501
|
Fornaguera C, Castells-Sala C, Borrós S. Unraveling Polymeric Nanoparticles Cell Uptake Pathways: Two Decades Working to Understand Nanoparticles Journey to Improve Gene Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1288:117-138. [PMID: 31916235 DOI: 10.1007/5584_2019_467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymeric nanoparticles have aroused an increasing interest in the last decades as novel advanced delivery systems to improve the treatment of many diseases. Hard work has been performed worldwide designing and developing polymeric nanoparticles using different building blocks, which target specific cell types, trying to avoid bioaccumulation and degradation pathways. The main handicap of the design is to understand the final fate and the journey that the nanoparticle will follow, which is intimately ligated with the chemical and physical properties of the nanoparticles themselves and specific factors of the targeted cells. Although the huge number of published scientific articles regarding polymeric nanoparticles for biomedical applications, their use in clinics is still limited. This fact could be explained by the limited data reporting the interaction of the huge diversity of polymeric nanoparticles with cells. This knowledge is essential to understand nanoparticle uptake and trafficking inside cells to the subcellular target structure.In this chapter, we aim to contribute to this field of knowledge by: (1) summarizing the polymeric nanoparticles properties and cellular factors that influence nanoparticle endocytosis and (2) reviewing the endocytic pathways classified as a function of nanoparticle size and as a function of the receptor playing a role. The revision of previously reported endocytic pathways for particular polymeric nanoparticles could facilitate scientist involved in this field to easily delineate efficient delivery systems based on polymeric nanoparticles.
Collapse
Affiliation(s)
- C Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain.
| | - C Castells-Sala
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - S Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
502
|
Abouelmagd SA, Ellah NHA, Hamid BNAE. Temperature and pH dual-stimuli responsive polymeric carriers for drug delivery. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:87-109. [DOI: 10.1016/b978-0-08-101995-5.00003-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
503
|
Ma J, Kang K, Zhang Y, Yi Q, Gu Z. Detachable Polyzwitterion-Coated Ternary Nanoparticles Based on Peptide Dendritic Carbon Dots for Efficient Drug Delivery in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43923-43935. [PMID: 30474366 DOI: 10.1021/acsami.8b17041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we presented ternary nanoparticles [poly(carboxybetaine methacrylate) (pCBMA)(peptide dendrimer-modified carbon dots (CD-D)/doxorubicin (DOX))] based on peptide dendritic carbon dots (CDs) to realize tumor-specific drug delivery and highly efficient cancer therapy. The versatile nanoparticles could achieve "stealth" delivery in blood due to the antifouling zwitterion coating. Meanwhile, charge changes of the zwitterions could be moderated during their transportation toward/inside tumor cells, where subtle environmental pH variations acted as potent stimuli to actualize desired functions. In particular, the detachment of the zwitterionic "coat" at the tumor site resulted in the exposure of abundant peripheral guanidine groups on peptide dendritic carbon dots (CD-D/DOX) owing to the extracellular pH environment (pH 6.8)-induced charge conversion. Consequently, the positively charged CD-D/DOX (+7.02 mV) interacted with the negatively charged cancer cell membrane to enhance cellular uptake. After endocytosis, tumor intracellular microenvironments (acidic conditions and high glutathione (GSH) levels) could lead to effective disintegration of the CD-D/DOX entities due to acid-induced protonation of guanidine groups and glutathione-induced cleavage of peptide dendritic components on CDs, and then effective endosomal escape and fast doxorubicin hydrochloride (DOX·HCl) release (73.2% accumulative release within 4 h) were achieved successively. This strategy enabled a 9.19-fold drug release rate at tumor sites in comparison with the one in the physiological environment. Moreover, the excellent fluorescence properties of CDs endowed the pCBMA(CD-D/DOX) with fluorescence bioimaging function. In view of the above-mentioned advantages, pCBMA(CD-D/DOX) exhibited outstanding antitumor activities both in vitro and in vivo, demonstrating much higher antitumor efficacy and less side effects than the free DOX·HCl.
Collapse
Affiliation(s)
- Jin Ma
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P. R. China
- Department of Cell and Chemical Biology , Leiden University Medical Center , 2333 ZC Leiden , The Netherlands
| | - Ke Kang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Yujia Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , P. R. China
- College of Materials Science and Engineering , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| |
Collapse
|
504
|
Chen Y, Wang L, Guo D, Sheng C, Dai H, Shi X, Zhang W, Huang Q, Peng C, Chen W. A rapid and efficient technique for liposomal and nonliposomal drug pharmacokinetics studies using magnetic nanoprobes and its application to leakage kinetics of liposomes. J Chromatogr A 2018; 1580:2-11. [PMID: 30391033 DOI: 10.1016/j.chroma.2018.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
Currently, the pharmacokinetics of liposomes was researched in vivo by measuring the total amount of drug in plasma. This method of using the total drug amount instead of the free drug amount virtually increase the apparent exposure and apparent biological distribution. To solve this problem, we developed a rapid and efficient method by using well-established streptavidin-functional Fe3O4@PDA as the separation nanoprobes to efficiently isolate biotin-labeled DTX-liposomes over 75% from plasma in the presence of magnetic field. The isolation procedure takes only 20 min and the concentration of DTX in liposomes from plasma was determined by LC-MS/MS. The method for the determination of DTX in plasma was linear in the range of 5-5000 ng/mL, and the correlation coefficient was 0.9989. Results obtained in this study clearly demonstrated that the pharmacokinetic parameters of non-liposomal drug and total drug are different in vivo. Therefore, traditional method for studying the pharmacokinetics of liposomes in vivo is unreasonable, and the new method mentioned here provided a strategy for studying the pharmacokinetics of liposomes.
Collapse
Affiliation(s)
- Yunna Chen
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Lei Wang
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| | - Dongdong Guo
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chenming Sheng
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Haozhi Dai
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Xiaoyan Shi
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Wenjing Zhang
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Qianqian Huang
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Can Peng
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
| | - Weidong Chen
- Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China.
| |
Collapse
|
505
|
Altinbasak I, Jijie R, Barras A, Golba B, Sanyal R, Bouckaert J, Drider D, Bilyy R, Dumych T, Paryzhak S, Vovk V, Boukherroub R, Sanyal A, Szunerits S. Reduced Graphene-Oxide-Embedded Polymeric Nanofiber Mats: An "On-Demand" Photothermally Triggered Antibiotic Release Platform. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41098-41106. [PMID: 30376295 DOI: 10.1021/acsami.8b14784] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The steady increase of antimicrobial resistance of different pathogens requires the development of alternative treatment strategies next to the oral delivery of antibiotics. A photothermally activated platform based on reduced graphene oxide (rGO)-embedded polymeric nanofiber mats for on-demand release of antibiotics upon irradiation in the near-infrared is fabricated. Cross-linked hydrophilic nanofibers, obtained by electrospinning a mixture of poly(acrylic acid) (PAA) and rGO, show excellent stability in aqueous media. Importantly, these PAA@ rGO nanofiber mats exhibit controlled photothermal heating upon irradiation at 980 nm. Nanofiber mats are efficiently loaded with antibiotics through simple immersion into corresponding antibiotics solutions. Whereas passive diffusion based release at room temperature is extremely low, photothermal activation results in increased release within few minutes, with release rates tunable through power density of the applied irradiation. The large difference over passive and active release, as well as the controlled turn-on of release allow regulation of the dosage of the antibiotics, as evidenced by the inhibition of planktonic bacteria growth. Treatment of superficial skin infections with the antibiotic-loaded nanofiber mats shows efficient wound healing of the infected site. Facile fabrication and implementation of these photothermally active nanofiber mats makes this novel platform adaptable for on-demand delivery of various therapeutic agents.
Collapse
Affiliation(s)
| | - Roxana Jijie
- Université de Lille, CNRS, Centrale Lille , ISEN, Université de Valenciennes, UMR 8520 - IEMN , F-59000 Lille , France
| | - Alexandre Barras
- Université de Lille, CNRS, Centrale Lille , ISEN, Université de Valenciennes, UMR 8520 - IEMN , F-59000 Lille , France
| | | | - Rana Sanyal
- RS Research Inc., Teknopark Istanbul , Pendik, 34912 Istanbul , Turkey
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) , UMR 8576 du CNRS et Université de Lille , 50 Avenue de Halley , 59658 Villeneuve d'Ascq , France
| | - Djamel Drider
- Institut Charles Viollette , Université de Lille , EA 7394 Lille , France
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University , 79010 Lviv , Ukraine
| | - Tetiana Dumych
- Danylo Halytsky Lviv National Medical University , 79010 Lviv , Ukraine
| | - Solomiya Paryzhak
- Danylo Halytsky Lviv National Medical University , 79010 Lviv , Ukraine
| | - Volodymyr Vovk
- Danylo Halytsky Lviv National Medical University , 79010 Lviv , Ukraine
| | - Rabah Boukherroub
- Université de Lille, CNRS, Centrale Lille , ISEN, Université de Valenciennes, UMR 8520 - IEMN , F-59000 Lille , France
| | | | - Sabine Szunerits
- Université de Lille, CNRS, Centrale Lille , ISEN, Université de Valenciennes, UMR 8520 - IEMN , F-59000 Lille , France
| |
Collapse
|
506
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
507
|
Martella E, Ferroni C, Guerrini A, Ballestri M, Columbaro M, Santi S, Sotgiu G, Serra M, Donati DM, Lucarelli E, Varchi G, Duchi S. Functionalized Keratin as Nanotechnology-Based Drug Delivery System for the Pharmacological Treatment of Osteosarcoma. Int J Mol Sci 2018; 19:ijms19113670. [PMID: 30463350 PMCID: PMC6274803 DOI: 10.3390/ijms19113670] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Elisa Martella
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Andrea Guerrini
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Marco Ballestri
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Spartaco Santi
- Institute of Molecular Genetics, National Research Council of Italy, 40136 Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via Ugo Foscolo 9, 40123 Bologna, Italy.
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, 3rd Orthopaedic and Traumatologic Clinic prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| | - Serena Duchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via Gobetti, 101, 40129 Bologna, Italy.
| |
Collapse
|
508
|
Gong YC, Xiong XY, Ge XJ, Li ZL, Li YP. Effect of the Folate Ligand Density on the Targeting Property of Folated-Conjugated Polymeric Nanoparticles. Macromol Biosci 2018; 19:e1800348. [PMID: 30444303 DOI: 10.1002/mabi.201800348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Indexed: 12/26/2022]
Abstract
Targeted drug delivery systems have attracted increasing attention due to their ability for delivering anticancer drugs selectively to tumor cells. Folic acid (FA)-conjugated targeted block copolymers, FA-Pluronic-polycaprolactone (FA-Pluronic-PCL) are synthesized in this study. The anticancer drug paclitaxel (PTX) is loaded in FA-Pluronic-PCL nanoparticles by nanoprecipitation method. The in vitro release of PTX from FA-Pluronic-PCL nanoparticles shows slow and sustained release behaviors. The effect of FA ligand density of FA-Pluronic-PCL nanoparticles on their targeting properties is examined by both cytotoxicity and fluorescence methods. It is shown that FA-Pluronic-PCL nanoparticles indicated better targeting ability than non-targeted PCL-Pluronic-PCL nanoparticles. Furthermore, FA-F127-PCL nanoparticle with 10% FA molar content has more effective antitumor activity and higher cellular uptake than those with 50% and 91% FA molar content. These results prove that FA-F127-PCL nanoparticle with 10% FA molar content can be a better candidate as the drug carrier in targeted drug delivery systems.
Collapse
Affiliation(s)
- Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiang Yuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiang Jun Ge
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yu Ping Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
509
|
Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal JA, Boulaiz H. Thermo-Sensitive Nanomaterials: Recent Advance in Synthesis and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E935. [PMID: 30428608 PMCID: PMC6266697 DOI: 10.3390/nano8110935] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
Progress in nanotechnology has enabled us to open many new fronts in biomedical research by exploiting the peculiar properties of materials at the nanoscale. The thermal sensitivity of certain materials is a highly valuable property because it can be exploited in many promising applications, such as thermo-sensitive drug or gene delivery systems, thermotherapy, thermal biosensors, imaging, and diagnosis. This review focuses on recent advances in thermo-sensitive nanomaterials of interest in biomedical applications. We provide an overview of the different kinds of thermoresponsive nanomaterials, discussing their potential and the physical mechanisms behind their thermal response. We thoroughly review their applications in biomedicine and finally discuss the current challenges and future perspectives of thermal therapies.
Collapse
Affiliation(s)
- Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy.
| | - Juan de Vicente
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Stefania Nardecchia
- Department of Applied Physics, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| |
Collapse
|
510
|
Yang D, Gao S, Fang Y, Lin X, Jin X, Wang X, Ke L, Shi K. The π-π stacking-guided supramolecular self-assembly of nanomedicine for effective delivery of antineoplastic therapies. Nanomedicine (Lond) 2018; 13:3159-3177. [PMID: 30411997 DOI: 10.2217/nnm-2018-0288] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In traditional nano drug-delivery systems, the complex chemical bonds between drug and carrier often complicate the preparation process and are less prone to rupture upon entry into the target, which is detrimental to the timely release of the drug. The π-π stacking provides us with a promising alternative as it is a weak interaction between the aromatic rings. Since most antitumor drugs are hydrophobic molecules with complex aromatic π-π-conjugated structures, the construction of self-assembly based on π-π stacking between drugs and carriers has the advantage of improving the stability and drug loading capacity as well as the improvement of hydrophilicity and biosafety. This article introduces the recent advances in π-π stacking-guided nano self-assembly for antineoplastic delivery.
Collapse
Affiliation(s)
- Dongjuan Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Shan Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Yan Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Xiaojie Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Xiyan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| | - Liyuan Ke
- Pharmacy Department, Liaoning Cancer Hospital & Institue, Shenyang, Liaoning 110042, PR China
| | - Kai Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 117004, PR China
| |
Collapse
|
511
|
Mazrad ZAI, Phuong PTM, Choi CA, In I, Lee KD, Park SY. pH/Redox-Triggered Photothermal Treatment for Cancer Therapy Based on a Dual-Responsive Cationic Polymer Dot. ChemMedChem 2018; 13:2437-2447. [DOI: 10.1002/cmdc.201800538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Zihnil Adha Islamy Mazrad
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Pham Thi My Phuong
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Cheong A. Choi
- Department of Chemical & Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Insik In
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
- Department of Polymer Science and Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery; Kosin University College of Medicine; Busan 49267 Republic of Korea
| | - Sung Young Park
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 Republic of Korea
- Department of Chemical & Biological Engineering; Korea National University of Transportation; Chungju 380-702 Republic of Korea
| |
Collapse
|
512
|
Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol Adv 2018; 36:1928-1945. [DOI: 10.1016/j.biotechadv.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
|
513
|
Kim YK, Lee JE, Ryplida B, Choi CA, Mazrad ZAI, Lee G, Lee S, In I, Jeong JH, Park SY. Redox-responsive FRET-based polymer dot with BODIPY for fluorescence imaging-guided chemotherapy of tumor. Eur J Pharm Biopharm 2018; 132:200-210. [DOI: 10.1016/j.ejpb.2018.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/15/2022]
|
514
|
Lee JH, Lee MY, Lim Y, Knowles J, Kim HW. Auditory disorders and future therapies with delivery systems. J Tissue Eng 2018; 9:2041731418808455. [PMID: 30397431 PMCID: PMC6207966 DOI: 10.1177/2041731418808455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022] Open
Abstract
Auditory function takes a major part in human life. While sensorineural hearing loss is related with many factors including genetic disorders, age and noise, the clear causes are not well understood. Even more, the currently available treatments with drugs cause side effects, which thus are considered suboptimal. Here, we communicate the delivery systems with biomaterials that can be possible therapeutic options to restore hearing and vestibular functions. We introduce briefly the various pathological factors related with hearing loss and the limitation of current therapies, detail the recent studies on delivery systems including nanoparticles and hydrogels and discuss future clinical availability.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman - Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yohan Lim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jonathan Knowles
- UCL Eastman - Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Biomaterials and Tissue Engineering Research Department, UCL Eastman Dental Institute, London, UK.,The Discoveries Centre for Regenerative and Precision Medicine, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman - Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
515
|
Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, Sun J, Wang H, Weir MD, Reynolds MA, Zhang N, Bai Y, Xu HHK. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res 2018; 6:31. [PMID: 30374416 PMCID: PMC6196224 DOI: 10.1038/s41413-018-0032-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Hard tissue repair and regeneration cost hundreds of billions of dollars annually worldwide, and the need has substantially increased as the population has aged. Hard tissues include bone and tooth structures that contain calcium phosphate minerals. Smart biomaterial-based tissue engineering and regenerative medicine methods have the exciting potential to meet this urgent need. Smart biomaterials and constructs refer to biomaterials and constructs that possess instructive/inductive or triggering/stimulating effects on cells and tissues by engineering the material's responsiveness to internal or external stimuli or have intelligently tailored properties and functions that can promote tissue repair and regeneration. The smart material-based approaches include smart scaffolds and stem cell constructs for bone tissue engineering; smart drug delivery systems to enhance bone regeneration; smart dental resins that respond to pH to protect tooth structures; smart pH-sensitive dental materials to selectively inhibit acid-producing bacteria; smart polymers to modulate biofilm species away from a pathogenic composition and shift towards a healthy composition; and smart materials to suppress biofilms and avoid drug resistance. These smart biomaterials can not only deliver and guide stem cells to improve tissue regeneration and deliver drugs and bioactive agents with spatially and temporarily controlled releases but can also modulate/suppress biofilms and combat infections in wound sites. The new generation of smart biomaterials provides exciting potential and is a promising opportunity to substantially enhance hard tissue engineering and regenerative medicine efficacy.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianling Gao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD USA
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Deptartment of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Mark A. Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
516
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
517
|
Kuroda C, Ueda K, Haniu H, Ishida H, Okano S, Takizawa T, Sobajima A, Kamanaka T, Yoshida K, Okamoto M, Tsukahara T, Matsuda Y, Aoki K, Kato H, Saito N. Different aggregation and shape characteristics of carbon materials affect biological responses in RAW264 cells. Int J Nanomedicine 2018; 13:6079-6088. [PMID: 30323595 PMCID: PMC6179726 DOI: 10.2147/ijn.s172493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction Carbon nanotubes (CNTs) have various shapes, including needle-like shapes and curled shapes, and the cytotoxicity and carcinogenicity of CNTs differ depending on their shapes and surface modifications. However, the biological responses induced by CNTs and related mechanisms according to the dispersion state of CNTs have not been extensively studied. Materials and methods We prepared multiwalled CNTs (MWCNTs) showing different dispersions and evaluated these MWCNTs in RAW264 cells to determine cytotoxicity, cellular uptake, and immune responses. Furthermore, RAW264 cells were also used to compare the cellular uptake and cytotoxicity of fibrous MWCNTs and spherical carbon nanohorns (CNHs) exhibiting the same degree of dispersion. Results Our analysis showed that the cellular uptake, localization, and inflammatory responses of MWCNTs differed depending on the dispersion state. Moreover, there were differences in uptake between MWCNTs and CNHs, even showing the same degree of dispersion. These findings suggested that receptors related to cytotoxicity and immune responses differed depending on the aggregated state of MWCNTs and surface modification with a dispersant. Furthermore, our results suggested that the receptors recognized by the cells differed depending on the particle shape. Conclusion Therefore, to apply MWCNTs as a biomaterial, it is important to determine the carcinogenicity and toxicity of the CNTs and to examine different biological responses induced by varying shapes, dispersion states, and surface modifications of particles.
Collapse
Affiliation(s)
- Chika Kuroda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Orthopaedic Surgery, Graduate School of Medicine, Shinshu University, Asahi, Matsumoto, Nagano, Japan
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan,
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan,
| | - Satomi Okano
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan,
| | - Takashi Takizawa
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| | - Atsushi Sobajima
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| | - Takayuki Kamanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| | - Kazushige Yoshida
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| | - Masanori Okamoto
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| | - Tamotsu Tsukahara
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Bunkyo-machi, Nagasaki, Japan
| | - Yoshikazu Matsuda
- Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Komuro, Ina-machi, Saitama, Japan
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Asahi, Matsumoto, Nagano, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Asahi, Matsumoto, Nagano, Japan, .,Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan,
| |
Collapse
|
518
|
Choi D, Heo J, Hong J. Controllable drug release from nano-layered hollow carrier by non-human enzyme. NANOSCALE 2018; 10:18228-18237. [PMID: 30232482 DOI: 10.1039/c8nr05269g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural polymers are widely used in biomedical applications because of their numerous effects. Especially, plant-derived natural polymers extracted from cell walls, especially wood, which is abundant, inexpensive and nontoxic to cells, have high mechanical strength to retain their turgor pressure. Plant-derived polymers are also unaffected by enzymes present in the human body, having a strong possibility to create a polymeric structure that releases drugs only exactly where needed. Therefore, plant-derived polymers are suitable for use in drug delivery systems (DDS) as they have durability with few drug leakage issues in the body. Here, to improve drug incorporation and release efficiency, we prepared a multilayer nanofilm from tannic acid (TA) and lignin extracted from plants and wood. We used a strategy involving film degradation by tannase and laccase, which are not present in humans, to depolymerize TA and lignin, respectively. The TA and lignin film was highly stable for 7 days at pH 3-7 and was readily degraded after enzyme treatment. We also observed controllable drug release and anticancer effect from the TA and lignin hollow carriers depending on enzymatic activity. By taking advantage of plant-derived polymers and non-toxic enzymatic reactions, we have demonstrated the film growth and degradation mechanism in depth and explored their use in a smart DDS with easily controlled release kinetics, which is useful as a DDS platform.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | | | | |
Collapse
|
519
|
Yang X, Shi X, Ji J, Zhai G. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Drug Deliv 2018. [PMID: 29542333 PMCID: PMC6058498 DOI: 10.1080/10717544.2018.1451571] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The development of imaging-guided smart drug delivery systems for combinational photodynamic/chemotherapy of the tumor has become highly demanded in oncology. Herein, redox-responsive theranostic polymeric nanoparticles (NPs) were fabricated innovatively using low molecular weight heparin (LWMH) as the backbone. Chlorin e6 (Ce6) and alpha-tocopherol succinate (TOS) were conjugated to LMWH via cystamine as the redox-sensitive linker, forming amphiphilic Ce6-LMWH-TOS (CHT) polymer, which could self-assemble into NPs in water and encapsulate paclitaxel (PTX) inside the inner core (PTX/CHT NPs). The enhanced near-infrared (NIR) fluorescence intensity and reactive oxygen species (ROS) generation of Ce6 were observed in a reductive environment, suggesting the cystamine-switched "ON/OFF" of Ce6. Also, the in vitro release of PTX exhibited a redox-triggered profile. MCF-7 cells showed a dramatically higher uptake of Ce6 delivered by CHT NPs compared with free Ce6. The improved therapeutic effect of PTX/CHT NPs compared with mono-photodynamic or mono-chemotherapy was observed in vitro via MTT and apoptosis assays. Also, the PTX/CHT NPs exhibited a significantly better in anti-tumor efficiency upon NIR irradiation according to the results of in vivo combination therapy conducted on 4T1-tumor-bearing mice. The in vivo NIR fluorescence capacity of CHT NPs was also evaluated in tumor-bearing nude mice, implying that the CHT NPs could enhance the accumulation and retention of Ce6 in tumor foci compared with free Ce6. Interestingly, the anti-metastasis activity of CHT NPs was observed against MCF-7 cells by a wound healing assay, which was comparable to LMWH, suggesting LMWH was promising for construction of nanocarriers for cancer management.
Collapse
Affiliation(s)
- Xiaoye Yang
- a Department of Pharmaceutics , College of Pharmacy, Shandong University , Jinan , China
| | - Xiaoqun Shi
- a Department of Pharmaceutics , College of Pharmacy, Shandong University , Jinan , China
| | - Jianbo Ji
- a Department of Pharmaceutics , College of Pharmacy, Shandong University , Jinan , China
| | - Guangxi Zhai
- a Department of Pharmaceutics , College of Pharmacy, Shandong University , Jinan , China
| |
Collapse
|
520
|
Qin Z, Li Y, Gu N. Progress in Applications of Prussian Blue Nanoparticles in Biomedicine. Adv Healthc Mater 2018; 7:e1800347. [PMID: 29974662 DOI: 10.1002/adhm.201800347] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Indexed: 12/29/2022]
Abstract
Prussian blue nanoparticles (PBNPs) with favorable biocompatibility and unique properties have captured the attention of extensive biomedical researchers. A great progress is made in the application of PBNPs as therapy and diagnostics agents in biomedicine. This review begins with the recent synthetic strategies of PBNPs and the regulatory approaches for their size, shape, and uniformity. Then, according to the different properties of PBNPs, their application in biomedicine is summarized in detail. With modifiable features, PBNPs can be used as drug carriers to improve the therapeutic efficacy. Moreover, the exchangeable protons and adsorbability enable PBNPs to decontaminate the radioactive ions from the body. For biomedical imaging, photoacoustic and magnetic resonance imaging based on PBNPs are summarized, as well as the strategies to improve the diagnostic effectiveness. The applications related to the photothermal effects and nanoenzyme activities of PBNPs are described. The challenges and critical factors for the clinical translation of PBNPs as multifunctional theranostic agents are also discussed. Finally, the future prospects for the application of PBNPs are considered. The aim of this review is to provide a better understanding and key consideration for rational design of this increasingly important new paradigm of PBNPs as theranostics.
Collapse
Affiliation(s)
- Zhiguo Qin
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210009 China
| | - Yan Li
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210009 China
| | - Ning Gu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210009 China
| |
Collapse
|
521
|
Matrix metalloprotease triggered bioresponsive drug delivery systems – Design, synthesis and application. Eur J Pharm Biopharm 2018; 131:189-202. [DOI: 10.1016/j.ejpb.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023]
|
522
|
Rijal G, Li W. Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng 2018; 12:20. [PMID: 30220913 PMCID: PMC6136168 DOI: 10.1186/s13036-018-0114-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Human connective tissues are complex physiological microenvironments favorable for optimal survival, function, growth, proliferation, differentiation, migration, and death of tissue cells. Mimicking native tissue microenvironment using various three-dimensional (3D) tissue culture systems in vitro has been explored for decades, with great advances being achieved recently at material, design and application levels. These achievements are based on improved understandings about the functionalities of various tissue cells, the biocompatibility and biodegradability of scaffolding materials, the biologically functional factors within native tissues, and the pathophysiological conditions of native tissue microenvironments. Here we discuss these continuously evolving physical aspects of tissue microenvironment important for human disease modeling, with a focus on tumors, as well as for tissue repair and regeneration. The combined information about human tissue spaces reflects the necessities of considerations when configuring spatial microenvironments in vitro with native fidelity to culture cells and regenerate tissues that are beyond the formats of 2D and 3D cultures. It is important to associate tissue-specific cells with specific tissues and microenvironments therein for a better understanding of human biology and disease conditions and for the development of novel approaches to treat human diseases.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| |
Collapse
|
523
|
Chiang CJ, Lin LJ, Wu CP, Chen CJ, Chao YP. Development of Nanoscale Oil Bodies for Targeted Treatment of Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9438-9445. [PMID: 30122032 DOI: 10.1021/acs.jafc.8b02972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lung cancer is the most widespread disease and is frequently associated with a high level of epidermal growth factor receptor (EGFR). This study was thus conducted to provide a proof-of-concept approach for targeted therapy of lung cancer by development of nanoscale oil bodies (NOBs). This was carried out by fusion of anti-EGFR affibody (ZEGFR2) with oleosin (Ole), a structure protein of plant seed oils. The fusion protein (Ole-ZEGFR2) was produced in Escherichia coli. NOBs were spontaneously assembled from plant oil, phospholipids, and Ole-ZEGFR2. Consequently, Ole-ZEGFR2-based NOBs were selectively internalized by EGFR-positive lung cancer cells with an efficiency exceeding 90%. Furthermore, the hydrophobic anticancer drug, camptothecin (CPT), was encapsulated into Ole-ZEGFR2-based NOBs. The administration of the CPT formulation based on NOBs resulted in a strong antitumor activity both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Yun-Peng Chao
- Department of Medical Research , China Medical University Hospital , Taichung 40447 , Taiwan
- Department of Chemical Engineering , Feng Chia University , 100 Wenhwa Road , Taichung 40724 , Taiwan
- Department of Health and Nutrition Biotechnology , Asia University , Taichung 41354 , Taiwan
| |
Collapse
|
524
|
Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur J Med Chem 2018; 157:705-715. [PMID: 30138802 DOI: 10.1016/j.ejmech.2018.08.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/23/2018] [Accepted: 08/12/2018] [Indexed: 02/08/2023]
Abstract
With ever increasing scientific knowledge and awareness, research is underway around the globe to design new types of stimuli (external/internal) responsive nano-carriers for biotechnological applications at large and biomedical/pharmaceutical in particular. Based on literature evidence, stimuli-responsive carriers have been classified into four major categories, i.e. (1) physical, (2) chemical, (3) biological, and (4) dual (combination of any of the first three classes). Among various types, redox-responsive nano-carriers are of supreme interests and discussed here in this review. The difference in redox potential in tumor and normal tissue is considered as a potential target for tumor targeting leading to the development of redox-responsive drug delivery systems (DDS). In this regard, a high concentration of glutathione in tumor/intracellular environment has extensively been exploited. Disulfide bonds were found as a promising tool for designing redox-responsive which tend to cleave in a reductive environment forming sulfhydryl groups. Many nano-carriers have been explored widely to control tumor growth. These systems were used against the tumor xenograft animal model and showed improved tumor targeting with tumor growth inhibition. Herein, an effort has been made to summarize various aspects from design to development of numerous types of redox-responsive DDS including liposomes, micelles, nanoparticles, nanogel and prodrug based nanomedicines. An emphasis is also given on various types of nano-carriers with special reference to the tumor-targeted drug delivery applications. Also, dual responsive nano-carriers (in addition to redox-responsive) have also been briefly discussed. Towards the end of the chapter, the information is also given on their future perspectives.
Collapse
Affiliation(s)
- Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Uzma Hayat
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| |
Collapse
|
525
|
Hadilou N, Khoshgenab AN, Amoli-Diva M, Sadighi-Bonabi R. Remote Trice Light, Temperature, and pH-actuation of Switchable Magneto-Plasmonic Nanocarriers for Combinational Photothermal and Controlled/Targeted Chemotherapies. J Pharm Sci 2018; 107:3123-3133. [PMID: 30194958 DOI: 10.1016/j.xphs.2018.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
Three magneto-plasmonic nanohybrids were synthesized using Au- and Ag-coated Fe3O4 nanoparticles (NPs)-modified dual pH- and temperature-responsive triblock copolymer of poly (butyl methacrylate-co-acrylamide-co-methacrylic acid) to serve as drug carriers with potential of using in both photothermal and controlled/targeted chemotherapies. The internal superparamagnetic core gives the carriers targeted-delivery characteristics, and surface plasmon resonance-based noble metallic Au/Ag shells give them on-demand photothermal and photo-triggering release properties. To investigate the effect of coating method on the targeting property of synthesized carriers, Au NPs were attached to the magnetic core by 2 different direct/indirect procedures and the properties of the synthesized carriers including swelling ratio and thermal and optical sensitivity and switching were comprehensively investigated in 2 different buffer solutions with pH 5.5 and 7.4 at 37°C. Letrozole was used as a model anticancer drug and its loading and release properties were evaluated for the four nanocarriers. The cytotoxicity of drug-free and letrozole-loaded nanocarriers on normal L929 fibroblast and MDAMB 231 breast cancer cell lines was evaluated in absence/presence of laser radiation. The results revealed that the carriers have the potential of serving as switchable trimodal light/temperature/pH-triggered and targeted/controlled drug delivery platforms for chemophotothermal therapy.
Collapse
Affiliation(s)
- Naby Hadilou
- Department of Laser and Optical Engineering, University of Bonab, Bonab, Iran; Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran
| | | | - Mitra Amoli-Diva
- Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran
| | - Rasoul Sadighi-Bonabi
- Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran.
| |
Collapse
|
526
|
Wang F, Huang Q, Wang Y, Zhang W, Lin R, Yu Y, Shen Y, Cui H, Guo S. Rational design of multimodal therapeutic nanosystems for effective inhibition of tumor growth and metastasis. Acta Biomater 2018; 77:240-254. [PMID: 30012354 DOI: 10.1016/j.actbio.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022]
Abstract
Simultaneous inhibition of both tumor growth and metastasis is the key to treating metastatic cancer, yet the development of effective drug delivery systems represents a great challenge since multimodal therapeutic agents must be rationally combined to overcome the biological mechanisms underpinning tumor cell proliferation and invasion. In this context, we report a hybrid therapeutic nanoscale platform that incorporates an anti-proliferative drug, doxorubicin (DOX), and an anti-NF-κB agent, p65-shRNA, for effective treatment of metastatic breast cancer. In our design, we first conjugated DOX via an acid-labile linker onto gold nanorods that were pre-modified with the tumor targeting peptide RGD and a positively charged, disulfide cross-linked short polyethylenimines (DSPEI), and then incorporated shRNA through electrostatic complexation with DSPEI. We show that this "all in one" nanotherapeutic system (RDG/shRNA@DOX) can be effectively internalized through RGD-mediated endocytosis, followed by stimuli-responsive intracellular co-release of DOX and shRNA. Our in vitro experiments suggest that this multimodal system can significantly inhibit cell proliferation, angiogenesis, and invasion of metastatic MDA-MB-435 cancer cells. Systemic administration of RDG/shRNA@DOX into a metastatic mouse model led to enhanced tumor accumulation, and, most importantly, significant inhibition of in situ tumor growth and almost complete suppression of tumor metastasis. We believe this hybrid multimodal nanotherapeutic system provides important insight into the rational design of therapeutic systems for the effective treatment of metastatic carcinoma. STATEMENT OF SIGNIFICANCE The key to successfully treat metastatic cancer is the simultaneous inhibition of both tumor growth and metastasis. This represents a great challenge for the design of drug delivery systems since multimodal therapeutic agents must be rationally combined to overcome the respective biological mechanisms underpinning tumor cell proliferation and invasion. Toward this end, we developed a hybrid nanomedicine platform that incorporates an anti-proliferative drug, doxorubicin (DOX), and an anti-NF-κB agent, p65-shRNA, for effective treatment of metastatic breast cancer. We showed that this multimodal system (RDG/shRNA@DOX) enhanced tumor accumulation, led to prolonged circulation, and most importantly, significant inhibition of in situ tumor growth and almost complete suppression of tumor metastasis. We believe this hybrid multimodal nanotherapeutic system provides significant insight into the rational design of therapeutic systems for the effective treatment of metastatic cancer.
Collapse
Affiliation(s)
- Feihu Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, United States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Yun Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenjun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, United States
| | - Yanna Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
527
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|
528
|
Gonçalves MC. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018; 23:E2021. [PMID: 30104542 PMCID: PMC6222648 DOI: 10.3390/molecules23082021] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Silica is one of the most abundant minerals in the Earth's crust, and over time it has been introduced first into human life and later into engineering. Silica is present in the food chain and in the human body. As a biomaterial, silica is widely used in dentistry, orthopedics, and dermatology. Recently amorphous sol-gel SiO₂ nanoparticles (NPs) have appeared as nanocarriers in a wide range of medical applications, namely in drug/gene target delivery and imaging diagnosis, where they stand out for their high biocompatibility, hydrophilicity, enormous flexibility for surface modification with a high payload capacity, and prolonged blood circulation time. The sol-gel process is an extremely versatile bottom-up methodology used in the synthesis of silica NPs, offering a great variety of chemical possibilities, such as high homogeneity and purity, along with full scale pH processing. By introducing organic functional groups or surfactants during the sol-gel process, ORMOSIL NPs or mesoporous NPs are produced. Colloidal route, biomimetic synthesis, solution route and template synthesis (the main sol-gel methods to produce monosized silica nanoparticles) are compared and discussed. This short review goes over some of the emerging approaches in the field of non-porous sol-gel silica NPs aiming at medical applications, centered on the syntheses processes used.
Collapse
Affiliation(s)
- M Clara Gonçalves
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa,1049-001 Lisboa, Portugal.
| |
Collapse
|
529
|
Rao NV, Ko H, Lee J, Park JH. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front Bioeng Biotechnol 2018; 6:110. [PMID: 30159310 PMCID: PMC6104418 DOI: 10.3389/fbioe.2018.00110] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The conventional chemotherapeutic agents, used for cancer chemotherapy, have major limitations including non-specificity, ubiquitous biodistribution, low concentration in tumor tissue, and systemic toxicity. In recent years, owing to their unique features, polymeric nanoparticles have been widely used for the target-specific delivery of drugs in the body. Although polymeric nanoparticles have addressed a number of important issues, the bioavailability of drugs at the disease site, and especially upon cellular internalization, remains a challenge. A polymer nanocarrier system with a stimuli-responsive property (e.g., pH, temperature, or redox potential), for example, would be amenable to address the intracellular delivery barriers by taking advantage of pH, temperature, or redox potentials. With a greater understanding of the difference between normal and pathological tissues, there is a highly promising role of stimuli-responsive nanocarriers for drug delivery in the future. In this review, we highlighted the recent advances in different types of stimuli-responsive polymers for drug delivery.
Collapse
Affiliation(s)
- N. Vijayakameswara Rao
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
530
|
Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv 2018; 25:241-255. [PMID: 29334272 PMCID: PMC6058500 DOI: 10.1080/10717544.2018.1425774] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diabetic wounds, one of the most enervating complications of diabetes mellitus, affect millions of people worldwide annually. Vascular insufficiency, caused by hyperglycemia, is one of the primary causes and categories of diabetic impaired wound healing. Recently, long noncoding RNA (LncRNA)-H19, which is significantly decreased in diabetes and may be crucial in triggering angiogenesis, has attracted increasing interest. The possible relationship between the decrease of LncRNA-H19 and the impairment of angiogenesis in diabetes could involve impairment of the insulin-phosphatidylinositol 3-kinase (PI3K)-Akt pathway via the interdiction of LncRNA-H19. Thus, a therapeutic strategy utilizing LncRNA-H19 delivery is feasible. In this study, we investigated the possibility of using high-yield extracellular vesicle-mimetic nanovesicles (EMNVs) as an effective nano-drug delivery system for LncRNA, and studied the function of EMNVs with a high content of LncRNA-H19 (H19EMNVs). The results, which were exciting, showed that H19EMNVs had a strong ability to neutralize the regeneration-inhibiting effect of hyperglycemia, and could remarkably accelerate the healing processes of chronic wounds. Our results suggest that bioengineered EMNVs can serve as a powerful instrument to effectively deliver LncRNA and will be an extremely promising multifunctional drug delivery system in the immediate future.
Collapse
Affiliation(s)
- Shi-Cong Tao
- a Department of Orthopedic Surgery , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Bi-Yu Rui
- a Department of Orthopedic Surgery , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Qi-Yang Wang
- a Department of Orthopedic Surgery , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Ding Zhou
- a Department of Orthopedic Surgery , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yang Zhang
- b Department of Pharmacy , Shanghai Tenth People's Hospital of Tongji University , Shanghai , China
| | - Shang-Chun Guo
- c Institute of Microsurgery on Extremities , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|
531
|
Zhang CJ, Wang CX, Gao ZY, Ke C, Fu LM, Zhang Z, Wang Y, Zhang JP. Wide field of view, real time bioimaging apparatus for noninvasive analysis of nanocarrier pharmacokinetics in living model animals. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:085105. [PMID: 30184676 DOI: 10.1063/1.5026852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Understanding nanocarrier pharmacokinetics is crucial for the emerging nanopharmacy, which highly demands noninvasive and real-time visualization of the in vivo dynamics of nanocarriers. To this end, we have developed a 2-photon excitation and time-resolved (TPE-TR) bioimaging apparatus for the analysis of the spatial distribution and temporal evolution of nanocarriers in living model animals. The specific polymeric nanocarrier, Eu@pmma-maa doped with Eu-complexes luminescing in long persistence at ∼615 nm upon near-infrared 2-photon excitation, allows the complete rejection of tissue autofluorescence by selective luminescence detection. This together with a unique beam shaping scheme for homogeneous line excitation, a delicate timing strategy for single-shot line scanning, and an equal optical path design for in-plane scan endows the TPE-TR apparatus with the following prominent features: an imaging depth of ∼10 mm, a field of view (FOV) of 32 × 32 mm2 along with a horizontal resolution of ∼60 μm, a sub-10 s frame time, and negligible laser heating effect. In addition, a combination of the in-plane line scan with the 3D scan of a model animal offers the convenience for examining an interested FOV with a millimeter vertical resolution. Application of TPE-TR bioimaging to a living mouse reveals rich information on the dynamics of nanocarriers including the spatial distribution and temporal evolution and the kinetics of domains of interest. The noninvasive TPE-TR bioimaging instrumentation with a wide FOV and a large imaging depth will find applications in the pharmaceutical development of nanocarriers and relevant research fields.
Collapse
Affiliation(s)
- Chao-Jie Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Chuan-Xi Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhi-Yue Gao
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Can Ke
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhuo Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
532
|
Jin C, Bai L, Lin L, Wang S, Yin X. Paclitaxel-loaded nanoparticles decorated with bivalent fragment HAb18 F(ab') 2 and cell penetrating peptide for improved therapeutic effect on hepatocellular carcinoma. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:1076-1084. [PMID: 28776396 DOI: 10.1080/21691401.2017.1360325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
Abstract
Hepatocellular carcinoma (HCC) shows low response to most conventional treatment strategies. Therefore, there is an urgent need for new and effective chemotherapies. Nanotechnology gives a dramatic impact on medicine. In this work, paclitaxel loaded nanoparticles (NPs) decorated with bivalent fragment HAb18 F(ab')2 and/or cell penetrating peptide (CPP) were developed and evaluated. NPs were prepared by emulsification-solvent evaporation method and decorated by carbodiimide chemistry. The physicochemical characteristics of NPs (i.e. encapsulation efficiency, particle size distribution, morphology, release in vitro) were investigated. Cellular uptake and accumulation in tumor tissue of NPs were determined. To assess anti-tumor activity of NPs in vitro and in vivo, cell survival assay and tumor regression study were carried out using HCC cell lines (HepG2 and Huh7) and their xenografts. Average particle size of all NPs was between 100 and 200 nm. Drug-loaded NPs possessed spherical morphology and higher encapsulation efficiency. The accumulation of NPs decorated with HAb18 F(ab')2 and CPP depended on dual effects of passive and active targeting. Drug loaded nanoparticles showed cytotoxicity on the tumor cells in vitro and in vivo. NPs decorated with HAb18 F(ab')2 and CPP showed maximization of therapeutic action for targeting and effective endocytosis. These results suggest that the nano-drug delivery system could be a promising candidate with excellent therapeutic efficacy for HCC therapy.
Collapse
Affiliation(s)
- Cheng Jin
- a Department of General Surgery , The Hospital of Xidian Group , Xi'an , China
| | - Ling Bai
- b Department of Urology , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Lemin Lin
- c Department of General Surgery , The First Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Shuangquan Wang
- a Department of General Surgery , The Hospital of Xidian Group , Xi'an , China
| | - Xiaolong Yin
- d Department of Orthopaedics , The Hospital of Xidian Group , Xi'an , China
| |
Collapse
|
533
|
Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat Commun 2018; 9:2713. [PMID: 30006596 PMCID: PMC6045614 DOI: 10.1038/s41467-018-05118-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/24/2018] [Indexed: 11/08/2022] Open
Abstract
Liposomes have been well established as an effective drug delivery system, due to simplicity of their preparation and unique characteristics. However conventional liposomes are unsuitable for the on-demand content release, which limits their therapeutic utility. Here we report X-ray-triggerable liposomes incorporating gold nanoparticles and photosensitizer verteporfin. The 6 MeV X-ray radiation induces verteporfin to produce singlet oxygen, which destabilises the liposomal membrane and causes the release of cargos from the liposomal cavity. This triggering strategy is demonstrated by the efficiency of gene silencing in vitro and increased effectiveness of chemotherapy in vivo. Our work indicates the feasibility of a combinatorial treatment and possible synergistic effects in the course of standard radiotherapy combined with chemotherapy delivered via X-ray-triggered liposomes. Importantly, our X-ray-mediated liposome release strategy offers prospects for deep tissue photodynamic therapy, by removing its depth limitation. X-ray radiation has excellent tissue penetration depth, making it a useful trigger for deep tissue cancer therapy. Here, the authors design X-ray triggered drug/gene-loaded liposomes by embedding photosensitizers and gold nanoparticles in the liposome bilayer, and demonstrate their efficacy in cancer and gene therapy.
Collapse
|
534
|
Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132:104-138. [PMID: 30415656 DOI: 10.1016/j.addr.2018.07.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
With the advancement in medical science and understanding the importance of biodistribution and pharmacokinetics of therapeutic agents, modern drug delivery research strives to utilize novel materials and fabrication technologies for the preparation of robust drug delivery systems to combat acute and chronic diseases. Compared to traditional drug carriers, which could only control the release of the agents in a monotonic manner, the new drug carriers are able to provide a precise control over the release time and the quantity of drug introduced into the patient's body. To achieve this goal, scientists have introduced "programmed" and "on-demand" approaches. The former provides delivery systems with a sophisticated architecture to precisely tune the release rate for a definite time period, while the latter includes systems directly controlled by an operator/practitioner, perhaps with a remote device triggering/affecting the implanted or injected drug carrier. Ideally, such devices can determine flexible release pattern and intensify the efficacy of a therapy via controlling time, duration, dosage, and location of drug release in a predictable, repeatable, and reliable manner. This review sheds light on the past and current techniques available for fabricating and remotely controlling drug delivery systems and addresses the application of new technologies (e.g. 3D printing) in this field.
Collapse
|
535
|
Excimer Emission of Acridine Orange Adsorbed on Gadolinium-Yttrium Orthovanadate Nanoparticles. J Fluoresc 2018; 28:943-949. [PMID: 29961203 DOI: 10.1007/s10895-018-2257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
Studying the complexes of inorganic nanoparticles - organic dye molecules is of great importance for their theranostics application. In this paper, we report gadolinium-yttrium orthovanadate nanoparticles (VNPs) - Acridine Orange (AO) complex formation in water solutions. To study the interactions between VNPs and AO, the methods of steady-state and time-resolved spectroscopy were used. It was shown that in aqueous solutions containing VNPs, AO aggregation takes place with a sandwich-like stacking of AO molecules in the near-surface layer of VNPs. The VNPs-AO complex formation causes significant changes in the AO fluorescence spectrum, namely, the appearance of a new broad, structureless band in the long-wavelength spectral edge, which was not observed in AO spectrum in a pure water solution. By analyzing of the absorption, fluorescence excitation spectra and fluorescence decay, the static excimer origin of the long-wavelength fluorescence band has been established.
Collapse
|
536
|
Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front Chem 2018; 6:237. [PMID: 29988578 PMCID: PMC6026678 DOI: 10.3389/fchem.2018.00237] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Over the years, the scientific importance of nanoparticles for biomedical applications has increased. The high stability and biocompatibility, together with the low toxicity of the nanoparticles developed lead to their use as targeted drug delivery systems, bioimaging systems, and biosensors. The wide range of nanoparticles size, from 10 nm to 1 μm, as well as their optical properties, allow them to be studied using microscopy and spectroscopy techniques. In order to be effectively used, the physicochemical properties of nanoparticle formulations need to be taken into account, namely, particle size, surface charge distribution, surface derivatization and/or loading capacity, and related interactions. These properties need to be optimized considering the final nanoparticle intended biodistribution and target. In this review, we cover light scattering based techniques, namely dynamic light scattering and zeta-potential, used for the physicochemical characterization of nanoparticles. Dynamic light scattering is used to measure nanoparticles size, but also to evaluate their stability over time in suspension, at different pH and temperature conditions. Zeta-potential is used to characterize nanoparticles surface charge, obtaining information about their stability and surface interaction with other molecules. In this review, we focus on nanoparticle characterization and application in infection, cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Patrícia M Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
537
|
Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 2018; 47:4198-4232. [PMID: 29667656 DOI: 10.1039/c7cs00399d] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Collapse
Affiliation(s)
- Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, P. R. China.
| | | | | |
Collapse
|
538
|
Choi CA, Lee JE, Mazrad ZAI, Kim YK, In I, Jeong JH, Park SY. Dual-Responsive Carbon Dot for pH/Redox-Triggered Fluorescence Imaging with Controllable Photothermal Ablation Therapy of Cancer. ChemMedChem 2018; 13:1459-1468. [PMID: 29774663 DOI: 10.1002/cmdc.201800202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/16/2018] [Indexed: 11/08/2022]
Abstract
Herein we describe fluorescence resonance energy transfer (FRET) for a pH/redox-activatable fluorescent carbon dot (FNP) to realize "off-on" switched imaging-guided controllable photothermal therapy (PTT). The FNP is a carbonized self-crosslinked polymer that allows IR825 loading (FNP[IR825]) via hydrophobic interactions for cancer therapy. Fluorescence bioimaging was achieved by the internalization of FNP(IR825) into tumor cells, wherein glutathione (GSH) disulfide bonds are reduced, and benzoic imine groups are cleaved under acidic conditions. The release of IR825 from the FNP core in this system may be used to efficiently control PTT-mediated cancer therapy via its photothermal conversion after near-infrared (NIR) irradiation. In vitro and in vivo cellular uptake studies revealed efficient uptake of FNP(IR825) by tumor cells to treat the disease site. In this way we demonstrated in mice that our smart nanocarrier can effectively kill tumor cells under exposure to a NIR laser, and that the particles are biocompatible with various organs. This platform responds sensitively to the exogenous environment inside the cancer cells and may selectively induce the release of PTT-mediated cytotoxicity. Furthermore, this platform may be useful for monitoring the elimination of cancer cells through the fluorescence on/off switch, which can be used for various applications in the field of cancer cell therapy and diagnosis.
Collapse
Affiliation(s)
- Cheong A Choi
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 380-702, Republic of Korea
| | - Jung Eun Lee
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Zihnil Adha Islamy Mazrad
- Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702, Republic of Korea
| | - Young Kwang Kim
- Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702, Republic of Korea
| | - Insik In
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 380-702, Republic of Korea.,Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Sung Young Park
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju, 380-702, Republic of Korea.,Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702, Republic of Korea
| |
Collapse
|
539
|
Xin X, He Z, Hill MR, Niedz RP, Jiang X, Sumerlin BS. Efficiency of Biodegradable and pH-Responsive Polysuccinimide Nanoparticles (PSI-NPs) as Smart Nanodelivery Systems in Grapefruit: In Vitro Cellular Investigation. Macromol Biosci 2018; 18:e1800159. [DOI: 10.1002/mabi.201800159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoping Xin
- Department of Soil and Water Sciences; Indian River Research and Education Center; Institute of Food and Agricultural Sciences; University of Florida; Fort Pierce FL 34945 USA
- College of Resources and Environment; Southwest University; Beibei Chongqing 400715 China
| | - Zhenli He
- Department of Soil and Water Sciences; Indian River Research and Education Center; Institute of Food and Agricultural Sciences; University of Florida; Fort Pierce FL 34945 USA
| | - Megan R. Hill
- George and Josephine Butler Polymer Research Laboratory; Department of Chemistry; Center for Macromolecular Science and Engineering; University of Florida; Gainesville FL 32611 USA
| | - Randall P. Niedz
- USDA-ARS U.S. Horticultural Research Laboratory; Fort Pierce FL 34945 USA
| | - Xianjun Jiang
- College of Resources and Environment; Southwest University; Beibei Chongqing 400715 China
| | - Brent S. Sumerlin
- George and Josephine Butler Polymer Research Laboratory; Department of Chemistry; Center for Macromolecular Science and Engineering; University of Florida; Gainesville FL 32611 USA
| |
Collapse
|
540
|
An emerging integration between ionic liquids and nanotechnology: general uses and future prospects in drug delivery. Ther Deliv 2018; 8:461-473. [PMID: 28530146 DOI: 10.4155/tde-2017-0002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need to develop drug-delivery systems that overcome drawbacks such as poor drug solubility/loading/release, systemic side effects and limited stability. Ionic liquids (ILs) offer many advantages and their tailoring represents a valuable tuning tool. Nano-based systems are also prized materials that prevent drug degradation, enhance their transport/distribution and extend their release. Consequently, structures containing ILs and nanoparticles (NPs) have been developed to attain synergistic effects. This overview on the properties of ILs, NPs and of their combined structures, reveals the recent advances in these areas through a review of pertinent literature. The IL-NP structures present enhanced properties and the subsequent performance upgrade proves to be useful in drug delivery, although much is yet to be done.
Collapse
|
541
|
Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov Today 2018; 23:974-991. [DOI: 10.1016/j.drudis.2018.01.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/16/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
|
542
|
Gu M, Wang X, Toh TB, Chow EKH. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov Today 2018; 23:1043-1052. [DOI: 10.1016/j.drudis.2017.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
|
543
|
Gold nanoparticles tethered cinnamic acid: preparation, characterization, and cytotoxic effects on MCF-7 breast cancer cell lines. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0764-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
544
|
Saxena M, Delgado Y, Sharma RK, Sharma S, Guzmán SLPDL, Tinoco AD, Griebenow K. Inducing cell death in vitro in cancer cells by targeted delivery of cytochrome c via a transferrin conjugate. PLoS One 2018; 13:e0195542. [PMID: 29649293 PMCID: PMC5896948 DOI: 10.1371/journal.pone.0195542] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
One of the major drawbacks of many of the currently used cancer drugs are off-target effects. Targeted delivery is one method to minimize such unwanted and detrimental events. To actively target lung cancer cells, we have developed a conjugate of the apoptosis inducing protein cytochrome c with transferrin because the transferrin receptor is overexpressed by many rapidly dividing cancer cells. Cytochrome c and transferrin were cross-linked with a redox sensitive disulfide bond for the intra-cellular release of the protein upon endocytosis by the transferrin receptor. Confocal results demonstrated the cellular uptake of the cytochrome c-transferrin conjugate by transferrin receptor overexpressing A549 lung cancer cells. Localization studies further validated that this conjugate escaped the endosome. Additionally, an in vitro assay showed that the conjugate could induce apoptosis by activating caspase-3. The neo-conjugate not only maintained an IC50 value similar to the well known drug cisplatin (50 μM) in A549 cancer cells but also was nontoxic to the normal lung (MRC5) cells. Our neo-conjugate holds promise for future development to target cancers with enhanced transferrin receptor expression.
Collapse
Affiliation(s)
- Manoj Saxena
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Yamixa Delgado
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Rohit Kumar Sharma
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | | | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, United States of America
| |
Collapse
|
545
|
Vinogradov VV, Drozdov AS, Mingabudinova LR, Shabanova EM, Kolchina NO, Anastasova EI, Markova AA, Shtil AA, Milichko VA, Starova GL, Precker RLM, Vinogradov AV, Hey-Hawkins E, Pidko EA. Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication. J Mater Chem B 2018; 6:2450-2459. [PMID: 32254462 DOI: 10.1039/c8tb00072g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We describe the synthesis and properties of a new composite material based on heparin and MIL-101(Fe) metal-organic framework. The intrinsic instability of MIL-101(Fe) towards hydrolysis enables binding of heparin molecules to the framework structure as is evidenced by DFT calculations and adsorption experiments. The de novo formed heparin-MOF composites showed good biocompatibility in in vitro and demonstrated pronounced anticoagulant activity. The specific interaction between the bioactive molecule and the carrier is critical for the selective degradation of the complex in the body fluids and for the enhanced activity. Hep_MIL-101(Fe) composite could serve as a drug-releasing depot for nanofabrication and to introduce anticoagulant activity to medical devices and biocoatings. Addition of Hep_MIL-101(Fe) to a sol-gel derived thrombolytic matrix allowed the combination of anticoagulant and thrombolytic activities in a single hybrid nanomaterial that could be applied as a bioactive nanocoating for PTFE vein implants.
Collapse
Affiliation(s)
- Vladimir V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st. 9, Saint-Petersburg, 197101, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
546
|
Liao W, Zhang L, Zhong Y, Shen Y, Li C, An N. Fabrication of ultrasmall WS 2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. Onco Targets Ther 2018; 11:1949-1960. [PMID: 29670370 PMCID: PMC5896670 DOI: 10.2147/ott.s160748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction The consolidation of different therapies into a single nanoplatform has shown great promise for synergistic tumor treatment. In this study, a multifunctional platform by WS2 quantum dots (WQDs)-coated doxorubicin (DOX)-loaded periodic mesoporous organosilicas (PMOs-DOX@WQDs) nanoparticles were fabricated for the first time, and which exhibits good potential for synergistic chemo-photothermal therapy. Materials and methods The structure, light-mediated drug release behavior, photothermal effect, and synergistic therapeutic efficiency of PMOs-DOX@WQDs to HCT-116 colon cancer cells were investigated. The thioether-bridged PMOs exhibit a high DOX loading capacity of 66.7 μg mg−1. The gating of the PMOs not only improve the drug loading capacity but also introduce the dual-stimuli-responsive performance. Furthermore, the as-synthesized PMOs-DOX@WQDs nanoparticles can efficiently generate heat to the hyperthermia temperature with near infrared laser irradiation. Results It was confirmed that PMOs-DOX@WQDs exhibit remarkable photothermal effect and light-triggered faster release of DOX. More importantly, it was reasonable to attribute the efficient anti-tumor efficiency of PMOs-DOX@WQDs. Conclusion The in vitro experimental results confirm that the fabricated nanocarrier exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the WQD-coated PMOs present promising applications in cancer therapy.
Collapse
Affiliation(s)
- Wenyun Liao
- Department of Emergency, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Li Zhang
- Department of Emergency, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yunhua Zhong
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Yuan Shen
- Department of Emergency, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Changlin Li
- Department of Emergency, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Na An
- Department of Emergency, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, People's Republic of China
| |
Collapse
|
547
|
Denkova AG, de Kruijff RM, Serra‐Crespo P. Nanocarrier-Mediated Photochemotherapy and Photoradiotherapy. Adv Healthc Mater 2018; 7:e1701211. [PMID: 29282903 DOI: 10.1002/adhm.201701211] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) both utilize light to induce a therapeutic effect. These therapies are rapidly gaining importance due to the noninvasiveness of light and the limited adverse effect associated with these treatments. However, most preclinical studies show that complete elimination of tumors is rarely observed. Combining PDT and PTT with chemotherapy or radiotherapy can improve the therapeutic outcome and simultaneously decrease side effects of these conventional treatments. Nanocarriers can help to facilitate such a combined treatment. Here, the most recent advancements in the field of photochemotherapy and photoradiotherapy, in which nanocarriers are employed, are reviewed.
Collapse
Affiliation(s)
- Antonia G. Denkova
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Robine M. de Kruijff
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Pablo Serra‐Crespo
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| |
Collapse
|
548
|
Allou NB, Yadav A, Pal M, Goswamee RL. Biocompatible nanocomposite of carboxymethyl cellulose and functionalized carbon–norfloxacin intercalated layered double hydroxides. Carbohydr Polym 2018; 186:282-289. [DOI: 10.1016/j.carbpol.2018.01.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/11/2018] [Accepted: 01/20/2018] [Indexed: 01/14/2023]
|
549
|
Morey M, Pandit A. Responsive triggering systems for delivery in chronic wound healing. Adv Drug Deliv Rev 2018; 129:169-193. [PMID: 29501700 DOI: 10.1016/j.addr.2018.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/27/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Non-communicable diseases including cancer, cardiovascular disease, diabetes, and neuropathy are chronic in nature. Treatment of these diseases with traditional delivery systems is limited due to lack of site-specificity, non-spatiotemporal release and insufficient doses. Numerous responsive delivery systems which respond to both physiological and external stimuli have been reported in the literature. However, effective strategies incorporating a multifactorial approach are required to control these complex wounds. This can be achieved by fabricating spatiotemporal release systems, multimodal systems or dual/multi-stimuli responsive delivery systems loaded with one or more bioactive components. Critically, these next generation stimuli responsive delivery systems that are at present not feasible are required to treat chronic wounds. This review provides a critical assessment of recent developments in the field of responsive delivery systems, highlighting their limitations and providing a perspective on how these challenges can be overcome.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
550
|
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3:7. [PMID: 29560283 PMCID: PMC5854578 DOI: 10.1038/s41392-017-0004-3] [Citation(s) in RCA: 1205] [Impact Index Per Article: 172.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Although conventional chemotherapy has been successful to some extent, the main drawbacks of chemotherapy are its poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, development of multiple drug resistance, and non-specific targeting. The main aim in the development of drug delivery vehicles is to successfully address these delivery-related problems and carry drugs to the desired sites of therapeutic action while reducing adverse side effects. In this review, we will discuss the different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs and will describe recent scientific advances in the area of chemotherapy, emphasizing challenges in cancer treatments. Improving the delivery of cancer therapies to tumor sites is crucial to reduce unwanted side effects and patient mortality rates. Pralay Maiti and colleagues at the Indian Institute of Technology in Varanasi, India, review the latest developments in drug delivery vehicles and treatment approaches designed to enhance the effectiveness of current cancer therapies. New nanoparticle-based carriers, hydrogels and hybrid materials that offer controlled and sustained drug release are showing great promise in animal models. Furthermore, materials that respond to stimuli such as heat, light, magnetic or electric fields are also being tested to aid target-specific drug delivery and, thus, avoid damage to healthy tissues. Although there are some challenges in translating these findings to the clinic, there is no doubt that technological advances are shaping better and safer treatment options.
Collapse
Affiliation(s)
- Sudipta Senapati
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Arun Kumar Mahanta
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sunil Kumar
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|