AKT, eNOS, p38 MAPK, and JNK inhibitors blocked the antilipoapoptosis of Ang (1-7) (all P < 0.05). Our findings suggest that Ang (1-7) reduces palmitate-induced islet endothelial cells apoptosis. AKT/eNOS/NO signaling and JNK and p38 pathway are involved in the Ang (1-7)-mediated modulation of islet endothelial cells lipoapoptosis.
Collapse
Affiliation(s)
- Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- *Li Yuan:
| | - Chun-Li Lu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Ya Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
515
|
Yin J, Ren W, Liu G, Duan J, Yang G, Wu L, Li T, Yin Y. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 2013; 47:1027-1035. [PMID: 24074241 DOI: 10.3109/10715762.2013.848277] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Birth oxidative stress is an oxidative response to a sudden transition process from maternal mediated respiration in uterus to autonomous pulmonary respiration outside the uterus. Meanwhile, oxidative stress has been demonstrated to be associated with various pathologies recorded in newborns. So, this research aimed to study the oxidative stress and the development of antioxidant system in newborn piglets. The measured variables include plasma lipid, protein and DNA oxidant injury, the activities of plasma antioxidant enzymes and the jejunal and ileal antioxidant gene expressions at 1, 7, 14, and 21 days after birth. Meanwhile, the nuclear factor erythroid 2-related factor 2 (Nrf2), transcription factor p65, and tumor protein 53 (p53) were determined by western blot. The results showed that newborn piglets suffered seriously from birth oxidative stress because of the naive antioxidant system. In addition, oxidant injury activated Nrf2 signaling pathway, resulting in the expression of antioxidant genes and release of antioxidant enzymes. With the development of antioxidant system, the oxidative balance gradually recovered on Day 7 after birth. In conclusion, birth caused oxidative stress and the oxidative balance gradually recovered with the development of antioxidant system.
Collapse
Affiliation(s)
- J Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
516
|
Ali H, Dixit S. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine. ScientificWorldJournal 2013; 2013:376216. [PMID: 24379740 PMCID: PMC3863568 DOI: 10.1155/2013/376216] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/23/2013] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To optimize the conditions for the extraction of alkaloid palmatine from Tinospora cordifolia by using response surface methodology (RSM) and study its anticancerous property against 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. METHODS The effect of three independent variables, namely, extraction temperature, time, and cycles was investigated by using central composite design. A single topical application of DMBA (100 μg/100 μL of acetone), followed 2 weeks later by repeated application of croton oil (1% in acetone three times a week) for 16 weeks, exhibited 100 percent tumor incidence (Group 2). RESULTS The highest yield of alkaloid from Tinospora cordifolia could be achieved at 16 hours of extraction time under 40°C with 4 extraction cycles. Alkaloid administration significantly decreases tumor size, number, and the activity of serum enzyme when compared with the control (Group 2). In addition, depleted levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase and increased DNA damage were restored in palmatine treated groups. CONCLUSION The data of the present study clearly indicate the anticancer potential of palmatine alkaloid in DMBA induced skin cancer model in mice.
Collapse
Affiliation(s)
- Huma Ali
- Department of Chemistry, MANIT, Bhopal, Madhya Pardesh, India
| | - Savita Dixit
- Department of Chemistry, MANIT, Bhopal, Madhya Pardesh, India
| |
Collapse
|
517
|
Kim A. Modulation of MnSOD in Cancer:Epidemiological and Experimental Evidence. Toxicol Res 2013; 26:83-93. [PMID: 24278510 PMCID: PMC3834467 DOI: 10.5487/tr.2010.26.2.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/08/2023] Open
Abstract
Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702, Korea
| |
Collapse
|
518
|
Maria Zowczak-Drabarczyk M, Murawa D, Kaczmarek L, Połom K, Litwiniuk M. Total antioxidant status in plasma of breast cancer patients in relation to ERβ expression. Contemp Oncol (Pozn) 2013; 17:499-503. [PMID: 24592136 PMCID: PMC3934035 DOI: 10.5114/wo.2013.38782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/24/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
AIM OF THE STUDY The aim of this pilot study was to evaluate the plasma total antioxidant capacity (TAS) in breast cancer patients in relation to ERβ expression. MATERIAL AND METHODS The study group consisted of newly diagnosed consecutive female breast cancer patients (n = 41) and controls (n = 28) randomly selected from women with benign breast disease. TAS was determined with the ABTS reagent. Immunostaining for ERβ was performed using polyclonal antibodies. ERα, PgR and HER-2 were measured routinely (immunostaining for ERα and PgR with monoclonal antibodies and EnVision detection system; immunohistochemical method/FISH for HER-2 expression). RESULTS The plasma TAS was significantly decreased in the breast cancer patients in comparison to the controls independently of hormonal and lymph node status. The TAS level was not significantly different between breast cancer subgroups either in relation to the ERβ expression (ERβ+ vs. ERβ-) or considering the steroid receptor status (ERα+, ERβ+, Pg+ vs. ERα+, ERβ-, Pg+) even in the selected lymph node negative subgroup. Similarly, HER-2 expression did not significantly affect the TAS concentration. A tendency towards higher TAS level in all ERβ negative breast cancer subgroups was observed. CONCLUSIONS The results might confirm enhanced consumption of plasma antioxidants in breast cancer patients. The determination of ERβ isoforms along with parameters of redox status might enable better understanding of their mutual influence.
Collapse
Affiliation(s)
| | - Dawid Murawa
- 1 Department of Surgical Oncology and General Surgery, Greater Poland Cancer Center in Poznań, Poland
| | - Leszek Kaczmarek
- Department of General Surgery with Urological and Surgical Oncology Units, Medical Center in Pleszew, Poland
| | - Karol Połom
- 1 Department of Surgical Oncology and General Surgery, Greater Poland Cancer Center in Poznań, Poland
| | - Maria Litwiniuk
- Chemotherapy Department, Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
519
|
Zheng J, Piao MJ, Keum YS, Kim HS, Hyun JW. Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis. Biomol Ther (Seoul) 2013; 21:270-6. [PMID: 24244811 PMCID: PMC3819899 DOI: 10.4062/biomolther.2013.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/05/2013] [Accepted: 05/08/2013] [Indexed: 11/29/2022] Open
Abstract
Fucoxanthin is an important carotenoid derived from edible brown seaweeds and is used in indigenous herbal medicines. The aim of the present study was to examine the cytoprotective effects of fucoxanthin against hydrogen peroxide-induced cell damage. Fucoxanthin decreased the level of intracellular reactive oxygen species, as assessed by fluorescence spectrometry performed after staining cultured human HaCaT keratinocytes with 2',7'-dichlorodihydrofl uorescein diacetate. In addition, electron spin resonance spectrometry showed that fucoxanthin scavenged hydroxyl radical generated by the Fenton reaction in a cell-free system. Fucoxanthin also inhibited comet tail formation and phospho-histone H2A.X expression, suggesting that it prevents hydrogen peroxideinduced cellular DNA damage. Furthermore, the compound reduced the number of apoptotic bodies stained with Hoechst 33342, indicating that it protected keratinocytes against hydrogen peroxide-induced apoptotic cell death. Finally, fucoxanthin prevented the loss of mitochondrial membrane potential. These protective actions were accompanied by the down-regulation of apoptosispromoting mediators (i.e., B-cell lymphoma-2-associated x protein, caspase-9, and caspase-3) and the up-regulation of an apoptosis inhibitor (B-cell lymphoma-2). Taken together, the results of this study suggest that fucoxanthin defends keratinocytes against oxidative damage by scavenging ROS and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jian Zheng
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756
| | | | | | | | | |
Collapse
|
520
|
Lopez-Jornet P, Martinez-Canovas A, Pons-Fuster A. Salivary biomarkers of oxidative stress and quality of life in patients with oral lichen planus. Geriatr Gerontol Int 2013; 14:654-9. [PMID: 24205825 DOI: 10.1111/ggi.12153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2013] [Indexed: 12/12/2022]
Abstract
AIM Lichen planus is a T cell-mediated chronic inflammatory disease of unknown etiology. The objective of the present study was to evaluate the status of oxidative stress in saliva and the anti-oxidant defense system in relation to quality of life parameters in patients with oral lichen planus (OLP). METHODS The sample consisted of 70 patients (40 with OLP and 30 control patients). The average age of OLP patients was 60 years (9 males and 31 females), and of the control group 57 years (6 males and 24 females). All participants completed the Oral Health Impact Profile-49 quality of life questionnaire. Total anti-oxidant activity and lipid peroxidation products in saliva were evaluated, using ferric reducing anti-oxidant power and thiobarbituric acid reactive substance. RESULTS Mean levels of salivary malondialdehyde were higher in the OLP group than the control group (P = 0.001), and total anti-oxidant capacity was lower among OLP patients than control patients (P = 0.02). There was no correlation between Oral Health Impact Profile-49 findings and the oxidative stress parameters studied. CONCLUSIONS The results of the present study point to the possible function of oxidative stress in the etiopathogenesis of OLP.
Collapse
Affiliation(s)
- Pia Lopez-Jornet
- Oral Medicine, Ageing Research Institute, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | | | | |
Collapse
|
521
|
Wang WL, Tao YP, Han XL, Li X, Zi YM, Yang C, Li JD. Role of polymorphisms in BCL-2 and BAX genes in modulating the risk of developing non-Hodgkin lymphoma. Leuk Lymphoma 2013; 55:1602-8. [PMID: 24024471 DOI: 10.3109/10428194.2013.842992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate whether polymorphisms of - 938C/A and Thr43Ala in the BCL-2 gene and G - 248A in the BAX gene are associated with the risk of developing non-Hodgkin lymphoma (NHL). We genotyped polymorphisms of - 938C/A and Thr43Ala in the BCL-2 gene and G-248A in the BAX gene among 424 patients with NHL and 446 controls. We found that the - 938AA genotype of the BCL2 gene was significantly associated with the risk of developing NHL (p < 0.001) and this genotype was associated with advanced stage (p = 0.01). Meanwhile, individuals having - 248AG + AA genotypes were significantly associated with an increased risk of NHL (p = 0.01), and these genotypes were associated with larger tumor size (p = 0.02). The present study demonstrated that the - 938AA genotype of the BCL-2 gene and - 248AG + AA genotype of the BAX gene may be susceptible genotypes for NHL. There appeared to be an impact of the BCL2 - 938AA genotype on advanced stage and - 248AG + AA genotypes on tumor size in NHL.
Collapse
|
522
|
Elcombe CR, Peffer RC, Wolf DC, Bailey J, Bars R, Bell D, Cattley RC, Ferguson SS, Geter D, Goetz A, Goodman JI, Hester S, Jacobs A, Omiecinski CJ, Schoeny R, Xie W, Lake BG. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol 2013; 44:64-82. [PMID: 24180433 DOI: 10.3109/10408444.2013.835786] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk.
Collapse
|
523
|
The need for evidence based nutritional guidelines for pediatric acute lymphoblastic leukemia patients: acute and long-term following treatment. Nutrients 2013; 5:4333-46. [PMID: 24177709 PMCID: PMC3847733 DOI: 10.3390/nu5114333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
High survival rates for pediatric leukemia are very promising. With regard to treatment, children tend to be able to withstand a more aggressive treatment protocol than adults. The differences in both treatment modalities and outcomes between children and adults make extrapolation of adult studies to children inappropriate. The higher success is associated with a significant number of children experiencing nutrition-related adverse effects both in the short and long term after treatment. Specific treatment protocols have been shown to deplete nutrient levels, in particular antioxidants. The optimal nutrition prescription during, after and long-term following cancer treatment is unknown. This review article will provide an overview of the known physiologic processes of pediatric leukemia and how they contribute to the complexity of performing nutritional assessment in this population. It will also discuss known nutrition-related consequences, both short and long term in pediatric leukemia patients. Since specific antioxidants have been shown to be depleted as a consequence of therapy, the role of oxidative stress in the pediatric leukemia population will also be explored. More pediatric studies are needed to develop evidence based therapeutic interventions for nutritional complications of leukemia and its treatment.
Collapse
|
524
|
Zámbó V, Simon-Szabó L, Szelényi P, Kereszturi &E, Bánhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol 2013; 5:550-557. [PMID: 24179614 PMCID: PMC3812457 DOI: 10.4254/wjh.v5.i10.550] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/27/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity due to excessive food intake and the lack of physical activity is becoming one of the most serious public health problems of the 21st century. With the increasing prevalence of obesity, non-alcoholic fatty liver disease is also emerging as a pandemic. While previously this pathophysiological condition was mainly attributed to triglyceride accumulation in hepatocytes, recent data show that the development of oxidative stress, lipid peroxidation, cell death, inflammation and fibrosis are mostly due to accumulation of fatty acids, and the altered composition of membrane phospholipids. In fact, triglyceride accumulation might play a protective role, and the higher toxicity of saturated or trans fatty acids seems to be the consequence of a blockade in triglyceride synthesis. Increased membrane saturation can profoundly disturb cellular homeostasis by impairing the function of membrane receptors, channels and transporters. However, it also induces endoplasmic reticulum stress via novel sensing mechanisms of the organelle’s stress receptors. The triggered signaling pathways in turn largely contribute to the development of insulin resistance and apoptosis. These findings have substantiated the lipotoxic liver injury hypothesis for the pathomechanism of hepatosteatosis. This minireview focuses on the metabolic and redox aspects of lipotoxicity and lipoapoptosis, with special regards on the involvement of endoplasmic reticulum stress responses.
Collapse
|
525
|
Tormos AM, Taléns-Visconti R, Nebreda AR, Sastre J. p38 MAPK: a dual role in hepatocyte proliferation through reactive oxygen species. Free Radic Res 2013; 47:905-16. [PMID: 23906070 DOI: 10.3109/10715762.2013.821200] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
p38 MAPKs are important mediators of signal transduction that respond to a wide range of extracellular stressors such as UV radiation, osmotic shock, hypoxia, pro-inflammatory cytokines, and oxidative stress. The most abundant family member is p38α, which helps to couple cell proliferation and growth in response to certain damaging stimuli. In fact, increased proliferation and impaired differentiation are hallmarks of p38α-deficient cells. It has been reported that reactive oxygen species (ROS) play a critical role in cytokine-induced p38α activation. Under physiological conditions, p38α can function as a mediator of ROS signaling and either activate or suppress cell cycle progression depending on the activation stimulus. The interplay between cell proliferation, p38 MAPK activation, and ROS production plays an important role in hepatocytes. In fact, low levels of ROS seem to be needed to activate several signaling pathways in response to hepatectomy and to orchestrate liver regeneration. p38 MAPK works as a sensor of oxidative stress and cells that have developed mechanisms to uncouple p38 MAPK activation from oxidative stress are more likely to become tumorigenic. So far, p38α influences the redox balance, determining cell survival, terminal differentiation, proliferation, and senescence. Further studies would be necessary in order to clarify the precise role of p38 MAPK signaling as a redox therapeutical target.
Collapse
Affiliation(s)
- A M Tormos
- Department of Physiology, Faculty of Pharmacy, University of Valencia , Valencia , Spain
| | | | | | | |
Collapse
|
526
|
Masood F, Malik A. Mutagenicity and genotoxicity assessment of industrial wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:7386-7397. [PMID: 23640391 DOI: 10.1007/s11356-013-1756-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
The genotoxicity of industrial wastewaters from Jajmau (Kanpur), was carried out by Ames Salmonella/microsome test, DNA repair-defective mutants, and Allium cepa anaphase-telophase test. Test samples showed maximum response with TA98 strain with and without metabolic activation. Amberlite resins concentrated wastewater samples were found to be more mutagenic as compared to those of liquid-liquid extracts (hexane and dichloromethane extracts). The damage in the DNA repair defective mutants in the presence of Amberlite resins concentrated water samples were found to be higher to that of liquid-liquid-extracted water samples at the dose level of 20 μl/ml culture. Among all the mutants, polA exhibited maximum decline with test samples. Mitotic index (MI) of root tip meristematic cells of A. cepa treated with 5, 10, 25, 50, and 100 % (v/v) wastewaters were significantly lower than the control. Complementary to the lower levels of MI, the wastewaters showed higher chromosomal aberration levels in all cases investigated.
Collapse
Affiliation(s)
- Farhana Masood
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | | |
Collapse
|
527
|
Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 2013; 8:97-109. [PMID: 23281326 DOI: 10.1002/biot.201200313] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 11/12/2022]
Abstract
With the increasing prevalence of antibiotic resistance, antimicrobial enzymes aimed at the disruption of bacterial cellular machinery and biofilm formation are under intense investigation. Several enzyme-based products have already been commercialized for application in the healthcare, food and biomedical industries. Successful removal of complex biofilms requires the use of multi-enzyme formulations that contain enzymes capable of degrading microbial DNA, polysaccharides, proteins and quorum-sensing molecules. The inclusion of anti-quorum sensing enzymes prevents biofilm reformation. The development of effective complex enzyme formulations is urgently needed to deal with the problems associated with biofilm formation in manufacturing, environmental protection and healthcare settings. Nevertheless, advances in synthetic biology, enzyme engineering and whole DNA-Sequencing technologies show great potential to facilitate the development of more effective antimicrobial and anti-biofilm enzymes.
Collapse
Affiliation(s)
- Barbara Thallinger
- Graz University of Technology, Institute of Environmental Biotechnology, Graz, Austria
| | | | | | | |
Collapse
|
528
|
Chen X, Qin Q, Zhang W, Zhang Y, Zheng H, Liu C, Yang Y, Xiong W, Yuan J. Activation of the PI3K–AKT–mTOR signaling pathway promotes DEHP-induced Hep3B cell proliferation. Food Chem Toxicol 2013; 59:325-33. [DOI: 10.1016/j.fct.2013.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 12/20/2022]
|
529
|
Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3886-907. [PMID: 23985773 PMCID: PMC3799517 DOI: 10.3390/ijerph10093886] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.). Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM), at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM₁₀ and PM₂.₅) are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Athanasios Valavanidis
- Department of Chemistry, University of Athens, University Campus Zografou, Athens 15784, Greece.
| | | | | | | |
Collapse
|
530
|
Ríos-Arrabal S, Artacho-Cordón F, León J, Román-Marinetto E, del Mar Salinas-Asensio M, Calvente I, Núñez MI. Involvement of free radicals in breast cancer. SPRINGERPLUS 2013; 2:404. [PMID: 24024092 PMCID: PMC3765596 DOI: 10.1186/2193-1801-2-404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022]
Abstract
Researchers have recently shown an increased interest in free radicals and their role in the tumor microenvironment. Free radicals are molecules with high instability and reactivity due to the presence of an odd number of electrons in the outermost orbit of their atoms. Free radicals include reactive oxygen and nitrogen species, which are key players in the initiation and progression of tumor cells and enhance their metastatic potential. In fact, they are now considered a hallmark of cancer. However, both reactive species may contribute to improve the outcomes of radiotherapy in cancer patients. Besides, high levels of reactive oxygen species may be indicators of genotoxic damage in non-irradiated normal tissues. The purpose of this article is to review recent research on free radicals and carcinogenesis in order to understand the pathways that contribute to tumor malignancy. This review outlines the involvement of free radicals in relevant cellular events, including their effects on genetic instability through (growth factors and tumor suppressor genes, their enhancement of mitogenic signals, and their participation in cell remodeling, proliferation, senescence, apoptosis, and autophagy processes; the possible relationship between free radicals and inflammation is also explored. This knowledge is crucial for evaluating the relevance of free radicals as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Sandra Ríos-Arrabal
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | - Francisco Artacho-Cordón
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
- />Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Josefa León
- />Ciber de Enfermedades Hepáticas y Digestivas CIBERehd, Granada, Spain
| | - Elisa Román-Marinetto
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | | | - Irene Calvente
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | - Maria Isabel Núñez
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
- />Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- />Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Av. Conocimiento, s/n, 18100 Armilla Granada, Spain
| |
Collapse
|
531
|
A purified feverfew extract protects from oxidative damage by inducing DNA repair in skin cells via a PI3-kinase-dependent Nrf2/ARE pathway. J Dermatol Sci 2013; 72:304-10. [PMID: 24035441 DOI: 10.1016/j.jdermsci.2013.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Environmental factors such as solar ultraviolet (UV) radiation and other external aggressors provide an oxidative challenge that is detrimental to skin health. The levels of endogenous antioxidants decrease with age, thus resulting in less protection and a greater potential for skin damage. The NF-E2-related factor-2 (Nrf2) - antioxidant response element (ARE) pathway is a primary defense mechanism against oxidative stress, and induces the expression of antioxidant, detoxification and repair genes. Activation of ARE-Nrf2 can help restore oxidative homeostasis of the skin and play a role in inflammatory response and DNA repair mechanisms. OBJECTIVE To evaluate the role of a purified parthenolide-depleted Feverfew (PD-Feverfew) extract on the ARE-Nrf2 pathway and DNA repair in skin cells. METHODS These studies were undertaken in primary human keratinocytes or KB cells using Luciferase Promoter assay, siRNA transfection studies, Western blot analyses, Immunofluorescence microscopy, comet assay and quantitative real-time PCR. RESULTS PD-Feverfew was found to induce Nrf2 nuclear translocation and to increase ARE activity in a dose dependent manner. Furthermore, knockdown of Nrf2 resulted in suppression of PD-Feverfew-induced ARE activity. PD-Feverfew was also found to induce phosphorylation of Akt, a kinase downstream of PI3K. Inhibition of PI3K via pre-treatment with the selective pharmacological inhibitor, LY294002, abolished PD-Feverfew-induced Nrf2/ARE activation. PD-Feverfew also reduced UV-induced DNA damage in a PI3K and Nrf2-dependent manner. CONCLUSIONS Therefore, by increasing endogenous defense mechanisms and aid in DNA repair of damaged skin cells via activation of a PI3K-dependent Nrf2/ARE pathway, PD-Feverfew may help protect the skin from numerous environmental aggressors.
Collapse
|
532
|
Abstract
The term 'antioxidant paradox' is often used to refer to the observation that oxygen radicals and other reactive oxygen species are involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies, demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully regulated. The body's 'total antioxidant capacity' seems unresponsive to high doses of dietary antioxidants, so that the amount of oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying weak pro-oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are important than is consumption of large doses of dietary antioxidants.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
533
|
Age-related changes in hepatic activity and expression of detoxification enzymes in male rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:408573. [PMID: 23971034 PMCID: PMC3736498 DOI: 10.1155/2013/408573] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/02/2013] [Indexed: 01/23/2023]
Abstract
Process of aging is accompanied by changes in the biotransformation of xenobiotics and impairment of normal cellular functions by free radicals. Therefore, this study was designed to determine age-related differences in the activities and/or expressions of selected drug-metabolizing and antioxidant enzymes in young and old rats. Specific activities of 8 drug-metabolizing enzymes and 4 antioxidant enzymes were assessed in hepatic subcellular fractions of 6-week-old and 21-month-old male Wistar rats. Protein expressions of carbonyl reductase 1 (CBR1) and glutathione S-transferase (GST) were determined using immunoblotting. Remarkable age-related decrease in specific activities of CYP2B, CYP3A, and UDP-glucuronosyl transferase was observed, whereas no changes in activities of CYP1A2, flavine monooxygenase, aldo-keto reductase 1C, and antioxidant enzymes with advancing age were found. On the other hand, specific activity of CBR1 and GST was 2.4 folds and 5.6 folds higher in the senescent rats compared with the young ones, respectively. Interindividual variability in CBR1 activity increased significantly with rising age. We suppose that elevated activities of GST and CBR1 may protect senescent rats against xenobiotic as well as eobiotic electrophiles and reactive carbonyls, but they may alter metabolism of drugs, which are CBR1 and especially GSTs substrates.
Collapse
|
534
|
Expression of glutathione peroxidase 2 is associated with not only early hepatocarcinogenesis but also late stage metastasis. Toxicology 2013; 311:115-23. [PMID: 23867582 DOI: 10.1016/j.tox.2013.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 01/16/2023]
Abstract
Understanding of mechanisms of cancer progression is very important for reduction of cancer mortality. Of six rat hepatocellular carcinoma (HCC) cell lines, differing in their metastatic potential to the lung after inoculation into the tail vein of nude mice, the most metastatic featured particular overexpression of glutathione peroxidase 2 (GPX2). Therefore, we analyzed the influence of interference in highly metastatic L2 cells by siRNA transfection. Gpx2 siRNA significantly inhibited cell proliferation at 24 and 48h time points with induction of apoptosis but not cell cycle arrest. High expression of mutated p53 was detected in all HCC cell lines, with reduction in Gpx2 siRNA-transfected cells. Migration and invasion in vitro were also suppressed as compared to control siRNA-transfected cells and secretion of matrix metalloproteinase 9 was reduced. In vivo, the numbers and areas of metastatic nodules per area in the lungs were significantly reduced in the mice inoculated with Gpx2 siRNA-transfected cells as compared to control siRNA-transfected cells. In conclusion, expression of GPX2 is associated with cancer metastasis from rat HCCs both in vitro and in vivo. Together with immunohistochemical findings of elevated expression in rat and also human liver lesions, the results point to important roles in hepatocarcinogenesis.
Collapse
|
535
|
Pappas-Gogos G, Tellis C, Lasithiotakis K, Tselepis AD, Tsimogiannis K, Tsimoyiannis E, Chalkiadakis G, Chrysos E. Oxidative stress markers in laparoscopic versus open colectomy for cancer: a double-blind randomized study. Surg Endosc 2013; 27:2357-2365. [DOI: 10.1007/s00464-013-2788-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
|
536
|
Kuwahara K, Nanri A, Pham NM, Kurotani K, Kume A, Sato M, Kawai K, Kasai H, Mizoue T. Serum vitamin B6, folate, and homocysteine concentrations and oxidative DNA damage in Japanese men and women. Nutrition 2013; 29:1219-23. [PMID: 23800563 DOI: 10.1016/j.nut.2013.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Higher vitamin B status has been linked to a lower risk for cancer, but the underlying mechanism remains elusive. The aim of the present study was to examine the association of pyridoxal, folate, and homocysteine (Hcy) with urinary 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage. METHODS The participants were 500 employees (293 men and 207 women), ages 21 to 66 y, of two municipal offices in Japan. Serum pyridoxal and Hcy concentrations were measured using high-performance liquid chromatography (HPLC) method, and serum folate concentrations were measured using chemiluminescent immunoassay. Urinary 8-OHdG concentrations were measured using HPLC method. Multiple regression was used to estimate means of 8-OHdG for each tertile of pyridoxal, folate, and Hcy with adjustment for potential confounders. RESULTS In multivariate analysis, 8-OHdG concentration was inversely associated with pyridoxal concentration in men (P for trend = 0.045) but not in women. The association in men was confined to non-smokers (P for trend = 0.033) or those who consumed no or < 20 g/d of ethanol (P for trend = 0.048). 8-OHdG concentrations were not appreciably associated with folate and Hcy concentrations. CONCLUSION The results suggest that vitamin B6, but not folate and homocysteine, plays a role against oxidative DNA damage in Japanese men.
Collapse
Affiliation(s)
- Keisuke Kuwahara
- Department of Epidemiology and Prevention, Clinical Research Center, National Center for Global Health and Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
537
|
da Silva BS, Rovaris DL, Bonotto RM, Meyer JBF, Grohe RE, Perassolo MS, Palazzo RDP, Maluf SW, Linden R, de Andrade FM. The influence on DNA damage of glycaemic parameters, oral antidiabetic drugs and polymorphisms of genes involved in the DNA repair system. Mutagenesis 2013; 28:525-30. [DOI: 10.1093/mutage/get029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
538
|
APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Proc Natl Acad Sci U S A 2013; 110:10592-7. [PMID: 23754435 DOI: 10.1073/pnas.1301445110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The base excision repair pathway is largely responsible for the repair of oxidative stress-induced DNA damage. However, it remains unclear how the DNA damage checkpoint is activated by oxidative stress at the molecular level. Here, we provide evidence showing that hydrogen peroxide (H2O2) triggers checkpoint kinase 1 (Chk1) phosphorylation in an ATR [ataxia-telangiectasia mutated (ATM) and Rad3-related]-dependent but ATM-independent manner in Xenopus egg extracts. A base excision repair protein, Apurinic/apyrimidinic (AP) endonuclease 2 (APE2, APN2, or APEX2), is required for the generation of replication protein A (RPA)-bound single-stranded DNA, the recruitment of a checkpoint protein complex [ATR, ATR-interacting protein (ATRIP), and Rad9] to damage sites, and H2O2-induced Chk1 phosphorylation. A conserved proliferating cell nuclear antigen interaction protein box of APE2 is important for the recruitment of APE2 to H2O2-damaged chromatin. APE2 3'-phosphodiesterase and 3'-5' exonuclease activity is essential for single-stranded DNA generation in the 3'-5' direction from single-stranded breaks, referred to as single-stranded break end resection. In addition, APE2 associates with Chk1, and a serine residue (S86) in the Chk1-binding motif of APE2 is essential for Chk1 phosphorylation, indicating a Claspin-like but distinct role for APE2 in ATR-Chk1 signaling. Our data indicate that APE2 plays a vital and previously unexpected role in ATR-Chk1 checkpoint signaling in response to oxidative stress. Thus, our findings shed light on a distinct mechanism of how an ATR-Chk1-dependent DNA damage checkpoint is mediated by APE2 in the oxidative stress response.
Collapse
|
539
|
Cardin R, Piciocchi M, Tieppo C, Maddalo G, Zaninotto G, Mescoli C, Rugge M, Farinati F. Oxidative DNA damage in Barrett mucosa: correlation with telomeric dysfunction and p53 mutation. Ann Surg Oncol 2013; 20 Suppl 3:S583-9. [PMID: 23744553 DOI: 10.1245/s10434-013-3043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Barrett esophagus develops in a scenario of chronic inflammation, linked to free radical formation and oxidative DNA damage. Eight-hydroxydeoxyguanosine, the main oxidative DNA adduct, is partially repaired by a glycosylase (OGG1) whose polymorphism is associated to a reduced repair capacity. Telomeres are particularly prone to oxidative damage, which leads to shortening and cell senescence, while elongation, by telomerase activity, is linked to cell immortalization and cancer. Limited data are available on this point with respect to Barrett esophagus. This study aimed to evaluate the link among 8-hydroxydeoxyguanosine, OGG1 polymorphism, telomerase activity, telomere length, and p53 mutation in Barrett progression. METHODS Forty consecutive patients with short- and long-segment Barrett esophagus and 20 controls with gastroesophageal reflux disease without Barrett esophagus were recruited. Analysis of biopsy samples was undertaken to study 8-hydroxydeoxyguanosine levels, OGG1 polymorphism, telomerase activity, and telomere length. Serum samples were obtained for p53 mutation. RESULTS Controls had significantly lower levels of 8-hydroxydeoxyguanosine and telomerase activity, with normal telomere length and no p53 mutation. In short-segment Barrett esophagus, 8-hydroxydeoxyguanosine levels were higher and telomeres underwent significant shortening, with stimulation of telomerase activity but no p53 mutations. In long-segment Barrett esophagus, 8-hydroxydeoxyguanosine reached maximal levels, with telomere elongation, and 42 % of the patients showed p53 mutation. CONCLUSIONS In Barrett patients, with disease progression, oxidative DNA damage accumulates, causing telomere instability, telomerase activation, and, in a late phase, mutations in the p53 gene, thus abrogating its activity as the checkpoint of proliferation and apoptosis, and facilitating progression to cancer.
Collapse
Affiliation(s)
- Romilda Cardin
- Section of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
540
|
Kathiria AS, Butcher MA, Hansen JM, Theiss AL. Nrf2 is not required for epithelial prohibitin-dependent attenuation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G885-96. [PMID: 23494124 PMCID: PMC3652068 DOI: 10.1152/ajpgi.00327.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease is associated with increased reactive oxygen species (ROS) and decreased antioxidant response in the intestinal mucosa. Expression of the mitochondrial protein prohibitin (PHB) is also decreased during intestinal inflammation. Our previous study showed that genetic restoration of colonic epithelial PHB expression [villin-PHB transgenic (PHB Tg) mice] attenuated dextran sodium sulfate (DSS)-induced colitis/oxidative stress and sustained expression of colonic nuclear factor erythroid 2-related factor 2 (Nrf2), a cytoprotective transcription factor. This study investigated the role of Nrf2 in mediating PHB-induced protection against colitis and expression of the antioxidant response element (ARE)-regulated antioxidant genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1). PHB-transfected Caco-2-BBE human intestinal epithelial cells maintained increased ARE activation and decreased intracellular ROS levels compared with control vector-transfected cells during Nrf2 knockdown by small interfering RNA. Treatment with the ERK inhibitor PD-98059 decreased PHB-induced ARE activation, suggesting that ERK constitutes a significant portion of PHB-mediated ARE activation in Caco-2-BBE cells. PHB Tg, Nrf2(-/-), and PHB Tg/Nrf2(-/-) mice were treated with DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS), and inflammation and expression of HO-1 and NQO-1 were assessed. PHB Tg/Nrf2(-/-) mice mimicked PHB Tg mice, with attenuated DSS- or TNBS-induced colitis and induction of colonic HO-1 and NQO-1 expression, despite deletion of Nrf2. PHB Tg/Nrf2(-/-) mice exhibited increased activation of ERK during colitis. Our results suggest that maintaining expression of intestinal epithelial cell PHB, which is decreased during colitis, reduces the severity of inflammation and increases colonic levels of the antioxidants HO-1 and NQO-1 via a mechanism independent of Nrf2.
Collapse
Affiliation(s)
- Arwa S. Kathiria
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| | - Mackenzie A. Butcher
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| | - Jason M. Hansen
- 2Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory School of Medicine, Emory University, Atlanta, Georgia; and ,3Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Arianne L. Theiss
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| |
Collapse
|
541
|
Erdogdu O, Eriksson L, Xu H, Sjöholm A, Zhang Q, Nyström T. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J Mol Endocrinol 2013; 50:229-41. [PMID: 23343509 DOI: 10.1530/jme-12-0166] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimental studies have indicated that endothelial cells play an important role in maintaining vascular homeostasis. We previously reported that human coronary artery endothelial cells (HCAECs) express the glucagon-like peptide 1 (GLP1) receptor and that the stable GLP1 mimetic exendin-4 is able to activate the receptor, leading to increased cell proliferation. Here, we have studied the effect of exendin-4 and native GLP1 (7-36) on lipoapoptosis and its underlying mechanisms in HCAECs. Apoptosis was assessed by DNA fragmentation and caspase-3 activation, after incubating cells with palmitate. Nitric oxide (NO) and reactive oxidative species (ROS) were analyzed. GLP1 receptor activation, PKA-, PI3K/Akt-, eNOS-, p38 MAPK-, and JNK-dependent pathways, and genetic silencing of transfection of eNOS were also studied. Palmitate-induced apoptosis stimulated cells to release NO and ROS, concomitant with upregulation of eNOS, which required activation of p38 MAPK and JNK. Exendin-4 restored the imbalance between NO and ROS production in which ROS production decreased and NO production was further augmented. Incubation with exendin-4 and GLP1 (7-36) protected HCAECs against lipoapoptosis, an effect that was blocked by PKA, PI3K/Akt, eNOS, p38 MAPK, and JNK inhibitors. Genetic silencing of eNOS also abolished the anti-apoptotic effect afforded by exendin-4. Our results support the notion that GLP1 receptor agonists restore eNOS-induced ROS production due to lipotoxicity and that such agonists protect against lipoapoptosis through PKA-PI3K/Akt-eNOS-p38 MAPK-JNK-dependent pathways via a GLP1 receptor-dependent mechanism.
Collapse
Affiliation(s)
- Ozlem Erdogdu
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
542
|
Du H, Li J, Moe B, McGuigan CF, Shen S, Li XF. Cytotoxicity and oxidative damage induced by halobenzoquinones to T24 bladder cancer cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2823-30. [PMID: 23368424 DOI: 10.1021/es303762p] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Four halobenzoquinones (HBQs), 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), and 2,6-dibromobenzoquinone (DBBQ), have been recently confirmed as disinfection byproducts (DBPs) in drinking water; however, their toxicological information is scarce. Here, we report that HBQs are cytotoxic to T24 bladder cancer cells and that the IC50 values are 95 μM for DCBQ, 110 μM for DCMBQ, 151 μM for TCBQ, and 142 μM for DBBQ, after a 24-h exposure. The antioxidant N-acetyl-l-cysteine (NAC) significantly reduces the cytotoxicity induced by the four HBQs, supporting the hypothesis that oxidative stress contributes to the cytotoxicity of HBQs. To further explore the oxidative mechanisms of cytotoxicity, we examined HBQ-induced production of reactive oxygen species (ROS) in T24 cells, and measured 8-hydroxydeoxyguanosine (8-OHdG), protein carbonyls, and malondialdehyde (MDA) adducts of proteins, markers of oxidative damage to DNA, proteins, and lipids, respectively. All four HBQs generated intracellular ROS in T24 cells in a concentration-dependent manner. HBQs also produced 8-OHdG in genomic DNA of T24 cells, with the highest levels of 8-OHdG induced by DCMBQ. Protein carbonylation was significantly increased in T24 cells that were incubated with each of the four HBQs for 24 h. However, MDA adduct formation, a marker of lipid peroxidation, was not affected by any of the four HBQs tested. These results suggest that the ROS-induced oxidative damage to DNA and protein carbonylation are involved in the observed toxicity of HBQs in T24 cells.
Collapse
Affiliation(s)
- Haiying Du
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
543
|
Benigni R, Bossa C, Tcheremenskaia O. Nongenotoxic carcinogenicity of chemicals: mechanisms of action and early recognition through a new set of structural alerts. Chem Rev 2013; 113:2940-57. [PMID: 23469814 DOI: 10.1021/cr300206t] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Romualdo Benigni
- Istituto Superiore di Sanita' Environment and Health Department, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
544
|
Thompson CM, Proctor DM, Suh M, Haws LC, Kirman CR, Harris MA. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Crit Rev Toxicol 2013; 43:244-74. [PMID: 23445218 PMCID: PMC3604738 DOI: 10.3109/10408444.2013.768596] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
Abstract
Abstract Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors.
Collapse
|
545
|
Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:613950. [PMID: 23533505 PMCID: PMC3590506 DOI: 10.1155/2013/613950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/21/2012] [Accepted: 12/25/2012] [Indexed: 12/29/2022]
Abstract
Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts.
Collapse
|
546
|
Mito T, Kikkawa Y, Shimizu A, Hashizume O, Katada S, Imanishi H, Ota A, Kato Y, Nakada K, Hayashi JI. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development. PLoS One 2013; 8:e55789. [PMID: 23418460 PMCID: PMC3572082 DOI: 10.1371/journal.pone.0055789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ0) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.
Collapse
Affiliation(s)
- Takayuki Mito
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akinori Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Osamu Hashizume
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shun Katada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hirotake Imanishi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Azusa Ota
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yukina Kato
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun-Ichi Hayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
547
|
Shelton P, Jaiswal AK. The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene? FASEB J 2013; 27:414-23. [PMID: 23109674 PMCID: PMC3545532 DOI: 10.1096/fj.12-217257] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/15/2012] [Indexed: 12/13/2022]
Abstract
The transcription factor Nrf2 is responsible for regulating a battery of antioxidant and cellular protective genes, primarily in response to oxidative stress. A member of the cap 'n' collar family of transcription factors, Nrf2 activation is tightly controlled by a series of signaling events. These events can be separated into the basal state, a preinduction response, gene induction, and finally a postinduction response, culminating in the restoration of redox homeostasis. However, despite the immensely intricate level of control the cellular environment imposes on Nrf2 activity, there are many opportunities for perturbations to arise in the signaling events that favor carcinogenesis and, therefore, implicate Nrf2 as both a tumor suppressor and a protooncogene. Herein, we highlight the ways in which Nrf2 is regulated, and discuss some of the Nrf2-inducible antioxidant (NQO1, NQO2, HO-1, GCLC), antiapoptotic (Bcl-2), metabolic (G6PD, TKT, PPARγ), and drug efflux transporter (ABCG2, MRP3, MRP4) genes. In addition, we focus on how Nrf2 functions as a tumor suppressor under normal conditions and how its ability to detoxify the cellular environment makes it an attractive target for other oncogenes either via stabilization or degradation of the transcription factor. Finally, we discuss some of the ways in which Nrf2 is being considered as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Phillip Shelton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anil K. Jaiswal
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
548
|
Li R, Tian J, Li W, Xie J. Effects of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) on histopathology, oxidative stress, and expression of c-fos, c-jun and p16 in rat stomachs. Food Chem Toxicol 2013; 55:182-91. [PMID: 23313794 DOI: 10.1016/j.fct.2012.12.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/05/2012] [Accepted: 12/31/2012] [Indexed: 01/30/2023]
Abstract
2-Amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) is one of the most abundant heterocyclic amines (HCAs) generated from overcooking meat at high temperatures. To understand the possible mechanism of PhIP-associated stomach cancer, the effects of PhIP on morphology, oxidative stress, gene expression of c-fos, c-jun and p16 in rat stomachs were investigated. The results showed that (1) 15mg/kg body weight PhIP induced obvious histopathological changes in gastric mucosa; (2) PhIP (10 and/or 15mg/kg) significantly decreased superoxide dismutase (SOD) and glutathioneperoxidase (GPx) activities, while increased catalase (CAT) activity compared with the control. With the elevated doses of PhIP, malondialdehyde (MDA) contents, protein carbonyl (PCO) contents and DNA-protein crosslinks (DPC) coefficients were significantly raised in a dose-dependent manner; (3) PhIP at the doses of 10mg/kg and/or 15mg/kg significantly inhibited p16 mRNA and protein expression, whereas enhanced c-fos and c-jun expression relative to control. The data indicated that PhIP could cause stomach injury, oxidative stress in rat stomachs as well as the activation of c-fos and c-jun and inactivation of p16, which may play a role in the pathogenesis of PhIP-associated stomach cancer.
Collapse
Affiliation(s)
- Ruijin Li
- Research Center of Environmental Science and Engineering, Institute of Environmental Medicine and Toxicology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, PR China.
| | | | | | | |
Collapse
|
549
|
Srivastava KC, Austin RD, Shrivastava D, Sethupathy S, Rajesh S. A Case control study to evaluate oxidative stress in plasma samples of oral malignancy. Contemp Clin Dent 2013; 3:271-6. [PMID: 23293480 PMCID: PMC3532787 DOI: 10.4103/0976-237x.103617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Imbalances between the oxidant –antioxidant status have been implicated in the pathogenesis of several diseases, including cancer. Aim: The aim of this study was to evaluate the extent of lipid peroxidation and antioxidants in the venous blood samples of oral squamous cell carcinoma patients of different Clinicopathologic stages in comparison with the healthy controls. Setting and Design: A Case control study was designed in a hospital (Rajah Muthiah Dental College and Hospital, Annamalai University) based setting. Materials and Methods: Twenty new histopathologically proven oral carcinoma patients, and equal number of age, sex and habit matched healthy subjects were recruited for this study. Their blood samples were subjected to evaluation of Thiobarbituric Acid Reactive Substances (TBARS) and antioxidant enzymes, namely, superoxide dismutase (SOD), Catalase (CAT) reduced glutathione (GSH) and glutathione peroxidase (GPx) using spectrophotometric methods. Statistical Analysis: The data are expressed as mean±SD. The statistical comparisons were performed by independent Student's t-test and One Way ANOVA. P value <0.05 was considered statistically significant. Karl Pearson correlation was performed for the biochemical parameters within the group and between the groups. For statistically significant correlations, linear regression was performed. Results: Significant enhanced lipid peroxidation (P<0.001) with decrease in antioxidants (P<0.001) was observed in the venous blood of oral squamous cell carcinoma patients as compared with the healthy controls. Accordingly, significant (P<0.001) pattern of progression in TBARS levels was observed at various clinical stages of patients. (GSH) showed significant (P<0.01) negative correlation with TBARS and positive correlation (P<0.001) with SOD. On linear regression analysis, GSH showed significance for SOD (P<0.001), GPx, CAT and TBARS (P<0.01). It was also found that, 70% of variance in SOD can be attributed to the influence of GSH alone. Conclusion: Enhanced lipid peroxidation and compromised antioxidant defense in plasma indicate development of oxidative stress. Amongst the antioxidant enzymes, (GSH) appears to have a profound role in carcinogenesis.
Collapse
Affiliation(s)
- Kumar Chandan Srivastava
- Division of Oral Medicine and Radiology, Rajah Muthiah Dental College and Hospital, Annamalai University, Annamalai Nagar, Chidambaram, India
| | | | | | | | | |
Collapse
|
550
|
Thilakchand KR, Mathai RT, Simon P, Ravi RT, Baliga-Rao MP, Baliga MS. Hepatoprotective properties of the Indian gooseberry (Emblica officinalis Gaertn): a review. Food Funct 2013; 4:1431-41. [DOI: 10.1039/c3fo60237k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|