551
|
Mathur M, Nair A, Kadoo N. Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics 2020; 112:3021-3035. [PMID: 32454170 DOI: 10.1016/j.ygeno.2020.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) have been prevalently studied in plants, animals, and viruses. However, recent studies show evidences of miRNA-like RNAs (milRNAs) in fungi as well. It is known that after successful infection, pathogens hijack the host machinery and use it for their own growth and multiplication. Alternatively, resistant plants can overcome the pathogen attack by a variety of mechanisms. Based on this prior knowledge, we computationally predicted milRNAs from 13 fungi, and identified their targets in transcriptomes of the respective fungi as well as their host plants. The expressions of the milRNAs and targets were confirmed using qRT-PCR. We found that plant miRNAs targeted fungal virulence genes, while fungal milRNAs targeted plant resistance genes; corroborating miRNA-mediated trans-kingdom gene regulation and the roles of miRNAs in plant-pathogen interactions. Transgenic plants with miRNAs targeting fungal virulence genes, or anti-sense of fungal milRNAs, would be expected to be highly resistant to the fungal pathogens.
Collapse
Affiliation(s)
- Monika Mathur
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aswathy Nair
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Narendra Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
552
|
Dunker F, Trutzenberg A, Rothenpieler JS, Kuhn S, Pröls R, Schreiber T, Tissier A, Kemen A, Kemen E, Hückelhoven R, Weiberg A. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife 2020; 9:56096. [PMID: 32441255 PMCID: PMC7297541 DOI: 10.7554/elife.56096] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
The exchange of small RNAs (sRNAs) between hosts and pathogens can lead to gene silencing in the recipient organism, a mechanism termed cross-kingdom RNAi (ck-RNAi). While fungal sRNAs promoting virulence are established, the significance of ck-RNAi in distinct plant pathogens is not clear. Here, we describe that sRNAs of the pathogen Hyaloperonospora arabidopsidis, which represents the kingdom of oomycetes and is phylogenetically distant from fungi, employ the host plant’s Argonaute (AGO)/RNA-induced silencing complex for virulence. To demonstrate H. arabidopsidis sRNA (HpasRNA) functionality in ck-RNAi, we designed a novel CRISPR endoribonuclease Csy4/GUS reporter that enabled in situ visualization of HpasRNA-induced target suppression in Arabidopsis. The significant role of HpasRNAs together with AtAGO1 in virulence was revealed in plant atago1 mutants and by transgenic Arabidopsis expressing a short-tandem-target-mimic to block HpasRNAs, that both exhibited enhanced resistance. HpasRNA-targeted plant genes contributed to host immunity, as Arabidopsis gene knockout mutants displayed quantitatively enhanced susceptibility.
Collapse
Affiliation(s)
- Florian Dunker
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Adriana Trutzenberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Jan S Rothenpieler
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Sarah Kuhn
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Reinhard Pröls
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ariane Kemen
- Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Eric Kemen
- Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arne Weiberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| |
Collapse
|
553
|
Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Cowen LE. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020; 11:e00449-20. [PMID: 32371596 PMCID: PMC7403777 DOI: 10.1128/mbio.00449-20] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fungal kingdom includes at least 6 million eukaryotic species and is remarkable with respect to its profound impact on global health, biodiversity, ecology, agriculture, manufacturing, and biomedical research. Approximately 625 fungal species have been reported to infect vertebrates, 200 of which can be human associated, either as commensals and members of our microbiome or as pathogens that cause infectious diseases. These organisms pose a growing threat to human health with the global increase in the incidence of invasive fungal infections, prevalence of fungal allergy, and the evolution of fungal pathogens resistant to some or all current classes of antifungals. More broadly, there has been an unprecedented and worldwide emergence of fungal pathogens affecting animal and plant biodiversity. Approximately 8,000 species of fungi and Oomycetes are associated with plant disease. Indeed, across agriculture, such fungal diseases of plants include new devastating epidemics of trees and jeopardize food security worldwide by causing epidemics in staple and commodity crops that feed billions. Further, ingestion of mycotoxins contributes to ill health and causes cancer. Coordinated international research efforts, enhanced technology translation, and greater policy outreach by scientists are needed to more fully understand the biology and drivers that underlie the emergence of fungal diseases and to mitigate against their impacts. Here, we focus on poignant examples of emerging fungal threats in each of three areas: human health, wildlife biodiversity, and food security.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, United Kingdom
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Eva H Stukenbrock
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - David W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Neil A R Gow
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Bruce S Klein
- Department of Pediatrics, Department of Internal Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald C Sheppard
- McGill Interdisciplinary Initiative in Infection and Immunology, Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Canada
| | - John W Taylor
- University of California-Berkeley, Department of Plant and Microbial Biology, Berkeley, California, USA
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
554
|
Direct evidence for transport of RNA from the mouse brain to the germline and offspring. BMC Biol 2020; 18:45. [PMID: 32354330 PMCID: PMC7191717 DOI: 10.1186/s12915-020-00780-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background The traditional concept that heritability occurs exclusively from the transfer of germline-restricted genetics is being challenged by the increasing accumulation of evidence confirming the existence of experience-dependent transgenerational inheritance. However, questions remain unanswered as to how heritable information can be passed from somatic cells. Previous studies have implicated the critical involvement of RNA in heritable transgenerational effects, and the high degree of mobility and genomic impact of RNAs in all organisms is an attractive model for the efficient transfer of genetic information. Results We hypothesized that RNA may be transported from a somatic tissue, in this case the brain, of an adult male mouse to the germline, and subsequently to embryos. To investigate this, we injected one hemisphere of the male mouse striatum with an AAV1/9 virus expressing human pre-MIR941 (MIR941). After 2, 8 and 16 weeks following injection, we used an LNA-based qPCR system to detect the presence of virus and human MIR941 in brain, peripheral tissues and embryos, from injected male mice mated with uninjected females. Virus was never detected outside of the brain. Verification of single bands of the correct size for MIR941 was performed using Sanger sequencing while quantitation demonstrated that a small percentage (~ 1–8%) of MIR941 is transported to the germline and to embryos in about a third of the cases. Conclusions We show that somatic RNA can be transported to the germline and passed on to embryos, thereby providing additional evidence of a role for RNA in somatic cell-derived intergenerational effects.
Collapse
|
555
|
Werner BT, Gaffar FY, Schuemann J, Biedenkopf D, Koch AM. RNA-Spray-Mediated Silencing of Fusarium graminearum AGO and DCL Genes Improve Barley Disease Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:476. [PMID: 32411160 DOI: 10.1101/821868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/30/2020] [Indexed: 05/24/2023]
Abstract
Over the last decade, several studies have revealed the enormous potential of RNA-silencing strategies as a potential alternative to conventional pesticides for plant protection. We have previously shown that targeted gene silencing mediated by an in planta expression of non-coding inhibitory double-stranded RNAs (dsRNAs) can protect host plants against various diseases with unprecedented efficiency. In addition to the generation of RNA-silencing (RNAi) signals in planta, plants can be protected from pathogens, and pests by spray-applied RNA-based biopesticides. Despite the striking efficiency of RNA-silencing-based technologies holds for agriculture, the molecular mechanisms underlying spray-induced gene silencing (SIGS) strategies are virtually unresolved, a requirement for successful future application in the field. Based on our previous work, we predict that the molecular mechanism of SIGS is controlled by the fungal-silencing machinery. In this study, we used SIGS to compare the silencing efficiencies of computationally-designed vs. manually-designed dsRNA constructs targeting ARGONAUTE and DICER genes of Fusarium graminearum (Fg). We found that targeting key components of the fungal RNAi machinery via SIGS could protect barley leaves from Fg infection and that the manual design of dsRNAs resulted in higher gene-silencing efficiencies than the tool-based design. Moreover, our results indicate the possibility of cross-kingdom RNA silencing in the Fg-barley interaction, a phenomenon in which sRNAs operate as effector molecules to induce gene silencing between species from different kingdoms, such as a plant host and their interacting pathogens.
Collapse
Affiliation(s)
- Bernhard Timo Werner
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Johannes Schuemann
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Dagmar Biedenkopf
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Aline Michaela Koch
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
556
|
Wang M, Dean RA. Movement of small RNAs in and between plants and fungi. MOLECULAR PLANT PATHOLOGY 2020; 21:589-601. [PMID: 32027079 PMCID: PMC7060135 DOI: 10.1111/mpp.12911] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 05/12/2023]
Abstract
RNA interference is a biological process whereby small RNAs inhibit gene expression through neutralizing targeted mRNA molecules. This process is conserved in eukaryotes. Here, recent work regarding the mechanisms of how small RNAs move within and between organisms is examined. Small RNAs can move locally and systemically in plants through plasmodesmata and phloem, respectively. In fungi, transportation of small RNAs may also be achieved by septal pores and vesicles. Recent evidence also supports bidirectional cross-kingdom communication of small RNAs between host plants and adapted fungal pathogens to affect the outcome of infection. We discuss several mechanisms for small RNA trafficking and describe evidence for transport through naked form, combined with RNA-binding proteins or enclosed by vesicles.
Collapse
Affiliation(s)
- Mengying Wang
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Ralph A. Dean
- Fungal Genomics LaboratoryCenter for Integrated Fungal ResearchDepartment of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
557
|
Bermúdez-Barrientos JR, Ramírez-Sánchez O, Chow FWN, Buck AH, Abreu-Goodger C. Disentangling sRNA-Seq data to study RNA communication between species. Nucleic Acids Res 2020; 48:e21. [PMID: 31879784 PMCID: PMC7038986 DOI: 10.1093/nar/gkz1198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Many organisms exchange small RNAs (sRNAs) during their interactions, that can target or bolster defense strategies in host-pathogen systems. Current sRNA-Seq technology can determine the sRNAs present in any symbiotic system, but there are very few bioinformatic tools available to interpret the results. We show that one of the biggest challenges comes from sequences that map equally well to the genomes of both interacting organisms. This arises due to the small size of the sRNAs compared to large genomes, and because a large portion of sequenced sRNAs come from genomic regions that encode highly conserved miRNAs, rRNAs or tRNAs. Here, we present strategies to disentangle sRNA-Seq data from samples of communicating organisms, developed using diverse plant and animal species that are known to receive or exchange RNA with their symbionts. We show that sequence assembly, both de novo and genome-guided, can be used for these sRNA-Seq data, greatly reducing the ambiguity of mapping reads. Even confidently mapped sequences can be misleading, so we further demonstrate the use of differential expression strategies to determine true parasite-derived sRNAs within host cells. We validate our methods on new experiments designed to probe the nature of the extracellular vesicle sRNAs from the parasitic nematode Heligmosomoides bakeri that get into mouse intestinal epithelial cells.
Collapse
Affiliation(s)
- José Roberto Bermúdez-Barrientos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Obed Ramírez-Sánchez
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| | - Franklin Wang-Ngai Chow
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Amy H Buck
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, México
| |
Collapse
|
558
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
559
|
Zhu Y, Zhang J, Hu X, Wang Z, Wu S, Yi Y. Extracellular vesicles derived from human adipose-derived stem cells promote the exogenous angiogenesis of fat grafts via the let-7/AGO1/VEGF signalling pathway. Sci Rep 2020; 10:5313. [PMID: 32210269 PMCID: PMC7093512 DOI: 10.1038/s41598-020-62140-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/09/2020] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) derived from human adipose-derived stem cells (hADSCs) possess the proangiogenic potential for ischaemic diseases. Thus, our study aimed to evaluate the therapeutic effects of hADSC-EVs on fat grafting and explore the mechanism of hADSC-EVs promoting angiogenesis. The EVs released by hADSCs incubated under normal or hypoxic conditions were employed to supplement fat grafting in a nude mouse model. The proliferation, migration, tube formation and vascular endothelial growth factor (VEGF) secretion of vascular endothelial cells co-cultured with two kinds of hADSC-EVs were analysed. MicroRNA sequencing was performed to reveal the species and content of microRNAs in hADSC-EVs, the key microRNAs were blocked, and their effect in promoting angiogenesis was detected via above protocols as a reverse proof. The results demonstrate that hADSC-EVs could improve the survival of fat grafts by promoting exogenous angiogenesis and enhance the proliferation, migration, tube formation and VEGF secretion of vascular endothelial cells. In addition, the pro-angiogenic effect of hADSC-EVs in vivo and vitro could be enhanced by hypoxic pre-treatment. We found that the let-7 family, a kind of hypoxic-related microRNA, is enriched in hypoxic hADSC-EVs that contribute to angiogenesis via the let-7/argonaute 1 (AGO1)/VEGF signalling pathway.
Collapse
Affiliation(s)
- Yuanzheng Zhu
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Jing Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Xuan Hu
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Zhaohui Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Shu Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China
| | - Yangyan Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanchang University, NO.1 of Minde Road of Nanchang, Jiangxi, 330006, P. R. China.
| |
Collapse
|
560
|
Islam MT, Sherif SM. RNAi-Based Biofungicides as a Promising Next-Generation Strategy for Controlling Devastating Gray Mold Diseases. Int J Mol Sci 2020; 21:ijms21062072. [PMID: 32197315 PMCID: PMC7139463 DOI: 10.3390/ijms21062072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022] Open
Abstract
Botrytis cinerea is one of the most critical agro-economic phytopathogens and has been reported to cause gray mold disease in more than 1000 plant species. Meanwhile, small interfering RNA (siRNA), which induce RNA interference (RNAi), are involved in both host immunity and pathogen virulence. B. cinerea has been reported to use both siRNA effectors and host RNAi machinery to facilitate the progression of gray mold in host species. Accordingly, RNAi-based biofungicides that use double-stranded RNA (dsRNA) to target essential fungal genes are considered an emerging approach for controlling devastating gray mold diseases. Furthermore, spray-induced gene silencing (SIGS), in which the foliar application of dsRNA is used to silence the pathogen virulence genes, holds great potential as an alternative to host-induced gene silencing (HIGS). Recently, SIGS approaches have attracted research interest, owing to their ability to mitigate both pre- and post-harvest B. cinerea infections. The RNAi-mediated regulation of host immunity and susceptibility in B. cinerea–host interactions are summarized in this review, along with the limitations of the current knowledge of RNAi-based biofungicides, especially regarding SIGS approaches for controlling gray mold diseases under field conditions.
Collapse
|
561
|
Correction: Evidence for plant-derived xenomiRs based on a large-scale analysis of public small RNA sequencing data from human samples. PLoS One 2020; 15:e0230146. [PMID: 32160248 PMCID: PMC7065748 DOI: 10.1371/journal.pone.0230146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0224537.].
Collapse
|
562
|
Schaefer LK, Parlange F, Buchmann G, Jung E, Wehrli A, Herren G, Müller MC, Stehlin J, Schmid R, Wicker T, Keller B, Bourras S. Cross-Kingdom RNAi of Pathogen Effectors Leads to Quantitative Adult Plant Resistance in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:253. [PMID: 32211008 PMCID: PMC7076181 DOI: 10.3389/fpls.2020.00253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/18/2020] [Indexed: 05/30/2023]
Abstract
Cross-kingdom RNA interference (RNAi) is a biological process allowing plants to transfer small regulatory RNAs to invading pathogens to trigger the silencing of target virulence genes. Transient assays in cereal powdery mildews suggest that silencing of one or two effectors could lead to near loss of virulence, but evidence from stable RNAi lines is lacking. We established transient host-induced gene silencing (HIGS) in wheat, and demonstrate that targeting an essential housekeeping gene in the wheat powdery mildew pathogen (Blumeria graminis f. sp. tritici) results in significant reduction of virulence at an early stage of infection. We generated stable transgenic RNAi wheat lines encoding a HIGS construct simultaneously silencing three B.g. tritici effectors including SvrPm3 a1/f1 , a virulence factor involved in the suppression of the Pm3 powdery mildew resistance gene. We show that all targeted effectors are effectively downregulated by HIGS, resulting in reduced fungal virulence on adult wheat plants. Our findings demonstrate that stable HIGS of effector genes can lead to quantitative gain of resistance without major pleiotropic effects in wheat.
Collapse
Affiliation(s)
| | - Francis Parlange
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriele Buchmann
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Andreas Wehrli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Marion Claudia Müller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jonas Stehlin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Roman Schmid
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
563
|
Abstract
Many filamentous pathogens invade plant cells through specialized hyphae called haustoria. These infection structures are enveloped by a newly synthesized plant-derived membrane called the extrahaustorial membrane (EHM). This specialized membrane is the ultimate interface between the plant and pathogen, and is key to the success or failure of infection. Strikingly, the EHM is reminiscent of host-derived membrane interfaces that engulf intracellular metazoan parasites. These perimicrobial interfaces are critical sites where pathogens facilitate nutrient uptake and deploy virulence factors to disarm cellular defenses mounted by their hosts. Although the mechanisms underlying the biogenesis and functions of these host-microbe interfaces are poorly understood, recent studies have provided new insights into the cellular and molecular mechanisms involved. In this Cell Science at a Glance and the accompanying poster, we summarize these recent advances with a specific focus on the haustorial interfaces associated with filamentous plant pathogens. We highlight the progress in the field that fundamentally underpin this research topic. Furthermore, we relate our knowledge of plant-filamentous pathogen interfaces to those generated by other plant-associated organisms. Finally, we compare the similarities between host-pathogen interfaces in plants and animals, and emphasize the key questions in this research area.
Collapse
Affiliation(s)
- Tolga O Bozkurt
- Imperial College London, Department of Life Sciences, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
564
|
Lécrivain AL, Beckmann BM. Bacterial RNA in extracellular vesicles: A new regulator of host-pathogen interactions? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194519. [PMID: 32142907 DOI: 10.1016/j.bbagrm.2020.194519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are released by cells from all kingdoms and represent one form of cell-cell interaction. This universal system of communication blurs cells type boundaries, offering an new avenue for pathogens to infect their hosts. EVs carry with them an arsenal of virulence factors that have been the focus of numerous studies. During the last years, the RNA content of EVs has also gained increasing attention, particularly in the context of infection. Secreted RNA in EVs (evRNA) from several bacterial pathogens have been characterised but the exact mechanisms promoting pathogenicity remain elusive. In this review, we evaluate the potential of such transcripts to directly interact with targets in infected cells and, by this, represent a novel angle of host cell manipulation during bacterial infection. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
|
565
|
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel KH. RNA-based technologies for insect control in plant production. Biotechnol Adv 2020; 39:107463. [DOI: 10.1016/j.biotechadv.2019.107463] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
|
566
|
Dubiel M, De Coninck T, Osterne VJS, Verbeke I, Van Damme D, Smagghe G, Van Damme EJM. The ArathEULS3 Lectin Ends up in Stress Granules and Can Follow an Unconventional Route for Secretion. Int J Mol Sci 2020; 21:E1659. [PMID: 32121292 PMCID: PMC7084908 DOI: 10.3390/ijms21051659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
Stress granules are cytoplasmic compartments, which serve as mRNA storage units during stress, therefore regulating translation. The Arabidopsis thaliana lectin ArathEULS3 has been widely described as a stress inducible gene. This study aimed to examine in detail the localization of ArathEULS3 lectin in normal and stressed cells. Colocalization experiments revealed that the nucleo-cytoplasmic lectin ArathEULS3 relocates to stress granules after stress. The ArathEULS3 sequence encodes a protein with a EUL lectin domain and an N-terminal domain with unknown structure and function. Bioinformatics analyses showed that the N-terminal domain sequence contains intrinsically disordered regions and likely does not exhibit a stable protein fold. Plasmolysis experiments indicated that ArathEULS3 also localizes to the apoplast, suggesting that this protein might follow an unconventional route for secretion. As part of our efforts we also investigated the interactome of ArathEULS3 and identified several putative interaction partners important for the protein translation process.
Collapse
Affiliation(s)
- Malgorzata Dubiel
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Tibo De Coninck
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Vinicius Jose Silva Osterne
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratório de Moléculas Biologicamente Ativas, Universidade Federal do Ceará, José Aurelio Camara, S/N, 61440-970, Fortaleza 60440-970, Brazil
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
567
|
Qin T, Hao W, Sun R, Li Y, Wang Y, Wei C, Dong T, Wu B, Dong N, Wang W, Sun J, Yang Q, Zhang Y, Yang S, Wang Q. Verticillium dahliae VdTHI20, Involved in Pyrimidine Biosynthesis, Is Required for DNA Repair Functions and Pathogenicity. Int J Mol Sci 2020; 21:E1378. [PMID: 32085660 PMCID: PMC7073022 DOI: 10.3390/ijms21041378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 11/25/2022] Open
Abstract
Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.
Collapse
Affiliation(s)
- Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Wei Hao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yuqing Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yuanyuan Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Chunyan Wei
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Tao Dong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Bingjie Wu
- College of Agriculture, Liaocheng University, Liaocheng 252059, China;
| | - Na Dong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Weipeng Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Qiuyue Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yaxin Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Song Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| |
Collapse
|
568
|
Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180309. [PMID: 30967013 DOI: 10.1098/rstb.2018.0309] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MiRNAs in animals and plants play crucial roles in diverse developmental processes under both normal and stress conditions. miRNA-like small RNAs (milRNAs) identified in some fungi remain functionally uncharacterized. Here, we identified a number of milRNAs in Verticillium dahliae, a soil-borne fungal pathogen responsible for devastating wilt diseases in many crops. Accumulation of a V. dahliae milRNA1, named VdmilR1, was detected by RNA gel blotting. We show that the precursor gene VdMILR1 is transcribed by RNA polymerase II and is able to produce the mature VdmilR1, in a process independent of V. dahliae DCL (Dicer-like) and AGO (Argonaute) proteins. We found that an RNaseIII domain-containing protein, VdR3, is essential for V. dahliae and participates in VdmilR1 biogenesis. VdmilR1 targets a hypothetical protein-coding gene, VdHy1, at the 3'UTR for transcriptional repression through increased histone H3K9 methylation of VdHy1. Pathogenicity analysis reveals that VdHy1 is essential for fungal virulence. Together with the time difference in the expression patterns of VdmilR1 and VdHy1 during fungal infection in cotton plants, our findings identify a novel milRNA, VdmilR1, in V. dahliae synthesized by a noncanonical pathway that plays a regulatory role in pathogenicity and uncover an epigenetic mechanism for VdmilR1 in regulating a virulence target gene. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yun Jin
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Jian-Hua Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Pan Zhao
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Tao Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Sheng Wang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hui-Shan Guo
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 College of Life Sciences, University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
569
|
Gelsinger DR, Uritskiy G, Reddy R, Munn A, Farney K, DiRuggiero J. Regulatory Noncoding Small RNAs Are Diverse and Abundant in an Extremophilic Microbial Community. mSystems 2020; 5:e00584-19. [PMID: 32019831 PMCID: PMC7002113 DOI: 10.1128/msystems.00584-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Regulatory small RNAs (sRNAs) play large-scale and essential roles in many cellular processes across all domains of life. Microbial sRNAs have been extensively studied in model organisms, but very little is known about the dynamics of sRNA synthesis and their roles in the natural environment. In this study, we discovered hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs expressed in an extremophilic microbial community inhabiting halite nodules (salt rocks) in the Atacama Desert. For this, we built SnapT, a new sRNA annotation pipeline that can be applied to any microbial community. We found asRNAs with expression levels negatively correlated with that of their overlapping putative target and itsRNAs that were conserved and significantly differentially expressed between 2 sampling time points. We demonstrated that we could perform target prediction and correlate expression levels between sRNAs and predicted target mRNAs at the community level. Functions of putative mRNA targets reflected the environmental challenges members of the halite communities were subjected to, including osmotic adjustments to a major rain event and competition for nutrients.IMPORTANCE Microorganisms in the natural world are found in communities, communicating and interacting with each other; therefore, it is essential that microbial regulatory mechanisms, such as gene regulation affected by small RNAs (sRNAs), be investigated at the community level. This work demonstrates that metatranscriptomic field experiments can link environmental variation with changes in RNA pools and have the potential to provide new insights into environmental sensing and responses in natural microbial communities through noncoding RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Diego R Gelsinger
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Gherman Uritskiy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam Munn
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Katie Farney
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
570
|
Yan Y, Ham BK, Chong YH, Yeh SD, Lucas WJ. A Plant SMALL RNA-BINDING PROTEIN 1 Family Mediates Cell-to-Cell Trafficking of RNAi Signals. MOLECULAR PLANT 2020; 13:321-335. [PMID: 31812689 DOI: 10.1016/j.molp.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 05/20/2023]
Abstract
In plants, RNA interference (RNAi) plays a pivotal role in growth and development, and responses to environmental inputs, including pathogen attack. The intercellular and systemic trafficking of small interfering RNA (siRNA)/microRNA (miRNA) is a central component in this regulatory pathway. Currently, little is known with regards to the molecular agents involved in the movement of these si/miRNAs. To address this situation, we employed a biochemical approach to identify and characterize a conserved SMALL RNA-BINDING PROTEIN 1 (SRBP1) family that mediates non-cell-autonomous small RNA (sRNA) trafficking. In Arabidopsis, AtSRBP1 is a glycine-rich (GR) RNA-binding protein, also known as AtGRP7, which we show binds single-stranded siRNA. A viral vector, Zucchini yellow mosaic virus (ZYMV), was employed to functionally characterized the AtSRBP1-4 (AtGRP7/2/4/8) RNA recognition motif and GR domains. Cellular-based studies revealed the GR domain as being necessary and sufficient for SRBP1 cell-to-cell movement. Taken together, our findings provide a foundation for future research into the mechanism and function of mobile sRNA signaling agents in plants.
Collapse
Affiliation(s)
- Yan Yan
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Byung-Kook Ham
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yee Hang Chong
- Department of Plant Pathology, National Chung-Hsing University, Taichung
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung-Hsing University, Taichung
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
571
|
Frantzeskakis L, Di Pietro A, Rep M, Schirawski J, Wu CH, Panstruga R. Rapid evolution in plant-microbe interactions - a molecular genomics perspective. THE NEW PHYTOLOGIST 2020; 225:1134-1142. [PMID: 31134629 DOI: 10.1111/nph.15966] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Rapid (co-)evolution at multiple timescales is a hallmark of plant-microbe interactions. The mechanistic basis for the rapid evolution largely rests on the features of the genomes of the interacting partners involved. Here, we review recent insights into genomic characteristics and mechanisms that enable rapid evolution of both plants and phytopathogens. These comprise fresh insights in allelic series of matching pairs of resistance and avirulence genes, the generation of novel pathogen effectors, the recently recognised small RNA warfare, and genomic aspects of secondary metabolite biosynthesis. In addition, we discuss the putative contributions of permissive host environments, transcriptional plasticity and the role of ploidy on the interactions. We conclude that the means underlying the rapid evolution of plant-microbe interactions are multifaceted and depend on the particular nature of each interaction.
Collapse
Affiliation(s)
| | - Antonio Di Pietro
- Departamento de Genética and Campus de Excelencia Agroalimentario (ceiA3), Universidad de Córdoba, 14071, Córdoba, Spain
| | - Martijn Rep
- Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Jan Schirawski
- Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| |
Collapse
|
572
|
Wei C, Qin T, Li Y, Wang W, Dong T, Wang Q. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochem Biophys Res Commun 2020; 524:392-397. [PMID: 32005518 DOI: 10.1016/j.bbrc.2020.01.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/15/2022]
Abstract
Cotton Verticillium wilt caused by Verticillium dahliae (V. dahliae) is one of the most destructive fungal diseases and is difficult to control. However, resistant germplasm resources are scarce in cotton. Many studies have shown that host-induced gene silencing (HIGS) is a practical and effective technology in crop disease prevention by silencing virulence genes of pathogens. Acetolactate synthase (ALS) contains a catalytic subunit ILV2 and a regulatory subunit ILV6, which catalyzes the first common step reaction in branched-chain amino acid (BCAA) biosynthesis. We identified two acetolactate synthases, VdILV2 and VdILV6, which are homologs of ILV2 and ILV6, respectively, in Magnaporthe oryzae. To characterize the function of VdILV2 and VdILV6 in V. dahliae, we suppressed their expression in the strong pathogenic isolate Vd991 by using HIGS technology. VdILV2- or VdILV6-silenced V. dahliae had a dramatic reduction in pathogenicity. The results indicated that VdILV2 and VdILV6 are involved in the pathogenicity of V. dahliae. HIGS of VdILV2 or VdILV6 provides a novel fungicide target and an effective control to resist Verticillium wilt caused by V. dahliae.
Collapse
Affiliation(s)
- Chunyan Wei
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Tengfei Qin
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Yuqing Li
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Weipeng Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Tao Dong
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| |
Collapse
|
573
|
Nerva L, Sandrini M, Gambino G, Chitarra W. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold ( Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules 2020; 10:biom10020200. [PMID: 32013165 PMCID: PMC7072719 DOI: 10.3390/biom10020200] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Grapevine is one of the most important and globally widespread fruit species, with a high impact on the economy of many countries but with an intense environmental effect. Therefore, new environmentally friendly defense strategies against fungal pathogens are needed for more sustainable agriculture. A novel emerging approach is spray-induced gene silencing (SIGS), which concerns the exogenous application of double-stranded RNA (dsRNA) inducing enhanced plant resistance against fungal pathogens. Here, we tested the ability of SIGS to prevent and counteract infection of Botrytis cinerea, one of the most economically impacting pathogens of grapevine. In particular, we tested three independent approaches for dsRNA delivery into plants: (i) high pressure spraying of leaves; (ii) petiole adsorption of dsRNAs; (iii) postharvest spraying of bunches. We demonstrated that independently from the method of application, SIGS can reduce virulence of the fungus. Moreover, we also observed three different levels of efficacy depending on the method of application. Thus, the present data provide crucial information on the possibility to exploit SIGS as an alternative sustainable and ecofriendly strategy for grapevine pre- and postharvest protection.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
- Correspondence: (L.N.); (W.C.); Tel.: +39-043-8456712 (L.N. & W.C.); Fax: +39-043-8450773 (L.N. & W.C.)
| | - Marco Sandrini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy
- Correspondence: (L.N.); (W.C.); Tel.: +39-043-8456712 (L.N. & W.C.); Fax: +39-043-8450773 (L.N. & W.C.)
| |
Collapse
|
574
|
Vallhov H, Johansson C, Veerman RE, Scheynius A. Extracellular Vesicles Released From the Skin Commensal Yeast Malassezia sympodialis Activate Human Primary Keratinocytes. Front Cell Infect Microbiol 2020; 10:6. [PMID: 32039038 PMCID: PMC6993562 DOI: 10.3389/fcimb.2020.00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) released from fungi have been shown to participate in inter-organismal communication and in cross-kingdom modulation of host defense. Malassezia species are the dominant commensal fungal members of the human skin microbiota. We have previously found that Malassezia sympodialis releases EVs. These EVs, designated MalaEx, carry M. sympodialis allergens and induce a different inflammatory cytokine response in peripheral blood mononuclear cells (PBMC) from patients with atopic dermatitis compared to healthy controls. In this study, we explored the host-microbe interaction between MalaEx and human keratinocytes with the hypothesis that MalaEx might be able to activate human keratinocytes to express the intercellular adhesion molecule-1 (ICAM-1, CD54). MalaEx were prepared from M. sympodialis (ATCC 42132) culture supernatants by a combination of centrifugation, filtration and serial ultracentrifugation. The MalaEx showed a size range of 70–580 nm with a mean of 154 nm using nanoparticle tracking analysis. MalaEx were found to induce a significant up-regulation of ICAM-1 expression on primary human keratinocytes isolated from human ex vivo skin (p = 0.026, n = 3), compared to the unstimulated keratinocytes. ICAM-1 is a counter ligand for the leukocyte integrins lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1), of which induced expression on epithelial cells leads to the attraction of immune competent cells. Thus, the capacity of MalaEx to activate keratinocytes with an enhanced ICAM-1 expression indicates an important step in the cutaneous defense against M. sympodialis. How this modulation of host cells by a fungus is balanced between the commensal, pathogenic, or beneficial states on the skin in the interplay with the host needs to be further elucidated.
Collapse
Affiliation(s)
- Helen Vallhov
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Catharina Johansson
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Rosanne E Veerman
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
575
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
576
|
Ma X, Wiedmer J, Palma-Guerrero J. Small RNA Bidirectional Crosstalk During the Interaction Between Wheat and Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1669. [PMID: 31969895 PMCID: PMC6960233 DOI: 10.3389/fpls.2019.01669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/27/2019] [Indexed: 05/21/2023]
Abstract
Cross-kingdom RNA interference (RNAi) has been shown to play important roles during plant-pathogen interactions, and both plants and pathogens can use small RNAs (sRNAs) to silence genes in each other. This bidirectional cross-kingdom RNAi was still unexplored in the wheat-Zymoseptoria tritici pathosystem. Here, we performed a detailed analysis of the sRNA bidirectional crosstalk between wheat and Z. tritici. Using a combination of small RNA sequencing (sRNA-seq) and microRNA sequencing (mRNA-seq), we were able to identify known and novel sRNAs and study their expression and their action on putative targets in both wheat and Z. tritici. We predicted the target genes of all the sRNAs in either wheat or Z. tritici transcriptome and used degradome analysis to validate the cleavage of these gene transcripts. We could not find any clear evidence of a cross-kingdom RNAi acting by mRNA cleavage in this pathosystem. We also found that the fungal sRNA enrichment was lower in planta than during in vitro growth, probably due to the lower expression of the only Dicer gene of the fungus during plant infection. Our results support the recent finding that Z. tritici sRNAs cannot play important roles during wheat infection. However, we also found that the fungal infection induced wheat sRNAs regulating the expression of specific wheat genes, including auxin-related genes, as an immune response. These results indicate a role of sRNAs in the regulation of wheat defenses during Z. tritici infection. Our findings contribute to improve our understanding of the interactions between wheat and Z. tritici.
Collapse
Affiliation(s)
- Xin Ma
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
577
|
Dalakouras A, Wassenegger M, Dadami E, Ganopoulos I, Pappas ML, Papadopoulou K. Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. PLANT PHYSIOLOGY 2020; 182:38-50. [PMID: 31285292 PMCID: PMC6945881 DOI: 10.1104/pp.19.00570] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/28/2019] [Indexed: 05/08/2023]
Abstract
The latest advances in the field exogenous application of RNA molecules in plants help to protect and modify them through RNA interference (RNAi).
Collapse
Affiliation(s)
- Athanasios Dalakouras
- University of Thessaly, Department of Biochemistry and Biotechnology, 41500 Larissa, Greece
- Institute of Plant Breeding and Genetic Resources Hellenic Agricultural Organization (ELGO)-DEMETER, 57001 Thessaloniki, Greece
| | - Michael Wassenegger
- RLP AgroScience, Alplanta Institute for Plant Research, 67435 Neustadt an der Weinstrasse, Germany
| | - Elena Dadami
- University of Thessaly, Department of Biochemistry and Biotechnology, 41500 Larissa, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources Hellenic Agricultural Organization (ELGO)-DEMETER, 57001 Thessaloniki, Greece
| | - Maria L Pappas
- Democritus University of Thrace, Department of Agricultural Development, 68200 Orestiada, Greece
| | - Kalliope Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, 41500 Larissa, Greece
| |
Collapse
|
578
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
579
|
Hudzik C, Hou Y, Ma W, Axtell MJ. Exchange of Small Regulatory RNAs between Plants and Their Pests. PLANT PHYSIOLOGY 2020; 182:51-62. [PMID: 31636103 PMCID: PMC6945882 DOI: 10.1104/pp.19.00931] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 05/09/2023]
Abstract
Regulatory small RNAs are well known as antiviral agents, regulators of gene expression, and defenders of genome integrity in plants. Several studies over the last decade have also shown that some small RNAs are exchanged between plants and their pathogens and parasites. Naturally occurring trans-species small RNAs are used by host plants to silence mRNAs in pathogens. These gene-silencing events are thought to be detrimental to the pathogen and beneficial to the host. Conversely, trans-species small RNAs from pathogens and parasites are deployed to silence host mRNAs; these events are thought to be beneficial for the pests. The natural ability of plants to exchange small RNAs with invading eukaryotic organisms can be exploited to provide disease resistance. This review gives an overview of the current state of trans-species small RNA research in plants and discusses several outstanding questions for future research.
Collapse
Affiliation(s)
- Collin Hudzik
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Michael J Axtell
- Department of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
580
|
Dasgupta S, Gerst JE. A Protocol for Non-biased Identification of RNAs Transferred Between Heterologous Mammalian Cell Types Using RNA Tagging, Cell Sorting, and Sequencing. Methods Mol Biol 2020; 2166:195-214. [PMID: 32710410 DOI: 10.1007/978-1-0716-0712-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intercellular communication is a major hallmark of multicellular organisms and is responsible for coordinating cell and tissue differentiation, immune responses, synaptic transmission, and both paracrine and endocrine signaling, for example. Small molecules, peptides, and proteins have all been studied extensively as mediators of intercellular communication; however, RNAs have also been shown recently to transfer between cells. In mammalian cells, microRNAs, tRNAs, short noncoding RNAs, mRNA fragments, as well as full-length mRNAs have all been shown to transfer between cells either by exosomes or by membrane nanotubes. We have previously described nanotube-mediated cell-cell transfer of specific mRNAs between heterologous mammalian cell types cultured in vitro. Here, we describe a simple method for the unbiased and quantitative identification of the complete range of transferred mRNAs (i.e., the mRNA transferome) in one population of mammalian cells following co-culture with another population. After co-culture, the individual cell populations are sorted by magnetic bead-mediated cell sorting and the transferred RNAs are then identified by downstream analysis methods, such as RNA sequencing. Application of this technique not only allows for determination of the mRNA transferome, but can also reveal changes in the native transcriptome of a cell population after co-culture. This can indicate the effect that co-culture and intercellular transfer of mRNA have upon cell physiology.
Collapse
Affiliation(s)
- Sandipan Dasgupta
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
581
|
Hartmann M, Voß S, Requena N. Host-Induced Gene Silencing of Arbuscular Mycorrhizal Fungal Genes via Agrobacterium rhizogenes-Mediated Root Transformation in Medicago truncatula. Methods Mol Biol 2020; 2146:239-248. [PMID: 32415608 DOI: 10.1007/978-1-0716-0603-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Host-induced gene silencing (HIGS) is a methodology that allows the downregulation of genes in organisms living in close association with a host and that are not amenable or recalcitrant to genetic modifications. This method has been particularly used for oomycetes and for filamentous fungi interacting with plants, including the fungi of the arbuscular mycorrhizal symbiosis. Here, we present a protocol developed in our laboratory to downregulate genes from the obligate symbiont Rhizophagus irregularis in symbiosis with Medicago truncatula plants.
Collapse
Affiliation(s)
- Meike Hartmann
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefanie Voß
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
582
|
Cui Y, Gao J, He Y, Jiang L. Plant extracellular vesicles. PROTOPLASMA 2020; 257:3-12. [PMID: 31468195 DOI: 10.1007/s00709-019-01435-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Exocytosis is a key mechanism for delivering materials into the extracellular space for cell function and communication. In plant cells, conventional protein secretion (CPS) is achieved via an ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway. Unconventional protein secretion (UPS) bypassing these secretory organelles is also in operation and can potentially lead to the formation of extracellular vesicles (EVs) in plant cells. Although multiple types of EVs have been identified and shown to play important roles in mediating intercellular communications in mammalian cells, there has been a long debate about the possible existence of EVs in plants because of the presence of the cell wall. However, increasing evidence suggests that plants also release EVs having various functions including unconventional protein secretion, RNA transport, and defense against pathogens. In this review, we present an update on the current knowledge about the nature, secretory mechanism, and function of various types of EVs in plants. The key regulators involved in EV secretion are also summarized and discussed. We pay special attention to the function of EVs in plant defense and symbiosis.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilin He
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
583
|
Hou J, Feng HQ, Chang HW, Liu Y, Li GH, Yang S, Sun CH, Zhang MZ, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin QM. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. THE NEW PHYTOLOGIST 2020; 225:930-947. [PMID: 31529514 DOI: 10.1111/nph.16200] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Histone 3 Lysine 4 (H3K4) demethylation is ubiquitous in organisms, however the roles of H3K4 demethylase JARID1(Jar1)/KDM5 in fungal development and pathogenesis remain largely unexplored. Here, we demonstrate that Jar1/KDM5 in Botrytis cinerea, the grey mould fungus, plays a crucial role in these processes. The BcJAR1 gene was deleted and its roles in fungal development and pathogenesis were investigated using approaches including genetics, molecular/cell biology, pathogenicity and transcriptomic profiling. BcJar1 regulates H3K4me3 and both H3K4me2 and H3K4me3 methylation levels during vegetative and pathogenic development, respectively. Loss of BcJAR1 impairs conidiation, appressorium formation and stress adaptation; abolishes infection cushion (IC) formation and virulence, but promotes sclerotium production in the ΔBcjar1 mutants. BcJar1 controls reactive oxygen species (ROS) production and proper assembly of Sep4, a core septin protein and virulence determinant, to initiate infection structure (IFS) formation and host penetration. Exogenous cAMP partially restored the mutant appressorium, but not IC, formation. BcJar1 orchestrates global expression of genes for ROS production, stress response, carbohydrate transmembrane transport, secondary metabolites, etc., which may be required for conidiation, IFS formation, host penetration and virulence of the pathogen. Our work systematically elucidates BcJar1 functions and provides novel insights into Jar1/KDM5-mediated H3K4 demethylation in regulating fungal development and pathogenesis.
Collapse
Affiliation(s)
- Jie Hou
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- College of Forestry, BeiHua University, Jilin, 132013, China
| | - Hui-Qiang Feng
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Hao-Wu Chang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yue Liu
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Gui-Hua Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Song Yang
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Chen-Hao Sun
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ming-Zhe Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ye Yuan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jiao Sun
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Hao Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Qing-Ming Qin
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
584
|
Werner BT, Gaffar FY, Schuemann J, Biedenkopf D, Koch AM. RNA-Spray-Mediated Silencing of Fusarium graminearum AGO and DCL Genes Improve Barley Disease Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:476. [PMID: 32411160 PMCID: PMC7202221 DOI: 10.3389/fpls.2020.00476] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/30/2020] [Indexed: 05/21/2023]
Abstract
Over the last decade, several studies have revealed the enormous potential of RNA-silencing strategies as a potential alternative to conventional pesticides for plant protection. We have previously shown that targeted gene silencing mediated by an in planta expression of non-coding inhibitory double-stranded RNAs (dsRNAs) can protect host plants against various diseases with unprecedented efficiency. In addition to the generation of RNA-silencing (RNAi) signals in planta, plants can be protected from pathogens, and pests by spray-applied RNA-based biopesticides. Despite the striking efficiency of RNA-silencing-based technologies holds for agriculture, the molecular mechanisms underlying spray-induced gene silencing (SIGS) strategies are virtually unresolved, a requirement for successful future application in the field. Based on our previous work, we predict that the molecular mechanism of SIGS is controlled by the fungal-silencing machinery. In this study, we used SIGS to compare the silencing efficiencies of computationally-designed vs. manually-designed dsRNA constructs targeting ARGONAUTE and DICER genes of Fusarium graminearum (Fg). We found that targeting key components of the fungal RNAi machinery via SIGS could protect barley leaves from Fg infection and that the manual design of dsRNAs resulted in higher gene-silencing efficiencies than the tool-based design. Moreover, our results indicate the possibility of cross-kingdom RNA silencing in the Fg-barley interaction, a phenomenon in which sRNAs operate as effector molecules to induce gene silencing between species from different kingdoms, such as a plant host and their interacting pathogens.
Collapse
Affiliation(s)
- Bernhard Timo Werner
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Johannes Schuemann
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Dagmar Biedenkopf
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Aline Michaela Koch
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Aline Michaela Koch,
| |
Collapse
|
585
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
586
|
Hamby R, Wang M, Qiao L, Jin H. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake. Methods Mol Biol 2020; 2166:215-225. [PMID: 32710411 DOI: 10.1007/978-1-0716-0712-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fungal pathogens are responsible for severe crop losses worldwide. Defending crops against fungal disease is critical for global food security; however, most current disease management approaches rely on chemical fungicides that can leave dangerous residues in the environment. RNA interference (RNAi) is an important process through which RNA molecules target and silence complementary genes, regulating gene expression during both transcription and translation. Recently, it has been discovered that some species of fungi can efficiently take up RNAs originating from their host plant and the environment. If these RNAs are complementary to fungal genes, this can lead to the targeting and silencing of fungal genes, termed "cross-kingdom RNAi," if the RNA originated from a plant host, or "environmental RNAi," if the RNA originated from the environment. These discoveries have inspired the development of spray-induced gene silencing (SIGS), an innovative crop protection strategy involving the foliar application of RNAs which target and silence fungal virulence genes for plant protection against fungal pathogens. The effectiveness of SIGS is largely dependent on the ability of fungi to take up environmental RNAs. Here, we describe the protocols used to label and visualize RNAs which are taken up by Botrytis cinerea. This protocol could easily be adapted for use across various fungal species. Determining the efficiency of RNA uptake by a specific fungal species is a critical first step to determining if SIGS approaches could be an effective control strategy for that fungus.
Collapse
Affiliation(s)
- Rachael Hamby
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Ming Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Lulu Qiao
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
587
|
Słomińska-Durdasiak KM, Kollers S, Korzun V, Nowara D, Schweizer P, Djamei A, Reif JC. Association mapping of wheat Fusarium head blight resistance-related regions using a candidate-gene approach and their verification in a biparental population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:341-351. [PMID: 31646363 DOI: 10.1007/s00122-019-03463-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Markers, located in Dicer1 and Ara6 genes, which are likely involved in cross-kingdom RNA trafficking, are associated with FHB resistance in GABI wheat population and were validated in biparental population. Association studies are a common approach to detect marker-trait associations for Fusarium head blight (FHB) resistance in wheat (Triticum aestivum), although verification of detected associations is exceptional. In the present study, candidate-gene association mapping (CG) of genes from silencing and secretory pathways, which may be involved in wheat resistance against FHB and cross-kingdom RNA trafficking, was performed. Fourteen markers, located in nine genes, were tested for association with FHB resistance in 356 lines from the GABI (genome analysis of the biological system of plants) wheat population. Three markers located in the genes Dicer1 and Ara6 were shown to be significantly associated with the studied trait. Verification of this finding was performed using the recombinant inbred lines (RILs) population 'Apache × Biscay', segregating for four of our 14 selected markers. We could show association of the Ara6 marker with plant height as well as association with FHB resistance for three markers located in Rab5-like GTPase gene Ara6 and Dicer1. These results confirmed the trait-marker associations detected also in the CG approach. Gene products of the associated genes are involved in response of the plant to pathogens, plant metabolism and may be involved in cross-kingdom RNA trafficking efficiency. The markers detected in the GABI wheat population, which were also validated in the biparental population, can potentially be used in wheat breeding.
Collapse
Affiliation(s)
- Karolina Maria Słomińska-Durdasiak
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany.
| | - Sonja Kollers
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Straße 5, 29303, Bergen, Germany
| | - Daniela Nowara
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Armin Djamei
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Jochen Christoph Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
588
|
Yang GS, Zheng B, Qin Y, Zhou J, Yang Z, Zhang XH, Zhao HY, Yang HJ, Wen JK. Salvia miltiorrhiza-derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics 2020; 10:7787-7811. [PMID: 32685020 PMCID: PMC7359079 DOI: 10.7150/thno.46911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are essential for vascular remodeling. Natural compounds with diterpene chinone or phenolic acid structure from Salvia miltiorrhiza, an eminent medicinal herb widely used to treat cardiovascular diseases in China, can effectively attenuate vascular remodeling induced by vascular injury. However, it remains unknown whether Salvia miltiorrhiza-derived miRNAs can protect VSMCs from injury by environmental stimuli. Here, we explored the role and underlying mechanisms of Salvia miltiorrhiza-derived Sal-miR-1 and 3 in the regulation of VSMC migration and monocyte adhesion to VSMCs induced by thrombin. Methods: A mouse model for intimal hyperplasia was established by the ligation of carotid artery and the injured carotid arteries were in situ-transfected with Sal-miR-1 and 3 using F-127 pluronic gel. The vascular protective effects of Sal-miR-1 and 3 were assessed via analysis of intimal hyperplasia with pathological morphology. VSMC migration and adhesion were analyzed by the wound healing, transwell membrane assays, and time-lapse imaging experiment. Using loss- and gain-of-function approaches, Sal-miR-1 and 3 regulation of OTUD7B/KLF4/NMHC IIA axis was investigated by using luciferase assay, co-immunoprecipitation, chromatin immunoprecipitation, western blotting, etc. Results:Salvia miltiorrhiza-derived Sal-miR-1 and 3 can enter the mouse body after intragastric administration, and significantly suppress intimal hyperplasia induced by carotid artery ligation. In cultured VSMCs, these two miRNAs inhibit thrombin-induced the migration of VSMCs and monocyte adhesion to VSMCs. Mechanistically, Sal-miR-1 and 3 abrogate OTUD7B upregulation by thrombin via binding to the different sites of the OTUD7B 3'UTR. Most importantly, OTUD7B downregulation by Sal-miR-1 and 3 attenuates KLF4 protein levels via decreasing its deubiquitylation, whereas decreased KLF4 relieves its repression of transcription of NMHC IIA gene and thus increases NMHC IIA expression levels. Further, increased NMHC IIA represses VSMC migration and monocyte adhesion to VSMCs via maintaining the contractile phenotype of VSMCs. Conclusions: Our studies not only found the novel bioactive components from Salvia miltiorrhiza but also clarified the molecular mechanism underlying Sal-miR-1 and 3 inhibition of VSMC migration and monocyte adhesion to VSMCs. These results add important knowledge to the pharmacological actions and bioactive components of Salvia miltiorrhiza. Sal-miR-1 and 3-regulated OTUD7B/KLF4/NMHC IIA axis may represent a therapeutic target for vascular remodeling.
Collapse
Affiliation(s)
- Gao-shan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Qin
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Jing Zhou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- Department of Endocrine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Science and Technology, The second hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin-hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Hong-ye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Hao-jie Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China
- ✉ Corresponding author: Jin-kun Wen, Department of Biochemistry and Molecular Biology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China. E-mail:
| |
Collapse
|
589
|
Huang CY, Wang H, Hu P, Hamby R, Jin H. Small RNAs - Big Players in Plant-Microbe Interactions. Cell Host Microbe 2019; 26:173-182. [PMID: 31415750 DOI: 10.1016/j.chom.2019.07.021] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Eukaryotic small RNAs (sRNAs) are short non-coding regulatory molecules that induce RNA interference (RNAi). During microbial infection, host RNAi machinery is highly regulated and contributes to reprogramming gene expression and balancing plant immunity and growth. While most sRNAs function endogenously, some can travel across organismal boundaries between hosts and microbes and silence genes in trans in interacting organisms, a mechanism called "cross-kingdom RNAi." During the co-evolutionary arms race between fungi and plants, some fungi developed a novel virulence mechanism, sending sRNAs as effector molecules into plant cells to silence plant immunity genes, whereas plants also transport sRNAs, mainly using extracellular vesicles, into the pathogens to suppress virulence-related genes. In this Review, we highlight recent discoveries on these key roles of sRNAs and RNAi machinery. Understanding the molecular mechanisms of sRNA biogenesis, trafficking, and RNAi machinery will help us develop innovative strategies for crop protection.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Huan Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Po Hu
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachael Hamby
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
590
|
Johnson NR, dePamphilis CW, Axtell MJ. Compensatory sequence variation between trans-species small RNAs and their target sites. eLife 2019; 8:e49750. [PMID: 31845648 PMCID: PMC6917502 DOI: 10.7554/elife.49750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023] Open
Abstract
Trans-species small regulatory RNAs (sRNAs) are delivered to host plants from diverse pathogens and parasites and can target host mRNAs. How trans-species sRNAs can be effective on diverse hosts has been unclear. Multiple species of the parasitic plant Cuscuta produce trans-species sRNAs that collectively target many host mRNAs. Confirmed target sites are nearly always in highly conserved, protein-coding regions of host mRNAs. Cuscuta trans-species sRNAs can be grouped into superfamilies that have variation in a three-nucleotide period. These variants compensate for synonymous-site variation in host mRNAs. By targeting host mRNAs at highly conserved protein-coding sites, and simultaneously expressing multiple variants to cover synonymous-site variation, Cuscuta trans-species sRNAs may be able to successfully target multiple homologous mRNAs from diverse hosts.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/parasitology
- Base Sequence
- Codon
- Computational Biology
- Conserved Sequence
- Cuscuta/genetics
- Cuscuta/growth & development
- Cuscuta/metabolism
- Gene Expression Regulation, Plant
- Genetic Variation
- Genome, Plant
- Host-Parasite Interactions
- Open Reading Frames
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/classification
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Untranslated/classification
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Sequence Alignment
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/parasitology
Collapse
Affiliation(s)
- Nathan R Johnson
- Intercollege PhD Program in Plant Biology, Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUnited States
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkUnited States
| | - Claude W dePamphilis
- Intercollege PhD Program in Plant Biology, Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUnited States
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkUnited States
| | - Michael J Axtell
- Intercollege PhD Program in Plant Biology, Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUnited States
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
591
|
Optimized Isolation of Extracellular Vesicles From Various Organic Sources Using Aqueous Two-Phase System. Sci Rep 2019; 9:19159. [PMID: 31844310 PMCID: PMC6915764 DOI: 10.1038/s41598-019-55477-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
From biomarkers to drug carriers, Extracellular Vesicles (EVs) are being used successfully in numerous applications. However, while the subject has been steadily rising in popularity, current methods of isolating EVs are lagging behind, incapable of isolating EVs at a high enough quantity or quality while also requiring expensive, specialized equipment. The “isolation problem” is one of the major obstacles in the field of EV research - and even more so for their potential, widespread use for clinical diagnosis and therapeutic applications. Aqueous Two-Phase Systems (ATPS) has been reported previously as a promising method for isolating EVs quickly and efficiently, and with little contaminants - however, this method has not seen widespread use. In this study, an ATPS-based isolation protocol is used to isolate small EVs from plant, cell culture, and parasite culture sources. Isolated EVs were characterized in surface markers, size, and morphological manner. Additionally, the capacity of ATPS-based EV isolation in removing different contaminants was shown by measuring protein, fatty acid, acid, and phenol red levels of the final isolate. In conclusion, we have shown that EVs originating from different biological sources can be isolated successfully in a cost-effective and user-friendly manner with the use of aqueous two-phase systems.
Collapse
|
592
|
Abstract
Protection against microbial infection in eukaryotes is provided by diverse cellular and molecular mechanisms. Here, we present a comparative view of the antiviral activity of virus-derived small interfering RNAs in fungi, plants, invertebrates and mammals, detailing the mechanisms for their production, amplification and activity. We also highlight the recent discovery of viral PIWI-interacting RNAs in animals and a new role for mobile host and pathogen small RNAs in plant defence against eukaryotic pathogens. In turn, viruses that infect plants, insects and mammals, as well as eukaryotic pathogens of plants, have evolved specific virulence proteins that suppress RNA interference (RNAi). Together, these advances suggest that an antimicrobial function of the RNAi pathway is conserved across eukaryotic kingdoms.
Collapse
|
593
|
The green peach aphid gut contains host plant microRNAs identified by comprehensive annotation of Brassica oleracea small RNA data. Sci Rep 2019; 9:18904. [PMID: 31827121 PMCID: PMC6906386 DOI: 10.1038/s41598-019-54488-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Like all organisms, aphids, plant sap-sucking insects that house a bacterial endosymbiont called Buchnera, are members of a species interaction network. Ecological interactions across such networks can result in phenotypic change in network members mediated by molecular signals, like microRNAs. Here, we interrogated small RNA data from the aphid, Myzus persicae, to determine the source of reads that did not map to the aphid or Buchnera genomes. Our analysis revealed that the pattern was largely explained by reads that mapped to the host plant, Brassica oleracea, and a facultative symbiont, Regiella. To start elucidating the function of plant small RNA in aphid gut, we annotated 213 unique B. oleracea miRNAs; 32/213 were present in aphid gut as mature and star miRNAs. Next, we predicted targets in the B. oleracea and M. persicae genomes for these 32 plant miRNAs. We found that plant targets were enriched for genes associated with transcription, while the distribution of targets in the aphid genome was similar to the functional distribution of all genes in the aphid genome. We discuss the potential of plant miRNAs to regulate aphid gene expression and the mechanisms involved in processing, export and uptake of plant miRNAs by aphids.
Collapse
|
594
|
Janowska-Sejda EI, Lysenko A, Urban M, Rawlings C, Tsoka S, Hammond-Kosack KE. PHI-Nets: A Network Resource for Ascomycete Fungal Pathogens to Annotate and Identify Putative Virulence Interacting Proteins and siRNA Targets. Front Microbiol 2019; 10:2721. [PMID: 31866958 PMCID: PMC6908471 DOI: 10.3389/fmicb.2019.02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
Interactions between proteins underlie all aspects of complex biological mechanisms. Therefore, methodologies based on complex network analyses can facilitate identification of promising candidate genes involved in phenotypes of interest and put this information into appropriate contexts. To facilitate discovery and gain additional insights into globally important pathogenic fungi, we have reconstructed computationally inferred interactomes using an interolog and domain-based approach for 15 diverse Ascomycete fungal species, across nine orders, specifically Aspergillus fumigatus, Bipolaris sorokiniana, Blumeria graminis f. sp. hordei, Botrytis cinerea, Colletotrichum gloeosporioides, Colletotrichum graminicola, Fusarium graminearum, Fusarium oxysporum f. sp. lycopersici, Fusarium verticillioides, Leptosphaeria maculans, Magnaporthe oryzae, Saccharomyces cerevisiae, Sclerotinia sclerotiorum, Verticillium dahliae, and Zymoseptoria tritici. Network cartography analysis was associated with functional patterns of annotated genes linked to the disease-causing ability of each pathogen. In addition, for the best annotated organism, namely F. graminearum, the distribution of annotated genes with respect to network structure was profiled using a random walk with restart algorithm, which suggested possible co-location of virulence-related genes in the protein–protein interaction network. In a second ‘use case’ study involving two networks, namely B. cinerea and F. graminearum, previously identified small silencing plant RNAs were mapped to their targets. The F. graminearum phenotypic network analysis implicates eight B. cinerea targets and 35 F. graminearum predicted interacting proteins as prime candidate virulence genes for further testing. All 15 networks have been made accessible for download at www.phi-base.org providing a rich resource for major crop plant pathogens.
Collapse
Affiliation(s)
- Elzbieta I Janowska-Sejda
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Artem Lysenko
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Chris Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
595
|
Cai Q, He B, Weiberg A, Buck AH, Jin H. Small RNAs and extracellular vesicles: New mechanisms of cross-species communication and innovative tools for disease control. PLoS Pathog 2019; 15:e1008090. [PMID: 31887135 PMCID: PMC6936782 DOI: 10.1371/journal.ppat.1008090] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Arne Weiberg
- Department of Biology, Ludwig-Maximilians University of Munich (LMU), Munich, Germany
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| |
Collapse
|
596
|
Saeed B, Brillada C, Trujillo M. Dissecting the plant exocyst. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:69-76. [PMID: 31509792 DOI: 10.1016/j.pbi.2019.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
The exocyst is an evolutionary conserved complex that mediates tethering of post-Golgi vesicles derived from the conventional secretory pathway to the plasma membrane (PM), before SNARE-mediated fusion. Through its tethering function, connecting secretory vesicles to the PM, it mediates spatiotemporal regulation of exocytosis. As an integral element of the secretory machinery, the exocyst has been implicated in a large variety of processes. However, emerging evidence suggests that it may also cater for unconventional secretory pathways, as well as autophagy. The exocyst entertains a multitude of interactions with proteins and membrane phospholipids, reflecting its highly dynamic nature and the complex regulatory processes that hardwire it with cellular signalling networks. However, our molecular understanding of this essential complex remains fragmentary. Here we review recent work focusing on the molecular features that have revealed both commonalities with yeast and animals, as well as unique characteristics of the plant exocyst.
Collapse
Affiliation(s)
- Bushra Saeed
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Institute of Biology II, 79104 Freiburg, Germany
| | - Carla Brillada
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Institute of Biology II, 79104 Freiburg, Germany
| | - Marco Trujillo
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Institute of Biology II, 79104 Freiburg, Germany.
| |
Collapse
|
597
|
Koch A, Höfle L, Werner BT, Imani J, Schmidt A, Jelonek L, Kogel K. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants. MOLECULAR PLANT PATHOLOGY 2019; 20:1636-1644. [PMID: 31603277 PMCID: PMC6859480 DOI: 10.1111/mpp.12866] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CYP3RNA, a double-stranded (ds)RNA designed to concomitantly target the two sterol 14α-demethylase genes FgCYP51A and FgCYP51B and the fungal virulence factor FgCYP51C, inhibits the growth of the ascomycete fungus Fusarium graminearum (Fg) in vitro and in planta. Here we compare two different methods (setups) of dsRNA delivery, viz. transgene expression (host-induced gene silencing, HIGS) and spray application (spray-induced gene silencing, SIGS), to assess the activity of CYP3RNA and novel dsRNA species designed to target one or two FgCYP51 genes. Using Arabidopsis and barley, we found that dsRNA designed to target two FgCYP51 genes inhibited fungal growth more efficiently than dsRNA targeting a single gene, although both dsRNA species reduced fungal infection. Either dsRNA delivery method reduced fungal growth stronger than anticipated from previous mutational knock-out (KO) strategies, where single gene KO had no significant effect on fungal viability. Consistent with the strong inhibitory effects of the dsRNAs on fungal development in both setups, we detected to a large extent dsRNA-mediated co-silencing of respective non-target FgCYP51 genes. Together, our data further support the valuation that dsRNA applications have an interesting potential for pesticide target validation and gene function studies, apart from their potential for crop protection.
Collapse
Affiliation(s)
- Aline Koch
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Lisa Höfle
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Bernhard Timo Werner
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Jafargholi Imani
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Alexandra Schmidt
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems BiologyJustus Liebig UniversityHeinrich‐Buff‐Ring 58D‐35392GiessenGermany
| | - Karl‐Heinz Kogel
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| |
Collapse
|
598
|
Cai Q, He B, Jin H. A safe ride in extracellular vesicles - small RNA trafficking between plant hosts and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:140-148. [PMID: 31654843 DOI: 10.1016/j.pbi.2019.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Communication between plants and pathogens requires the transport of regulatory molecules across cellular boundaries, which is essential for host defense and pathogen virulence. Previous research has largely focused on protein transport, but, which other molecules function in communication, and how they are transported remains under explored. Recent studies discovered that small RNAs (sRNAs) are transported between plants and pathogens, which can silence target genes in the interacting organisms and regulate host immunity and pathogen infection, a mechanism called 'cross-kingdom RNA interference (RNAi)'. Further studies indicate that plant extracellular vesicles (EVs) are essential for sRNA trafficking and host-pathogen communication. This review will focus on the latest advances in our understanding of plant EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
599
|
Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, Lu W, Wei Q, Ye J, Cai X, Hu C, Yin X, Cao P. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer 2019; 7:326. [PMID: 31775862 PMCID: PMC6882204 DOI: 10.1186/s40425-019-0817-4] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background It is unclear whether plant-derived extracellular vesicles (EVs) can mediate interspecies communication with mammalian cells. Tumor-associated macrophages (TAMs) display a continuum of different polarization states between tumoricidal M1 phenotype and tumor-supportive M2 phenotypes, with a lower M1/M2 ratio correlating with tumor growth, angiogenesis and invasion. We investigated whether EVs from ginseng can alter M2-like polarization both in vitro and in vivo to promote cancer immunotherapy. Methods A novel EVs-liked ginseng-derived nanoparticles (GDNPs) were isolated and characterized from Panax ginseng C. A. Mey. Using GDNPs as an immunopotentiator for altering M2 polarized macrophages, we analyzed associated surface markers, genes and cytokines of macrophages treated with GDNPs. Mice bearing B16F10 melanoma were treated with GDNPs therapy. Tumor growth were assessed, and TAM populations were evaluated by FACS and IF. Results GDNPs significantly promoted the polarization of M2 to M1 phenotype and produce total reactive oxygen species, resulting in increasing apoptosis of mouse melanoma cells. GDNP-induced M1 polarization was found to depend upon Toll-like receptor (TLR)-4 and myeloid differentiation antigen 88 (MyD88)-mediated signaling. Moreover, ceramide lipids and proteins of GDNPs may play an important role in macrophage polarization via TLR4 activation. We found that GDNPs treatment significantly suppressed melanoma growth in tumor-bearing mice with increased presence of M1 macrophages detected in the tumor tissue. Conclusions GDNPs can alter M2 polarization both in vitro and in vivo, which contributes to an antitumor response. The polarization of macrophages induced by GDNPs is largely dependent on TLR4 and MyD88 signalling. GDNPs as an immunomodulator participate in mammalian immune response and may represent a new class of nano-drugs in cancer immunotherapy.
Collapse
Affiliation(s)
- Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huaijiang Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuan Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling Weng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qin Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wuguang Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qingyun Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoyang Yin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China. .,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China. .,Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
600
|
Li Y, Dong C, Hu M, Bai Z, Tong C, Zuo R, Liu Y, Cheng X, Cheng M, Huang J, Liu S. Identification of Flower-Specific Promoters through Comparative Transcriptome Analysis in Brassica napus. Int J Mol Sci 2019; 20:ijms20235949. [PMID: 31779216 PMCID: PMC6928827 DOI: 10.3390/ijms20235949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/24/2023] Open
Abstract
Brassica napus (oilseed rape) is an economically important oil crop worldwide. Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a threat to oilseed rape production. Because the flower petals play pivotal roles in the SSR disease cycle, it is useful to express the resistance-related genes specifically in flowers to hinder further infection with S. sclerotiorum. To screen flower-specific promoters, we first analyzed the transcriptome data from 12 different tissues of the B. napus line ZS11. In total, 249 flower-specific candidate genes with high expression in petals were identified, and the expression patterns of 30 candidate genes were verified by quantitative real-time transcription-PCR (qRT-PCR) analysis. Furthermore, two novel flower-specific promoters (FSP046 and FSP061 promoter) were identified, and the tissue specificity and continuous expression in petals were determined in transgenic Arabidopsis thaliana with fusing the promoters to β-glucuronidase (GUS)-reporter gene. GUS staining, transcript expression pattern, and GUS activity analysis indicated that FSP046 and FSP061 promoter were strictly flower-specific promoters, and FSP046 promoter had a stronger activity. The two promoters were further confirmed to be able to direct GUS expression in B. napus flowers using transient expression system. The transcriptome data and the flower-specific promoters screened in the present study will benefit fundamental research for improving the agronomic traits as well as disease and pest control in a tissue-specific manner.
Collapse
|