551
|
Compensatory IKKalpha activation of classical NF-kappaB signaling during IKKbeta inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci U S A 2008; 105:20798-803. [PMID: 19104039 DOI: 10.1073/pnas.0806491106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A subtype of diffuse large B-cell lymphoma (DLBCL), termed activated B-cell-like (ABC) DLBCL, depends on constitutive nuclear factor-kappaB (NF-kappaB) signaling for survival. Small molecule inhibitors of IkappaB kinase beta (IKKbeta), a key regulator of the NF-kappaB pathway, kill ABC DLBCL cells and hold promise for the treatment of this lymphoma type. We conducted an RNA interference genetic screen to investigate potential mechanisms of resistance of ABC DLBCL cells to IKKbeta inhibitors. We screened a library of small hairpin RNAs (shRNAs) targeting 500 protein kinases for shRNAs that would increase the killing of an ABC DLBCL cell line in the presence of a small molecule IKKbeta inhibitor. Two independent shRNAs targeting IKKalpha synergized with the IKKbeta inhibitor to kill three different ABC DLBCL cell lines but were not toxic by themselves. Surprisingly, IKKalpha shRNAs blocked the classical rather than the alternative NF-kappaB pathway in ABC DLBCL cells, as judged by inhibition of IkappaBalpha phosphorylation. IKKalpha shRNA toxicity was reversed by coexpression of wild-type but not kinase inactive forms of IKKalpha, suggesting that IKKalpha may directly phosphorylate IkappaBalpha under conditions of IKKbeta inhibition. In models of physiologic NF-kappaB pathway activation by CARD11 or tumor necrosis factor-alpha, compensatory IKKalpha activity was also observed with IKKbeta inhibition. These results suggest that therapy for ABC DLBCL may be improved by targeting both IKKalpha and IKKbeta, possibly through CARD11 inhibition.
Collapse
|
552
|
Kameda H, Watanabe M, Bohgaki M, Tsukiyama T, Hatakeyama S. Inhibition of NF-kappaB signaling via tyrosine phosphorylation of Ymer. Biochem Biophys Res Commun 2008; 378:744-9. [PMID: 19059208 DOI: 10.1016/j.bbrc.2008.11.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 11/20/2008] [Indexed: 01/30/2023]
Abstract
Cytoplasmic zinc finger protein A20 functionally dampens inflammatory signals and apoptosis via inhibition of NF-kappaB activation. We have reported that Ymer interacts with A20 and lysine (K)-63-linked polyubiquitin chain and that Ymer inhibits NF-kappaB signaling in collaboration with A20. It has also been reported that Ymer is phosphorylated by EGF stimulation. We found that Ymer was considerably phosphorylated on tyrosine residues also via Src family kinases such as Lck. A luciferase reporter assay showed that mutation of tyrosines on Ymer (YmerY217/279/304F) results in loss of the inhibitory activity for NF-kappaB signaling. Furthermore, a soft agar colony formation assay showed that the combination of SrcY527F and YmerY217/279/304F has no ability for anchorage-independent growth, suggesting that tyrosine phosphorylation of Ymer is important for inhibition of the NF-kappaB-mediated apoptotic pathway. These findings demonstrate that Ymer is likely to be a negative regulator for the NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Hiroyuki Kameda
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
553
|
HSP90 is required for TAK1 stability but not for its activation in the pro-inflammatory signaling pathway. FEBS Lett 2008; 582:4023-31. [PMID: 19026643 DOI: 10.1016/j.febslet.2008.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 11/23/2022]
Abstract
The protein kinase transforming-growth-factor-beta-activated kinase-1 (TAK1) is a key regulator in the pro-inflammatory signaling pathway and is activated by tumor necrosis factor-alpha, interleukin-1 (IL-1) and lipopolysaccharide (LPS). We describe the identification of TAK1 as a client protein of the 90 kDa heat-shock protein (Hsp90)/cell division cycle protein 37 (Cdc37) chaperones. However, Hsp90 is not required for the activation of TAK1 as short exposure to the Hsp90 inhibitor, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) did not affect its activation by LPS or IL-1. Prolonged treatment of cells with 17-AAG inhibits Hsp90 and downregulates TAK1. Our results suggest that Hsp90 is required for the folding and stability of TAK1 but is displaced and no longer required when TAK1 is complexed to TAK1-binding protein-1 (TAB1).
Collapse
|
554
|
The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol 2008; 30:33-42. [PMID: 19022706 DOI: 10.1016/j.it.2008.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 01/07/2023]
Abstract
This review highlights the emerging roles of the Pellino family of E3 ubiquitin ligases as upstream mediators in Toll-like receptor (TLR) pathways that lead to activation of MAP kinases and transcription factors. The functional importance of the Pellino family as RING-like-domain-containing proteins with intrinsic ubiquitin E3 ligase activity that can catalyse polyubiquitylation of the key TLR signalling molecule IRAK1 is discussed in detail. The importance of Pellino proteins as novel targets for mediating negative regulation of TLR signalling is also explored. This new knowledge and understanding of Pellino biology begins to fill some long-standing voids in our understanding of TLR signalling.
Collapse
|
555
|
Elzinga BM, Twomey C, Powell JC, Harte F, McCarthy JV. Interleukin-1 receptor type 1 is a substrate for gamma-secretase-dependent regulated intramembrane proteolysis. J Biol Chem 2008; 284:1394-409. [PMID: 18996842 DOI: 10.1074/jbc.m803108200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biochemical and genetic studies have revealed that the presenilins interact with several proteins and are involved in the regulated intramembrane proteolysis of numerous type 1 membrane proteins, thereby linking presenilins to a range of cellular processes. In this study, we report the characterization of a highly conserved tumor necrosis factor receptor-associated factor-6 (TRAF6) consensus-binding site within the hydrophilic loop domain of presenilin-1 (PS-1). In coimmunoprecipitation studies we indicate that presenilin-1 interacts with TRAF6 and interleukin-1 receptor-associated kinase 2. Substitution of presenilin-1 residues Pro-374 and Glu-376 by site-directed mutagenesis greatly reduces the ability of PS1 to associate with TRAF6. By studying these interactions, we also demonstrate that the interleukin-1 receptor type 1 (IL-1R1) undergoes intramembrane proteolytic processing, mediated by presenilin-dependent gamma-secretase activity. A metalloprotease-dependent proteolytic event liberates soluble IL-1R1 ectodomain and produces an approximately 32-kDa C-terminal domain. This IL-1R1 C-terminal domain is a substrate for subsequent gamma-secretase cleavage, which generates an approximately 26-kDa intracellular domain. Specific pharmacological gamma-secretase inhibitors, expression of dominant negative presenilin-1, or presenilin deficiency independently inhibit generation of the IL-1R1 intracellular domain. Attenuation of gamma-secretase activity also impairs responsiveness to IL-1beta-stimulated activation of the MAPKs and cytokine secretion. Thus, TRAF6 and interleukin receptor-associated kinase 2 are novel binding partners for PS1, and IL-1R1 is a new substrate for presenilin-dependent gamma-secretase cleavage. These findings also suggest that regulated intramembrane proteolysis may be a control mechanism for IL-1R1-mediated signaling.
Collapse
Affiliation(s)
- Baukje M Elzinga
- Signal Transduction Laboratory, Biochemistry Department, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
556
|
Insights from vaccinia virus into Toll-like receptor signalling proteins and their regulation by ubiquitin: role of IRAK-2. Biochem Soc Trans 2008; 36:449-52. [PMID: 18481979 DOI: 10.1042/bst0360449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TLRs (Toll-like receptors) are an important class of pathogen-sensing proteins, which signal the presence of a pathogen by activating transcription factors, such as NF-kappaB (nuclear factor kappaB). The TLR pathway to NF-kappaB activation involves multiple phosphorylation and ubiquitination events. Notably, TRAF-6 [TNF (tumour necrosis factor)-receptor-associated factor-6] Lys(63) polyubiquitination is a critical step in the formation of signalling complexes, which turn on NF-kappaB. Here, the relative role of different IRAKs [IL-1 (interleukin 1)-receptor-associated kinases] in NF-kappaB activation is discussed. Further, I demonstrate how understanding one molecular mechanism whereby vaccinia virus inhibits NF-kappaB activation has led to a revealing of a key role for IRAK-2 in TRAF-6-mediated NF-kappaB activation.
Collapse
|
557
|
GβL regulates TNFα-induced NF-кB signaling by directly inhibiting the activation of IкB kinase. Cell Signal 2008; 20:2127-33. [DOI: 10.1016/j.cellsig.2008.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/04/2008] [Indexed: 11/19/2022]
|
558
|
Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G, Hoffmann A. Wnt-ligand-dependent interaction of TAK1 (TGF-β-activated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell Signal 2008; 20:2134-44. [DOI: 10.1016/j.cellsig.2008.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
559
|
Abstract
The ubiquitin system of protein modification has emerged as a crucial mechanism involved in the regulation of a wide array of cellular processes. As our knowledge of the pathways in this system has grown, so have the ties between the protein ubiquitin and human disease. The power of the ubiquitin system for therapeutic benefit blossomed with the approval of the proteasome inhibitor Velcade in 2003 by the FDA. Current drug discovery activities in the ubiquitin system seek to (i) expand the development of new proteasome inhibitors with distinct mechanisms of action and improved bioavailability, and (ii) validate new targets. This review summarizes our current understanding of the role of the ubiquitin system in various human diseases ranging from cancer, viral infection and neurodegenerative disorders to muscle wasting, diabetes and inflammation. I provide an introduction to the ubiquitin system, highlight some emerging relationships between the ubiquitin system and disease, and discuss current and future efforts to harness aspects of this potentially powerful system for improving human health. Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
|
560
|
Inagaki M, Omori E, Kim JY, Komatsu Y, Scott G, Ray MK, Yamada G, Matsumoto K, Mishina Y, Ninomiya-Tsuji J. TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling. J Biol Chem 2008; 283:33080-6. [PMID: 18829460 DOI: 10.1074/jbc.m807574200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAK1 kinase is an indispensable intermediate in several cytokine signaling pathways including tumor necrosis factor, interleukin-1, and transforming growth factor-beta signaling pathways. TAK1 also participates in stress-activated intracellular signaling pathways such as osmotic stress signaling pathway. TAK1-binding protein 1 (TAB1) is constitutively associated with TAK1 through its C-terminal region. Although TAB1 is known to augment TAK1 catalytic activity when it is overexpressed, the role of TAB1 under physiological conditions has not yet been identified. In this study, we determined the role of TAB1 in TAK1 signaling by analyzing TAB1-deficient mouse embryonic fibroblasts (MEFs). Tumor necrosis factor- and interleukin-1-induced activation of TAK1 was entirely normal in Tab1-deficient MEFs and could activate both mitogen-activated protein kinases and NF-kappaB. In contrast, we found that osmotic stress-induced activation of TAK1 was largely impaired in Tab1-deficient MEFs. Furthermore, we showed that the C-terminal 68 amino acids of TAB1 were sufficient to mediate osmotic stress-induced TAK1 activation. Finally, we attempted to determine the mechanism by which TAB1 activates TAK1. We found that TAK1 is spontaneously activated when the concentration is increased and that it is totally dependent on TAB1. Cell shrinkage under the osmotic stress condition increases the concentration of TAB1-TAK1 and may oligomerize and activate TAK1 in a TAB1-dependent manner. These results demonstrate that TAB1 mediates TAK1 activation only in a subset of TAK1 pathways that are mediated through spontaneous oligomerization of TAB1-TAK1.
Collapse
Affiliation(s)
- Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
561
|
Konikoff CE, Wisotzkey RG, Newfeld SJ. Lysine conservation and context in TGFbeta and Wnt signaling suggest new targets and general themes for posttranslational modification. J Mol Evol 2008; 67:323-33. [PMID: 18797952 PMCID: PMC2688696 DOI: 10.1007/s00239-008-9159-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/11/2008] [Accepted: 08/07/2008] [Indexed: 12/22/2022]
Abstract
TGFbeta and Wnt pathways play important roles in the development of animals from sponges to humans. In both pathways posttranslational modification as a means of regulating their function, such as lysine modification by ubiquitination and sumoylation, has been observed. However, a gap exists between the immunological observation of posttranslational modification and the identification of the target lysine. To fill this gap, we conducted a phylogenetic analysis of lysine conservation and context in TGFbeta and Wnt pathway receptors and signal transducers and suggest numerous high-probability candidates for posttranslational modification. Further comparison of results from both pathways suggests two general features for biochemical regulation of intercellular signaling: receptors are less frequent targets for modification than signal transduction agonists, and a lysine adjacent to an upstream hydrophobic residue may be a preferred context for modification. Overall the results suggest numerous applications for an evolutionary approach to the biochemical regulation of developmental pathways, including (1) streamlining of the identification of the target lysine, (2) determination of when members of a multigene family acquire distinct activities, (3) application to any conserved protein family, and (4) application to any modification of a specific amino acid.
Collapse
|
562
|
The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008; 10:1199-207. [PMID: 18758450 DOI: 10.1038/ncb1780] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/30/2008] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that regulates embryonic development and tissue homeostasis; however, aberrations of its activity occur in cancer. TGF-beta signals through its Type II and Type I receptors (TbetaRII and TbetaRI) causing phosphorylation of Smad proteins. TGF-beta-associated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, was originally identified as an effector of TGF-beta-induced p38 activation. However, the molecular mechanisms for its activation are unknown. Here we report that the ubiquitin ligase (E3) TRAF6 interacts with a consensus motif present in TbetaRI. The TbetaRI-TRAF6 interaction is required for TGF-beta-induced autoubiquitylation of TRAF6 and subsequent activation of the TAK1-p38/JNK pathway, which leads to apoptosis. TbetaRI kinase activity is required for activation of the canonical Smad pathway, whereas E3 activity of TRAF6 regulates the activation of TAK1 in a receptor kinase-independent manner. Intriguingly, TGF-beta-induced TRAF6-mediated Lys 63-linked polyubiquitylation of TAK1 Lys 34 correlates with TAK1 activation. Our data show that TGF-beta specifically activates TAK1 through interaction of TbetaRI with TRAF6, whereas activation of Smad2 is not dependent on TRAF6.
Collapse
|
563
|
Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling. Cytokine 2008; 43:359-67. [PMID: 18707898 DOI: 10.1016/j.cyto.2008.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/26/2008] [Indexed: 01/09/2023]
Abstract
Post-translational protein modifications are involved in all functions of living cells. This includes the ability of cells to recognize pathogens and regulate genes involved in their clearance, a concept known as innate immunity. While phosphorylation mechanisms play essential roles in regulating different aspects of the innate immune response, ubiquitination is now recognized as another post-translational modification that works in parallel with phosphorylation to orchestrate the final proper innate immune response against invading pathogens. More precisely, this review will discuss the most recent advances that address the role of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling.
Collapse
|
564
|
Winsauer G, Resch U, Hofer-Warbinek R, Schichl YM, de Martin R. XIAP regulates bi-phasic NF-kappaB induction involving physical interaction and ubiquitination of MEKK2. Cell Signal 2008; 20:2107-12. [PMID: 18761086 DOI: 10.1016/j.cellsig.2008.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
The transcription factor NF-kappaB is transiently activated by a wide variety of stress signals, including pro-inflammatory mediators, and regulates the expression of genes with e.g., immune, inflammatory, and anti-apoptotic functions. The strength and kinetics of its induction, as well as its ultimate down-regulation is subject to multiple levels of regulation. One such regulatory protein is X chromosome-linked inhibitor of apoptosis (XIAP) that, besides its anti-apoptotic properties, has been shown to enhance NF-kappaB activity, however, the underlying molecular mechanism has remained elusive. We show here that following TNFalpha stimulation XIAP regulates a second wave of NF-kappaB activation. XIAP interacts with and ubiquitinates MEKK2, a kinase that has previously been associated with bi-phasic NF-kappaB activation. We conclude that, through interaction with MEKK2, XIAP functions in an ubiquitin ligase dependent manner to evoke a second wave of NF-kappaB activation, resulting in the modulation of NF-kappaB target gene expression.
Collapse
Affiliation(s)
- Gabriele Winsauer
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
565
|
Keating SE, Bowie AG. Role of non-degradative ubiquitination in interleukin-1 and toll-like receptor signaling. J Biol Chem 2008; 284:8211-5. [PMID: 18684710 DOI: 10.1074/jbc.r800038200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sinéad E Keating
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
566
|
Inagaki M, Komatsu Y, Scott G, Yamada G, Ray M, Ninomiya-Tsuji J, Mishina Y. Generation of a conditional mutant allele for Tab1 in mouse. Genesis 2008; 46:431-9. [PMID: 18693278 PMCID: PMC2637350 DOI: 10.1002/dvg.20418] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TAK1 binding protein 1 (TAB1) binds and induces autophosphorylation of TGF-beta activating kinase (TAK1). TAK1, a mitogen-activated kinase kinase kinase, is involved in several distinct signaling pathways including non-Smad pathways for TGF-beta superfamily members and inflammatory responses caused by cytokines. Conventional disruption of the murine Tab1 gene results in late gestational lethality showing intraventricular septum defects and underdeveloped lung alveoli. To gain a better understanding of the roles of TAB1 in different tissues, at different stages of development, and in pathological conditions, we generated Tab1 floxed mice in which the loxP sites flank Exons 9 and 10 to remove the C-terminal region of TAB1 protein necessary for activation of TAK1. We demonstrate that Cre-mediated recombination using Sox2-Cre, a Cre line expressed in the epiblast during early embryogenesis, results in deletion of the gene and protein. These homozygous Cre-recombined null embryos display an identical phenotype to conventional null embryos. This animal model will be useful in revealing distinct roles of TAB1 in different tissues at different stages.
Collapse
Affiliation(s)
- Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
567
|
Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283:24295-9. [PMID: 18621737 DOI: 10.1074/jbc.c800128200] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inhibitor of apoptosis (IAP) proteins are a family of anti-apoptotic regulators found in viruses and metazoans. c-IAP1 and c-IAP2 are recruited to tumor necrosis factor receptor 1 (TNFR1)-associated complexes where they can regulate receptor-mediated signaling. Both c-IAP1 and c-IAP2 have been implicated in TNFalpha-stimulated NF-kappaB activation. However, individual c-IAP1 and c-IAP2 gene knock-outs in mice did not reveal changes in TNF signaling pathways, and the phenotype of a combined deficiency of c-IAPs has yet to be reported. Here we investigate the role of c-IAP1 and c-IAP2 in TNFalpha-stimulated activation of NF-kappaB. We demonstrate that TNFalpha-induced NF-kappaB activation is severely diminished in the absence of both c-IAP proteins. In addition, combined absence of c-IAP1 and c-IAP2 rendered cells sensitive to TNFalpha-induced cell death. Using cells with genetic ablation of c-IAP1 or cells where the c-IAP proteins were eliminated using IAP antagonists, we show that TNFalpha-induced RIP1 ubiquitination is abrogated in the absence of c-IAPs. Furthermore, we reconstitute the ubiquitination process with purified components in vitro and demonstrate that c-IAP1, in collaboration with the ubiquitin conjugating enzyme (E2) enzyme UbcH5a, mediates polymerization of Lys-63-linked chains on RIP1. Therefore, c-IAP1 and c-IAP2 are required for TNFalpha-stimulated RIP1 ubiquitination and NF-kappaB activation.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
568
|
Aggarwal K, Silverman N. Positive and negative regulation of the Drosophila immune response. BMB Rep 2008; 41:267-77. [PMID: 18452646 DOI: 10.5483/bmbrep.2008.41.4.267] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of antimicrobial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.
Collapse
Affiliation(s)
- Kamna Aggarwal
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
569
|
Epoxyquinol B, a naturally occurring pentaketide dimer, inhibits NF-kappaB signaling by crosslinking TAK1. Biosci Biotechnol Biochem 2008; 72:1894-900. [PMID: 18603781 DOI: 10.1271/bbb.80142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several epoxyquinoids interfere with NF-kappaB signaling by targeting IKKbeta or NF-kappaB. We report that epoxyquinol B (EPQB), classified as an epoxyquiniod, inhibits NF-kappaB signaling through inhibition of the TAK1 complex, a factor upstream of IKKbeta and NF-kappaB. cDNA microarray analysis revealed that EPQB decreased TNF-alpha-induced expression of NF-kappaB target genes. EPQB covalently bound to a recombinant TAK1-TAB1 fusion protein in vitro, and inhibited its kinase activity. Furthermore, in vitro/in situ treatment with EPQB resulted in a ladder-like hypershift of TAK1 protein bands. We reported recently that EPQB crosslinks proteins via cysteine residues by opening its two epoxides, and our current results suggest that EPQB inhibits NF-kappaB signaling by crosslinking TAK1 itself or TAK1 through other proteins.
Collapse
|
570
|
Enesa K, Ito K, Luong LA, Thorbjornsen I, Phua C, To Y, Dean J, Haskard DO, Boyle J, Adcock I, Evans PC. Hydrogen Peroxide Prolongs Nuclear Localization of NF-κB in Activated Cells by Suppressing Negative Regulatory Mechanisms. J Biol Chem 2008; 283:18582-90. [DOI: 10.1074/jbc.m801312200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
571
|
|
572
|
Prickett TD, Ninomiya-Tsuji J, Broglie P, Muratore-Schroeder TL, Shabanowitz J, Hunt DF, Brautigan DL. TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappaB. J Biol Chem 2008; 283:19245-54. [PMID: 18456659 DOI: 10.1074/jbc.m800943200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Responses to transforming growth factor beta and multiple cytokines involve activation of transforming growth factor beta-activated kinase-1 (TAK1) kinase, which activates kinases IkappaB kinase (IKK) and MKK3/6, leading to the parallel activation of NF-kappaB and p38 MAPK. Activation of TAK1 by autophosphorylation is known to involve three different TAK1-binding proteins (TABs). Here we report a protein phosphatase subunit known as type 2A phosphatase-interacting protein (TIP) that also acts as a TAB because it co-precipitates with and directly binds to TAK1, enhances TAK1 autophosphorylation at unique sites, and promotes TAK1 phosphorylation of IKKbeta and signaling to NF-kappaB. Mass spectrometry demonstrated that co-expression of TAB4 protein significantly increased phosphorylation of four sites in TAK1, in a linker region between the kinase and TAB2/3 binding domains, and two sites in TAB1. Recombinant GST-TAB4 bound in an overlay assay directly to inactive TAK1 and activated TAK1 but not TAK1 phosphorylated in the linker sites, suggesting a bind and release mechanism. In kinase assays using TAK1 immune complexes, added GST-TAB4 selectively stimulated IKK phosphorylation. TAB4 co-precipitated polyubiquitinated proteins dependent on a Phe-Pro motif that was required to enhance phosphorylation of TAK1. TAB4 mutated at Phe-Pro dominantly interfered with IL-1beta activation of NF-kappaB involving IKK-dependent but not p38 MAPK-dependent signaling. The results show that TAB4 binds TAK1 and polyubiquitin chains to promote specific sites of phosphorylation in TAK1-TAB1, which activates IKK signaling to NF-kappaB.
Collapse
Affiliation(s)
- Todd D Prickett
- Center for Cell Signaling and Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
573
|
Jacquet S, Nishino Y, Kumphune S, Sicard P, Clark JE, Kobayashi KS, Flavell RA, Eickhoff J, Cotten M, Marber MS. The role of RIP2 in p38 MAPK activation in the stressed heart. J Biol Chem 2008; 283:11964-71. [PMID: 18310079 PMCID: PMC3774113 DOI: 10.1074/jbc.m707750200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/27/2008] [Indexed: 11/06/2022] Open
Abstract
The activation of p38 MAPK by dual phosphorylation aggravates myocardial ischemic injury and depresses cardiac contractile function. SB203580, an ATP-competitive inhibitor of p38 MAPK and other kinases, prevents this dual phosphorylation during ischemia. Studies in non-cardiac tissue have shown receptor-interacting protein 2 (RIP2) lies upstream of p38 MAPK, is SB203580-sensitive and ischemia-responsive, and aggravates ischemic injury. We therefore examined the RIP2-p38 MAPK signaling axis in the heart. Adenovirus-driven expression of wild-type RIP2 in adult rat ventricular myocytes caused robust, SB203580-sensitive dual phosphorylation of p38 MAPK associated with activation of p38 MAPK kinases MKK3, MKK4, and MKK6. The effect of SB203580 was recapitulated by unrelated inhibitors of RIP2 or the downstream MAPK kinase kinase, TAK1. However, overexpression of wild-type, kinase-dead, caspase recruitment domain-deleted, or kinase-dead and caspase recruitment domain-deleted forms of RIP2 had no effect on the activating dual phosphorylation of p38 MAPK during simulated ischemia. Similarly, p38 MAPK activation and myocardial infarction size in response to true ischemia did not differ between hearts from wild-type and RIP2 null mice. However, both p38 MAPK activation and the contractile depression caused by the endotoxin component muramyl dipeptide were attenuated by SB203580 and in RIP2 null hearts. Although RIP2 can cause myocardial p38 MAPK dual phosphorylation in the heart under some circumstances, it is not responsible for the SB203580-sensitive pattern of activation during ischemia.
Collapse
Affiliation(s)
- Sebastien Jacquet
- From the Cardiovascular Division, King’s College London, The Rayne Institute, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Yasuhiro Nishino
- From the Cardiovascular Division, King’s College London, The Rayne Institute, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Sarawut Kumphune
- From the Cardiovascular Division, King’s College London, The Rayne Institute, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Pierre Sicard
- From the Cardiovascular Division, King’s College London, The Rayne Institute, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - James E. Clark
- From the Cardiovascular Division, King’s College London, The Rayne Institute, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Koichi S. Kobayashi
- the Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Richard A. Flavell
- the Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Matt Cotten
- Medical Research Council Laboratories, P. O. Box 273, Banjul, Gambia
| | - Michael S. Marber
- From the Cardiovascular Division, King’s College London, The Rayne Institute, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
574
|
Li H, Lin X. Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 2008; 41:1-8. [PMID: 18068998 DOI: 10.1016/j.cyto.2007.09.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/28/2007] [Indexed: 01/01/2023]
Abstract
Tumor Necrosis Factor alpha (TNFalpha) is a pro-inflammatory cytokine that plays important roles in different biological processes, including the induction of other cytokines. One of the most important downstream signaling targets activated by TNFalpha is the NF-kappaB transcription factor, which has been identified to be involved in inflammatory, anti-apoptotic, and immune responses. Stimulation of cells with TNFalpha triggers activation of NF-kappaB through various signaling molecules, including TRAF2, RIP, MAP3K, and the IKK complex. Recently, numerous studies have been performed to explore the detailed mechanism by which NF-kappaB is activated upon TNFalpha stimulation. Current understanding of this pathway has been focused on the identification of signaling components, the role of post-translational modification and the sub-cellular translocation of those components. Additionally, more negative regulators in the TNF-IKK pathway are emerging.
Collapse
Affiliation(s)
- Hongxiu Li
- Department of Molecular and Cellular Oncology, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 108, Houston, TX 77030, USA
| | | |
Collapse
|
575
|
Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood 2008; 111:4880-91. [PMID: 18349320 DOI: 10.1182/blood-2007-10-117994] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anacardic acid (6-pentadecylsalicylic acid) is derived from traditional medicinal plants, such as cashew nuts, and has been linked to anticancer, anti-inflammatory, and radiosensitization activities through a mechanism that is not yet fully understood. Because of the role of nuclear factor-kappaB (NF-kappaB) activation in these cellular responses, we postulated that anacardic acid might interfere with this pathway. We found that this salicylic acid potentiated the apoptosis induced by cytokine and chemotherapeutic agents, which correlated with the down-regulation of various gene products that mediate proliferation (cyclin D1 and cyclooxygenase-2), survival (Bcl-2, Bcl-xL, cFLIP, cIAP-1, and survivin), invasion (matrix metalloproteinase-9 and intercellular adhesion molecule-1), and angiogenesis (vascular endothelial growth factor), all known to be regulated by the NF-kappaB. We found that anacardic acid inhibited both inducible and constitutive NF-kappaB activation; suppressed the activation of IkappaBalpha kinase that led to abrogation of phosphorylation and degradation of IkappaBalpha; inhibited acetylation and nuclear translocation of p65; and suppressed NF-kappaB-dependent reporter gene expression. Down-regulation of the p300 histone acetyltransferase gene by RNA interference abrogated the effect of anacardic acid on NF-kappaB suppression, suggesting the critical role of this enzyme. Overall, our results demonstrate a novel role for anacardic acid in potentially preventing or treating cancer through modulation of NF-kappaB signaling pathway.
Collapse
|
576
|
Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I, Chapelle JP, O'Neill L, Beyaert R, Piette J, Chariot A. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci 2008; 33:171-80. [PMID: 18353649 DOI: 10.1016/j.tibs.2008.01.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/04/2008] [Accepted: 01/17/2008] [Indexed: 02/06/2023]
Abstract
The IkappaB kinases (IKKs) IKK-alpha and IKK-beta, and the IKK-related kinases TBK1 and IKK-epsilon, have essential roles in innate immunity through signal-induced activation of NF-kappaB, IRF3 and IRF7, respectively. Although the signaling events within these pathways have been extensively studied, the mechanisms of IKK and IKK-related complex assembly and activation remain poorly defined. Recent data provide insight into the requirement for scaffold proteins in complex assembly; NF-kappaB essential modulator coordinates some IKK complexes, whereas TANK, NF-kappaB-activating kinase-associated protein 1 (NAP1) or similar to NAP1 TBK1 adaptor (SINTBAD) assemble TBK1 and IKK-epsilon complexes. The different scaffold proteins undergo similar post-translational modifications, including phosphorylation and non-degradative polyubiquitylation. Moreover, increasing evidence indicates that distinct scaffold proteins assemble IKK, and potentially TBK1 and IKK-epsilon subcomplexes, in a stimulus-specific manner, which might be a mechanism to achieve specificity.
Collapse
Affiliation(s)
- Tieu-Lan Chau
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol 2008; 28:3538-47. [PMID: 18347055 DOI: 10.1128/mcb.02098-07] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation through the interleukin-1 receptor (IL-1R) and some Toll-like receptors (TLRs) induces ubiquitination of TRAF6 and IRAK-1, signaling components required for NF-kappaB and mitogen-activated protein kinase activation. Here we show that although TRAF6 and IRAK-1 acquired Lys63 (K63)-linked polyubiquitin chains upon IL-1 stimulation, only ubiquitinated IRAK-1 bound NEMO, the regulatory subunit of IkappaB kinase (IKK). The sites of IRAK-1 ubiquitination were mapped to Lys134 and Lys180, and arginine substitution of these residues impaired IL-1R/TLR-mediated IRAK-1 ubiquitination, NEMO binding, and NF-kappaB activation. K63-linked ubiquitination of IRAK-1 required enzymatically active TRAF6, indicating that it is the physiologically relevant E3. Thus, K63-linked polyubiquitination of proximal signaling proteins is a common mechanism used by diverse innate immune receptors for recruiting IKK and activating NF-kappaB.
Collapse
|
578
|
TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol 2008; 9:369-77. [PMID: 18345001 DOI: 10.1038/ni1577] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/16/2008] [Indexed: 11/08/2022]
Abstract
Toll-like receptor (TLR) signaling is pivotal to innate and adaptive immune responses and must be tightly controlled. The mechanisms of TLR signaling have been the focus of extensive studies. Here we report that the tripartite-motif protein TRIM30alpha, a RING protein, was induced by TLR agonists and interacted with the TAB2-TAB3-TAK1 adaptor-kinase complex involved in the activation of transcription factor NF-kappaB. TRIM30alpha promoted the degradation of TAB2 and TAB3 and inhibited NF-kappaB activation induced by TLR signaling. In vivo studies showed that transfected or transgenic mice overexpressing TRIM30alpha were more resistant to endotoxic shock. Consistent with that, in vivo 'knockdown' of TRIM30alpha mRNA by small interfering RNA impaired lipopolysaccharide-induced tolerance. Finally, expression of TRIM30alpha depended on NF-kappaB activation. Our results collectively indicate that TRIM30alpha negatively regulates TLR-mediated NF-kappaB activation by targeting degradation of TAB2 and TAB3 by a 'feedback' mechanism.
Collapse
|
579
|
Xiao H, Qian W, Staschke K, Qian Y, Cui G, Deng L, Ehsani M, Wang X, Qian YW, Chen ZJ, Gilmour R, Jiang Z, Li X. Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF kappaB activation. J Biol Chem 2008; 283:14654-64. [PMID: 18326498 DOI: 10.1074/jbc.m706931200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IL-1 receptor-associated kinase (IRAK) is phosphorylated, ubiquitinated, and degraded upon interleukin-1 (IL-1) stimulation. In this study, we showed that IRAK can be ubiquitinated through both Lys-48- and Lys-63-linked polyubiquitin chains upon IL-1 induction. Pellino 3b is the RING-like motif ubiquitin protein ligase that promotes the Lys-63-linked polyubiquitination on IRAK. Pellino 3b-mediated Lys-63-linked IRAK polyubiquitination competed with Lys-48-linked IRAK polyubiquitination for the same ubiquitination site, Lys-134 of IRAK, thereby blocking IL-1-induced IRAK degradation. Importantly, the negative impact of Pellino 3b on IL-1-induced IRAK degradation correlated with the inhibitory effect of Pellino 3b on the IL-1-induced TAK1-dependent pathway, suggesting that a positive role of IRAK degradation in IL-1 induced TAK1 activation. Taken together, our results suggest that Pellino 3b acts as a negative regulator for IL-1 signaling by regulating IRAK degradation through its ubiquitin protein ligase activity.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
580
|
Windheim M, Stafford M, Peggie M, Cohen P. Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol 2008; 28:1783-91. [PMID: 18180283 PMCID: PMC2258775 DOI: 10.1128/mcb.02380-06] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/23/2007] [Accepted: 12/13/2007] [Indexed: 11/20/2022] Open
Abstract
Interleukin 1 (IL-1) has been reported to stimulate the polyubiquitination and disappearance of IL-1 receptor-associated kinase 1 (IRAK1) within minutes. It has been thought that the polyubiquitin chains attached to IRAK1 are linked via Lys48 of ubiquitin, leading to its destruction by the proteasome and explaining the rapid IL-1-induced disappearance of IRAK1. In this paper, we demonstrate that IL-1 stimulates the formation of K63-pUb-IRAK1 and not K48-pUb-IRAK1 and that the IL-1-induced disappearance of IRAK1 is not blocked by inhibition of the proteasome. We also show that IL-1 triggers the interaction of K63-pUb-IRAK1 with NEMO, a regulatory subunit of the IkappaBalpha kinase (IKK) complex, but not with the NEMO[D311N] mutant that cannot bind K63-pUb chains. Moreover, unlike wild-type NEMO, the NEMO[D311N] mutant was unable to restore IL-1-stimulated NF-kappaB-dependent gene transcription to NEMO-deficient cells. Our data suggest a model in which the recruitment of the NEMO-IKK complex to K63-pUb-IRAK1 and the recruitment of the TAK1 complex to TRAF6 facilitate the TAK1-catalyzed activation of IKK by the TRAF6-IRAK1 complex.
Collapse
Affiliation(s)
- Mark Windheim
- MRC Protein Phosphorylation Unit, College of Life Sciences, The Sir James Black Centre, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
581
|
Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A, Barford D. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 2008; 29:451-64. [PMID: 18313383 DOI: 10.1016/j.molcel.2007.12.018] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/24/2007] [Accepted: 12/06/2007] [Indexed: 12/22/2022]
Abstract
The tumor suppressor CYLD antagonizes NF-kappaB and JNK signaling by disassembly of Lys63-linked ubiquitin chains synthesized in response to cytokine stimulation. Here we describe the crystal structure of the CYLD USP domain, revealing a distinctive architecture that provides molecular insights into its specificity toward Lys63-linked polyubiquitin. We identify regions of the USP domain responsible for this specificity and demonstrate endodeubiquitinase activity toward such chains. Pathogenic truncations of the CYLD C terminus, associated with the hypertrophic skin tumor cylindromatosis, disrupt the USP domain, accounting for loss of CYLD catalytic activity. A small zinc-binding B box domain, similar in structure to other crossbrace Zn-binding folds--including the RING domain found in E3 ubiquitin ligases--is inserted within the globular core of the USP domain. Biochemical and functional characterization of the B box suggests a role as a protein-interaction module that contributes to determining the subcellular localization of CYLD.
Collapse
Affiliation(s)
- David Komander
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
582
|
Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008; 89:1-47. [PMID: 18089727 DOI: 10.1099/vir.0.83391-0] [Citation(s) in RCA: 1233] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
Collapse
Affiliation(s)
- Richard E Randall
- School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK
| | - Stephen Goodbourn
- Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
583
|
Iha H, Peloponese JM, Verstrepen L, Zapart G, Ikeda F, Smith CD, Starost MF, Yedavalli V, Heyninck K, Dikic I, Beyaert R, Jeang KT. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J 2008; 27:629-41. [PMID: 18239685 PMCID: PMC2262037 DOI: 10.1038/emboj.2008.5] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 01/04/2008] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor kappa B (NF-kappaB) is a key mediator of inflammation. Unchecked NF-kappaB signalling can engender autoimmune pathologies and cancers. Here, we show that Tax1-binding protein 1 (TAX1BP1) is a negative regulator of TNF-alpha- and IL-1beta-induced NF-kappaB activation and that binding to mono- and polyubiquitin by a ubiquitin-binding Zn finger domain in TAX1BP1 is needed for TRAF6 association and NF-kappaB inhibition. Mice genetically knocked out for TAX1BP1 are born normal, but develop age-dependent inflammatory cardiac valvulitis, die prematurely, and are hypersensitive to low doses of TNF-alpha and IL-1beta. TAX1BP1-/- cells are more highly activated for NF-kappaB than control cells when stimulated with TNF-alpha or IL-1beta. Mechanistically, TAX1BP1 acts in NF-kappaB signalling as an essential adaptor between A20 and its targets.
Collapse
Affiliation(s)
- Hidekatsu Iha
- Laboratory of Molecular Microbiology, Molecular Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Infectious Diseases, Faculty of Medicine, Oita University Idaiga-oka, Hasama Yufu, Japan
| | - Jean-Marie Peloponese
- Laboratory of Molecular Microbiology, Molecular Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lynn Verstrepen
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, Ghent University—VIB, Ghent (Zwijnaarde), Belgium
| | - Grzegorz Zapart
- Institute for Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - Fumiyo Ikeda
- Institute for Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - C Dahlem Smith
- Pathology/Histotechnology Laboratory, SAIC-Frederick Inc., NCI-FCR, Frederick, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Venkat Yedavalli
- Laboratory of Molecular Microbiology, Molecular Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Heyninck
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, Ghent University—VIB, Ghent (Zwijnaarde), Belgium
| | - Ivan Dikic
- Institute for Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - Rudi Beyaert
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, Ghent University—VIB, Ghent (Zwijnaarde), Belgium
| | - Kuan-Teh Jeang
- Laboratory of Molecular Microbiology, Molecular Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
584
|
NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 2008; 105:3023-8. [PMID: 18287044 DOI: 10.1073/pnas.0712313105] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism by which the Carma1-Bcl10-MALT1 (CBM) complex couples T cell antigen receptor (TCR) signaling to IkappaB kinase (IKK) and NF-kappaB activation is not known. Here, we show that Bcl10 undergoes K63-linked polyubiquitination in response to T cell activation and subsequently binds NEMO, the regulatory subunit of IKK. This interaction requires the ubiquitin-binding activity of NEMO. The sites of Bcl10 ubiquitination were mapped to K31 and K63. Mutation of these residues did not affect TCR signaling-induced CBM complex assembly but prevented Bcl10 ubiquitination, NEMO binding, and NF-kappaB activation. Therefore, the regulated ubiquitination of Bcl10 and its recognition by NEMO are a critical link between the CBM complex, IKK recruitment, and NF-kappaB activation.
Collapse
|
585
|
Lin SC, Chung JY, Lamothe B, Rajashankar K, Lu M, Lo YC, Lam AY, Darnay BG, Wu H. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20. J Mol Biol 2008; 376:526-40. [PMID: 18164316 PMCID: PMC2346432 DOI: 10.1016/j.jmb.2007.11.092] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 11/20/2007] [Accepted: 11/27/2007] [Indexed: 12/14/2022]
Abstract
Nuclear factor kappaB (NF-kappaB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappaB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappaB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.
Collapse
Affiliation(s)
- Su-Chang Lin
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Jee Y. Chung
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Betty Lamothe
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | | | - Miao Lu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Yu-Chih Lo
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Amy Y. Lam
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Bryant G. Darnay
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hao Wu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| |
Collapse
|
586
|
Tran H, Hamada F, Schwarz-Romond T, Bienz M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22:528-42. [PMID: 18281465 PMCID: PMC2238673 DOI: 10.1101/gad.463208] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/14/2007] [Indexed: 01/09/2023]
Abstract
A key effector of the canonical Wnt pathway is beta-catenin, which binds to TCF/LEF factors to promote the transcription of Wnt target genes. In the absence of Wnt stimulation, beta-catenin is phosphorylated constitutively, and modified with K48-linked ubiquitin for subsequent proteasomal degradation. Here, we identify Trabid as a new positive regulator of Wnt signaling in mammalian and Drosophila cells. Trabid show a remarkable preference for binding to K63-linked ubiquitin chains with its three tandem NZF fingers (Npl4 zinc finger), and it cleaves these chains with its OTU (ovarian tumor) domain. These activities of Trabid are required for efficient TCF-mediated transcription in cells with high Wnt pathway activity, including colorectal cancer cell lines. We further show that Trabid can bind to and deubiquitylate the APC tumor suppressor protein, a negative regulator of Wnt-mediated transcription. Epistasis experiments indicate that Trabid acts below the stabilization of beta-catenin, and that it may affect the association or activity of the TCF-beta-catenin transcription complex. Our results indicate a role of K63-linked ubiquitin chains during Wnt-induced transcription.
Collapse
Affiliation(s)
- Hoanh Tran
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Fumihiko Hamada
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Thomas Schwarz-Romond
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| |
Collapse
|
587
|
Windheim M, Peggie M, Cohen P. Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J 2008; 409:723-9. [PMID: 18042044 DOI: 10.1042/bj20071338] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
RING (really interesting new gene) and U-box E3 ligases bridge E2 ubiquitin-conjugating enzymes and substrates to enable the transfer of ubiquitin to a lysine residue on the substrate or to one of the seven lysine residues of ubiquitin for polyubiquitin chain elongation. Different polyubiquitin chains have different functions. Lys(48)-linked chains target proteins for proteasomal degradation, and Lys(63)-linked chains function in signal transduction, endocytosis and DNA repair. For this reason, chain topology must be tightly controlled. Using the U-box E3 ligase CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and the RING E3 ligase TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) with the E2s Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) and UbcH5a, in the present study we demonstrate that Ubc13-Uev1a supports the formation of free Lys(63)-linked polyubiquitin chains not attached to CHIP or TRAF6, whereas UbcH5a catalyses the formation of polyubiquitin chains linked to CHIP and TRAF6 that lack specificity for any lysine residue of ubiquitin. Therefore the abilities of these E2s to ubiquitinate a substrate and to elongate polyubiquitin chains of a specific topology appear to be mutually exclusive. Thus two different classes of E2 may be required to attach a polyubiquitin chain of a particular topology to a substrate: the properties of one E2 are designed to mono-ubiquitinate a substrate with no or little inherent specificity for an acceptor lysine residue, whereas the properties of the second E2 are tailored to the elongation of a polyubiquitin chain using a defined lysine residue of ubiquitin.
Collapse
Affiliation(s)
- Mark Windheim
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
588
|
Ma Q, Zhou L, Shi H, Huo K. NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation. Cell Signal 2008; 20:1044-51. [PMID: 18299187 DOI: 10.1016/j.cellsig.2008.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
The cytokines TNFalpha and IL-1beta induce inflammation through activation of transcription factors NF-kappaB. TAB2 is an adapter protein that facilitates TNFalpha and IL-1beta-mediated NF-kappaB activation. In this work, using yeast two-hybrid system TAB2 was identified to interact with NUMBL. The interaction was further confirmed in vitro and in vivo. PTB domain of NUMBL and C-terminal region are required for their interaction. Overexpression of NUMBL inhibited TNFalpha, IL-1beta-induced activation of NF-kappaB signaling pathway. NUMBL also inhibited TAB2, TAK1, TRAF6 and RIP-induced activation of NF-kappaB in a dose-dependent manner. We found that NUMBL can impair TAB2 binding to TRAF6 or RIP and inhibit ubiquitination of TRAF6 enhanced by TAB2. Taken together, our data suggest that NUMBL is involved in negative regulation of NF-kappaB signaling through its interaction with TAB2. These findings also reveal the new functions of NUMBL and implicate that NUMBL potentially links Notch pathway to NF-kappaB pathway.
Collapse
Affiliation(s)
- Qi Ma
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai 200433, PR China
| | | | | | | |
Collapse
|
589
|
Bloor S, Ryzhakov G, Wagner S, Butler PJG, Smith DL, Krumbach R, Dikic I, Randow F. Signal processing by its coil zipper domain activates IKK gamma. Proc Natl Acad Sci U S A 2008; 105:1279-84. [PMID: 18216269 PMCID: PMC2234129 DOI: 10.1073/pnas.0706552105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Indexed: 02/04/2023] Open
Abstract
NF-kappaB activation occurs upon degradation of its inhibitor I-kappaB and requires prior phosphorylation of the inhibitor by I-kappaB kinase (IKK). Activity of IKK is governed by its noncatalytic subunit IKKgamma. Signaling defects due to missense mutations in IKKgamma have been correlated to its inability to either become ubiquitylated or bind ubiquitin noncovalently. Because the relative contribution of these events to signaling had remained unknown, we have studied mutations in the coil-zipper (CoZi) domain of IKKgamma that either impair signaling or cause constitutive NF-kappaB activity. Certain signaling-deficient alleles neither bound ubiquitin nor were they ubiquitylated by TRAF6. Introducing an activating mutation into those signaling-impaired alleles restored their ubiquitylation and created mutants constitutively activating NF-kappaB without repairing the ubiquitin-binding defect. Constitutive activity therefore arises downstream of ubiquitin binding but upstream of ubiquitylation. Such constitutive activity reveals a signal-processing function for IKKgamma beyond that of a mere ubiquitin-binding adaptor. We propose that this signal processing may involve homophilic CoZi interactions as suggested by the enhanced affinity of CoZi domains from constitutively active IKKgamma.
Collapse
Affiliation(s)
| | | | - Sebastian Wagner
- Goethe University Medical School, Institute for Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - P. Jonathan G. Butler
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
| | | | | | - Ivan Dikic
- Goethe University Medical School, Institute for Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | |
Collapse
|
590
|
Kim JY, Omori E, Matsumoto K, Núñez G, Ninomiya-Tsuji J. TAK1 is a central mediator of NOD2 signaling in epidermal cells. J Biol Chem 2008; 283:137-144. [PMID: 17965022 PMCID: PMC2288618 DOI: 10.1074/jbc.m704746200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Muramyl dipeptide (MDP) is a peptidoglycan moiety derived from commensal and pathogenic bacteria, and a ligand of its intracellular sensor NOD2. Mutations in NOD2 are highly associated with Crohn disease, which is characterized by dysregulated inflammation in the intestine. However, the mechanism linking abnormality of NOD2 signaling and inflammation has yet to be elucidated. Here we show that transforming growth factor beta-activated kinase 1 (TAK1) is an essential intermediate of NOD2 signaling. We found that TAK1 deletion completely abolished MDP-NOD2 signaling, activation of NF-kappaB and MAPKs, and subsequent induction of cytokines/chemokines in keratinocytes. NOD2 and its downstream effector RICK associated with and activated TAK1. TAK1 deficiency also abolished MDP-induced NOD2 expression. Because mice with epidermis-specific deletion of TAK1 develop severe inflammatory conditions, we propose that TAK1 and NOD2 signaling are important for maintaining normal homeostasis of the skin, and its ablation may impair the skin barrier function leading to inflammation.
Collapse
Affiliation(s)
- Jae-Young Kim
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695
| | - Emily Omori
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan; Solution Oriented Research for Science and Technology (SORST), Japan Science and Technology Agency, Japan
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695.
| |
Collapse
|
591
|
Enesa K, Zakkar M, Chaudhury H, Luong LA, Rawlinson L, Mason JC, Haskard DO, Dean JLE, Evans PC. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283:7036-45. [PMID: 18178551 DOI: 10.1074/jbc.m708690200] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factors belonging to the NF-kappaB family regulate inflammation by inducing pro-inflammatory molecules (e.g. interleukin (IL)-8) in response to cytokines (e.g. tumor necrosis factor (TNF) alpha, IL-1) or other stimuli. Several negative regulators of NF-kappaB, including the ubiquitin-editing enzyme A20, participate in the resolution of inflammatory responses. We report that Cezanne, a member of the A20 family of the deubiquitinating cysteine proteases, can be induced by TNFalpha in cultured cells. Silencing of endogenous Cezanne using small interfering RNA led to elevated NF-kappaB luciferase reporter gene activity and enhanced expression of IL-8 transcripts in TNFalpha-treated cells. Thus we conclude that endogenous Cezanne can attenuate NF-kappaB activation and the induction of pro-inflammatory transcripts in response to TNF receptor (TNFR) signaling. Overexpression studies revealed that Cezanne suppressed NF-kappaB nuclear translocation and transcriptional activity by targeting the TNFR signaling pathway at the level of the IkappaB kinase complex or upstream from it. These effects were not observed in a form of Cezanne that was mutated at the catalytic cysteine residue (Cys209), indicating that the deubiquitinating activity of Cezanne is essential for NF-kappaB regulation. Finally, we demonstrate that Cezanne can be recruited to activated TNFRs where it suppresses the build-up of polyubiquitinated RIP1 signal adapter proteins. Thus we conclude that Cezanne forms a novel negative feedback loop in pro-inflammatory signaling and that it suppresses NF-kappaB activation by targeting RIP1 signaling intermediaries for deubiquitination.
Collapse
Affiliation(s)
- Karine Enesa
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, London W12 ONN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N, Cohen P. The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J 2008; 409:43-52. [PMID: 17997719 PMCID: PMC5791886 DOI: 10.1042/bj20071365] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The protein kinases IRAK [IL-1 (interleukin 1) receptor-associated kinase] 1 and 4 play key roles in a signalling pathway by which bacterial infection or IL-1 trigger the production of inflammatory mediators. In the present study, we demonstrate that IRAK1 and IRAK4 phosphorylate Pellino isoforms in vitro and that phosphorylation greatly enhances Pellino's E3 ubiquitin ligase activity. We show that, in vitro, Pellino 1 can combine with the E2 conjugating complex Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) to catalyse the formation of K63-pUb (Lys63-linked polyubiquitin) chains, with UbcH3 to catalyse the formation of K48-pUb chains and with UbcH4, UbcH5a or UbcH5b to catalyse the formation of pUb-chains linked mainly via Lys11 and Lys48 of ubiquitin. In IRAK1-/- cells, the co-transfection of DNA encoding wild-type IRAK1 and Pellino 2, but not inactive mutants of these proteins, induces the formation of K63-pUb-IRAK1 and its interaction with the NEMO [NF-kappaB (nuclear factor kappaB) essential modifier] regulatory subunit of the IKK (inhibitor of NF-kappaB kinase) complex, a K63-pUb-binding protein. These studies suggest that Pellino isoforms may be the E3 ubiquitin ligases that mediate the IL-1-stimulated formation of K63-pUb-IRAK1 in cells, which may contribute to the activation of IKKbeta and the transcription factor NF-kappaB, as well as other signalling pathways dependent on IRAK1/4.
Collapse
Affiliation(s)
| | | | - Mark Windheim
- MRC Protein Phosphorylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD15 5EH, Scotland, U.K
| | - Mark Peggie
- MRC Protein Phosphorylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD15 5EH, Scotland, U.K
| | - Emma Carrick
- MRC Protein Phosphorylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD15 5EH, Scotland, U.K
| | - Nick Morrice
- MRC Protein Phosphorylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD15 5EH, Scotland, U.K
| | - Philip Cohen
- MRC Protein Phosphorylation Unit, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD15 5EH, Scotland, U.K
| |
Collapse
|
593
|
Abstract
NF-kappaB is a major regulator of the first-line defense against invading pathogens, antigen-specific adaptive immune responses or chemical stress. Stimulation either by extracellular ligands (e.g., inflammatory cytokines, microbial pathogens, peptide antigens) or by intracellular Stressors (e.g., genotoxic drugs) initiates signal-specific pathways that all converge at the IkappaB kinase (IKK) complex, the gatekeeper for NF-kappaB activation. During recent years, considerable progress has been made in understanding the function of NF-kappaB in the regulation of cell growth, survival and apoptosis. In this review, we will focus on the regulation of large signaling complexes on the route to NF-kappaB. Recently published data demonstrate that the assembly, maintenance and activity of the IKK complex determine downstream activation of NF-kappaB. In addition, dynamic complexes upstream of IKK are formed in response to tumor necrosis factor (TNF), antigenic peptides or DNA-damaging agents. Clustering of signaling adaptors promotes the association and activation of ubiquitin ligases that trigger the conjugation of regulatory ubiquitin to target proteins. Ubiquitination serves as a platform to recruit the IKK complex and potentially other protein kinases to trigger IKK activation. These findings support a concept whereby protein complex assembly induces regulatory ubiquitination, which in turn recruits and activates protein kinases. Notably, the great interest in a detailed description of the mechanisms that regulate NF-kappaB activity stems from many observations that link dysregulated NF-kappaB signaling with the onset or progression of various diseases, including cancer, chronic inflammation, cardiovascular disorders and neurodegenerative diseases. Thus, the formation of large signaling clusters and regulatory ubiquitin chains represents promising targets for pharmacological intervention to modulate NF-kappaB signal transduction in disease.
Collapse
Affiliation(s)
- E Wegener
- GSF - Research Center for Environment and Health, Institute of Toxicology, Ingolstädter Landstr. 1, Neuherberg, Germany
| | | |
Collapse
|
594
|
Kumar KGS, Barriere H, Carbone CJ, Liu J, Swaminathan G, Xu P, Li Y, Baker DP, Peng J, Lukacs GL, Fuchs SY. Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis. ACTA ACUST UNITED AC 2007; 179:935-50. [PMID: 18056411 PMCID: PMC2099190 DOI: 10.1083/jcb.200706034] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-α/β receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCFβTrcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Animal Biology and 2Mari Lowe Center for Comparative Oncology Research, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
595
|
Pineda G, Ea CK, Chen ZJ. Ubiquitination and TRAF signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:80-92. [PMID: 17633019 DOI: 10.1007/978-0-387-70630-6_7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gabriel Pineda
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
596
|
Darnay BG, Besse A, Poblenz AT, Lamothe B, Jacoby JJ. TRAFs in RANK signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:152-9. [PMID: 17633024 DOI: 10.1007/978-0-387-70630-6_12] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Members of the tumor necrosis factor (TNF) family govern many diverse physiological and cellular responses including cellular proliferation, differentiation, and apoptosis. Ligands of this family interact through a distinct set of specific receptors that lack enzymatic activity and therefore are dependent on the association of adaptor molecules. One receptor/ligand pair known as receptor activator of nuclear factor-kappa B (RANK) and RANK ligand (RANKL) regulates bone remodeling, mammary gland development, and lymph node organogenesis. RANK interacts with five members of the TNF receptor-associated factor (TRAF) family, of which TRAF6 is indispensable for its signaling capability. An accumulation of evidence from various research laboratories indicates TRAFs, but more importantly TRAF6, is the key to understanding how RANKL links cytoplasmic signaling to the nuclear transcriptional program.
Collapse
Affiliation(s)
- Bryant G Darnay
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
597
|
Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Núñez G, Inohara N. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 2007; 27:373-83. [PMID: 18079694 DOI: 10.1038/sj.emboj.7601962] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/23/2007] [Indexed: 01/01/2023] Open
Abstract
Nod1 and Nod2 are intracellular proteins that are involved in host recognition of specific bacterial molecules and are genetically associated with several inflammatory diseases. Nod1 and Nod2 stimulation activates NF-kappaB through RICK, a caspase-recruitment domain-containing kinase. However, the mechanism by which RICK activates NF-kappaB in response to Nod1 and Nod2 stimulation is unknown. Here we show that RICK is conjugated with lysine-63-linked polyubiquitin chains at lysine 209 (K209) located in its kinase domain upon Nod1 or Nod2 stimulation and by induced oligomerization of RICK. Polyubiquitination of RICK at K209 was essential for RICK-mediated IKK activation and cytokine/chemokine secretion. However, RICK polyubiquitination did not require the kinase activity of RICK or alter the interaction of RICK with NEMO, a regulatory subunit of IkappaB kinase (IKK). Instead, polyubiquitination of RICK was found to mediate the recruitment of TAK1, a kinase that was found to be essential for Nod1-induced signaling. Thus, RICK polyubiquitination links TAK1 to IKK complexes, a critical step in Nod1/Nod2-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Mizuho Hasegawa
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
598
|
Sebban-Benin H, Pescatore A, Fusco F, Pascuale V, Gautheron J, Yamaoka S, Moncla A, Ursini MV, Courtois G. Identification of TRAF6-dependent NEMO polyubiquitination sites through analysis of a new NEMO mutation causing incontinentia pigmenti. Hum Mol Genet 2007; 16:2805-15. [PMID: 17728323 DOI: 10.1093/hmg/ddm237] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The regulatory subunit NEMO is involved in the mechanism of activation of IkappaB kinase (IKK), the kinase complex that controls the NF-kappaB signaling pathway. During this process, NEMO is modified post-translationally through K63-linked polyubiquitination. We report the molecular characterization of a new missense mutation of NEMO (A323P) which causes a severe form of incontinentia pigmenti (OMIM#308300), an inherited disease characterized predominantly by skin inflammation. The A323P mutation was found to impair TNF-, IL-1-, LPS- and PMA/ionomycin-induced NF-kappaB activation, as well as to disrupt TRAF6-dependent NEMO polyubiquitination, due to a defective NEMO/TRAF6 interaction. Mutagenesis identified the affected ubiquitination sites as three lysine residues located in the vicinity of A323. Unexpectedly, these lysines were ubiquitinated together with two previously identified lysines not connected to TRAF6. Mutation of all these ubiquitination sites severely impaired NF-kappaB activation induced by stimulation with IL-1, LPS, Nod2/RICK or serum/LPA. In contrast, mutation at all of these sites had only a limited effect on stimulation by TNF. These findings indicate that post-translational modification of NEMO through K63-linked polyubiquitination is a key event in IKK activation and that perturbation of this step may cause human pathophysiology.
Collapse
|
599
|
MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling. Nat Cell Biol 2007; 9:1419-27. [PMID: 18037881 DOI: 10.1038/ncb1661] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/10/2007] [Indexed: 02/06/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is constitutively activated in diverse human malignancies by mechanisms that are not understood. The MUC1 oncoprotein is aberrantly overexpressed by most human carcinomas and, similarly to NF-kappaB, blocks apoptosis and induces transformation. This study demonstrates that overexpression of MUC1 in human carcinoma cells is associated with constitutive activation of NF-kappaB p65. We show that MUC1 interacts with the high-molecular-weight IkappaB kinase (IKK) complex in vivo and that the MUC1 cytoplasmic domain binds directly to IKKbeta and IKKgamma. Interaction of MUC1 with both IKKbeta and IKKgamma is necessary for IKKbeta activation, resulting in phosphorylation and degradation of IkappaBalpha. Studies in non-malignant epithelial cells show that MUC1 is recruited to the TNF-R1 complex and interacts with IKKbeta-IKKgamma in response to TNFalpha stimulation. TNFalpha-induced recruitment of MUC1 is dependent on TRADD and TRAF2, but not the death-domain kinase RIP1. In addition, MUC1-mediated activation of IKKbeta is dependent on TAK1 and TAB2. These findings indicate that MUC1 is important for physiological activation of IKKbeta and that overexpression of MUC1, as found in human cancers, confers sustained induction of the IKKbeta-NF-kappaB p65 pathway.
Collapse
|
600
|
Yu Q, Minoda Y, Yoshida R, Yoshida H, Iha H, Kobayashi T, Yoshimura A, Takaesu G. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein. Biochem Biophys Res Commun 2007; 365:189-94. [PMID: 17986383 DOI: 10.1016/j.bbrc.2007.10.172] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-kappaB activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-kappaB-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax.
Collapse
Affiliation(s)
- Qingsheng Yu
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|