551
|
Abstract
In humans, genomic DNA is organized in 23 chromosome pairs coding for roughly 25,000 genes. Not all of them are active at all times. During development, a broad range of different cell types needs to be generated in a highly ordered and reproducible manner, requiring selective gene expression programs. Epigenetics can be regarded as the information management system that is able to index or bookmark distinct regions in our genome to regulate the readout of DNA. It further comprises the molecular memory of any given cell, allowing it to store information of previously experienced external (e.g., environmental) or internal (e.g., developmental) stimuli, to learn from this experience and to respond. The underlying epigenetic mechanisms can be synergistic, antagonistic, or mutually exclusive and their large variety combined with the variability and interdependence is thought to provide the molecular basis for any phenotypic variation in physiological and pathological conditions. Thus, widespread reconfiguration of the epigenome is not only a key feature of neurodevelopment, brain maturation, and adult brain function but also disease.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany.
| |
Collapse
|
552
|
Abstract
Although all neurons carry the same genetic information, they vary considerably in morphology and functions and respond differently to environmental conditions. Such variability results mostly from differences in gene expression. Among the processes that regulate gene activity, epigenetic mechanisms play a key role and provide an additional layer of complexity to the genome. They allow the dynamic modulation of gene expression in a locus- and cell-specific manner. These mechanisms primarily involve DNA methylation, posttranslational modifications (PTMs) of histones and noncoding RNAs that together remodel chromatin and facilitate or suppress gene expression. Through these mechanisms, the brain gains high plasticity in response to experience and can integrate and store new information to shape future neuronal and behavioral responses. Dynamic epigenetic footprints underlying the plasticity of brain cells and circuits contribute to the persistent impact of life experiences on an individual's behavior and physiology ranging from the formation of long-term memory to the sequelae of traumatic events or of drug addiction. They also contribute to the way lifestyle, life events, or exposure to environmental toxins can predispose an individual to disease. This chapter describes the most prominent examples of epigenetic marks associated with long-lasting changes in the brain induced by experience. It discusses the role of epigenetic processes in behavioral plasticity triggered by environmental experiences. A particular focus is placed on learning and memory where the importance of epigenetic modifications in brain circuits is best understood. The relevance of epigenetics in memory disorders such as dementia and Alzheimer's disease is also addressed, and promising perspectives for potential epigenetic drug treatment discussed.
Collapse
|
553
|
Krishnan HR, Sakharkar AJ, Teppen TL, Berkel TDM, Pandey SC. The epigenetic landscape of alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:75-116. [PMID: 25131543 DOI: 10.1016/b978-0-12-801311-3.00003-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism.
Collapse
Affiliation(s)
- Harish R Krishnan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Amul J Sakharkar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Tara L Teppen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Tiffani D M Berkel
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
554
|
Weaver ICG. Integrating early life experience, gene expression, brain development, and emergent phenotypes: unraveling the thread of nature via nurture. ADVANCES IN GENETICS 2014; 86:277-307. [PMID: 25172353 DOI: 10.1016/b978-0-12-800222-3.00011-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptation to environmental changes is based on the perpetual generation of new phenotypes. Modern biology has focused on the role of epigenetic mechanisms in facilitating the adaptation of organisms to changing environments through alterations in gene expression. Inherited and/or acquired epigenetic factors are relatively stable and have regulatory roles in numerous genomic activities that translate into phenotypic outcomes. Evidence that dietary and pharmacological interventions have the potential to reverse environment-induced modification of epigenetic states (e.g., early life experience, nutrition, medication, infection) has provided an additional stimulus for understanding the biological basis of individual differences in cognitive abilities and disorders of the brain. It has been suggested that accurate quantification of the relative contribution of heritable genetic and epigenetic variation is essential for understanding phenotypic divergence and adaptation in changing environments, a process requiring stable modulation of gene expression. The main challenge for epigenetics in psychology and psychiatry is to determine how experiences and environmental cues, including the nature of our nurture, influence the expression of neuronal genes to produce long-term individual differences in behavior, cognition, personality, and mental health. To this end, focusing on DNA and histone modifications and their initiators, mediators and readers may provide new inroads for understanding the molecular basis of phenotypic plasticity and disorders of the brain. In this chapter, we review recent discoveries highlighting epigenetic aspects of normal brain development and mental illness, as well as discuss some future directions in the field of behavioral epigenetics.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
555
|
Kozlenkov A, Roussos P, Timashpolsky A, Barbu M, Rudchenko S, Bibikova M, Klotzle B, Byne W, Lyddon R, Di Narzo AF, Hurd YL, Koonin EV, Dracheva S. Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res 2014; 42:109-27. [PMID: 24057217 PMCID: PMC3874157 DOI: 10.1093/nar/gkt838] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022] Open
Abstract
We applied Illumina Human Methylation450K array to perform a genomic-scale single-site resolution DNA methylation analysis in neuronal and nonneuronal (primarily glial) nuclei separated from the orbitofrontal cortex of postmortem human brain. The findings were validated using enhanced reduced representation bisulfite sequencing. We identified thousands of sites differentially methylated (DM) between neuronal and nonneuronal cells. The DM sites were depleted within CpG-island-containing promoters but enriched in predicted enhancers. Classification of the DM sites into those undermethylated in neurons (neuronal type) and those undermethylated in nonneuronal cells (glial type), combined with findings of others that methylation within control elements typically negatively correlates with gene expression, yielded large sets of predicted neuron-specific and non-neuron-specific genes. These sets of predicted genes were in excellent agreement with the available direct measurements of gene expression in human and mouse. We also found a distinct set of DNA methylation patterns that were unique for neuronal cells. In particular, neuronal-type differential methylation was overrepresented in CpG island shores, enriched within gene bodies but not in intergenic regions, and preferentially harbored binding motifs for a distinct set of transcription factors, including neuron-specific activity-dependent factors. Finally, non-CpG methylation was substantially more prevalent in neurons than in nonneuronal cells.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Panos Roussos
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alisa Timashpolsky
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mihaela Barbu
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Sergei Rudchenko
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Marina Bibikova
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Brandy Klotzle
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - William Byne
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Lyddon
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Antonio Fabio Di Narzo
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yasmin L. Hurd
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V. Koonin
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Stella Dracheva
- VISN 3 Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, Research Division, Hospital for Special Surgery, New York, NY, USA, Illumina, Inc., San Diego, CA, USA and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
556
|
Pandian GN, Taylor RD, Junetha S, Saha A, Anandhakumar C, Vaijayanthi T, Sugiyama H. Alteration of epigenetic program to recover memory and alleviate neurodegeneration: prospects of multi-target molecules. Biomater Sci 2014; 2:1043-1056. [DOI: 10.1039/c4bm00068d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Next-generation sequence-specific small molecules modulating the epigenetic enzymes (DNMT/HDAC) and signalling factors can precisely turn ‘ON’ the multi-gene network in a neural cell.
Collapse
Affiliation(s)
- Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
| | - Rhys D. Taylor
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Syed Junetha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Abhijit Saha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Chandran Anandhakumar
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Thangavel Vaijayanthi
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
- Department of Chemistry
- Graduate School of Science
| |
Collapse
|
557
|
Abstract
Over the past 25 years, the broad field of epigenetics and, over the past decade in particular, the emerging field of neuroepigenetics have begun to have tremendous impact in the areas of learned behavior, neurotoxicology, CNS development, cognition, addiction, and psychopathology. However, epigenetics is such a new field that in most of these areas the impact is more in the category of fascinating implications as opposed to established facts. In this brief commentary, I will attempt to address and delineate some of the open questions and areas of opportunity that discoveries in epigenetics are providing to the discipline of neuroscience.
Collapse
|
558
|
Wang S, Long Y, Wang J, Ge Y, Guo P, Liu Y, Tian T, Zhou X. Systematic investigations of different cytosine modifications on CpG dinucleotide sequences: the effects on the B-Z transition. J Am Chem Soc 2013; 136:56-9. [PMID: 24364741 DOI: 10.1021/ja4107012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have first demonstrated the distinctive effects of three newly reported epigenetic modifications, including 5hmC, 5fC, and 5caC, on B-Z transition of CpG dinucleotide DNAs. We have performed detailed assays and compared their effects. We further studied the regulation of B-Z transition of CpG dinucleotide dodecamers by alternating oxidation and alternating reduction.
Collapse
Affiliation(s)
- Shaoru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University , Wuhan, Hubei 430072, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
559
|
Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience 2013; 264:157-70. [PMID: 24333971 DOI: 10.1016/j.neuroscience.2013.12.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Abstract
The human brain has a remarkable capacity to adapt to and learn from a wide range of variations in the environment. However, environmental challenges can also precipitate psychiatric disorders in susceptible individuals. Why any given experience should induce one brain to adapt while another is edged toward psychopathology remains poorly understood. Like all aspects of psychological function, both nature (genetics) and nurture (life experience) sculpt the brain's response to stressful stimuli. Here we review how these two influences intersect at the epigenetic regulation of neuronal gene transcription, and we discuss how the regulation of genomic DNA methylation near key stress-response genes may influence psychological susceptibility or resilience to environmental stressors. Our goal is to offer a perspective on the epigenetics of stress responses that works to bridge the gap between the study of this molecular process in animal models and its potential usefulness for understanding stress vulnerabilities in humans.
Collapse
|
560
|
CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene 2013; 34:104-18. [PMID: 24292684 DOI: 10.1038/onc.2013.522] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/16/2022]
Abstract
Cullin 4B (CUL4B) is a component of the Cullin4B-Ring E3 ligase complex (CRL4B) that functions in proteolysis and is implicated in tumorigenesis. Here, we report that CRL4B is associated with histone methyltransferase SUV39H1, heterochromatin protein 1 (HP1) and DNA methyltransferases 3A (DNMT3A). We showed that CRL4B, through catalyzing H2AK119 monoubiquitination, facilitates H3K9 tri-methylation and DNA methylation, two key epigenetic modifications involved in DNA methylation-based gene silencing. Depletion of CUL4B resulted in loss of not only H2AK119 monoubiquitination but also H3K9 trimethylation and DNA methylation, leading to derepression of a collection of genes, including the tumor suppressor IGFBP3. We demonstrated that CUL4B promotes cell proliferation and invasion, which are consistent with a tumorigenic phenotype, at least partially by repressing IGFBP3. We found that the expression of CUL4B is markedly upregulated in samples of human cervical carcinoma and is negatively correlated with the expression of IGFBP3. Our experiments unveiled a coordinated action between histone ubiquitination/methylation and DNA methylation in transcription repression, providing a mechanism for CUL4B in tumorigenesis.
Collapse
|
561
|
Subbanna S, Nagre NN, Shivakumar M, Umapathy NS, Psychoyos D, Basavarajappa BS. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice. Neuroscience 2013; 258:422-32. [PMID: 24300108 DOI: 10.1016/j.neuroscience.2013.11.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022]
Abstract
The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), comparable to a time point within the third trimester of human pregnancy, induces neurodegeneration. However, the molecular mechanisms underlying the deleterious effects of ethanol on the developing brain are poorly understood. In our previous study, we showed that a high dose administration of ethanol at P7 enhances G9a and leads to caspase-3-mediated degradation of dimethylated H3 on lysine 9 (H3K9me2). In this study, we investigated the potential role of epigenetic changes at G9a exon1, G9a-mediated H3 dimethylation on neurodegeneration and G9a-associated proteins in the P7 brain following exposure to a low dose of ethanol. We found that a low dose of ethanol induces mild neurodegeneration in P7 mice, enhances specific acetylation of H3 on lysine 14 (H3K14ace) at G9a exon1, G9a protein levels, augments the dimethylation of H3K9 and H3 lysine 27 (H3K27me2). However, neither dimethylated H3K9 nor K27 underwent degradation. Pharmacological inhibition of G9a activity prior to ethanol treatment prevented H3 dimethylation and neurodegeneration. Further, our immunoprecipitation data suggest that G9a directly associates with DNA methyltransferase (DNMT3A) and methyl-CpG-binding protein 2 (MeCP2). In addition, DNMT3A and MeCP2 protein levels were enhanced by a low dose of ethanol that was shown to induce mild neurodegeneration. Collectively, these epigenetic alterations lead to association of G9a, DNMT3A and MeCP2 to form a larger repressive complex and have a significant role in low-dose ethanol-induced neurodegeneration in the developing brain.
Collapse
Affiliation(s)
- S Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - N N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - M Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - N S Umapathy
- Vascular Biology Center, Georgia Regents University, Augusta, GA 30912, USA
| | - D Psychoyos
- Institute of Biosciences and Technology, Houston, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - B S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
562
|
Szyf M. The genome- and system-wide response of DNA methylation to early life adversity and its implication on mental health. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:697-704. [PMID: 24331290 DOI: 10.1177/070674371305801208] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Early life adversity is associated with long-tem impacts on behaviour and physical and mental health. The mechanisms mediating the impact of early life environment on the phenotype are proposed to involve a change in the state of deoxyribonucleic acid (DNA) methylation and, as a consequence, in the stable programming of gene expression. Recent studies suggest that the changes in DNA methylation affect broad genomic regions, as well as peripheral tissues in addition to brain regions. Although the data are still scarce, it points to the possibility that DNA methylation is a mechanism of genome adaptation to signals from early life social environment. This modulation of the DNA methylation pattern is proposed to result in long-term impact on the phenotype that could become maladaptive under certain contexts later in life. This model has implications on our understanding of behavioural and mental health pathologies, as well as their diagnosis and therapeutics.
Collapse
Affiliation(s)
- Moshe Szyf
- Professor, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec
| |
Collapse
|
563
|
Malan-Müller S, Seedat S, Hemmings SMJ. Understanding posttraumatic stress disorder: insights from the methylome. GENES BRAIN AND BEHAVIOR 2013; 13:52-68. [DOI: 10.1111/gbb.12102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
Affiliation(s)
- S. Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| | - S. Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| | - S. M. J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences; Stellenbosch University; Tygerberg South Africa
| |
Collapse
|
564
|
Maddox SA, Watts CS, Schafe GE. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala. Neurobiol Learn Mem 2013; 107:93-100. [PMID: 24291571 DOI: 10.1016/j.nlm.2013.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/23/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
Abstract
We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo.
Collapse
Affiliation(s)
| | - Casey S Watts
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Glenn E Schafe
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA; Center for Study of Gene Structure & Function, Hunter College, The City University of New York, New York, NY, USA.
| |
Collapse
|
565
|
Sable P, Randhir K, Kale A, Chavan-Gautam P, Joshi S. Maternal micronutrients and brain global methylation patterns in the offspring. Nutr Neurosci 2013; 18:30-6. [PMID: 24257323 DOI: 10.1179/1476830513y.0000000097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Studies have established the association of maternal nutrition and increased risk for non-communicable diseases. It has been suggested that this involves epigenetic modifications in the genome. However, the role of maternal micronutrients in the one-carbon cycle in influencing brain development of the offspring through methylation is unexplored. It is also unclear whether epigenomic marks established during early development can be reversed by a postnatal diet. The present study reports the effect of maternal micronutrients and omega-3 fatty acids on global DNA methylation patterns in the brain of the Wistar rat offspring at three timepoints (at birth, postnatal day 21, and 3 months of age). METHOD Pregnant rats were divided into control (n = 8) and five treatment groups (n = 16 dams in each group) at two levels of folic acid (normal and excess folate) in the presence and absence of vitamin B12 (NFBD, EFB, and EFBD). Omega-3 fatty acid supplementation was given to vitamin B12 deficient groups (NFBDO and EFBDO). Following delivery, eight dams from each group were shifted to control diet and remaining continued on the same treatment diet. RESULTS Our results demonstrate that maternal micronutrient imbalance results in global hypomethylation in the offspring brain at birth. At adult age the cortex of the offspring displayed hypermethylation as compared with control, in spite of a postnatal control diet. In contrast, prenatal omega-3 fatty acid supplementation was able to normalize methylation at 3 months of age. DISCUSSION Our findings provide clues for the role of omega-3 fatty acids in reversing methylation patterns thereby highlighting its contribution in neuroprotection and cognition.
Collapse
|
566
|
TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 2013; 79:1086-93. [PMID: 24050399 DOI: 10.1016/j.neuron.2013.08.032] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 12/13/2022]
Abstract
Dynamic changes in 5-methylcytosine (5mC) have been implicated in the regulation of gene expression critical for consolidation of memory. However, little is known about how these changes in 5mC are regulated in the adult brain. The enzyme methylcytosine dioxygenase TET1 (TET1) has been shown to promote active DNA demethylation in the nervous system. Therefore, we took a viral-mediated approach to overexpress the protein in the hippocampus and examine its potential involvement in memory formation. We found that Tet1 is a neuronal activity-regulated gene and that its overexpression leads to global changes in modified cytosine levels. Furthermore, expression of TET1 or a catalytically inactive mutant (TET1m) resulted in the upregulation of several neuronal memory-associated genes and impaired contextual fear memory. In summary, we show that neuronal Tet1 regulates DNA methylation levels and that its expression, independent of its catalytic activity, regulates the expression of CNS activity-dependent genes and memory formation.
Collapse
|
567
|
Kobow K, Kaspi A, Harikrishnan KN, Kiese K, Ziemann M, Khurana I, Fritzsche I, Hauke J, Hahnen E, Coras R, Mühlebner A, El-Osta A, Blümcke I. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol 2013; 126:741-56. [PMID: 24005891 PMCID: PMC3825532 DOI: 10.1007/s00401-013-1168-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022]
Abstract
Epilepsy is a frequent neurological disorder, although onset and progression of seizures remain difficult to predict in affected patients, irrespective of their epileptogenic condition. Previous studies in animal models as well as human epileptic brain tissue revealed a remarkably diverse pattern of gene expression implicating epigenetic changes to contribute to disease progression. Here we mapped for the first time global DNA methylation patterns in chronic epileptic rats and controls. Using methyl-CpG capture associated with massive parallel sequencing (Methyl-Seq) we report the genomic methylation signature of the chronic epileptic state. We observed a predominant increase, rather than loss of DNA methylation in chronic rat epilepsy. Aberrant methylation patterns were inversely correlated with gene expression changes using mRNA sequencing from same animals and tissue specimens. Administration of a ketogenic, high-fat, low-carbohydrate diet attenuated seizure progression and ameliorated DNA methylation mediated changes in gene expression. This is the first report of unsupervised clustering of an epigenetic mark being used in epilepsy research to separate epileptic from non-epileptic animals as well as from animals receiving anti-convulsive dietary treatment. We further discuss the potential impact of epigenetic changes as a pathogenic mechanism of epileptogenesis.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Antony Kaspi
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
| | - K. N. Harikrishnan
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
| | - Katharina Kiese
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
| | - Ina Fritzsche
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Jan Hauke
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eric Hahnen
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Angelika Mühlebner
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
- Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC Australia
- Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
568
|
Zhang X, Kusumo H, Sakharkar AJ, Pandey SC, Guizzetti M. Regulation of DNA methylation by ethanol induces tissue plasminogen activator expression in astrocytes. J Neurochem 2013; 128:344-9. [PMID: 24117907 DOI: 10.1111/jnc.12465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/25/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
Abstract
Alcohol exposure affects neuronal plasticity in the adult and developing brain. Astrocytes play a major role in modulating neuronal plasticity and are a target of ethanol. Tissue plasminogen activator (tPA) is involved in modulating neuronal plasticity by degrading the extracellular matrix proteins including fibronectin and laminin and is up-regulated by ethanol in vivo. In this study we explored the hypothesis that ethanol affects DNA methylation in astrocytes thereby increasing expression and release of tPA. It was found that ethanol increased tPA mRNA levels, an effect mimicked by an inhibitor of DNA methyltransferase (DNMT) activity. Ethanol also increased tPA protein expression and release, and inhibited DNMT activity with a corresponding decrease in DNA methylation levels of the tPA promoter. Furthermore, it was observed that protein levels of DNMT3A, but not DNMT1, were reduced in astrocytes after ethanol exposure. These novel studies show that ethanol inhibits DNA methylation in astrocytes leading to increased tPA expression and release; this effect may be involved in astrocyte-mediated inhibition of neuronal plasticity by alcohol.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
569
|
Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep 2013; 3:1807. [PMID: 23657727 PMCID: PMC3648839 DOI: 10.1038/srep01807] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 01/24/2023] Open
Abstract
Recent studies show that formaldehyde participates in DNA demethylation/methylation cycle. Emerging evidence identifies that neuronal activity induces global DNA demethylation and re-methylation; and DNA methylation is a critical step for memory formation. These data suggest that endogenous formaldehyde may intrinsically link learning-responsive DNA methylation status and memory formation. Here, we report that during spatial memory formation process, spatial training induces an initial global DNA demethylation and subsequent re-methylation associated with hippocampal formaldehyde elevation then decline to baseline level in Sprague Dawley rats. Scavenging this elevated formaldehyde by formaldehyde-degrading enzyme (FDH), or enhancing DNA demethylation by a DNA demethylating agent, both led to spatial memory deficits by blocking DNA re-methylation in rats. Furthermore, we found that the normal adult rats intrahippocampally injected with excess formaldehyde can imitate the aged-related spatial memory deficits and global DNA methylation decline. These findings indicate that aging-associated excess formaldheyde contributes to cognitive decline during aging.
Collapse
|
570
|
Abstract
This review highlights recent discoveries that have shaped the emerging viewpoints in the field of epigenetic influences in the central nervous system (CNS), focusing on the following questions: (i) How is the CNS shaped during development when precursor cells transition into morphologically and molecularly distinct cell types, and is this event driven by epigenetic alterations?; ii) How do epigenetic pathways control CNS function?; (iii) What happens to "epigenetic memory" during aging processes, and do these alterations cause CNS dysfunction?; (iv) Can one restore normal CNS function by manipulating the epigenome using pharmacologic agents, and will this ameliorate aging-related neurodegeneration? These and other still unanswered questions remain critical to understanding the impact of multifaceted epigenetic machinery on the age-related dysfunction of CNS.
Collapse
Affiliation(s)
- Yue-Qiang Zhao
- />Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400 USA
- />Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - I. King Jordan
- />School of Biology, Georgia Institute of Technology, Atlanta, GA USA
- />PanAmerican Bioinformatics Institute, Santa Marta, Magdalena Colombia
| | - Victoria V. Lunyak
- />Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400 USA
| |
Collapse
|
571
|
Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms. Neurotherapeutics 2013; 10:722-33. [PMID: 23900692 PMCID: PMC3805862 DOI: 10.1007/s13311-013-0205-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. A diagnosis is fatal owing to degeneration of motor neurons in brain and spinal cord that control swallowing, breathing, and movement. ALS can be inherited, but most cases are not associated with a family history of the disease. The mechanisms causing motor neuron death in ALS are still unknown. Given the suspected complex interplay between multiple genes, the environment, metabolism, and lifestyle in the pathogenesis of ALS, we have hypothesized that the mechanisms of disease in ALS involve epigenetic contributions that can drive motor neuron degeneration. DNA methylation is an epigenetic mechanism for gene regulation engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to carbon-5 in cytosine residues in gene regulatory promoter and nonpromoter regions. Recent genome-wide analyses have found differential gene methylation in human ALS. Neuropathologic assessments have revealed that motor neurons in human ALS show significant abnormalities in Dnmt1, Dnmt3a, and 5-methylcytosine. Similar changes are seen in mice with motor neuron degeneration, and Dnmt3a was found abundantly at synapses and in mitochondria. During apoptosis of cultured motor neuron-like cells, Dnmt1 and Dnmt3a protein levels increase, and 5-methylcytosine accumulates. Enforced expression of Dnmt3a, but not Dnmt1, induces degeneration of cultured neurons. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocks apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with small molecules RG108 and procainamide protects motor neurons from excessive DNA methylation and apoptosis in cell culture and in a mouse model of ALS. Thus, motor neurons can engage epigenetic mechanisms to cause their degeneration, involving Dnmts and increased DNA methylation. Aberrant DNA methylation in vulnerable cells is a new direction for discovering mechanisms of ALS pathogenesis that could be relevant to new disease target identification and therapies for ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA,
| | | |
Collapse
|
572
|
Abstract
Mounting evidence has recently underscored the importance of DNA methylation in normal brain functions. DNA methylation machineries are responsible for dynamic regulation of methylation patterns in discrete brain regions. In addition to methylation of cytosines in genomic DNA (5-methylcytosine; 5mC), other forms of modified cytosines, such as 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, can potentially act as epigenetic marks that regulate gene expression. Importantly, epigenetic modifications require cognate binding proteins to read and translate information into gene expression regulation. Abnormal or incorrect interpretation of DNA methylation patterns can cause devastating consequences, including mental illnesses and neurological disorders. Although DNA methylation was generally considered to be a stable epigenetic mark in post-mitotic cells, recent studies have revealed dynamic DNA modifications in neurons. Such reversibility of 5mC sheds light on potential mechanisms underlying some neurological disorders and suggests a new route to correct aberrant methylation patterns associated with these disorders.
Collapse
Affiliation(s)
- Yi-Lan Weng
- />Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ran An
- />Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jaehoon Shin
- />Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hongjun Song
- />Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- />The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Guo-li Ming
- />Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- />Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- />The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
573
|
Abstract
Psychiatric disorders including major depressive disorder, drug addiction, and schizophrenia are debilitating illnesses with a multitude of complex symptoms underlying each of these disorders. In recent years, it has become appreciated that the onset and development of these disorders goes beyond the one gene-one disease approach. Rather, the involvement of many genes is likely linked to these illnesses, and regulating the activation or silencing of gene function may play a crucial role in contributing to their pathophysiology. Epigenetic modifications such as histone acetylation and deacetylation, as well as DNA methylation can induce lasting and stable changes in gene expression, and have therefore been implicated in promoting the adaptive behavioral and neuronal changes that accompany each of these illnesses. In this review we will discuss some of the latest work implicating a potential role for epigenetics in psychiatric disorders, namely, depression, addiction, and schizophrenia as well as a possible role in treatment.
Collapse
Affiliation(s)
- Melissa Mahgoub
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111 USA
| | - Lisa M. Monteggia
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111 USA
| |
Collapse
|
574
|
Day JJ, Childs D, Guzman-Karlsson MC, Kibe M, Moulden J, Song E, Tahir A, Sweatt JD. DNA methylation regulates associative reward learning. Nat Neurosci 2013; 16:1445-52. [PMID: 23974711 PMCID: PMC3785567 DOI: 10.1038/nn.3504] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/20/2013] [Indexed: 12/13/2022]
Abstract
Reward-related memories are essential for adaptive behavior and evolutionary fitness, but they are also a core component of maladaptive brain diseases such as addiction. Reward learning requires dopamine neurons located in the ventral tegmental area (VTA), which encode relationships between predictive cues and future rewards. Recent evidence suggests that epigenetic mechanisms, including DNA methylation, are essential regulators of neuronal plasticity and experience-driven behavioral change. However, the role of epigenetic mechanisms in reward learning is poorly understood. Here we show that the formation of reward-related associative memories in rats upregulates key plasticity genes in the VTA, which are correlated with memory strength and associated with gene-specific changes in DNA methylation. Moreover, DNA methylation in the VTA is required for the formation of stimulus-reward associations. These results provide the first evidence that that activity-dependent methylation and demethylation of DNA is an essential substrate for the behavioral and neuronal plasticity driven by reward-related experiences.
Collapse
Affiliation(s)
- Jeremy J. Day
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Childs
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Mikael C. Guzman-Karlsson
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Mercy Kibe
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Jerome Moulden
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Esther Song
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Absar Tahir
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - J. David Sweatt
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
575
|
Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, Faull KF, Jaenisch R, Tsai LH. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 2013; 79:1109-1122. [PMID: 24050401 PMCID: PMC4543319 DOI: 10.1016/j.neuron.2013.08.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 12/22/2022]
Abstract
The ten-eleven translocation (Tet) family of methylcytosine dioxygenases catalyze oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and promote DNA demethylation. Despite the abundance of 5hmC and Tet proteins in the brain, little is known about the functions of the neuronal Tet enzymes. Here, we analyzed Tet1 knockout mice (Tet1KO) and found downregulation of multiple neuronal activity-regulated genes, including Npas4, c-Fos, and Arc. Furthermore, Tet1KO animals exhibited abnormal hippocampal long-term depression and impaired memory extinction. Analysis of the key regulatory gene, Npas4, indicated that its promoter region, containing multiple CpG dinucleotides, is hypermethylated in both naive Tet1KO mice and after extinction training. Such hypermethylation may account for the diminished expression of Npas4 itself and its downstream targets, impairing transcriptional programs underlying cognitive processes. In summary, we show that neuronal Tet1 regulates normal DNA methylation levels, expression of activity-regulated genes, synaptic plasticity, and memory extinction.
Collapse
Affiliation(s)
- Andrii Rudenko
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Howard Hughes Medical Institute, Cambridge, MA
| | | | - Jinsoo Seo
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Howard Hughes Medical Institute, Cambridge, MA
| | - Albert W. Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Computational and Systems Biology Program, Cambridge, MA 02142, USA
| | - Jia Meng
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Thuc Le
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Howard Hughes Medical Institute, Cambridge, MA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA
| |
Collapse
|
576
|
Sanchez-Mut JV, Aso E, Panayotis N, Lott I, Dierssen M, Rabano A, Urdinguio RG, Fernandez AF, Astudillo A, Martin-Subero JI, Balint B, Fraga MF, Gomez A, Gurnot C, Roux JC, Avila J, Hensch TK, Ferrer I, Esteller M. DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. ACTA ACUST UNITED AC 2013; 136:3018-27. [PMID: 24030951 PMCID: PMC3784285 DOI: 10.1093/brain/awt237] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.
Collapse
Affiliation(s)
- Jose V Sanchez-Mut
- 1 Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
577
|
A comparison of digital gene expression profiling and methyl DNA immunoprecipitation as methods for gene discovery in honeybee (Apis mellifera) behavioural genomic analyses. PLoS One 2013; 8:e73628. [PMID: 24040006 PMCID: PMC3767799 DOI: 10.1371/journal.pone.0073628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
The honey bee has a well-organized system of division of labour among workers. Workers typically progress through a series of discrete behavioural castes as they age, and this has become an important case study for exploring how dynamic changes in gene expression can influence behaviour. Here we applied both digital gene expression analysis and methyl DNA immunoprecipitation analysis to nurse, forager and reverted nurse bees (nurses that have returned to the nursing state after a period spent foraging) from the same colony in order to compare the outcomes of these different forms of genomic analysis. A total of 874 and 710 significantly differentially expressed genes were identified in forager/nurse and reverted nurse/forager comparisons respectively. Of these, 229 genes exhibited reversed directions of gene expression differences between the forager/nurse and reverted nurse/forager comparisons. Using methyl-DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) we identified 366 and 442 significantly differentially methylated genes in forager/nurse and reverted nurse/forager comparisons respectively. Of these, 165 genes were identified as differentially methylated in both comparisons. However, very few genes were identified as both differentially expressed and differentially methylated in our comparisons of nurses and foragers. These findings confirm that changes in both gene expression and DNA methylation are involved in the nurse and forager behavioural castes, but the different analytical methods reveal quite distinct sets of candidate genes.
Collapse
|
578
|
Blusztajn JK, Mellott TJ. Neuroprotective actions of perinatal choline nutrition. Clin Chem Lab Med 2013; 51:591-9. [PMID: 23314544 DOI: 10.1515/cclm-2012-0635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/26/2012] [Indexed: 12/15/2022]
Abstract
Choline is an essential nutrient for humans. Studies in rats and mice have shown that high choline intake during gestation or the perinatal period improves cognitive function in adulthood, prevents memory decline of old age, and protects the brain from damage and cognitive and neurological deterioration associated with epilepsy and hereditary conditions such as Down's and Rett syndromes. These behavioral changes are accompanied by modified patterns of expression of hundreds of cortical and hippocampal genes including those encoding proteins central for learning and memory processing. The effects of choline correlate with cerebral cortical changes in DNA and histone methylation, thus suggesting an epigenomic mechanism of action of perinatal choline.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
579
|
Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of Alzheimer's disease. Mech Ageing Dev 2013; 134:486-95. [PMID: 24012631 DOI: 10.1016/j.mad.2013.08.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/20/2013] [Accepted: 08/24/2013] [Indexed: 02/08/2023]
Abstract
The formation of 5-hydroxymethylcytosine (5hmC), a key intermediate of DNA demethylation, is driven by the ten eleven translocation (TET) family of proteins that oxidize 5-methylcytosine (5mC) to 5hmC. To determine whether methylation/demethylation status is altered during the progression of Alzheimer's disease (AD), levels of TET1, 5mC and subsequent intermediates, including 5hmC, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) were quantified in nuclear DNA from the hippocampus/parahippocampal gyrus (HPG) and the cerebellum of 5 age-matched normal controls, 5 subjects with preclinical AD (PCAD) and 7 late-stage AD (LAD) subjects by immunochemistry. The results showed significantly (p < 0.05) increased levels of TET1, 5mC, and 5hmC in the HPG of PCAD and LAD subjects. In contrast, levels of 5fC and 5caC were significantly (p < 0.05) decreased in the HPG of PCAD and LAD subjects. Overall, the data suggest altered methylation/demethylation patterns in vulnerable brain regions prior to the onset of clinical symptoms in AD suggesting a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- M A Bradley-Whitman
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
580
|
Meethal SV, Hogan KJ, Mayanil CS, Iskandar BJ. Folate and epigenetic mechanisms in neural tube development and defects. Childs Nerv Syst 2013; 29:1427-33. [PMID: 24013316 DOI: 10.1007/s00381-013-2162-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Multiple genetic and epigenetic factors involved in central nervous system (CNS) development influence the incidence of neural tube defects (NTDs). DISCUSSION The beneficial effect of periconceptional folic acid on NTD prevention denotes a vital role for the single-carbon biochemical pathway in NTD genesis. Indeed, NTDs are associated with polymorphisms in a diversity of genes that encode folate pathway enzymes. Recent evidence suggests that CNS development and function, and consequently NTDs, are also associated with epigenetic mechanisms, many of which participate in the folate cycle and its input and output pathways. We provide an overview with select examples drawn from the authors' research.
Collapse
Affiliation(s)
- Sivan Vadakkadath Meethal
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, WI 53792, USA
| | | | | | | |
Collapse
|
581
|
Montaño CM, Irizarry RA, Kaufmann WE, Talbot K, Gur RE, Feinberg AP, Taub MA. Measuring cell-type specific differential methylation in human brain tissue. Genome Biol 2013; 14:R94. [PMID: 24000956 PMCID: PMC4054676 DOI: 10.1186/gb-2013-14-8-r94] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/30/2013] [Indexed: 01/07/2023] Open
Abstract
The behavior of epigenetic mechanisms in the brain is obscured by tissue heterogeneity and disease-related histological changes. Not accounting for these confounders leads to biased results. We develop a statistical methodology that estimates and adjusts for celltype composition by decomposing neuronal and non-neuronal differential signal. This method provides a conceptual framework for deconvolving heterogeneous epigenetic data from postmortem brain studies. We apply it to find cell-specific differentially methylated regions between prefrontal cortex and hippocampus. We demonstrate the utility of the method on both Infinium 450k and CHARM data.
Collapse
|
582
|
Abstract
A recently published study has revealed the genome-wide dynamics of DNA methylation and hydroxymethylation patterns at single-base resolution in the human and mouse developing brain.
Collapse
|
583
|
Gavin DP, Chase KA, Sharma RP. Active DNA demethylation in post-mitotic neurons: a reason for optimism. Neuropharmacology 2013; 75:233-45. [PMID: 23958448 DOI: 10.1016/j.neuropharm.2013.07.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 12/13/2022]
Abstract
Over the last several years proteins involved in base excision repair (BER) have been implicated in active DNA demethylation. We review the literature supporting BER as a means of active DNA demethylation, and explain how the various components function and cooperate to remove the potentially most enduring means of epigenetic gene regulation. Recent evidence indicates that the same pathways implicated during periods of widespread DNA demethylation, such as the erasure of methyl marks in the paternal pronucleus soon after fertilization, are operational in post-mitotic neurons. Neuronal functional identities, defined here as the result of a combination of neuronal subtype, location, and synaptic connections are largely maintained through DNA methylation. Chronic mental illnesses, such as schizophrenia, may be the result of both altered neurotransmitter levels and neurons that have assumed dysfunctional neuronal identities. A limitation of most current psychopharmacological agents is their focus on the former, while not addressing the more profound latter pathophysiological process. Previously, it was believed that active DNA demethylation in post-mitotic neurons was rare if not impossible. If this were the case, then reversing the factors that maintain neuronal identity, would be highly unlikely. The emergence of an active DNA demethylation pathway in the brain is a reason for great optimism in psychiatry as it provides a means by which previously pathological neurons may be reprogrammed to serve a more favorable role. Agents targeting epigenetic processes have shown much promise in this regard, and may lead to substantial gains over traditional pharmacological approaches.
Collapse
Affiliation(s)
- David P Gavin
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Kayla A Chase
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Rajiv P Sharma
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA
| |
Collapse
|
584
|
Clark IA, Vissel B. Treatment implications of the altered cytokine-insulin axis in neurodegenerative disease. Biochem Pharmacol 2013; 86:862-71. [PMID: 23939185 DOI: 10.1016/j.bcp.2013.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/15/2022]
Abstract
The disappointments of a series of large anti-amyloid trials have brought home the point that until the driving force behind Alzheimer's disease, and the way it causes harm, are firmly established and accepted, researchers will remain ill-equipped to find a way to treat patients successfully. The origin of inflammation in neurodegenerative diseases is still an open question. We champion and expand the argument that a shift in intracellular location of α-synuclein, thereby moving a key methylation enzyme from the nucleus, provides global hypomethylation of patients' cerebral DNA that, through being sensed by TLR9, initiates production of the cytokines that drive these cerebral inflammatory states. After providing a background on the relevant inflammatory cytokines, this commentary then discusses many of the known alternatives to the primary amyloid argument of the pathogenesis of Alzheimer's disease, and the treatment approaches they provide. A key point to appreciate is the weight of evidence that inflammatory cytokines, largely through increasing insulin resistance and thereby reducing the strength of the ubiquitously important signaling mediated by insulin, bring together most of these treatments under development for neurodegenerative disease under the one roof. Moreover, the principles involved apply to a wide range of inflammatory diseases on both sides of the blood brain barrier.
Collapse
Affiliation(s)
- Ian A Clark
- Research School of Biology, Australian National University, Canberra, Australia.
| | | |
Collapse
|
585
|
Yao B, Jin P. Cytosine modifications in neurodevelopment and diseases. Cell Mol Life Sci 2013; 71:405-18. [PMID: 23912899 DOI: 10.1007/s00018-013-1433-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/11/2022]
Abstract
DNA methylation has been studied comprehensively and linked to both normal neurodevelopment and neurological diseases. The recent identification of several new DNA modifications, including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, has given us a new perspective on the previously observed plasticity in 5mC-dependent regulatory processes. Here, we review the latest research into these cytosine modifications, focusing mainly on their roles in neurodevelopment and diseases.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA
| | | |
Collapse
|
586
|
Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM, Pritchard EM, Kaplan DL, Boison D. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest 2013; 123:3552-63. [PMID: 23863710 DOI: 10.1172/jci65636] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications, including changes in DNA methylation, lead to altered gene expression and thus may underlie epileptogenesis via induction of permanent changes in neuronal excitability. Therapies that could inhibit or reverse these changes may be highly effective in halting disease progression. Here we identify an epigenetic function of the brain's endogenous anticonvulsant adenosine, showing that this compound induces hypomethylation of DNA via biochemical interference with the transmethylation pathway. We show that inhibition of DNA methylation inhibited epileptogenesis in multiple seizure models. Using a rat model of temporal lobe epilepsy, we identified an increase in hippocampal DNA methylation, which correlates with increased DNA methyltransferase activity, disruption of adenosine homeostasis, and spontaneous recurrent seizures. Finally, we used bioengineered silk implants to deliver a defined dose of adenosine over 10 days to the brains of epileptic rats. This transient therapeutic intervention reversed the DNA hypermethylation seen in the epileptic brain, inhibited sprouting of mossy fibers in the hippocampus, and prevented the progression of epilepsy for at least 3 months. These data demonstrate that pathological changes in DNA methylation homeostasis may underlie epileptogenesis and reversal of these epigenetic changes with adenosine augmentation therapy may halt disease progression.
Collapse
|
587
|
Lv J, Xin Y, Zhou W, Qiu Z. The epigenetic switches for neural development and psychiatric disorders. J Genet Genomics 2013; 40:339-346. [PMID: 23876774 DOI: 10.1016/j.jgg.2013.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/19/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.
Collapse
Affiliation(s)
- Jingwen Lv
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | | | | | | |
Collapse
|
588
|
Abstract
The PANTHER (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs). Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways. The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests. It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. In the 2013 release of PANTHER (v.8.0), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the system's analytical capability. This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system.
Collapse
|
589
|
Abstract
DNA methylation is the most studied epigenetic modification, capable of controlling gene expression in the contexts of normal traits or diseases. It is highly dynamic during early embryogenesis and remains relatively stable throughout life, and such patterns are intricately related to human development. DNA methylation is a quantitative trait determined by a complex interplay of genetic and environmental factors. Genetic variants at a specific locus can influence both regional and distant DNA methylation. The environment can have varying effects on DNA methylation depending on when the exposure occurs, such as during prenatal life or during adulthood. In particular, cigarette smoking in the context of both current smoking and prenatal exposure is a strong modifier of DNA methylation. Epigenome-wide association studies have uncovered candidate genes associated with cigarette smoking that have biologically relevant functions in the etiology of smoking-related diseases. As such, DNA methylation is a potential mechanistic link between current smoking and cancer, as well as prenatal cigarette-smoke exposure and the development of adult chronic diseases.
Collapse
Affiliation(s)
| | - Zdenka Pausova
- Physiology and Experimental Medicine, The Hospital for Sick Children, University of TorontoToronto, ON, Canada
| |
Collapse
|
590
|
Boison D, Sandau US, Ruskin DN, Kawamura M, Masino SA. Homeostatic control of brain function - new approaches to understand epileptogenesis. Front Cell Neurosci 2013; 7:109. [PMID: 23882181 PMCID: PMC3712329 DOI: 10.3389/fncel.2013.00109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/22/2013] [Indexed: 12/31/2022] Open
Abstract
Neuronal excitability of the brain and ongoing homeostasis depend not only on intrinsic neuronal properties, but also on external environmental factors; together these determine the functionality of neuronal networks. Homeostatic factors become critically important during epileptogenesis, a process that involves complex disruption of self-regulatory mechanisms. Here we focus on the bioenergetic homeostatic network regulator adenosine, a purine nucleoside whose availability is largely regulated by astrocytes. Endogenous adenosine modulates complex network function through multiple mechanisms including adenosine receptor-mediated pathways, mitochondrial bioenergetics, and adenosine receptor-independent changes to the epigenome. Accumulating evidence from our laboratories shows that disruption of adenosine homeostasis plays a major role in epileptogenesis. Conversely, we have found that reconstruction of adenosine's homeostatic functions provides new hope for the prevention of epileptogenesis. We will discuss how adenosine-based therapeutic approaches may interfere with epileptogenesis on an epigenetic level, and how dietary interventions can be used to restore network homeostasis in the brain. We conclude that reconstruction of homeostatic functions in the brain offers a new conceptual advance for the treatment of neurological conditions which goes far beyond current target-centric treatment approaches.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | | | | | | | | |
Collapse
|
591
|
Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR. Global epigenomic reconfiguration during mammalian brain development. Science 2013; 341:1237905. [PMID: 23828890 PMCID: PMC3785061 DOI: 10.1126/science.1237905] [Citation(s) in RCA: 1366] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.
Collapse
Affiliation(s)
- Ryan Lister
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Plant Energy Biology [Australian Research Council Center of Excellence (CoE)] and Computational Systems Biology (Western Australia CoE), School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Eran A Mukamel
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark Urich
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Clare A Puddifoot
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicholas D Johnson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yun Huang
- La Jolla Institute for Allergy and Immunology and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Matthew D Schultz
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Bioinformatics Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Julian Tonti-Filippini
- Plant Energy Biology [Australian Research Council Center of Excellence (CoE)] and Computational Systems Biology (Western Australia CoE), School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Holger Heyn
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Shijun Hu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anjana Rao
- La Jolla Institute for Allergy and Immunology and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain.,InstitucióCatalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Fatemeh G Haghighi
- Department of Psychiatry, Columbia University and The New York State Psychiatric Institute, New York, NY 10032, USA
| | - Terrence J Sejnowski
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92037, USA.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
592
|
Rutten BPF, Hammels C, Geschwind N, Menne-Lothmann C, Pishva E, Schruers K, van den Hove D, Kenis G, van Os J, Wichers M. Resilience in mental health: linking psychological and neurobiological perspectives. Acta Psychiatr Scand 2013; 128:3-20. [PMID: 23488807 PMCID: PMC3746114 DOI: 10.1111/acps.12095] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To review the literature on psychological and biological findings on resilience (i.e. the successful adaptation and swift recovery after experiencing life adversities) at the level of the individual, and to integrate findings from animal and human studies. METHOD Electronic and manual literature search of MEDLINE, EMBASE and PSYCHINFO, using a range of search terms around biological and psychological factors influencing resilience as observed in human and experimental animal studies, complemented by review articles and cross-references. RESULTS The term resilience is used in the literature for different phenomena ranging from prevention of mental health disturbance to successful adaptation and swift recovery after experiencing life adversities, and may also include post-traumatic psychological growth. Secure attachment, experiencing positive emotions and having a purpose in life are three important psychological building blocks of resilience. Overlap between psychological and biological findings on resilience in the literature is most apparent for the topic of stress sensitivity, although recent results suggest a crucial role for reward experience in resilience. CONCLUSION Improving the understanding of the links between genetic endowment, environmental impact and gene-environment interactions with developmental psychology and biology is crucial for elucidating the neurobiological and psychological underpinnings of resilience.
Collapse
Affiliation(s)
- B P F Rutten
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - C Hammels
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - N Geschwind
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,Research Group on Health Psychology, CLEP, Department of Psychology, University of LeuvenLeuven, Belgium
| | - C Menne-Lothmann
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - E Pishva
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - K Schruers
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,Center for Learning and Experimental Psychology, Catholic University of LeuvenLeuven, Belgium
| | - D van den Hove
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,Department of Psychiatry, Psychosomatics and Psychotherapy, University of WürzburgWürzburg, Germany
| | - G Kenis
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| | - J van Os
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands,King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, King's College LondonLondon, UK
| | - M Wichers
- Department of Psychiatry and Psychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience (MHeNS), European Graduate School of Neuroscience (EURON), Maastricht University Medical CentreMaastricht, the Netherlands
| |
Collapse
|
593
|
Adwan L, Zawia NH. Epigenetics: a novel therapeutic approach for the treatment of Alzheimer's disease. Pharmacol Ther 2013; 139:41-50. [PMID: 23562602 PMCID: PMC3693222 DOI: 10.1016/j.pharmthera.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. It is characterized by the deposition of two forms of aggregates within the brain, the amyloid β plaques and tau neurofibrillary tangles. Currently, no disease-modifying agent is approved for the treatment of AD. Approved pharmacotherapies target the peripheral symptoms but they do not prevent or slow down the progression of the disease. Although several disease-modifying immunotherapeutic agents are in clinical development, many have failed due to the lack of efficacy or serious adverse events. Epigenetic changes including DNA methylation and histone modifications are involved in learning and memory and have been recently highlighted for holding promise as potential targets for AD therapeutics. Dynamic and latent epigenetic alterations are incorporated in AD pathological pathways and present valuable reversible targets for AD and other neurological disorders. The approval of epigenetic drugs for cancer treatment has opened the door for the development of epigenetic drugs for other disorders including neurodegenerative diseases. In particular, methyl donors and histone deacetylase inhibitors are being investigated for possible therapeutic effects to rescue memory and cognitive decline found in such disorders. This review explores the area of epigenetics for potential AD interventions and presents the most recent findings in this field.
Collapse
Affiliation(s)
- Lina Adwan
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Nasser H. Zawia
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
594
|
Ryley Parrish R, Albertson AJ, Buckingham SC, Hablitz JJ, Mascia KL, Davis Haselden W, Lubin FD. Status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor Grin2b DNA methylation levels in the hippocampus. Neuroscience 2013; 248:602-19. [PMID: 23811393 DOI: 10.1016/j.neuroscience.2013.06.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Status epilepticus (SE) triggers abnormal expression of genes in the hippocampus, such as glutamate receptor subunit epsilon-2 (Grin2b/Nr2b) and brain-derived neurotrophic factor (Bdnf), that is thought to occur in temporal lobe epilepsy (TLE). We examined the underlying DNA methylation mechanisms and investigated whether these mechanisms contribute to the expression of these gene targets in the epileptic hippocampus. Experimental TLE was provoked by kainic acid-induced SE. Bisulfite sequencing analysis revealed increased Grin2b/Nr2b and decreased Bdnf DNA methylation levels that corresponded to decreased Grin2b/Nr2b and increased Bdnf mRNA and protein expression in the epileptic hippocampus. Blockade of DNA methyltransferase (DNMT) activity with zebularine decreased global DNA methylation levels and reduced Grin2b/Nr2b, but not Bdnf, DNA methylation levels. Interestingly, we found that DNMT blockade further decreased Grin2b/Nr2b mRNA expression whereas GRIN2B protein expression increased in the epileptic hippocampus, suggesting that a posttranscriptional mechanism may be involved. Using chromatin immunoprecipitation analysis we found that DNMT inhibition restored the decreases in AP2alpha transcription factor levels at the Grin2b/Nr2b promoter in the epileptic hippocampus. DNMT inhibition increased field excitatory postsynaptic potential in hippocampal slices isolated from epileptic rats. Electroencephalography (EEG) monitoring confirmed that DNMT inhibition did not significantly alter the disease course, but promoted the latency to seizure onset or SE. Thus, DNA methylation may be an early event triggered by SE that persists late into the epileptic hippocampus to contribute to gene expression changes in TLE.
Collapse
Affiliation(s)
- R Ryley Parrish
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - A J Albertson
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - S C Buckingham
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - J J Hablitz
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - K L Mascia
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - W Davis Haselden
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| | - F D Lubin
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
595
|
On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory. Neurobiol Learn Mem 2013; 105:125-32. [PMID: 23806749 DOI: 10.1016/j.nlm.2013.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
Abstract
Dynamic variations in DNA methylation regulate neuronal gene expression in an experience-dependent manner. Although DNA methylation has been implicated in synaptic plasticity, learning and memory, active DNA demethylation is also induced by learning, which suggests that an interaction between the two processes is necessary for cognitive function. Active DNA demethylation is a complex process involving a variety of proteins and epigenetic regulatory enzymes, the understanding of which with respect to its role in the adult brain is in its infancy. We here provide an overview of the current understanding of active DNA demethylation, and describe how this process may establish persistent epigenetic states that are associated with neural plasticity and memory formation.
Collapse
|
596
|
Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, Champagne FA. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci U S A 2013; 110:9956-61. [PMID: 23716699 PMCID: PMC3683772 DOI: 10.1073/pnas.1214056110] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bisphenol A (BPA) is an estrogenic endocrine disruptor widely used in the production of plastics. Increasing evidence indicates that in utero BPA exposure affects sexual differentiation and behavior; however, the mechanisms underlying these effects are unknown. We hypothesized that BPA may disrupt epigenetic programming of gene expression in the brain. Here, we provide evidence that maternal exposure during pregnancy to environmentally relevant doses of BPA (2, 20, and 200 µg/kg/d) in mice induces sex-specific, dose-dependent (linear and curvilinear), and brain region-specific changes in expression of genes encoding estrogen receptors (ERs; ERα and ERβ) and estrogen-related receptor-γ in juvenile offspring. Concomitantly, BPA altered mRNA levels of epigenetic regulators DNA methyltransferase (DNMT) 1 and DNMT3A in the juvenile cortex and hypothalamus, paralleling changes in estrogen-related receptors. Importantly, changes in ERα and DNMT expression in the cortex (males) and hypothalamus (females) were associated with DNA methylation changes in the ERα gene. BPA exposure induced persistent, largely sex-specific effects on social and anxiety-like behavior, leading to disruption of sexually dimorphic behaviors. Although postnatal maternal care was altered in mothers treated with BPA during pregnancy, the effects of in utero BPA were not found to be mediated by maternal care. However, our data suggest that increased maternal care may partially attenuate the effects of in utero BPA on DNA methylation. Overall, we demonstrate that low-dose prenatal BPA exposure induces lasting epigenetic disruption in the brain that possibly underlie enduring effects of BPA on brain function and behavior, especially regarding sexually dimorphic phenotypes.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Psychology, Columbia University, New York, NY 10027; and
| | - Kathryn Gudsnuk
- Department of Psychology, Columbia University, New York, NY 10027; and
| | - Becca Franks
- Department of Psychology, Columbia University, New York, NY 10027; and
| | - Jesus Madrid
- Department of Psychology, Columbia University, New York, NY 10027; and
| | - Rachel L. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Frederica P. Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032
| | | |
Collapse
|
597
|
Shvetsov AV, Zachepilo TG, Vaido AI, Kamyshev NG, Lopatina NG. On epigenetic regulation of the process of formation of long-term memory. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
598
|
Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng DPY, Holbrook JD, Law HY, Kwek KYC, Yeo GSH, Ding C. Global DNA hypermethylation in down syndrome placenta. PLoS Genet 2013; 9:e1003515. [PMID: 23754950 PMCID: PMC3675012 DOI: 10.1371/journal.pgen.1003515] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
Down syndrome (DS), commonly caused by an extra copy of chromosome 21 (chr21), occurs in approximately one out of 700 live births. Precisely how an extra chr21 causes over 80 clinically defined phenotypes is not yet clear. Reduced representation bisulfite sequencing (RRBS) analysis at single base resolution revealed DNA hypermethylation in all autosomes in DS samples. We hypothesize that such global hypermethylation may be mediated by down-regulation of TET family genes involved in DNA demethylation, and down-regulation of REST/NRSF involved in transcriptional and epigenetic regulation. Genes located on chr21 were up-regulated by an average of 53% in DS compared to normal villi, while genes with promoter hypermethylation were modestly down-regulated. DNA methylation perturbation was conserved in DS placenta villi and in adult DS peripheral blood leukocytes, and enriched for genes known to be causally associated with DS phenotypes. Our data suggest that global epigenetic changes may occur early in development and contribute to DS phenotypes.
Collapse
Affiliation(s)
- Shengnan Jin
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Yew Kok Lee
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Yen Ching Lim
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Zejun Zheng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Xueqin Michelle Lin
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Desmond P. Y. Ng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Joanna D. Holbrook
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | | | | | | | - Chunming Ding
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
- * E-mail:
| |
Collapse
|
599
|
LaSalle JM, Powell WT, Yasui DH. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 2013; 36:460-70. [PMID: 23731492 DOI: 10.1016/j.tins.2013.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms convey information above and beyond the sequence of DNA, so it is predicted that they are critical in the complex regulation of brain development and explain the long-lived effects of environmental cues on pre- and early post-natal brain development. Neurons have a complex epigenetic landscape that changes dynamically with transcriptional activity in early life. Here, we summarize progress in our understanding of the discrete layers of the dynamic methylome, chromatin proteome, noncoding RNAs, chromatin loops, and long-range interactions in neuronal development and maturation. Many neurodevelopmental disorders have genetic alterations in these epigenetic modifications or regulators, and these human genetics lessons have demonstrated the importance of these epigenetic players and the epigenetic layers that transcriptional events lay down in the early brain.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA, USA.
| | | | | |
Collapse
|
600
|
Chandrasekar R. Alcohol and NMDA receptor: current research and future direction. Front Mol Neurosci 2013; 6:14. [PMID: 23754976 PMCID: PMC3664776 DOI: 10.3389/fnmol.2013.00014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/07/2013] [Indexed: 01/05/2023] Open
Abstract
The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism.
Collapse
Affiliation(s)
- Raman Chandrasekar
- Department of Biochemistry and Biotechnology Core Facility, Kansas State University Manhattan, KS, USA
| |
Collapse
|