551
|
Garcia-Pichel F, López-Cortés A, Nübel U. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 2001; 67:1902-10. [PMID: 11282648 PMCID: PMC92812 DOI: 10.1128/aem.67.4.1902-1910.2001] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We compared the community structures of cyanobacteria in four biological desert crusts from Utah's Colorado Plateau developing on different substrata. We analyzed natural samples, cultures, and cyanobacterial filaments or colonies retrieved by micromanipulation from field samples using microscopy, denaturing gradient gel electrophoresis, and sequencing of 16S rRNA genes. While microscopic analyses apparently underestimated the biodiversity of thin filamentous cyanobacteria, molecular analyses failed to retrieve signals for otherwise conspicuous heterocystous cyanobacteria with thick sheaths. The diversity found in desert crusts was underrepresented in currently available nucleotide sequence databases, and several novel phylogenetic clusters could be identified. Morphotypes fitting the description of Microcoleus vaginatus Gomont, dominant in most samples, corresponded to a tight phylogenetic cluster of probable cosmopolitan distribution, which was well differentiated from other cyanobacteria traditionally classified within the same genus. A new, diverse phylogenetic cluster, named "Xeronema," grouped a series of thin filamentous Phormidium-like cyanobacteria. These were also ubiquitous in our samples and probably correspond to various botanical Phormidium and Schizothrix spp., but they are phylogenetically distant from thin filamentous cyanobacteria from other environments. Significant differences in community structure were found among soil types, indicating that soil characteristics may select for specific cyanobacteria. Gypsum crusts were most deviant from the rest, while sandy, silt, and shale crusts were relatively more similar among themselves.
Collapse
Affiliation(s)
- F Garcia-Pichel
- Microbiology Department, Arizona State University, Tempe, AZ 85287-2701, USA.
| | | | | |
Collapse
|
552
|
Stoffels M, Castellanos T, Hartmann A. Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 2001; 24:83-97. [PMID: 11403403 DOI: 10.1078/0723-2020-00011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genera Azospirillum, Skermanella and Rhodocista form a phylogenetic subgroup within the alfa subclass of Proteobacteria. Based on comparative 16S rRNA sequence analysis a nested set of new oligonucleotide probes was designed. It comprises probes for the whole genus cluster Azospirillum-Skermanella-Rhodocista, for the Azospirilli subcluster I including A. lipoferum, A. doebereinerae, A. largimobile, A. brasilense and A. halopraeferens, for the Azospirilli subcluster II including A. amazonense, A. irakense and the genus Skermanella, for the genus Rhodocista as well as for all Azospirilli species or species cluster. The new probes allow a fast and reliable in situ identification of bacteria belonging to the Azospirillum-Skermanella-Rhodocista-cluster at different phylogenetic levels. The specificity of the new probes was tested with 56 strains of the Azospirillum-Rhodocista-Skermanella-cluster and selected reference cells from other genera by hybridising with the complete probe set. In addition, applications of the fluorescently labelled probes for in situ identification of isolates and for the in situ localisation of A. brasilense on maize roots were demonstrated using confocal laser scanning microscopy.
Collapse
Affiliation(s)
- M Stoffels
- GSF-National Research Centre for Environment and Health, Institute of Soil Ecology, Neuherberg/München, Germany
| | | | | |
Collapse
|
553
|
Brandl MT, Quiñones B, Lindow SE. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci U S A 2001; 98:3454-9. [PMID: 11248099 PMCID: PMC30674 DOI: 10.1073/pnas.061014498] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC.
Collapse
Affiliation(s)
- M T Brandl
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
554
|
Cai YA, Murphy JT, Wedemayer GJ, Glazer AN. Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem 2001; 290:186-204. [PMID: 11237320 DOI: 10.1006/abio.2000.4979] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A family of specific cloning vectors was constructed to express in the cyanobacterium Anabaena sp. PCC7120 recombinant C-phycocyanin subunits with one or more different tags, including the 6xHis tag, oligomerization domains, and the streptavidin-binding Strep2 tag. Such tagged alpha or beta subunits of Anabaena sp. PCC7120 C-phycocyanin formed stoichiometric complexes in vivo with appropriate wild-type subunits to give constructs with the appropriate oligomerization state and normal posttranslational modifications and with spectroscopic properties very similar to those of unmodified phycocyanin. All of these constructs were incorporated in vivo into the rod substructures of the light-harvesting complex, the phycobilisome. The C-terminal 114-residue portion of the Anabaena sp. PCC7120 biotin carboxyl carrier protein (BCCP114) was cloned and overexpressed and was biotinylated up to 20% in Escherichia coli and 40% in wild-type Anabaena sp. His-tagged phycocyanin beta--BCCP114 constructs expressed in Anabaena sp. were >30% biotinylated. In such recombinant phycocyanins equipped with stable trimerization domains, >75% of the fusion protein was specifically bound to streptavidin- or avidin-coated beads. Thus, the methods described here achieve in vivo production of stable oligomeric phycobiliprotein constructs equipped with affinity purification tags and biospecific recognition domains usable as fluorescent labels without further chemical manipulation.
Collapse
Affiliation(s)
- Y A Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
555
|
Weber S, Stubner S, Conrad R. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 2001; 67:1318-27. [PMID: 11229927 PMCID: PMC92730 DOI: 10.1128/aem.67.3.1318-1327.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), and Acidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to the Cytophaga-Flavobacterium cluster of the Cytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the alpha, beta, and gamma Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.
Collapse
MESH Headings
- Anaerobiosis
- Bacteria/classification
- Bacteria/genetics
- Bacteria/growth & development
- Bacteria/isolation & purification
- Bacteria/metabolism
- Base Composition
- Cloning, Molecular
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Ecosystem
- Electrophoresis, Polyacrylamide Gel/methods
- Genes, rRNA
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Oryza/microbiology
- Phylogeny
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Soil Microbiology
Collapse
Affiliation(s)
- S Weber
- Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | |
Collapse
|
556
|
Duarte GF, Rosado AS, Seldin L, de Araujo W, van Elsas JD. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 2001; 67:1052-62. [PMID: 11229891 PMCID: PMC92694 DOI: 10.1128/aem.67.3.1052-1062.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The selective effects of sulfur-containing hydrocarbons, with respect to changes in bacterial community structure and selection of desulfurizing organisms and genes, were studied in soil. Samples taken from a polluted field soil (A) along a concentration gradient of sulfurous oil and from soil microcosms treated with dibenzothiophene (DBT)-containing petroleum (FSL soil) were analyzed. Analyses included plate counts of total bacteria and of DBT utilizers, molecular community profiling via soil DNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and detection of genes that encode enzymes involved in the desulfurization of hydrocarbons, i.e., dszA, dszB, and dszC. Data obtained from the A soil showed no discriminating effects of oil levels on the culturable bacterial numbers on either medium used. Generally, counts of DBT degraders were 10- to 100-fold lower than the total culturable counts. However, PCR-DGGE showed that the numbers of bands detected in the molecular community profiles decreased with increasing oil content of the soil. Analysis of the sequences of three prominent bands of the profiles generated with the highly polluted soil samples suggested that the underlying organisms were related to Actinomyces sp., Arthrobacter sp., and a bacterium of uncertain affiliation. dszA, dszB, and dszC genes were present in all A soil samples, whereas a range of unpolluted soils gave negative results in this analysis. Results from the study of FSL soil revealed minor effects of the petroleum-DBT treatment on culturable bacterial numbers and clear effects on the DBT-utilizing communities. The molecular community profiles were largely stable over time in the untreated soil, whereas they showed a progressive change over time following treatment with DBT-containing petroleum. Direct PCR assessment revealed the presence of dszB-related signals in the untreated FSL soil and the apparent selection of dszA- and dszC-related sequences by the petroleum-DBT treatment. PCR-DGGE applied to sequential enrichment cultures in DBT-containing sulfur-free basal salts medium prepared from the A and treated FSL soils revealed the selection of up to 10 distinct bands. Sequencing a subset of these bands provided evidence for the presence of organisms related to Pseudomonas putida, a Pseudomonas sp., Stenotrophomonas maltophilia, and Rhodococcus erythropolis. Several of 52 colonies obtained from the A and FSL soils on agar plates with DBT as the sole sulfur source produced bands that matched the migration of bands selected in the enrichment cultures. Evidence for the presence of dszB in 12 strains was obtained, whereas dszA and dszC genes were found in only 7 and 6 strains, respectively. Most of the strains carrying dszA or dszC were classified as R. erythropolis related, and all revealed the capacity to desulfurize DBT. A comparison of 37 dszA sequences, obtained via PCR from the A and FSL soils, from enrichments of these soils, and from isolates, revealed the great similarity of all sequences to the canonical (R. erythropolis strain IGTS8) dszA sequence and a large degree of internal conservation. The 37 sequences recovered were grouped in three clusters. One group, consisting of 30 sequences, was minimally 98% related to the IGTS8 sequence, a second group of 2 sequences was slightly different, and a third group of 5 sequences was 95% similar. The first two groups contained sequences obtained from both soil types and enrichment cultures (including isolates), but the last consisted of sequences obtained directly from the polluted A soil.
Collapse
Affiliation(s)
- G F Duarte
- Instituto de Microbiologia Prof. Paulo de Góes, UFRJ, Rio de Janeiro RJ 21941-590, Brazil
| | | | | | | | | |
Collapse
|
557
|
Delbès CÃ, Moletta R, Godon JJ. Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00784.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
558
|
Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 2001; 67:1351-62. [PMID: 11229931 PMCID: PMC92734 DOI: 10.1128/aem.67.3.1351-1362.2001] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O(2), NO(2)(-), and NO(3)(-) profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 microm at the biofilm surface. Additionally, a delayed onset of nitrification after the start of the aeration was observed. Nitrate accumulating in the biofilm in this period was denitrified during the nonaeration period of the next reactor cycle. Fluorescence in situ hybridization (FISH) revealed three distinct ammonia-oxidizing populations, related to the Nitrosomonas europaea, Nitrosomonas oligotropha, and Nitrosomonas communis lineages. This was confirmed by analysis of the genes coding for 16S rRNA and for ammonia monooxygenase (amoA). Based upon these results, a new 16S rRNA-targeted oligonucleotide probe specific for the Nitrosomonas oligotropha lineage was designed. FISH analysis revealed that the first 100 microm at the biofilm surface was dominated by members of the N. europaea and the N. oligotropha lineages, with a minor fraction related to N. communis. In deeper biofilm layers, exclusively members of the N. oligotropha lineage were found. This separation in space and a potential separation of activities in time are suggested as mechanisms that allow coexistence of the different ammonia-oxidizing populations. Nitrite-oxidizing bacteria belonged exclusively to the genus Nitrospira and could be assigned to a 16S rRNA sequence cluster also found in other sequencing batch systems.
Collapse
Affiliation(s)
- A Gieseke
- Molecular Ecology Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany.
| | | | | | | | | |
Collapse
|
559
|
Hermansson A, Lindgren PE. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 2001; 67:972-6. [PMID: 11157271 PMCID: PMC92675 DOI: 10.1128/aem.67.2.972-976.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Real-time PCR was used to quantify populations of ammonia-oxidizing bacteria representing the beta subdivision of the class Proteobacteria in samples of arable soil, both nitrogen fertilized and unfertilized, from Mellby, Sweden. Primers and probes targeting a 16S ribosomal DNA region of the ammonia-oxidizing bacteria were designed and used. In the fertilized soil there were approximately 6.2 x 10(7) ammonia-oxidizing bacteria per g of soil, three times more than the number of bacteria in the unfertilized soil. The lytic efficiency of bead beating in these soils was investigated by using populations of free or loosely attached bacteria, bacteria tightly bound to particles, and bacteria in nonfractionated samples. The shapes of the curves generated in these tests showed that the concentration of template DNA released at various times remained constant after 10 to 100 s of bead beating.
Collapse
Affiliation(s)
- A Hermansson
- Department of Biology, Linköping University, S-58183 Linköping, Sweden
| | | |
Collapse
|
560
|
Fuchs BM, Syutsubo K, Ludwig W, Amann R. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 2001; 67:961-8. [PMID: 11157269 PMCID: PMC92673 DOI: 10.1128/aem.67.2.961-968.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the main causes of failure of fluorescence in situ hybridization with rRNA-targeted oligonucleotides, besides low cellular ribosome content and impermeability of cell walls, is the inaccessibility of probe target sites due to higher-order structure of the ribosome. Analogous to a study on the 16S rRNA (B. M. Fuchs, G. Wallner, W. Beisker, I. Schwippl, W. Ludwig, and R. Amann, Appl. Environ. Microbiol. 64:4973-4982, 1998), the accessibility of the 23S rRNA of Escherichia coli DSM 30083(T) was studied in detail with a set of 184 CY3-labeled oligonucleotide probes. The probe-conferred fluorescence was quantified flow cytometrically. The brightest signal resulted from probe 23S-2018, complementary to positions 2018 to 2035. The distribution of probe-conferred cell fluorescence in six arbitrarily set brightness classes (classes I to VI, 100 to 81%, 80 to 61%, 60 to 41%, 40 to 21%, 20 to 6%, and 5 to 0% of the brightness of 23S-2018, respectively) was as follows: class I, 3%; class II, 21%; class III, 35%; class IV, 18%; class V, 16%; and class VI, 7%. A fine-resolution analysis of selected areas confirmed steep changes in accessibility on the 23S RNA to oligonucleotide probes. This is similar to the situation for the 16S rRNA. Indeed, no significant differences were found between the hybridization of oligonucleotide probes to 16S and 23S rRNA. Interestingly, indications were obtained of an effect of the type of fluorescent dye coupled to a probe on in situ accessibility. The results were translated into an accessibility map for the 23S rRNA of E. coli, which may be extrapolated to other bacteria. Thereby, it may contribute to a better exploitation of the high potential of the 23S rRNA for identification of bacteria in the future.
Collapse
Affiliation(s)
- B M Fuchs
- Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany.
| | | | | | | |
Collapse
|
561
|
Saleena LM, Loganathan P, Rangarajan S, Nair S. Genetic diversity of Bradyrhizobium strains isolated from Arachis hypogaea. Can J Microbiol 2001; 47:118-22. [PMID: 11261490 DOI: 10.1139/w00-139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhizobia are used exclusively in agricultural systems for enhancing the ability of legumes to fix atmospheric nitrogen. Knowledge about the indigenous population is necessary for the selection and application of inoculant strains. In this study, we have assessed the genetic diversity of Bradyrhizobium strains isolated from the host plant, Arachis hypogaea along the coastline of Tamil Nadu. Different populations collected from varying environmental conditions were analysed for salt and pH tolerance. Genetic diversity among the strains was studied using RAPD markers and PCR-RFLP of 16S rDNA and nifD genes. The approaches used in this study yielded consistent results, which revealed a high degree of heterogeneity among strains and detection of two distinct genetic groups.
Collapse
Affiliation(s)
- L M Saleena
- M.S. Swaminathan Research Foundation, Chennai, India
| | | | | | | |
Collapse
|
562
|
Nanda K, Taniguchi M, Ujike S, Ishihara N, Mori H, Ono H, Murooka Y. Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan. Appl Environ Microbiol 2001; 67:986-90. [PMID: 11157275 PMCID: PMC92679 DOI: 10.1128/aem.67.2.986-990.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial strains were isolated from samples of Japanese rice vinegar (komesu) and unpolished rice vinegar (kurosu) fermented by the traditional static method. Fermentations have never been inoculated with a pure culture since they were started in 1907. A total of 178 isolates were divided into groups A and B on the basis of enterobacterial repetitive intergenic consensus-PCR and random amplified polymorphic DNA fingerprinting analyses. The 16S ribosomal DNA sequences of strains belonging to each group showed similarities of more than 99% with Acetobacter pasteurianus. Group A strains overwhelmingly dominated all stages of fermentation of both types of vinegar. Our results indicate that appropriate strains of acetic acid bacteria have spontaneously established almost pure cultures during nearly a century of komesu and kurosu fermentation.
Collapse
Affiliation(s)
- K Nanda
- Research Center, Tamanoi Vinegar Co., Ltd., 100, Nishimachi, Yamatokoriyama, Nara 639-1038, Japan
| | | | | | | | | | | | | |
Collapse
|
563
|
Schweitzer B, Huber I, Amann R, Ludwig W, Simon M. Alpha- and beta-Proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 2001; 67:632-45. [PMID: 11157226 PMCID: PMC92630 DOI: 10.1128/aem.67.2.632-645.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 11/05/2000] [Indexed: 11/20/2022] Open
Abstract
We analyzed the composition of aggregate (lake snow)-associated bacterial communities in Lake Constance from 1994 until 1996 between a depth of 25 m and the sediment surface at 110 m by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes of various specificity. In addition, we experimentally examined the turnover of dissolved amino acids and carbohydrates together with the microbial colonization of aggregates formed in rolling tanks in the lab. Generally, between 40 and more than 80% of the microbes enumerated by DAPI staining (4',6'-diamidino-2-phenylindole) were detected as Bacteria by the probe EUB338. At a depth of 25 m, 10.5% +/- 7.9% and 14.2% +/- 10.2% of the DAPI cell counts were detected by probes specific for alpha- and beta-Proteobacteria. These proportions increased to 12.0% +/- 3.3% and 54.0% +/- 5.9% at a depth of 50 m but decreased again at the sediment surface at 110 m to 2.7% +/- 1.4% and 41.1% +/- 8.4%, indicating a clear dominance of beta-Proteobacteria at depths of 50 and 110 m, where aggregates have an age of 3 to 5 and 8 to 11 days, respectively. From 50 m to the sediment surface, cells detected by a Cytophaga/Flavobacteria-specific probe (CF319a) comprised increasing proportions up to 18% of the DAPI cell counts. gamma-Proteobacteria always comprised minor proportions of the aggregate-associated bacterial community. Using only two probes highly specific for clusters of bacteria closely related to Sphingomonas species and Brevundimonas diminuta, we identified between 16 and 60% of the alpha-Proteobacteria. In addition, with three probes highly specific for close relatives of the beta-Proteobacteria Duganella zoogloeoides (formerly Zoogloea ramigera), Acidovorax facilis, and Hydrogenophaga palleroni, bacteria common in activated sludge, 42 to 70% of the beta-Proteobacteria were identified. In the early phase (<20 h) of 11 of the 15 experimental incubations of aggregates, dissolved amino acids were consumed by the aggregate-associated bacteria from the surrounding water. This stage was followed by a period of 1 to 3 days during which dissolved amino acids were released into the surrounding water, paralleled by an increasing dominance of beta-Proteobacteria. Hence, our results show that lake snow aggregates are inhabited by a community dominated by a limited number of alpha- and beta-Proteobacteria, which undergo a distinct succession. They successively decompose the amino acids bound in the aggregates and release substantial amounts into the surrounding water during aging and sinking.
Collapse
Affiliation(s)
- B Schweitzer
- Limnological Institute, University of Constance, D-78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
564
|
|
565
|
Stender H, Broomer AJ, Oliveira K, Perry-O'Keefe H, Hyldig-Nielsen JJ, Sage A, Coull J. Rapid detection, identification, and enumeration of Escherichia coli cells in municipal water by chemiluminescent in situ hybridization. Appl Environ Microbiol 2001; 67:142-7. [PMID: 11133438 PMCID: PMC92533 DOI: 10.1128/aem.67.1.142-147.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturable Escherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35 degrees C, individual microcolonies of E. coli were detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targeting P. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other than E. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.
Collapse
Affiliation(s)
- H Stender
- Boston Probes, Inc., Bedford, Massachusetts 01730, USA.
| | | | | | | | | | | | | |
Collapse
|
566
|
Speksnijder AG, Kowalchuk GA, De Jong S, Kline E, Stephen JR, Laanbroek HJ. Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl Environ Microbiol 2001; 67:469-72. [PMID: 11133483 PMCID: PMC92603 DOI: 10.1128/aem.67.1.469-472.2001] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A defined template mixture of seven closely related 16S-rDNA clones was used in a PCR-cloning experiment to assess and track sources of artifactual sequence variation in 16S rDNA clone libraries. At least 14% of the recovered clones contained aberrations. Artifact sources were polymerase errors, a mutational hot spot, and cloning of heteroduplexes and chimeras. These data may partially explain the high degree of microheterogeneity typical of sequence clusters detected in environmental clone libraries.
Collapse
Affiliation(s)
- A G Speksnijder
- Department of Zoology, Natural History Museum, South Kensington, London SW7 5BD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
567
|
Miller WG, Bates AH, Horn ST, Brandl MT, Wachtel MR, Mandrell RE. Detection on surfaces and in Caco-2 cells of Campylobacter jejuni cells transformed with new gfp, yfp, and cfp marker plasmids. Appl Environ Microbiol 2000; 66:5426-36. [PMID: 11097924 PMCID: PMC92478 DOI: 10.1128/aem.66.12.5426-5436.2000] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed two sets of Campylobacter shuttle vectors containing either the gfp (green fluorescent protein), yfp (yellow fluorescent protein), or cfp (cyan fluorescent protein) reporter gene. In one set, the reporter gene is fused to a consensus Campylobacter promoter sequence (P(c)). The other set contains a pUC18 multicloning site upstream of the reporter gene, allowing the construction of transcriptional fusions using known promoters or random genomic fragments. C. jejuni cells transformed with the P(c) fusion plasmids are strongly fluorescent and easily visualized on chicken skin, on plant tissue, and within infected Caco-2 cells. In each C. jejuni strain tested, these plasmids were maintained over several passages in the absence of antibiotic selection. Also, in many C. jejuni strains, >91% of the cells transformed with the P(c) fusion plasmids remained fluorescent after several days. Experiments with yellow fluorescent and cyan fluorescent C. jejuni transformants suggest that aggregates containing two or more strains of C. jejuni may be present in an enrichment broth culture. Colonies arising from these aggregates would be heterologous in nature; therefore, isolation of a pure culture of C. jejuni, by selecting single colonies, from an environmental sample may not always yield a single strain.
Collapse
Affiliation(s)
- W G Miller
- Food Safety and Health Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, USA.
| | | | | | | | | | | |
Collapse
|
568
|
Schramm A, De Beer D, Gieseke A, Amann R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ Microbiol 2000; 2:680-6. [PMID: 11214800 DOI: 10.1046/j.1462-2920.2000.00150.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The distribution of nitrifying bacteria of the genera Nitrosomonas, Nitrosospira, Nitrobacter and Nitrospira was investigated in a membrane-bound biofilm system with opposed supply of oxygen and ammonium. Gradients of oxygen, pH, nitrite and nitrate were determined by means of microsensors while the nitrifying populations along these gradients were identified and quantified using fluorescence in situ hybridization (FISH) in combination with confocal laser scanning microscopy. The oxic part of the biofilm which was subjected to high ammonium and nitrite concentrations was dominated by Nitrosomonas europaea-like ammonia oxidizers and by members of the genus Nitrobacter. Cell numbers of Nitrosospira sp. were 1-2 orders of magnitude lower than those of N. europaea. Nitrospira sp. were virtually absent in this part of the biofilm, whereas they were most abundant at the oxic-anoxic interface. In the totally anoxic part of the biofilm, cell numbers of all nitrifiers were relatively low. These observations support the hypothesis that N. europaea and Nitrobacter sp. can out-compete Nitrosospira and Nitrospira spp. at high substrate and oxygen concentrations. Additionally, they suggest microaerophilic behaviour of yet uncultured Nitrospira sp. as a factor of its environmental competitiveness.
Collapse
Affiliation(s)
- A Schramm
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | |
Collapse
|
569
|
Kim WC, Rhee HI, Park BK, Suk KH, Cha SH. Isolation of peptide ligands that inhibit glutamate racemase activity from a random phage display library. JOURNAL OF BIOMOLECULAR SCREENING 2000; 5:435-40. [PMID: 11598461 DOI: 10.1177/108705710000500606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several new antibacterial agents are currently being developed in response to the emergence of bacterial resistance to existing antibiotic substances. The new agents include compounds that interfere with bacterial membrane function. The peptidoglycan component of the bacterial cell wall is synthesized by glutamate racemase, and this enzyme is responsible for the biosynthesis of d-glutamate, which is an essential component of cell wall peptidoglycan. In this study, we screened a phage display library expressing random dodecapeptides on the surface of bacteriophage against an Escherichia coli glutamate racemase, and isolated specific peptide sequences that bind to the enzyme. Twenty-seven positive phage clones were analyzed, and seven different peptide sequences were obtained. Among them, the peptide sequence His-Pro-Trp-His-Lys-Lys-His-Pro-Asp-Arg-Lys-Thr was found most frequently, suggesting that this peptide might have the highest affinity to glutamate racemase. The positive phage clones and HPWHKKHPDRKT synthetic peptide were able to inhibit glutamate racemase activity in vitro, implying that our peptide inhibitors may be utilized for the molecular design of new potential antibacterial agents targeting cell wall synthesis.
Collapse
Affiliation(s)
- W C Kim
- Division of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | |
Collapse
|
570
|
Watanabe K, Watanabe K, Kodama Y, Syutsubo K, Harayama S. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Appl Environ Microbiol 2000; 66:4803-9. [PMID: 11055927 PMCID: PMC92383 DOI: 10.1128/aem.66.11.4803-4809.2000] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Petroleum-contaminated groundwater discharged from underground crude oil storage cavities (cavity groundwater) harbored more than 10(6) microorganisms ml(-1), a density 100 times higher than the densities in groundwater around the cavities (control groundwater). To characterize bacterial populations growing in the cavity groundwater, 46 PCR-amplified almost full-length 16S ribosomal DNA (rDNA) fragments were cloned and sequenced, and 28 different sequences were obtained. All of the sequences were affiliated with the Proteobacteria; 25 sequences (43 clones) were affiliated with the epsilon subclass, 2 were affiliated with the beta subclass, and 1 was affiliated with the delta subclass. Two major clusters (designated clusters 1 and 2) were found for the epsilon subclass proteobacterial clones; cluster 1 (25 clones) was most closely related to Thiomicrospira denitrificans (88% identical in nucleotide sequence), while cluster 2 (11 clones) was closely related to Arcobacter spp. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rDNA fragments showed that one band was detected most strongly in cavity groundwater profiles independent of storage oil type and season. The sequence of this major band was identical to the sequences of most of the cluster 1 clones. Fluorescence in situ hybridization (FISH) indicated that the cluster 1 population accounted for 12 to 24% of the total bacterial population. This phylotype was not detected in the control groundwater by DGGE and FISH analyses. These results indicate that the novel members of the epsilon subclass of the Proteobacteria grow as major populations in the petroleum-contaminated cavity groundwater.
Collapse
Affiliation(s)
- K Watanabe
- Marine Biotechnology Institute, Kamaishi Laboratories, Heita, Kamaishi City, Iwate 026-0001, Japan.
| | | | | | | | | |
Collapse
|
571
|
Miller WG, Leveau JH, Lindow SE. Improved gfp and inaZ broad-host-range promoter-probe vectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1243-50. [PMID: 11059491 DOI: 10.1094/mpmi.2000.13.11.1243] [Citation(s) in RCA: 441] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A new set of broad-host-range promoter-probe vectors has been constructed. One subset contains the pVS1 and p15a replicons and confers resistance to either gentamicin or kanamycin. The other set contains the broad-host-range replicon from pBBR1 and confers resistance to kanamycin, tetracycline, ampicillin, or spectinomycin/streptomycin. Both plasmid sets are highly stable and are maintained without selection for more than 30 generations in several bacterial taxa. Each plasmid contains a promoter-probe cassette that consists of a multicloning site, containing several unique restriction sites, and gfp or inaZ as a reporter gene. The cassette is bound by transcriptional terminators to permit the insertion of strong promoters and to insulate the cassette from external transcription enabling the detection of weak or moderate promoters. The vector suite was augmented with derivatives of the kanamycin-resistant gfp promoter-probe plasmids that encode Gfp variants with different half-life times.
Collapse
Affiliation(s)
- W G Miller
- University of California, Department of Plant and Microbial Biology, Berkeley 94720, USA
| | | | | |
Collapse
|
572
|
Eilers H, Pernthaler J, Amann R. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl Environ Microbiol 2000; 66:4634-40. [PMID: 11055904 PMCID: PMC92360 DOI: 10.1128/aem.66.11.4634-4640.2000] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enrichment experiments with North Sea bacterioplankton were performed to test if rapid incubation-induced changes in community structure explain the frequent isolation of members of a few particular bacterial lineages or if readily culturable bacteria are common in the plankton but in a state of dormancy. A metabolic inhibitor of cell division (nalidixic acid [NA]) was added to substrate-amended (S+) and unamended (S-) grazer-free seawater samples, and shifts in community composition and per cell DNA and protein content were compared with untreated controls. In addition, starvation survival experiments were performed on selected isolates. Incubations resulted in rapid community shifts towards typical culturable genera rather than in the activation of either dormant cells or the original DNA-rich bacterial fraction. Vibrio spp. and members of the Alteromonas/Colwellia cluster (A/C) were selectively enriched in S+ and S-, respectively, and this trend was even magnified by the addition of NA. These increases corresponded with the rise of cell populations with distinctively different but generally higher protein and DNA content in the various treatments. Uncultured dominant gamma-proteobacteria affiliating with the SAR86 cluster and members of the culturable genus Oceanospirillum were not enriched or activated, but there was no indication of substrate-induced cell death, either. Strains of Vibrio and A/C maintained high ribosome levels in pure cultures during extended periods of starvation, whereas Oceanospirillum spp. did not. The life strategy of rapidly enriched culturable gamma-proteobacteria could thus be described as a "feast and famine" existence involving different activation levels of substrate concentration.
Collapse
Affiliation(s)
- H Eilers
- Max-Planck-Institut für Marine Mikrobiologie, D-28359 Bremen, Germany
| | | | | |
Collapse
|
573
|
Kanagawa T, Kamagata Y, Aruga S, Kohno T, Horn M, Wagner M. Phylogenetic analysis of and oligonucleotide probe development for eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. Appl Environ Microbiol 2000; 66:5043-52. [PMID: 11055962 PMCID: PMC92418 DOI: 10.1128/aem.66.11.5043-5052.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2000] [Accepted: 08/21/2000] [Indexed: 11/20/2022] Open
Abstract
Fifteen filamentous strains, morphologically classified as Eikelboom type 021N bacteria, were isolated from bulking activated sludges. Based on comparative 16S ribosomal DNA (rDNA) sequence analysis, all strains form a monophyletic cluster together with all recognized Thiothrix species (88.3 to 98.7% 16S rDNA sequence similarity) within the gamma-subclass of Proteobacteria. The investigated Eikelboom type 021N isolates were subdivided into three distinct groups (I to III) demonstrating a previously unrecognized genetic diversity hidden behind the uniform morphology of the filaments. For in situ detection of these bacteria, 16S rRNA-targeted oligonucleotide probes specific for the entire Eikelboom type 021N-Thiothrix cluster and the Eikelboom type 021N groups I, II, and III, respectively, were designed, evaluated, and successfully applied in activated sludge.
Collapse
Affiliation(s)
- T Kanagawa
- National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Tsukuba 305-8566, Japan.
| | | | | | | | | | | |
Collapse
|
574
|
Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 2000; 66:5053-5065. [PMID: 11055963 PMCID: PMC92419 DOI: 10.1128/aem.66.11.5053-5065.2000] [Citation(s) in RCA: 394] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2000] [Accepted: 08/29/2000] [Indexed: 01/08/2023] Open
Abstract
In a search for cosmopolitan phylogenetic clusters of freshwater bacteria, we recovered a total of 190 full and partial 16S ribosomal DNA (rDNA) sequences from three different lakes (Lake Gossenköllesee, Austria; Lake Fuchskuhle, Germany; and Lake Baikal, Russia). The phylogenetic comparison with the currently available rDNA data set showed that our sequences fall into 16 clusters, which otherwise include bacterial rDNA sequences of primarily freshwater and soil, but not marine, origin. Six of the clusters were affiliated with the alpha, four were affiliated with the beta, and one was affiliated with the gamma subclass of the Proteobacteria; four were affiliated with the Cytophaga-Flavobacterium-Bacteroides group; and one was affiliated with the class Actinobacteria (formerly known as the high-G+C gram-positive bacteria). The latter cluster (hgcI) is monophyletic and so far includes only sequences directly retrieved from aquatic environments. Fluorescence in situ hybridization (FISH) with probes specific for the hgcI cluster showed abundances of up to 1.7 x 10(5) cells ml(-1) in Lake Gossenköllesee, with strong seasonal fluctuations, and high abundances in the two other lakes investigated. Cell size measurements revealed that Actinobacteria in Lake Gossenköllesee can account for up to 63% of the bacterioplankton biomass. A combination of phylogenetic analysis and FISH was used to reveal 16 globally distributed sequence clusters and to confirm the broad distribution, abundance, and high biomass of members of the class Actinobacteria in freshwater ecosystems.
Collapse
Affiliation(s)
- F O Glöckner
- Max-Planck-Institut für Marine Mikrobiologie, Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
575
|
Bravo A, Illana B, Salas M. Compartmentalization of phage phi29 DNA replication: interaction between the primer terminal protein and the membrane-associated protein p1. EMBO J 2000; 19:5575-84. [PMID: 11032825 PMCID: PMC313996 DOI: 10.1093/emboj/19.20.5575] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bacteriophage phi29 replication protein p1 (85 amino acids) is membrane associated in Bacillus subtilis-infected cells. The C-terminal 52 amino acid residues of p1 are sufficient for assembly into protofilament sheet structures. Using chemical cross-linking experiments, we demonstrate here that p1DeltaC43, a C-terminally truncated p1 protein that neither associates with membranes in vivo nor self-interacts in vitro, can interact with the primer terminal protein (TP) in vitro. Like protein p1, plasmid-encoded protein p1DeltaC43 reduces the rate of phi29 DNA replication in vivo in a dosage-dependent manner. We also show that truncated p1 proteins that retain the N-terminal 42 amino acids, when present in excess, interfere with the in vitro formation of the TP.dAMP initiation complex in a reaction that depends on the efficient formation of a primer TP-phi29 DNA polymerase heterodimer. This interference is suppressed by increasing the concentration of either primer TP or phi29 DNA polymerase. We propose a model for initiation of in vivo phi29 DNA replication in which the viral replisome attaches to a membrane-associated p1-based structure.
Collapse
Affiliation(s)
- A Bravo
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
576
|
Xiong L, Kloss P, Douthwaite S, Andersen NM, Swaney S, Shinabarger DL, Mankin AS. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. J Bacteriol 2000; 182:5325-31. [PMID: 10986233 PMCID: PMC110973 DOI: 10.1128/jb.182.19.5325-5331.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxazolidinone antibiotics inhibit bacterial protein synthesis by interacting with the large ribosomal subunit. The structure and exact location of the oxazolidinone binding site remain obscure, as does the manner in which these drugs inhibit translation. To investigate the drug-ribosome interaction, we selected Escherichia coli oxazolidinone-resistant mutants, which contained a randomly mutagenized plasmid-borne rRNA operon. The same mutation, G2032 to A, was identified in the 23S rRNA genes of several independent resistant isolates. Engineering of this mutation by site-directed mutagenesis in the wild-type rRNA operon produced an oxazolidinone resistance phenotype, establishing that the G2032A substitution was the determinant of resistance. Engineered U and C substitutions at G2032, as well as a G2447-to-U mutation, also conferred resistance to oxazolidinone. All the characterized resistance mutations were clustered in the vicinity of the central loop of domain V of 23S rRNA, suggesting that this rRNA region plays a major role in the interaction of the drug with the ribosome. Although the central loop of domain V is an essential integral component of the ribosomal peptidyl transferase, oxazolidinones do not inhibit peptide bond formation, and thus these drugs presumably interfere with another activity associated with the peptidyl transferase center.
Collapse
Affiliation(s)
- L Xiong
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | |
Collapse
|
577
|
Ohnishi M, Murata T, Nakayama K, Kuhara S, Hattori M, Kurokawa K, Yasunaga T, Yokoyama K, Makino K, Shinagawa H, Hayashi T. Comparative analysis of the whole set of rRNA operons between an enterohemorrhagic Escherichia coli O157:H7 Sakai strain and an Escherichia coli K-12 strain MG1655. Syst Appl Microbiol 2000; 23:315-24. [PMID: 11108008 DOI: 10.1016/s0723-2020(00)80059-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Two primer sets for direct sequence determination of all seven rRNA operons (rrn) of Escherichia coli have been developed; one is for specific-amplification of each rrn operon and the other is for direct sequencing of the amplified operons. Using these primer sets, we determined the nucleotide sequences of seven rrn operons, including promoter and terminator regions, of an enterohemorrhagic E. coli (EHEC) O157:H7 Sakai strain. To elucidate the intercistronic or intraspecific variation of rrn operons, their sequences were compared with those for the K-12 rrn operons. The rrn genes and the internal transcribed spacer regions showed a higher similarity to each other in each strain than between the corresponding operons of the two strains. However, the degree of intercistronic homogeneity was much higher in the EHEC strain than in K-12. In contrast, promoter and terminator regions in each operons were conserved between the corresponding operons of the two strains, which exceeded intercistronic similarity.
Collapse
Affiliation(s)
- M Ohnishi
- Department of Bacteriology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Delbès C, Moletta R, Godon JJ. Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction--single-strand conformation polymorphism analysis. Environ Microbiol 2000; 2:506-15. [PMID: 11233159 DOI: 10.1046/j.1462-2920.2000.00132.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of parameter changes on the bacterial community of a laboratory-scale anaerobic digester fed with glucose was investigated using a culture-independent approach based on single-strand conformation polymorphism (SSCP) analysis of total 16S rDNA and 16S rRNA amplification products. With the digester operating at steady state, the 16S rDNA SSCP patterns of the bacterial community showed eight peaks, whereas the 16S rRNA patterns showed six peaks with a very prominent one corresponding to a Spirochaetes-related bacterium. An acidic shock at pH 6 caused an increase in the 16S rRNA level of two Clostridium-related bacteria. After a 1 week starvation period, the major bacteria present reverted to a basal 16S rRNA level proportional to their 16S rDNA level. Starvation revealed the presence of a previously undetected peak whose corresponding sequence was deeply branched into the low G+C Gram-positive bacteria phylum. Twenty-four hours after a spiked addition to the starved digester community of starch, glucose, lactate or sulphate, an upsurge in several new 16S rRNA-derived peaks was observed. Thus, the perturbation approach combined with 16S rRNA analysis revealed bacteria that had not been detected through 16S rDNA analysis.
Collapse
Affiliation(s)
- C Delbès
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Narbonne, France
| | | | | |
Collapse
|
579
|
Wen YD, Liao CT, Liou KM, Wang WH, Huang WC, Chang BY. Structural and functional properties of a Bacillus subtilis temperature-sensitive sigma(A) factor. Proteins 2000; 40:613-22. [PMID: 10899785 DOI: 10.1002/1097-0134(20000901)40:4<613::aid-prot60>3.0.co;2-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis DB1005 is a temperature-sensitive (Ts) sigA mutant containing double-amino-acid substitutions (I198A and I202A) on the hydrophobic face of the promoter -10 binding helix of sigma(A) factor. We have analyzed the structural and functional properties of this mutant sigma(A) factor both in vivo and in vitro. Our data revealed that the Ts sigma(A) factor possessed predominantly a multimeric structure which was prone to aggregation at restrictive temperature. The extensive aggregation of the Ts sigma(A) resulted in a very low core-binding activity of the Ts sigma(A) factor and a markedly reduced sigma(A)-RNA polymerase activity in B. subtilis DB1005, suggesting that extensive aggregation of the Ts sigma(A) is the main trigger for the temperature sensitivity of B. subtilis DB1005. Partial proteolysis, tryptophan fluorescence and 1-anilinonaphthalene-8-sulfonate-binding analyses revealed that the hydrophobic face of the promoter -10 binding helix and also the hydrophobic core region of the Ts sigma(A) factor were readily exposed on the protein surface. This hydrophobic exposure provides an important cue for mutual interaction between molecules of the Ts sigma(A) and allows the formation of multimeric Ts sigma(A). Our results also indicate that Ile-198 and Ile-202 on the hydrophobic face of the promoter -10 binding helix are essential to ensure the correct folding and stabilization of the functional structure of sigma(A) factor.
Collapse
Affiliation(s)
- Y D Wen
- Institute of Biochemistry, National Chung-Hsing University, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
580
|
Juck D, Charles T, Whyte LG, Greer CW. Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol Ecol 2000; 33:241-249. [PMID: 11098075 DOI: 10.1111/j.1574-6941.2000.tb00746.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cold-adapted bacterial communities in petroleum hydrocarbon-contaminated and non-impacted soils from two northern Canadian environments, Kuujjuaq, Que., and Alert, Nunavut, were analyzed using a polyphasic approach. Denaturing gradient gel electrophoresis (DGGE) separation of 16S rDNA PCR fragments from soil total community DNA revealed a high level of bacterial diversity, as estimated by the total number of bands visualized. Dendrogram analysis clustered the sample sites on the basis of geographical location. Comparison of the overall microbial molecular diversity suggested that in the Kuujjuaq sites, contamination negatively impacted diversity whereas in the Alert samples, diversity was maintained or increased as compared to uncontaminated controls. Extraction and sequencing analysis of selected 16S rDNA bands demonstrated a range of similarity of 86-100% to reference organisms, with 63.6% of the bands representing high G+C Gram-positive organisms in the order Actinomycetales and 36.4% in the class Proteobacteria. Community level physiological profiles generated using Biolog GN plates were analyzed by cluster analysis. Based on substrate oxidation rates, the samples clustered into groups similar to those of the DGGE dendrograms, i.e. separation based upon geographic origin. The coinciding results reached using culture-independent and -dependent analyses reinforces the conclusion that geographical origin of the samples, rather than petroleum contamination level, was more important in determining species diversity within these cold-adapted bacterial communities.
Collapse
|
581
|
Fuchs BM, Glöckner FO, Wulf J, Amann R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 2000; 66:3603-7. [PMID: 10919826 PMCID: PMC92190 DOI: 10.1128/aem.66.8.3603-3607.2000] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Target site inaccessibility represents a significant problem for fluorescence in situ hybridization (FISH) of 16S rRNA with oligonucleotide probes. Here, unlabeled oligonucleotides (helpers) that bind adjacent to the probe target site were evaluated for their potential to increase weak probe hybridization signals in Escherichia coli DSM 30083(T). The use of helpers enhanced the fluorescence signal of all six probes examined at least fourfold. In one case, the signal of probe Eco474 was increased 25-fold with the use of a single helper probe, H440-2. In another case, four unlabeled helpers raised the FISH signal of a formerly weak probe, Eco585, to the level of the brightest monolabeled oligonucleotide probes available for E. coli. The temperature of dissociation and the mismatch discrimination of probes were not significantly influenced by the addition of helpers. Therefore, using helpers should not cause labeling of additional nontarget organisms at a defined stringency of hybridization. However, the helper action is based on sequence-specific binding, and there is thus a potential for narrowing the target group which must be considered when designing helpers. We conclude that helpers can open inaccessible rRNA regions for FISH with oligonucleotide probes and will thereby further improve the applicability of this technique for in situ identification of microorganisms.
Collapse
Affiliation(s)
- B M Fuchs
- Max-Planck-Institut für Marine Mikrobiologie, D-28359 Bremen, Germany.
| | | | | | | |
Collapse
|
582
|
Böckelmanna U, Manza W, Neub TR, Szewzyka U. Characterization of the microbial community of lotic organic aggregates ('river snow') in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 2000; 33:157-170. [PMID: 10967215 DOI: 10.1111/j.1574-6941.2000.tb00738.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aerobic and anaerobic cultivation techniques, 16S rDNA-based phylogeny, and fluorescent in situ hybridization were used to describe the phylogenetic diversity and physiological versatility of lotic microbial aggregates ('river snow') obtained from the river Elbe. In the course of the year the 'river snow' community changed. It was characterized by a great bacterial diversity in spring, the predominant occurrence of algae in summer and reduction of the total bacterial cell count in autumn and winter. In all 'river snow' samples, more than 70% of the bacteria counted with the general DNA stain DAPI also hybridized with the Bacteria-specific probe EUB338. In situ analysis of the bacterial 'river snow' community with a comprehensive suite of specific rRNA-targeted probes revealed population dynamics to be governed by seasonal factors. During all seasons, beta-Proteobacteria constituted the numerically most important bacterial group forming up to 54% of the total cell counts. In contrast to this, the relative abundance of other major bacterial lineages ranged from 2% for the order Planctomycetales to 36% for Cytophaga-Flavobacteria. Cultivation of 'river snow' under aerobic and anaerobic conditions with a variety of different media resulted in the isolation of 40 new bacterial strains. Phenotypic and phylogenetic analyses revealed these new strains to be mostly unknown organisms affiliated to different bacterial phyla. Application of newly developed specific oligonucleotide probes proved the cultivated bacteria, including clostridia and the numerically abundant beta-Proteobacteria, as relevant in situ members of the 'river snow' community.
Collapse
|
583
|
Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 2000; 66:3052-7. [PMID: 10877805 PMCID: PMC92110 DOI: 10.1128/aem.66.7.3052-3057.2000] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally assumed that hypersaline environments with sodium chloride concentrations close to saturation are dominated by halophilic members of the domain Archaea, while Bacteria are not considered to be relevant in this kind of environment. Here, we report the high abundance and growth of a new group of hitherto-uncultured Bacteria in crystallizer ponds (salinity, from 30 to 37%) from multipond solar salterns. In the present study, these Bacteria constituted from 5 to 25% of the total prokaryotic community and were affiliated with the Cytophaga-Flavobacterium-Bacteroides phylum. Growth was demonstrated in saturated NaCl. A provisional classification of this new bacterial group as "Candidatus Salinibacter gen. nov." is proposed. The perception that Archaea are the only ecologically relevant prokaryotes in hypersaline aquatic environments should be revised.
Collapse
Affiliation(s)
- J Antón
- División de Microbiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain.
| | | | | | | |
Collapse
|
584
|
Eilers H, Pernthaler J, Glöckner FO, Amann R. Culturability and In situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 2000; 66:3044-51. [PMID: 10877804 PMCID: PMC92109 DOI: 10.1128/aem.66.7.3044-3051.2000] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The culturability of abundant members of the domain Bacteria in North Sea bacterioplankton was investigated by a combination of various cultivation strategies and cultivation-independent 16S rRNA-based techniques. We retrieved 16S rRNA gene (rDNA) clones from environmental DNAs and determined the in situ abundance of different groups and genera by fluorescence in situ hybridization (FISH). A culture collection of 145 strains was established by plating on oligotrophic medium. Isolates were screened by FISH, amplified ribosomal DNA restriction analysis (ARDRA), and sequencing of representative 16S rDNAs. The majority of isolates were members of the genera Pseudoalteromonas, Alteromonas, and Vibrio. Despite being readily culturable, they constituted only a minor fraction of the bacterioplankton community. They were not detected in the 16S rDNA library, and FISH indicated rare (<1% of total cell counts) occurrence as large, rRNA-rich, particle-associated bacteria. Conversely, abundant members of the Cytophaga-Flavobacteria and gamma proteobacterial SAR86 clusters, identified by FISH as 17 to 30% and up to 10% of total cells in the North Sea bacterioplankton, respectively, were cultured rarely or not at all. Whereas SAR86-affiliated clones dominated the 16S rDNA library (44 of 53 clones), no clone affiliated to the Cytophaga-Flavobacterum cluster was retrieved. The only readily culturable abundant group of marine bacteria was related to the genus Roseobacter. The group made up 10% of the total cells in the summer, and the corresponding sequences were also present in our clone library. Rarefaction analysis of the ARDRA patterns of all of the isolates suggested that the total culturable diversity by our method was high and still not covered by the numbers of isolated strains but was almost saturated for the gamma proteobacteria. This predicts a limit to the isolation of unculturable marine bacteria, particularly the gamma-proteobacterial SAR86 cluster, as long as no new techniques for isolation are available and thus contrasts with more optimistic accounts of the culturability of marine bacterioplankton.
Collapse
Affiliation(s)
- H Eilers
- Max-Planck-Institut für marine Mikrobiologie, D-28359 Bremen, Germany
| | | | | | | |
Collapse
|
585
|
Puławska J, Maes M, Willems A, Sobiczewski P. Phylogenetic analysis of 23S rRNA gene sequences of. Agrobacterium, Rhizobium and Sinorhizobium strains. Syst Appl Microbiol 2000; 23:238-44. [PMID: 10930076 DOI: 10.1016/s0723-2020(00)80010-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The phylogenetic relationship among twelve Agrobacterium, four Rhizobium, and two Sinorhizobium strains originating from various host plants and geographical regions was studied by analysis of the 23S rDNA sequences. The study included Agrobacterium strains belonging to biovars 1, 2 (with tumor- or hairy-root inducing and non-pathogenic strains), A. vitis, A. rubi; representative species of the Rhizobium genus: R. galegae, R. leguminosarum and R. tropici and Sinorhizobium meliloti strains. The phylogenetic analysis showed that within Agrobacterium, the biovar designation was reflected in the 23S rDNA similarity and that strains of Agrobacterium and Rhizobium are closely related to each other. The results suggest that the taxonomic definition of Agrobacterium and Rhizobium should be considered for revision and that the Agrobacterium-biovar identity is probably a reliable taxonomic trait.
Collapse
Affiliation(s)
- J Puławska
- Research Institute of Pomology and Floriculture, Skierniewice, Poland.
| | | | | | | |
Collapse
|
586
|
Omar NB, Ampe F, Raimbault M, Guyot JP, Tailliez P. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Syst Appl Microbiol 2000; 23:285-91. [PMID: 10930082 DOI: 10.1016/s0723-2020(00)80016-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid bacteria and more particularly lactobacilli and Leuconostoc, are widely found in a wide variety of traditional fermented foods of tropical countries, made with cereals, tubers, meat or fish. These products represent a source of bacterial diversity that cannot be accurately analysed using classical phenotypic and biochemical tests. In the present work, the identification and the molecular diversity of lactic acid bacteria isolated from cassava sour starch fermentation were assessed by using a combination of complementary molecular methods: Randomly Amplified Polymorphic DNA fingerprinting (RAPD), plasmid profiling, hybridization using rRNA phylogenetic probes and partial 16S rDNA sequencing. The results revealed a large diversity of bacterial species (Lb. manihotivorans, Lb. plantarum, Lb. casei, Lb. hilgardii, Lb. buchneri, Lb. fermentum, Ln. mesenteroides and Pediococcus sp.). However, the most frequently isolated species were Lb. plantarum and Lb. manihotivorans. The RAPD analysis revealed a large molecular diversity between Lb. manihotivorans or Lb. plantarum strains. These results, observed on a rather limited number of samples, reveal that significant bacterial diversity is generated in traditional cassava sour starch fermentations. We propose that the presence of the amylolytic Lb. manihotivorans strains could have a role in sour starch processing.
Collapse
Affiliation(s)
- N B Omar
- Institut de Recherche pour le Développement, Laboratoire de Biotechnologie Microbienne Tropicale, Montpellier, France
| | | | | | | | | |
Collapse
|
587
|
Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K. Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J GEN APPL MICROBIOL 2000; 46:147-165. [PMID: 12483588 DOI: 10.2323/jgam.46.147] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thirty-one Acetobacter strains obtained from culture collections and 45 Acetobacter strains isolated from Indonesian sources were investigated for their phenotypic characteristics, ubiquinone systems, DNA base compositions, and levels of DNA-DNA relatedness. Of 31 reference strains, six showed the presence of ubiquinone 10 (Q-10). These strains were eliminated from the genus Acetobacter. The other 25 reference strains and 45 Indonesian isolates were subjected to a systematic study and separated into 8 distinct groups on the basis of DNA-DNA relatedness. The known species, Acetobacter aceti, A. pasteurianus, and A. peroxydans are retained for three of these groups. New combinations, A. orleanensis (Henneberg 1906) comb. nov., A. lovaniensis (Frateur 1950) comb. nov., and A. estunensis (Carr 1958) comb. nov. are proposed for three other groups. Two new species, A. indonesiensis sp. nov. and A. tropicalis sp. nov. are proposed for the remaining two. No Indonesian isolates were identified as A. aceti, A. estunensis, and A. peroxydans. Phylogenetic analysis on the basis of 16S rDNA sequences was carried out for representative strains from each of the groups. This supported that the eight species belonged to the genus Acetobacter. Several strains previously assigned to the species of A. aceti and A. pasteurianus were scattered over the different species. It is evident that the value of DNA-DNA relatedness between strains comprising a new species should be determined for the establishment of the species. Thus current bacterial species without data of DNA-DNA relatedness should be reexamined for the stability of bacterial nomenclature.
Collapse
Affiliation(s)
- Puspita Lisdiyanti
- Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | |
Collapse
|
588
|
Dahlquist KD, Puglisi JD. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J Mol Biol 2000; 299:1-15. [PMID: 10860719 DOI: 10.1006/jmbi.2000.3672] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Initiation Factor 1 (IF1) is required for the initiation of translation in Escherichia coli. However, the precise function of IF1 remains unknown. Current evidence suggests that IF1 is an RNA-binding protein that sits in the A site of the decoding region of 16 S rRNA. IF1 binding to 30 S subunits changes the reactivity of nucleotides in the A site to chemical probes. The N1 position of A1408 is enhanced, while the N1 positions of A1492 and A1493 are protected from reactivity with dimethyl sulfate (DMS). The N1-N2 positions of G530 are also protected from reactivity with kethoxal. Quantitative footprinting experiments show that the dissociation constant for IF1 binding to the 30 S subunit is 0.9 microM and that IF1 also alters the reactivity of a subset of Class III sites that are protected by tRNA, 50 S subunits, or aminoglycoside antibiotics. IF1 enhances the reactivity of the N1 position of A1413, A908, and A909 to DMS and the N1-N2 positions of G1487 to kethoxal. To characterize this RNA-protein interaction, several ribosomal mutants in the decoding region RNA were created, and IF1 binding to wild-type and mutant 30 S subunits was monitored by chemical modification and primer extension with allele-specific primers. The mutations C1407U, A1408G, A1492G, or A1493G disrupt IF1 binding to 30 S subunits, whereas the mutations G530A, U1406A, U1406G, G1491U, U1495A, U1495C, or U1495G had little effect on IF1 binding. Disruption of IF1 binding correlates with the deleterious phenotypic effects of certain mutations. IF1 binding to the A site of the 30 S subunit may modulate subunit association and the fidelity of tRNA selection in the P site through conformational changes in the 16 S rRNA.
Collapse
MESH Headings
- Aldehydes/metabolism
- Alleles
- Aminoglycosides
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Butanones
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Eukaryotic Initiation Factor-1/metabolism
- Models, Biological
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation
- Phenotype
- Prokaryotic Initiation Factor-1
- Protein Binding
- RNA/genetics
- RNA/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sulfuric Acid Esters/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- K D Dahlquist
- Department of Structural Biology, Stanford University, School of Medicine, CA 94305-5126, USA
| | | |
Collapse
|
589
|
Ochiai H, Horino O, Miyajima K, Kaku H. Genetic Diversity of Xanthomonas oryzae pv. oryzae Strains from Sri Lanka. PHYTOPATHOLOGY 2000; 90:415-421. [PMID: 18944593 DOI: 10.1094/phyto.2000.90.4.415] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Sixty strains of Xanthomonas oryzae pv. oryzae, collected from 29 locations in Sri Lanka in 1995, were analyzed by restriction fragment length polymorphism using either polymerase chain reaction-amplified 16S and 23S rDNA or the repetitive DNA element IS1112 from X. oryzae pv. oryzae as hybridization probes. Two different ribogroups were observed in the Sri Lankan strains using rDNA probes, whereas five clusters were identified by the IS1112 probe. Bootstrap analysis revealed that the five clusters defined by IS1112 were relatively robust. Our results suggest that the Sri Lankan strains are phylogenetically composed of five different groups. Each cluster was partially associated with climatic conditions (intermediate zone and wet zone) and was related to groups based on ribotyping. Based on virulence analysis using 12 rice cultivars, each containing a single resistance gene, 14 pathotypes were identified among the Sri Lankan strains. All strains were virulent to resistance genes Xa1, Xa2, Xa4, Xa10, Xa11, and Xa14. Only one strain (pathotype 1) was virulent to all major resistance genes including Xa21, while strains of the other pathotypes were all avirulent to Xa21. A partial relationship was found between the determined phylogenetic groups using the IS1112 probe and pathotypes for all but two clusters. The results of this study will facilitate the further understanding of the population structure of X. oryzae pv. oryzae in Sri Lanka.
Collapse
|
590
|
Fuchs BM, Zubkov MV, Sahm K, Burkill PH, Amann R. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ Microbiol 2000; 2:191-201. [PMID: 11220305 DOI: 10.1046/j.1462-2920.2000.00092.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dilution cultures are a common technique for measuring the growth of bacterioplankton communities. In this study, the taxonomic composition of marine bacterioplankton dilution cultures was followed in water samples from Plymouth Sound and the English Channel (UK). Bacterial abundances as well as protein and DNA content were closely monitored by flow cytometry. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rDNA fragments and fluorescence in situ hybridization (FISH) were applied directly to the water samples and to cells sorted from the dilution cultures based on their protein and DNA content. As expected, a rapid activation of bacteria occurred. However, molecular techniques showed that the community developed in the dilution culture within 1 day was significantly different from that in the original water samples. Whereas in the original samples, cells detectable by FISH were dominated by members of the Cytophagal Flavobacterium (CF) cluster, in dilution cultures, gamma-proteobacteria accounted for the majority of cells detected, followed by alpha-proteobacteria. An actively growing and an apparently non-growing population with average cellular protein contents of 24 and 4.5 fg respectively, were sorted by flow cytometry. FISH indicated mostly gamma- (64%) and alpha-proteobacteria (33%) in the first active fraction and 78% members of the CF cluster in the second fraction. Sequencing of DGGE bands confirmed the FISH assignments of the latter two groups. The data presented clearly show that even relatively short-term dilution experiments do not measure in situ growth, but rather growth patterns of an enrichment. Furthermore, it was demonstrated that the combination of flow cytometric analysis and sorting combined with FISH and DGGE analysis presented a fairly rapid method of analysing the taxonomic composition of marine bacterioplankton.
Collapse
Affiliation(s)
- B M Fuchs
- Max-Planck-Institut für marine Mikrobiologie, Bremen, Germany.
| | | | | | | | | |
Collapse
|
591
|
Engelhard M, Hurek T, Reinhold-Hurek B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2000; 2:131-41. [PMID: 11220300 DOI: 10.1046/j.1462-2920.2000.00078.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several diazotrophic species of Azoarcus spp. occur as endophytes in the pioneer plant Kallar grass. The purpose of this study was to screen Asian wild rice and cultivated Oryza sativa varieties for natural association with these endophytes. Populations of culturable diazotrophs in surface-sterilized roots were characterized by 16S rDNA sequence analysis, and Azoarcus species were identified by genomic fingerprints. A. indigens and Azoarcus sp. group C were detected only rarely, whereas Azoarcus sp. group D occurred frequently in samples of flooded plants: in 75% of wild rice, 80% of land races of O. sativa from Nepal and 33% of modern cultivars from Nepal and Italy. The putatively endophytic populations of diazotrophs differed with the rice genotype. The diversity of cultured diazotrophs was significantly lower in wild rice species than in modern cultivars. In Oryza officinalis (from Nepal) and O. minuta (from the Philippines), Azoarcus sp. group D were the predominant diazotrophic putative endophytes in roots. In contrast, their number was significantly lower in modern cultivars of O. sativa, whereas numbers and diversity of other diazotrophs, such as Azospirillum spp., Klebsiella sp., Sphingomonas paucimobilis, Burkholderia sp. and Azorhizobium caulinodans, were increased. In land races of O. sativa, the diazotrophic diversity was equally high; however, Azoarcus sp. was found in high apparent numbers. Similar differences in populations were also observed in a culture-independent approach comparing a wild rice (O. officinalis) and a modern-type O. sativa plant: in clone libraries of root-associated nitrogenase (nifH) gene fragments, the diazotrophic diversity was lower in the wild rice species. New lineages of nifH genes were detected, e.g. one deeply branching cluster within the anf (iron) nitrogenases. Our studies demonstrate that the natural host range of Azoarcus spp. extends to rice, wild rice species and old varieties being preferred over modern cultivars.
Collapse
Affiliation(s)
- M Engelhard
- Max-Planck-Institut für terrestrische Mikrobiologie, Arbeitsgruppe Symbioseforschung, Marburg, Germany
| | | | | |
Collapse
|
592
|
Van Looveren M, Vandamme P, Wuyts W, Ieven M, Goossens H. Organization of the ribosomal operon 165-235 gene spacer region in representatives of Neisseria gonorrhoeae. Syst Appl Microbiol 2000; 23:9-14. [PMID: 10879973 DOI: 10.1016/s0723-2020(00)80040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ribosomal rRNA gene fragments (rDNA) encompassing part of the 16S rDNA, the 16S-23S rDNA spacer region and part of the 23S rDNA of 229 Neisseria gonorrhoeae strains were enzymatically amplified using conserved primers. The fragments of approximately 1200 bp were subjected to restriction analysis with HinfI. This revealed 13 patterns (patterns I-XIII) of which patterns I (78 strains), II (32 strains), III (38 strains) and IV (56 strains) were the most abundant, comprising 89.1% of the strains. The obtained restriction patterns consisted of 3 to 8 bands, ranging in size from 32 to 854 bp. The sum of the obtained bands was about 1200 bp for patterns I, II, III, IV, V, IX, and XIII. However, for patterns VI, VII, VIII, X, XI and XII, the sum of the bands well exceeded the estimated size of approximately 1200 bp. We demonstrated that this results from sequence divergence in the 4 rRNA operons, present in the genome of N. gonorrhoeae, giving rise to patterns that are a combination of several other patterns.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Ribosomal Spacer/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Electrophoresis, Gel, Pulsed-Field
- Female
- Genes, rRNA
- Gonorrhea/microbiology
- Humans
- Molecular Sequence Data
- Neisseria gonorrhoeae/classification
- Neisseria gonorrhoeae/genetics
- Operon
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- M Van Looveren
- Department of Medical Microbiology, University Hospital Antwerp, University of Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
593
|
Nübel U, Garcia-Pichel F, Clavero E, Muyzer G. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2000; 2:217-26. [PMID: 11220307 DOI: 10.1046/j.1462-2920.2000.00094.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phylogenetic diversity of oxygenic phototrophic microorganisms in hypersaline microbial mats and their distribution along a salinity gradient were investigated and compared with the halotolerances of closely related cultivated strains. Segments of 16S rRNA genes from cyanobacteria and diatom plastids were retrieved from mat samples by DNA extraction and polymerase chain reaction (PCR), and subsequently analysed by denaturing gradient gel electrophoresis (DGGE). Sequence analyses of DNA from individual DGGE bands suggested that the majority of these organisms was related to cultivated strains at levels that had previously been demonstrated to correlate with characteristic salinity responses. Proportional abundances of amplified 16S rRNA gene segments from phylogenetic groupings of cyanobacteria and diatoms were estimated by image analysis of DGGE gels and were generally found to correspond to abundances of the respective morphotypes determined by microscopic analyses. The results indicated that diatoms accounted for low proportions of cells throughout, that the cyanobacterium Microcoleus chthonoplastes and close relatives dominated the communities up to a salinity of 11% and that, at a salinity of 14%, the most abundant cyanobacteria were related to highly halotolerant cultivated cyanobacteria, such as the recently established phylogenetic clusters of Euhalothece and Halospirulina. Although these organisms in cultures had previously demonstrated their ability to grow with close to optimal rates over a wide range of salinities, their occurrence in the field was restricted to the highest salinities investigated.
Collapse
Affiliation(s)
- U Nübel
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | |
Collapse
|
594
|
Weller R, Glöckner FO, Amann R. 16S rRNA-targeted oligonucleotide probes for the in situ detection of members of the phylum Cytophaga-Flavobacterium-Bacteroides. Syst Appl Microbiol 2000; 23:107-14. [PMID: 10879984 DOI: 10.1016/s0723-2020(00)80051-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria of the Cytophaga-Flavobacterium-Bacteroides phylum (CFB-phylum) are numerically important members of many microbial communities. A suite of five 16S rRNA-targeted oligonucleotide probes for members of this group is described which was designed to dominantly target bacteria of the CFB-phylum that are found in particular habitats. For this we initially performed a literature survey-for the sources and sites of isolation of hitherto described members of the CFB-phylum. Probe CFB286 is mostly complementary to the 16S rRNA of species originally isolated from freshwater habitats, however, detects some marine and soil isolates and is the only probe which includes some food isolates. Probe CFB563 detects marine as well as animal-associated isolates. Probe CFB719, which also detects some environmental isolates, and probe CFB972 are mostly targeting animal-associated isolates. All probes are complementary to a variety of human-associated species within the CFB-phylum which, in the data set investigated (October 1998), made up 46% of all 16S rRNA sequences from the CFB-phylum. We conclude that it is difficult to find habitat-specific probes for members of the CFB-phylum and that the design of probes for monophyletic groups should remain the standard approach. Applicability of the probes for fluorescence in situ hybridization and specificity for single cell detection were evaluated for the four mentioned probes whereas the fifth, probe CFB1082, which almost exclusively targets human-associated species, was not further characterized. The new probes are of limited determinative value and should be used together with the already established probes for the CFB-phylum. It is the hybridization pattern observed for a given cell or culture with the enlarged probe set that is suggestive for its affiliation with a defined group within the CFB-phylum.
Collapse
Affiliation(s)
- R Weller
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | | | | |
Collapse
|
595
|
Bohnert J, Hübner B, Botzenhart K. Rapid identification of Enterobacteriaceae using a novel 23S rRNA-targeted oligonucleotide probe. Int J Hyg Environ Health 2000; 203:77-82. [PMID: 10956593 DOI: 10.1078/s1438-4639(04)70011-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to rapidly identify bacteria of the family of Enterobacteriaceae using fluorescent in situ hybridization (FISH). A comparative sequence analysis was carried out and a 23S rRNA signature sequence for Enterobacteriaceae was identified. A 23S rRNA-targeted oligonucleotide probe (EBAC1790) was constructed and subsequently tested against 40 reference strains. Nearly all of the Enterobacteriaceae used in this study yielded positive results with EBAC1790, except for Edwardsiella tarda (ATCC 15947). None of the non-Enterobacteriaceae reference strains gave positive signals with the probe. The possibility of a rapid detection of Enterobacteriaceae in groundwater was demonstrated using colony hybridization.
Collapse
Affiliation(s)
- J Bohnert
- Abteilung für Allgemeine Hygiene und Umwelthygiene, Eberhard-Karls-Universität Tübingen, Germany.
| | | | | |
Collapse
|
596
|
Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D, Blackall LL. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 2000; 66:1175-82. [PMID: 10698788 PMCID: PMC91959 DOI: 10.1128/aem.66.3.1175-1182.2000] [Citation(s) in RCA: 447] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory-scale sequencing batch reactors (SBRs) as models for activated sludge processes were used to study enhanced biological phosphorus removal (EBPR) from wastewater. Enrichment for polyphosphate-accumulating organisms (PAOs) was achieved essentially by increasing the phosphorus concentration in the influent to the SBRs. Fluorescence in situ hybridization (FISH) using domain-, division-, and subdivision-level probes was used to assess the proportions of microorganisms in the sludges. The A sludge, a high-performance P-removing sludge containing 15.1% P in the biomass, was comprised of large clusters of polyphosphate-containing coccobacilli. By FISH, >80% of the A sludge bacteria were beta-2 Proteobacteria arranged in clusters of coccobacilli, strongly suggesting that this group contains a PAO responsible for EBPR. The second dominant group in the A sludge was the Actinobacteria. Clone libraries of PCR-amplified bacterial 16S rRNA genes from three high-performance P-removing sludges were prepared, and clones belonging to the beta-2 Proteobacteria were fully sequenced. A distinctive group of clones (sharing >/=98% sequence identity) related to Rhodocyclus spp. (94 to 97% identity) and Propionibacter pelophilus (95 to 96% identity) was identified as the most likely candidate PAOs. Three probes specific for the highly related candidate PAO group were designed from the sequence data. All three probes specifically bound to the morphologically distinctive clusters of PAOs in the A sludge, exactly coinciding with the beta-2 Proteobacteria probe. Sequential FISH and polyphosphate staining of EBPR sludges clearly demonstrated that PAO probe-binding cells contained polyphosphate. Subsequent PAO probe analyses of a number of sludges with various P removal capacities indicated a strong positive correlation between P removal from the wastewater as determined by sludge P content and number of PAO probe-binding cells. We conclude therefore that an important group of PAOs in EBPR sludges are bacteria closely related to Rhodocyclus and Propionibacter.
Collapse
Affiliation(s)
- G R Crocetti
- Department of Microbiology and Parasitology, Advanced Wastewater Management Centre, The University of Queensland, St. Lucia, 4072 Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
597
|
Chang YJ, Stephen JR, Richter AP, Venosa AD, Brüggemann J, Macnaughton SJ, Kowalchuk GA, Haines JR, Kline E, White DC. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods 2000; 40:19-31. [PMID: 10739339 DOI: 10.1016/s0167-7012(99)00134-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aerobically grown enrichment cultures derived from hydrocarbon-contaminated seawater and freshwater sediments were generated by growth on crude oil as sole carbon source. Both cultures displayed a high rate of degradation for a wide range of hydrocarbon compounds. The bacterial species composition of these cultures was investigated by PCR of the 16S rDNA gene using multiple primer combinations. Near full-length 16S rDNA clone libraries were generated and screened by restriction analysis prior to sequence analysis. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was carried out using two other PCR primer sets targeting either the V3 or V6-V8 regions, and sequences derived from prominent DGGE bands were compared to sequences obtained via cloning. All data sets suggested that the seawater culture was dominated by alpha-subgroup proteobacteria, whereas the freshwater culture was dominated by members of the beta- and gamma-proteobacteria. However, the V6-V8 primer pair was deficient in the recovery of Sphingomonas-like 16S rDNA due to a 3' terminal mismatch with the reverse primer. Most 16S rDNA sequences recovered from the marine enrichment were not closely related to genera containing known oil-degrading organisms, although some were detected. All methods suggested that the freshwater enrichment was dominated by genera containing known hydrocarbon-degrading species.
Collapse
Affiliation(s)
- Y J Chang
- Center for Environmental Biotechnology, University of Tennessee, Knoxville 37932-2575, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
598
|
Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A. Self-assembling amphiphilic siderophores from marine bacteria. Science 2000; 287:1245-7. [PMID: 10678827 DOI: 10.1126/science.287.5456.1245] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most aerobic bacteria secrete siderophores to facilitate iron acquisition. Two families of siderophores were isolated from strains belonging to two different genera of marine bacteria. The aquachelins, from Halomonas aquamarina strain DS40M3, and the marinobactins, from Marinobacter sp. strains DS40M6 and DS40M8, each contain a unique peptidic head group that coordinates iron(III) and an appendage of one of a series of fatty acid moieties. These siderophores have low critical micelle concentrations (CMCs). In the absence of iron, the marinobactins are present as micelles at concentrations exceeding their CMC; upon addition of iron(III), the micelles undergo a spontaneous phase change to form vesicles. These observations suggest that unique iron acquisition mechanisms may have evolved in marine bacteria.
Collapse
Affiliation(s)
- J S Martinez
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | | | | | |
Collapse
|
599
|
Casamayor EO, Schäfer H, Bañeras L, Pedrós-Alió C, Muyzer G. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2000; 66:499-508. [PMID: 10653710 PMCID: PMC91855 DOI: 10.1128/aem.66.2.499-508.2000] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial assemblages of Lake Cisó and Lake Vilar (Banyoles, northeast Spain) were analyzed in space and time by microscopy and by performing PCR-denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 16S rRNA gene fragments. Samples obtained from different water depths and at two different times of the year (in the winter during holomixis and in the early spring during a phytoplankton bloom) were analyzed. Although the lakes have the same climatic conditions and the same water source, the limnological parameters were different, as were most of the morphologically distinguishable photosynthetic bacteria enumerated by microscopy. The phylogenetic affiliations of the predominant DGGE bands were inferred by performing a comparative 16S rRNA sequence analysis. Sequences obtained from Lake Cisó samples were related to gram-positive bacteria and to members of the division Proteobacteria. Sequences obtained from Lake Vilar samples were related to members of the Cytophaga-Flavobacterium-Bacteroides phylum and to cyanobacteria. Thus, we found that like the previously reported differences between morphologically distinct inhabitants of the two lakes, there were also differences among the community members whose morphologies did not differ conspicuously. The changes in the species composition from winter to spring were also marked. The two lakes both contained sequences belonging to phototrophic green sulfur bacteria, which is consistent with microscopic observations, but these sequences were different from the sequences of cultured strains previously isolated from the lakes. Euryarchaeal sequences (i.e., methanogen- and thermoplasma-related sequences) also were present in both lakes. These euryarchaeal group sequences dominated the archaeal sequences in Lake Cisó but not in Lake Vilar. In Lake Vilar, a new planktonic population related to the crenarchaeota produced the dominant archaeal band. The phylogenetic analysis indicated that new bacterial and archaeal lineages were present and that the microbial diversity of these assemblages was greater than previously known. We evaluated the correspondence between the abundances of several morphotypes and DGGE bands by comparing microscopy and sequencing results. Our data provide evidence that the sequences obtained from the DGGE fingerprints correspond to the microorganisms that are actually present at higher concentrations in the natural system.
Collapse
Affiliation(s)
- E O Casamayor
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar-CSIC, E-08039 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
600
|
Tonolla M, Demarta A, Peduzzi S, Hahn D, Peduzzi R. In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 2000; 66:820-4. [PMID: 10653757 PMCID: PMC91902 DOI: 10.1128/aem.66.2.820-824.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative sequence analysis of a 16S rRNA gene clone library from the chemocline of the meromictic Lake Cadagno (Switzerland) retrieved two clusters of sequences resembling sulfate-reducing bacteria within the family Desulfovibrionaceae. In situ hybridization showed that, similar to sulfate-reducing bacteria of the family Desulfobacteriaceae, bacteria of one cluster with similarity values to the closest cultured relatives of between 92.6 and 93.1% resembled free cells or cells loosely attached to other cells or debris. Bacteria of the second cluster closely related to Desulfocapsa thiozymogenes DSM7269 with similarity values between 97. 9 and 98.4% were generally associated with aggregates of different small-celled phototrophic sulfur bacteria, suggesting a potential interaction between the two groups of bacteria.
Collapse
Affiliation(s)
- M Tonolla
- Cantonal Institute of Bacteriology, Microbial Ecology, University of Geneva, CH-6904 Lugano, Switzerland.
| | | | | | | | | |
Collapse
|