551
|
Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999; 274:10689-92. [PMID: 10196138 DOI: 10.1074/jbc.274.16.10689] [Citation(s) in RCA: 1480] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TLR4 is a member of the recently identified Toll-like receptor family of proteins and has been putatively identified as Lps, the gene necessary for potent responses to lipopolysaccharide in mammals. In order to determine whether TLR4 is involved in lipopolysaccharide-induced activation of the nuclear factor-kappaB (NF-kappaB) pathway, HEK 293 cells were transiently transfected with human TLR4 cDNA and an NF-kappaB-dependent luciferase reporter plasmid followed by stimulation with lipopolysaccharide/CD14 complexes. The results demonstrate that lipopolysaccharide stimulates NF-kappaB-mediated gene expression in cells transfected with the TLR4 gene in a dose- and time-dependent fashion. Furthermore, E5531, a lipopolysaccharide antagonist, blocked TLR4-mediated transgene activation in a dose-dependent manner (IC50 approximately 30 nM). These data demonstrate that TLR4 is involved in lipopolysaccharide signaling and serves as a cell-surface co-receptor for CD14, leading to lipopolysaccharide-mediated NF-kappaB activation and subsequent cellular events.
Collapse
Affiliation(s)
- J C Chow
- Division, Eisai Research Institute, Andover, Massachusetts 01810, USA
| | | | | | | | | |
Collapse
|
552
|
Kanakaraj P, Ngo K, Wu Y, Angulo A, Ghazal P, Harris CA, Siekierka JJ, Peterson PA, Fung-Leung WP. Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 responses in IL-1 receptor-associated kinase (IRAK)-deficient mice. J Exp Med 1999; 189:1129-38. [PMID: 10190904 PMCID: PMC2193007 DOI: 10.1084/jem.189.7.1129] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Interleukin (IL)-18 is functionally similar to IL-12 in mediating T helper cell type 1 (Th1) response and natural killer (NK) cell activity but is related to IL-1 in protein structure and signaling, including recruitment of IL-1 receptor-associated kinase (IRAK) to the receptor and activation of c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-kappaB. The role of IRAK in IL-18-induced responses was studied in IRAK-deficient mice. Significant defects in JNK induction and partial impairment in NF-kappaB activation were found in IRAK-deficient Th1 cells, resulting in a dramatic decrease in interferon (IFN)-gamma mRNA expression. In vivo Th1 response to Propionibacterium acnes and lipopolysaccharide in IFN-gamma production and induction of NK cytotoxicity by IL-18 were severely impaired in IRAK-deficient mice. IFN-gamma production by activated NK cells in an acute murine cytomegalovirus infection was significantly reduced despite normal induction of NK cytotoxicity. These results demonstrate that IRAK plays an important role in IL-18-induced signaling and function.
Collapse
Affiliation(s)
- P Kanakaraj
- R.W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting Edge: Toll-Like Receptor 4 (TLR4)-Deficient Mice Are Hyporesponsive to Lipopolysaccharide: Evidence for TLR4 as the Lps Gene Product. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-κB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.
Collapse
Affiliation(s)
- Katsuaki Hoshino
- *Department of Biochemistry, Hyogo College of Medicine, Hyogo, Japan
- †Research Institute, International Medical Center of Japan, Tokyo, Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Japan
| | - Osamu Takeuchi
- *Department of Biochemistry, Hyogo College of Medicine, Hyogo, Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Japan
| | - Taro Kawai
- *Department of Biochemistry, Hyogo College of Medicine, Hyogo, Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Japan
| | - Hideki Sanjo
- *Department of Biochemistry, Hyogo College of Medicine, Hyogo, Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Japan
| | - Tomohiko Ogawa
- ‡Department of Oral Microbiology, Asahi University School of Dentistry, Gifu, Japan; and
| | - Yoshifumi Takeda
- †Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Kiyoshi Takeda
- *Department of Biochemistry, Hyogo College of Medicine, Hyogo, Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Japan
| | - Shizuo Akira
- *Department of Biochemistry, Hyogo College of Medicine, Hyogo, Japan
- §Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Japan
| |
Collapse
|
554
|
Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999; 274:7611-4. [PMID: 10075645 DOI: 10.1074/jbc.274.12.7611] [Citation(s) in RCA: 473] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.
Collapse
Affiliation(s)
- F X Zhang
- Division of Pediatric Infectious Diseases, Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
555
|
Grosshans J, Schnorrer F, Nüsslein-Volhard C. Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech Dev 1999; 81:127-38. [PMID: 10330490 DOI: 10.1016/s0925-4773(98)00236-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the Drosophila embryo the nuclear localisation of Dorsal, a member of the Rel family, is regulated by an extracellular signal, which is transmitted to the interior of the egg cell by a cascade of proteins involving the novel protein Tube and the protein kinase Pelle. Here we analyse the activation mechanism of Tube and Pelle and the interaction between these two components. We show that both proteins, although having different biochemical activities, are activated by the same mechanism. Membrane association alone is not sufficient, but oligomerisation is required for full activation of Tube and Pelle. By deletion analysis we determined the domains of Tube and Pelle mediating the physical interaction and the signalling to downstream components. In order to investigate the link between Pelle and the target of the signalling cascade, the Dorsal/Cactus complex, we isolated and characterised the novel, but evolutionary conserved protein Pellino, which associates with the kinase domain of Pelle.
Collapse
Affiliation(s)
- J Grosshans
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung III (Genetik), Spemannstrasse 35/III, D-72076, Tübingen, Germany.
| | | | | |
Collapse
|
556
|
Abstract
Innate immune recognition is mediated by a system of germline-encoded receptors that recognize conserved molecular patterns that are associated with microbial pathogens. These receptors are coupled to signal transduction pathways that control expression of a variety of inducible immune-response genes. Toll receptors and the associated signaling pathways of nuclear factor kappaB may represent the most ancient host defense system found in mammals, insects and plants.
Collapse
Affiliation(s)
- E B Kopp
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
557
|
Mingot JM, Tilburn J, Diez E, Bignell E, Orejas M, Widdick DA, Sarkar S, Brown CV, Caddick MX, Espeso EA, Arst HN, Peñalva MA. Specificity determinants of proteolytic processing of Aspergillus PacC transcription factor are remote from the processing site, and processing occurs in yeast if pH signalling is bypassed. Mol Cell Biol 1999; 19:1390-400. [PMID: 9891072 PMCID: PMC116067 DOI: 10.1128/mcb.19.2.1390] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aspergillus nidulans transcription factor PacC, which mediates pH regulation, is proteolytically processed to a functional form in response to ambient alkaline pH. The full-length PacC form is unstable in the presence of an operational pH signal transduction pathway, due to processing to the relatively stable short functional form. We have characterized and used an extensive collection of pacC mutations, including a novel class of "neutrality-mimicking" pacC mutations having aspects of both acidity- and alkalinity-mimicking phenotypes, to investigate a number of important features of PacC processing. Analysis of mutant proteins lacking the major translation initiation residue or truncated at various distances from the C terminus showed that PacC processing does not remove N-terminal residues, indicated that processing yields slightly heterogeneous products, and delimited the most upstream processing site to residues approximately 252 to 254. Faithful processing of three mutant proteins having deletions of a region including the predicted processing site(s) and of a fourth having 55 frameshifted residues following residue 238 indicated that specificity determinants reside at sequences or structural features located upstream of residue 235. Thus, the PacC protease cuts a peptide bond(s) remote from these determinants, possibly thereby resembling type I endonucleases. Downstream of the cleavage site, residues 407 to 678 are not essential for processing, but truncation at or before residue 333 largely prevents it. Ambient pH apparently regulates the accessibility of PacC to proteolytic processing. Alkalinity-mimicking mutations L259R, L266F, and L340S favor the protease-accessible conformation, whereas a protein with residues 465 to 540 deleted retains a protease-inaccessible conformation, leading to acidity mimicry. Finally, not only does processing constitute a crucial form of modulation for PacC, but there is evidence for its conservation during fungal evolution. Transgenic expression of a truncated PacC protein, which was processed in a pH-independent manner, showed that appropriate processing can occur in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J M Mingot
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas del CSIC, Madrid 28006, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
558
|
Cantera R, Kozlova T, Barillas-Mury C, Kafatos FC. Muscle structure and innervation are affected by loss of Dorsal in the fruit fly, Drosophila melanogaster. Mol Cell Neurosci 1999; 13:131-41. [PMID: 10192771 DOI: 10.1006/mcne.1999.0739] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Drosophila, the Rel-protein Dorsal and its inhibitor, Cactus, act in signal transduction pathways that control the establishment of dorsoventral polarity during embryogenesis and the immune response during postembryonic life. Here we present data indicating that Dorsal is also involved in the control of development and maintenance of innervation in somatic muscles. Dorsal and Cactus are colocalized in all somatic muscles during postembryonic development. In larvae and adults, these proteins are distributed at low levels in the cytoplasm and nuclei and at much higher levels in the postsynaptic component of glutamatergic neuromuscular junctions. Absence of Dorsal, in homozygous dorsal mutant larvae results in muscle misinsertions, duplications, nuclear hypotrophy, disorganization of actin bundles, and altered subcellular distribution of Cactus. Some muscles show very abnormal neuromuscular junctions, and some motor axon terminals are transformed into growth cone-like structures embedded in synaptotagmin-enriched vesicles. The detailed phenotype suggests a role of Dorsal signalling in the maintenance and plasticity of the NMJ.
Collapse
Affiliation(s)
- R Cantera
- Zoology Department, Stockholm University, Stockholm, S-10691, Sweden
| | | | | | | |
Collapse
|
559
|
Jiang H, Wang Y, Kanost MR. Four serine proteinases expressed in Manduca sexta haemocytes. INSECT MOLECULAR BIOLOGY 1999; 8:39-53. [PMID: 9927173 DOI: 10.1046/j.1365-2583.1999.810039.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several putative serine proteinases were detected in Manduca sexta larval plasma by labelling with radioactive diisopropyl fluorophosphate. To begin to identify and characterize such enzymes, a polymerase chain reaction was carried out using haemocyte cDNA as template and primers designed to amplify conserved sequences from serine proteinases. Four serine proteinase cDNA fragments were cloned. These were used as probes to screen an M. sexta larval haemocyte cDNA library to obtain full-length clones encoding haemocyte proteinases 1-4 (HP1, HP2, HP3 and HP4). HP1 and HP2 contain an aminoterminal 'clip' domain similar to those found in horseshoe crab clotting enzyme and clotting factor B and also in the Drosophila melanogaster proteinases snake and easter. HP3 and HP4 are most similar to proteinases from mammalian leucocytes. HP1 and HP2 are both present in plasma. HP1 is expressed in haemocytes (granular cells and oenocytoids) and not in fat body. HP2 is expressed in fat body and in granular haemocytes, plasmatocytes and oenocytoids. After injection of larvae with bacteria, the level of HP2 mRNA decreased in haemocytes and increased in fat body.
Collapse
Affiliation(s)
- H Jiang
- Department of Biochemistry, Kansas State University, Manhattan 66506, USA
| | | | | |
Collapse
|
560
|
|
561
|
Shah J, Klessig DF. Salicylic acid: signal perception and transduction. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60503-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
562
|
Iten M, Hoffmann T, Grill E. Receptors and signalling components of plant hormones. J Recept Signal Transduct Res 1999; 19:41-58. [PMID: 10071749 DOI: 10.3109/10799899909036636] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in understanding plant hormonal signalling has resulted in the identification of a variety of signalling components including receptor kinases with homology to the bacterial two component system as well as serine/threonine kinases and protein phosphatases. In addition, the existence of MAP kinase pathways in plants indicates a similar role of these signalling cascades in the relay of exogenous signals into the nucleus as has been disclosed in animal cells. The emerging signalling pathways of the plant hormone abscisic acid and ethylene are presented.
Collapse
Affiliation(s)
- M Iten
- Lehrstuhl für Botanik, Technische Universität München, Germany
| | | | | |
Collapse
|
563
|
Drosophila hemocytes, phagocytosis, and croquemort, a macrophage receptor. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1874-5172(99)80026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
564
|
Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 1998; 188:2091-7. [PMID: 9841923 PMCID: PMC2212382 DOI: 10.1084/jem.188.11.2091] [Citation(s) in RCA: 573] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces activation of the transcription factor nuclear factor kappaB (NF-kappaB) in host cells upon infection. LPS binds to the glycosylphosphatidylinositol (GPI)- anchored membrane protein CD14, which lacks an intracellular signaling domain. Here we investigated the role of mammalian Toll-like receptors (TLRs) as signal transducers for LPS. Overexpression of TLR2, but not TLR1, TLR4, or CD14 conferred LPS inducibility of NF-kappaB activation in mammalian 293 cells. Mutational analysis demonstrated that this LPS response requires the intracellular domain of TLR2. LPS signaling through TLR2 was dependent on serum which contains soluble CD14 (sCD14). Coexpression of CD14 synergistically enhanced LPS signal transmission through TLR2. In addition, purified recombinant sCD14 could substitute for serum to support LPS-induced TLR2 activation. LPS stimulation of TLR2 initiated an interleukin 1 receptor-like NF-kappaB signaling cascade. These findings suggest that TLR2 may be a signaling component of a cellular receptor for LPS.
Collapse
Affiliation(s)
- C J Kirschning
- Tularik, Inc., South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
565
|
Shen B, Manley JL. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 1998; 125:4719-28. [PMID: 9806920 DOI: 10.1242/dev.125.23.4719] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Determination of dorsal/ventral polarity in Drosophila requires 12 genetically defined, maternally encoded proteins. These include Toll, a transmembrane receptor, Pelle, a ser/thr protein kinase and Tube, all of which function intracytoplasmically to initiate the cascade that ultimately activates Dorsal, an NF-kappaB family transcription factor. Here we describe biochemical interactions between recombinant Toll, Pelle and Tube that provide insights into early events in activation of the signaling cascade. We first show that Pelle binds directly to a region within the Toll intracytoplasmic domain, providing the first evidence that these two evolutionarily conserved molecules physically interact. We then demonstrate that Pelle can be autophosphorylated, and that this prevents binding to Toll as well as Tube. Autophosphorylation occurs in the N-terminal, death-domain-containing region of Pelle, which is dispensable for binding to Toll but required for enzymatic activity. We also show that Pelle phosphorylates Toll, within the region required for Pelle interaction, but this phosphorylation can be blocked by a previously characterized inhibitory domain at the Toll C terminus. These and other results allow us to propose a model by which multiple phosphorylation-regulated interactions between these three proteins lead to activation of the Dorsal signaling pathway.
Collapse
Affiliation(s)
- B Shen
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
566
|
Valentine SA, Chen G, Shandala T, Fernandez J, Mische S, Saint R, Courey AJ. Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol Cell Biol 1998; 18:6584-94. [PMID: 9774673 PMCID: PMC109243 DOI: 10.1128/mcb.18.11.6584] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1998] [Accepted: 08/17/1998] [Indexed: 11/20/2022] Open
Abstract
Dorsal functions as both an activator and repressor of transcription to determine dorsoventral fate in the Drosophila melanogaster embryo. Repression by Dorsal requires the corepressor Groucho (Gro) and is mediated by silencers termed ventral repression regions (VRRs). A VRR in zerknüllt (zen) contains Dorsal binding sites as well as an essential element termed AT2. We have identified and purified an AT2 DNA binding activity in embryos and shown it to consist of cut (ct) and dead ringer (dri) gene products. Studies of loss-of-function mutations in ct and dri demonstrate that both genes are required for the activity of the AT2 site. Dorsal and Dri both bind Gro, acting cooperatively to recruit it to the DNA. Thus, ventral repression may require the formation of a multiprotein complex at the VRR. This complex includes Dorsal, Gro, and additional DNA binding proteins, which appear to convert Dorsal from an activator to a repressor by enabling it to recruit Gro to the template. By showing how binding site context can dramatically alter transcription factor function, these findings help clarify the mechanisms responsible for the regulatory specificity of transcription factors.
Collapse
Affiliation(s)
- S A Valentine
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
567
|
Vincenti MP, Coon CI, Brinckerhoff CE. Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1beta-stimulated synovial fibroblasts. ARTHRITIS AND RHEUMATISM 1998; 41:1987-94. [PMID: 9811054 DOI: 10.1002/1529-0131(199811)41:11<1987::aid-art14>3.0.co;2-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine how interleukin-1 (IL-1), through activation of collagenase 1 (matrix metalloproteinase 1 [MMP-1]) transcription in synovial fibroblasts, contributes to cartilage degradation in rheumatoid arthritis. METHODS Primary rabbit synovial fibroblasts were transiently transfected with MMP-1 promoter/ luciferase constructs, and promoter activity in response to IL-1 was assessed. A minimal IL-1-response element was defined and used to evaluate DNA binding proteins by electrophoretic mobility shift assay and in situ ultraviolet crosslinking assay. RESULTS Transcriptional activation of the MMP-1 gene by IL-1 in rabbit synovial fibroblasts required a dorsal-like element, which was located at nucleotide (nt) -3,029, as well as an activator protein 1 site at nt -77. Importantly, an IL-1-induced DNA binding activity that was specific for the dorsal-like element contained the p50 subunit of nuclear factor kappaB (NF-kappaB). CONCLUSION These studies demonstrate, for the first time, a role for NF-kappaB in the induction of MMP-1, and suggest a mechanism of NF-kappaB-mediated cartilage degradation in rheumatoid arthritis.
Collapse
Affiliation(s)
- M P Vincenti
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
568
|
Affiliation(s)
- J B Gurdon
- Wellcome CRC Institute, Department of Zoology, University of Cambridge, United Kingdom.
| | | | | |
Collapse
|
569
|
Jiang H, Wang Y, Kanost MR. Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc Natl Acad Sci U S A 1998; 95:12220-5. [PMID: 9770467 PMCID: PMC22812 DOI: 10.1073/pnas.95.21.12220] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1998] [Accepted: 08/13/1998] [Indexed: 11/18/2022] Open
Abstract
Activation of pro-phenol oxidase (proPO) in insects and crustaceans is important in defense against wounding and infection. The proPO zymogen is activated by a specific proteolytic cleavage. PO oxidizes phenolic compounds to produce quinones, which may help to kill pathogens and can also be used for synthesis of melanin to seal wounds and encapsulate parasites. We have isolated from the tobacco hornworm, Manduca sexta, a serine proteinase that activates proPO, and have cloned its cDNA. The isolated proPO activating proteinase (PAP) hydrolyzed artificial substrates but required other protein factors for proPO activation, suggesting that proPO-activating enzyme may exist as a protein complex, one component of which is PAP. PAP (44 kDa) is composed of two disulfide-linked polypeptide chains (31 kDa and 13 kDa). A cDNA for PAP was isolated from a hemocyte library, by using a PCR-generated probe based on the amino-terminal amino acid sequence of the 31-kDa catalytic domain. PAP belongs to a family of arthropod serine proteinases containing a carboxyl-terminal proteinase domain and an amino-terminal "clip" domain. The member of this family most similar in sequence to PAP is the product of the easter gene from Drosophila melanogaster. PAP mRNA was present at a low level in larval hemocytes and fat body, but became much more abundant in fat body after insects were injected with Escherichia coli. Sequence data and 3H-diisopropyl fluorphosphate labeling results suggest that the same PAP exists in hemolymph and cuticle.
Collapse
Affiliation(s)
- H Jiang
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
570
|
Thomas CM, Dixon MS, Parniske M, Golstein C, Jones JD. Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philos Trans R Soc Lond B Biol Sci 1998; 353:1413-24. [PMID: 9800204 PMCID: PMC1692346 DOI: 10.1098/rstb.1998.0296] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In many plant-pathogen interactions resistance to disease is controlled by the interaction of plant-encoded resistance (R) genes and pathogen-encoded avirulence (Avr) genes. The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an ideal system to study the molecular basis of pathogen perception by plants. A total of four tomato genes for resistance to C. fulvum (Cf-2, Cf-4, Cf-5 and Cf-9) have been isolated from two genetically complex chromosomal loci. Their gene products recognize specific C. fulvum-encoded avirulence gene products (Avr2, Avr4, Avr5 and Avr9) by an unknown molecular mechanism. Cf genes encode extracellular membrane-anchored glycoproteins comprised predominantly of 24 amino acid leucine-rich repeats (LRRs). Cf genes from the same locus encode proteins which are more than 90% identical. Most of the amino-acid sequence differences correspond to the solvent-exposed residues within a beta-strand/beta-turn structural motif which is highly conserved in LRR proteins. Sequence variability within this motif is predicted to affect the specificity of ligand binding. Our analysis of Cf gene loci at the molecular level has shown they comprise tandemly duplicated homologous genes, and suggests a molecular mechanism for the generation of sequence diversity at these loci. Our analysis provides further insight into the molecular basis of pathogen perception by plants and the organization and evolution of R gene loci.
Collapse
Affiliation(s)
- C M Thomas
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
| | | | | | | | | |
Collapse
|
571
|
Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 1998; 395:284-8. [PMID: 9751057 DOI: 10.1038/26239] [Citation(s) in RCA: 934] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vertebrates and invertebrates initiate a series of defence mechanisms following infection by Gram-negative bacteria by sensing the presence of lipopolysaccharide (LPS), a major component of the cell wall of the invading pathogen. In humans, monocytes and macrophages respond to LPS by inducing the expression of cytokines, cell-adhesion proteins, and enzymes involved in the production of small proinflammatory mediators. Under pathophysiological conditions, LPS exposure can lead to an often fatal syndrome known as septic shock. Sensitive responses of myeloid cells to LPS require a plasma protein called LPS-binding protein and the glycosylphosphatidylinositol-anchored membrane protein CD14. However, the mechanism by which the LPS signal is transduced across the plasma membrane remains unknown. Here we show that Toll-like receptor 2 (TLR2) is a signalling receptor that is activated by LPS in a response that depends on LPS-binding protein and is enhanced by CD14. A region in the intracellular domain of TLR2 with homology to a portion of the interleukin (IL)-1 receptor that is implicated in the activation of the IL-1-receptor-associated kinase is required for this response. Our results indicate that TLR2 is a direct mediator of signalling by LPS.
Collapse
Affiliation(s)
- R B Yang
- Department of Molecular Biology, Genentech, South San Francisco, California 94080-4990, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
572
|
Briggs LJ, Stein D, Goltz J, Corrigan VC, Efthymiadis A, Hübner S, Jans DA. The cAMP-dependent protein kinase site (Ser312) enhances dorsal nuclear import through facilitating nuclear localization sequence/importin interaction. J Biol Chem 1998; 273:22745-52. [PMID: 9712906 DOI: 10.1074/jbc.273.35.22745] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control over the nuclear import of transcription factors (TFs) represents a level of gene regulation integral to cellular processes such as differentiation and transformation. The Drosophila TF Dorsal shares with other rel TF family members the fact that it contains a phosphorylation site for the cAMP-dependent protein kinase (PKA) 22 amino acids N-terminal to the nuclear localization signal (NLS) at amino acids 335-340. This study examines for the first time the nuclear import kinetics of Dorsal fusion proteins in rat hepatoma cells in vivo and in vitro. Nuclear uptake was found to be not only NLS-dependent, but also strongly dependent on the PKA site, whereby substitution of Ser312 by either Ala or Glu using site-directed mutagenesis severely reduced nuclear accumulation. Exogenous cAMP or PKA catalytic subunit significantly enhanced the nuclear import of wild-type proteins both in vivo and in vitro. Using a direct binding assay, the molecular basis of PKA site enhancement of Dorsal fusion protein nuclear import was determined to be PKA site-mediated modulation of NLS recognition by the importin 58/97 complex. The physiological relevance of these results is supported by the observation that Drosophila embryos expressing PKA site Dorsal mutant variants were impaired in development. We conclude that the Dorsal NLS and PKA site constitute a phosphorylation-regulated NLS essential to Dorsal function and able to function in heterologous mammalian cell systems, where phosphorylation modulates the affinity of NLS recognition by importin.
Collapse
Affiliation(s)
- L J Briggs
- Nuclear Signaling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, A.C. T. 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
573
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
574
|
Schisa JA, Strickland S. Cytoplasmic polyadenylation of Toll mRNA is required for dorsal-ventral patterning in Drosophila embryogenesis. Development 1998; 125:2995-3003. [PMID: 9655821 DOI: 10.1242/dev.125.15.2995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll encodes a receptor that is critical for dorsal-ventral patterning in the early Drosophila embryo. Previous data have suggested that the accumulation of Toll protein in the embryo temporally correlates with elongation of the poly (A) tail of the message. Here, we demonstrate that Toll mRNA is translationally activated by regulated cytoplasmic polyadenylation. We also identify a 192 nucleotide regulatory element in the Toll 3′ UTR that is necessary for robust translational activation of Toll mRNA and also regulates polyadenylation. UV crosslinking analyses suggest that two proteins bind specifically to the 192 nucleotide element. One or both of these proteins may be factors that are required for translational regulation or cytoplasmic polyadenylation. These studies demonstrate that regulated polyadenylation plays a critical role in the Drosophila dorsal-ventral patterning system.
Collapse
Affiliation(s)
- J A Schisa
- Department of Pharmacology and Program in Genetics, University at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | |
Collapse
|
575
|
Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998; 2:253-8. [PMID: 9734363 DOI: 10.1016/s1097-2765(00)80136-7] [Citation(s) in RCA: 1196] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Toll-mediated signaling cascade using the NF-kappaB pathway has been shown to be essential for immune responses in adult Drosophila, and we recently reported that a human homolog of the Drosophila Toll protein induces various immune response genes via this pathway. We now demonstrate that signaling by the human Toll receptor employs an adaptor protein, MyD88, and induces activation of NF-kappaB via the Pelle-like kinase IRAK and the TRAF6 protein, similar to IL-1R-mediated NF-kappaB activation. However, we find that Toll and IL-1R signaling pathways are not identical with respect to AP-1 activation. Finally, our findings implicate MyD88 as a general adaptor/regulator molecule for the Toll/IL-1R family of receptors for innate immunity.
Collapse
Affiliation(s)
- R Medzhitov
- Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | | | | | |
Collapse
|
576
|
Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9:143-50. [PMID: 9697844 DOI: 10.1016/s1074-7613(00)80596-8] [Citation(s) in RCA: 1663] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MyD88, originally isolated as a myeloid differentiation primary response gene, is shown to act as an adaptor in interleukin-1 (IL-1) signaling by interacting with both the IL-1 receptor complex and IL-1 receptor-associated kinase (IRAK). Mice generated by gene targeting to lack MyD88 have defects in T cell proliferation as well as induction of acute phase proteins and cytokines in response to IL-1. Increases in interferon-gamma production and natural killer cell activity in response to IL-18 are abrogated. In vivo Th1 response is also impaired. Furthermore, IL-18-induced activation of NF-kappaB and c-Jun N-terminal kinase (JNK) is blocked in MyD88-/- Th1-developing cells. Taken together, these results demonstrate that MyD88 is a critical component in the signaling cascade that is mediated by IL-1 receptor as well as IL-18 receptor.
Collapse
Affiliation(s)
- O Adachi
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
577
|
Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted Disruption of the MyD88 Gene Results in Loss of IL-1- and IL-18-Mediated Function. Immunity 1998. [DOI: https://doi.org/10.1016/s1074-7613(00)80596-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
578
|
Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted Disruption of the MyD88 Gene Results in Loss of IL-1- and IL-18-Mediated Function. Immunity 1998. [DOI: https:/doi.org/10.1016/s1074-7613(00)80596-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
579
|
Halfon MS, Keshishian H. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo. Dev Biol 1998; 199:164-74. [PMID: 9676200 DOI: 10.1006/dbio.1998.8915] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spätzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spätzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.
Collapse
Affiliation(s)
- M S Halfon
- Biology Department, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
580
|
Towb P, Galindo RL, Wasserman SA. Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 1998; 125:2443-50. [PMID: 9609827 DOI: 10.1242/dev.125.13.2443] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A signaling pathway initiated by activation of the transmembrane receptor Toll defines dorsoventral polarity in the Drosophila embryo. Toll, which is present over the entire surface of the embryo, is activated ventrally by interaction with a spatially restricted, extracellular ligand. Tube and Pelle then transduce the signal from activated Toll to a complex of Dorsal and Cactus. Here we demonstrate by an mRNA microinjection assay that targeting of either Tube or Pelle to the plasma membrane by myristylation is sufficient to activate the signal transduction pathway that leads to Dorsal nuclear translocation. Using confocal immunofluorescence microscopy we also show that activated Toll induces a localized recruitment of Tube and Pelle to the plasma membrane. Together, these results strongly support the hypothesis that intracellular signaling requires the Toll-mediated formation of a membrane-associated complex containing both Tube and Pelle.
Collapse
Affiliation(s)
- P Towb
- Department of Molecular Biology and Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
581
|
Kanakaraj P, Schafer PH, Cavender DE, Wu Y, Ngo K, Grealish PF, Wadsworth SA, Peterson PA, Siekierka JJ, Harris CA, Fung-Leung WP. Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J Exp Med 1998; 187:2073-9. [PMID: 9625767 PMCID: PMC2212370 DOI: 10.1084/jem.187.12.2073] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Interleukin (IL)-1 is a proinflammatory cytokine with pleiotropic effects in inflammation. IL-1 binding to its receptor triggers a cascade of signaling events, including activation of the stress-activated mitogen-activated protein (MAP) kinases, c-Jun NH2-terminal kinase (JNK) and p38 MAP kinase, as well as transcription factor nuclear factor kappaB (NF-kappaB). IL-1 signaling results in cellular responses through induction of inflammatory gene products such as IL-6. One of the earliest events in IL-1 signaling is the rapid interaction of IL-1 receptor-associated kinases, IRAK and IRAK-2, with the receptor complex. The relative roles of IRAK and IRAK-2 in IL-1 signaling pathways and subsequent cellular responses have not been previously determined. To evaluate the importance of IRAK in IL-1 signaling, IRAK-deficient mouse fibroblast cells were prepared and studied. Here we report that IL-1-mediated activation of JNK, p38, and NF-kappaB were all reduced in embryonic fibroblasts deficient in IRAK expression. In addition, IL-6 production in response to IL-1 was also dramatically reduced in IRAK-deficient embryonic fibroblasts and in skin fibroblasts prepared from IRAK-deficient mice. Our results demonstrate that IRAK plays an essential proximal role in coordinating multiple IL-1 signaling pathways for optimal induction of cellular responses.
Collapse
Affiliation(s)
- P Kanakaraj
- R.W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
582
|
Cloning and Characterization of Two Toll/Interleukin-1 Receptor–Like Genes TIL3 and TIL4: Evidence for a Multi-Gene Receptor Family in Humans. Blood 1998. [DOI: 10.1182/blood.v91.11.4020.411a44_4020_4027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Remarkable structural and functional similarities exist between theDrosophila Toll/Cactus/Dorsal signaling pathway and the mammalian cytokine-mediated interleukin-1 receptor (IL-1R)/I-κB/NF-κB activation cascade. In addition to a role regulating dorsal-ventral polarity in the developing Drosophilaembryo, signaling through Drosophila Toll (dToll) activates the nonclonal, or innate, immune response in the adult fly. Recent evidence indicates that a human homologue of the dToll protein participates in the regulation of both innate and adaptive human immunity through the activation of NF-κB and the expression of the NF-κB–controlled genes IL-1, IL-6, and IL-8, thus affirming the evolutionary conservation of this host defense pathway. We report here the cloning of two novel human genes, TIL3 and TIL4 (Toll/IL-1R–like-3, -4) that exhibit homology to both the leucine-rich repeat extracellular domains and the IL-1R–like intracellular domains of human andDrosophila Toll. Northern analysis showed distinctly different tissue distribution patterns with TIL3 expressed predominantly in ovary, peripheral blood leukocytes, and prostate, and TIL4 expressed primarily in peripheral blood leukocytes and spleen. Chromosomal mapping by fluorescence in situ hybridization localized the TIL3 gene to chromosome 1q41-42 and TIL4 to chromosome 4q31.3-32. Functional studies showed that both TIL3 and TIL4 are able to activate NF-κB, though in a cell type–dependent fashion. Together with human Toll, TIL3 and TIL4 encode a family of genes with conserved structural and functional features involved in immune modulation.
Collapse
|
583
|
Levin JZ, Fletcher JC, Chen X, Meyerowitz EM. A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis. Genetics 1998; 149:579-95. [PMID: 9611175 PMCID: PMC1460208 DOI: 10.1093/genetics/149.2.579] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development.
Collapse
Affiliation(s)
- J Z Levin
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
584
|
Han ZS, Enslen H, Hu X, Meng X, Wu IH, Barrett T, Davis RJ, Ip YT. A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol Cell Biol 1998; 18:3527-39. [PMID: 9584193 PMCID: PMC108934 DOI: 10.1128/mcb.18.6.3527] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Accepted: 03/17/1998] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that the insect and mammalian innate immune response is mediated by homologous regulatory components. Proinflammatory cytokines and bacterial lipopolysaccharide stimulate mammalian immunity by activating transcription factors such as NF-kappaB and AP-1. One of the responses evoked by these stimuli is the initiation of a kinase cascade that leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase on Thr and Tyr within the motif Thr-Gly-Tyr, which is located within subdomain VIII. We have investigated the possible involvement of the p38 MAP kinase pathway in the Drosophila immune response. Two genes that are highly homologous to the mammalian p38 MAP kinase were molecularly cloned and characterized. Furthermore, genes that encode two novel Drosophila MAP kinase kinases, D-MKK3 and D-MKK4, were identified. D-MKK3 is an efficient activator of both Drosophila p38 MAP kinases, while D-MKK4 is an activator of D-JNK but not D-p38. These data establish that Drosophila indeed possesses a conserved p38 MAP kinase signaling pathway. We have examined the role of the D-p38 MAP kinases in the regulation of insect immunity. The results revealed that one of the functions of D-p38 is to attenuate antimicrobial peptide gene expression following exposure to lipopolysaccharide.
Collapse
Affiliation(s)
- Z S Han
- Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
585
|
Cloning and Characterization of Two Toll/Interleukin-1 Receptor–Like Genes TIL3 and TIL4: Evidence for a Multi-Gene Receptor Family in Humans. Blood 1998. [DOI: 10.1182/blood.v91.11.4020] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractRemarkable structural and functional similarities exist between theDrosophila Toll/Cactus/Dorsal signaling pathway and the mammalian cytokine-mediated interleukin-1 receptor (IL-1R)/I-κB/NF-κB activation cascade. In addition to a role regulating dorsal-ventral polarity in the developing Drosophilaembryo, signaling through Drosophila Toll (dToll) activates the nonclonal, or innate, immune response in the adult fly. Recent evidence indicates that a human homologue of the dToll protein participates in the regulation of both innate and adaptive human immunity through the activation of NF-κB and the expression of the NF-κB–controlled genes IL-1, IL-6, and IL-8, thus affirming the evolutionary conservation of this host defense pathway. We report here the cloning of two novel human genes, TIL3 and TIL4 (Toll/IL-1R–like-3, -4) that exhibit homology to both the leucine-rich repeat extracellular domains and the IL-1R–like intracellular domains of human andDrosophila Toll. Northern analysis showed distinctly different tissue distribution patterns with TIL3 expressed predominantly in ovary, peripheral blood leukocytes, and prostate, and TIL4 expressed primarily in peripheral blood leukocytes and spleen. Chromosomal mapping by fluorescence in situ hybridization localized the TIL3 gene to chromosome 1q41-42 and TIL4 to chromosome 4q31.3-32. Functional studies showed that both TIL3 and TIL4 are able to activate NF-κB, though in a cell type–dependent fashion. Together with human Toll, TIL3 and TIL4 encode a family of genes with conserved structural and functional features involved in immune modulation.
Collapse
|
586
|
Abstract
In the Drosophila larva, blood cells or hemocytes are formed in the lymph gland. The major blood cell type, called plasmatocyte, is small, non-adhesive and phagocytic. Plasmatocytes differentiate into adhesive lamellocytes to form multilayered capsules around foreign substances or, in mutant melanotic tumor strains, around self tissue. Mutations in cactus or Toll, or constitutive expression of dorsal can induce lamellocyte differentiation and cause the formation of melanotic capsules. As maternally encoded proteins, Toll, Cactus and Dorsal, along with Tube and Pelle, participate in a common signal transduction pathway to specify the embryonic dorsal-ventral axis. Using the maternal pathway as a paradigm, we investigated if these proteins have additional roles in larval hemocyte formation and differentiation. Analysis of cactus mutants that lack Cactus protein revealed that almost all of these animals have an overabundance of hemocytes, carry melanotic capsules and die before reaching pupal stages. In addition, the lymph glands of cactus larvae are considerably enlarged. The number of mitotic cells in the cactus and TollD hemolymph is higher than that in the wild-type hemolymph. The hemocyte density of mutant Toll, tube or pelle hemolymph is significantly lower than that of the wild type. Lethality of mutant cactus animals could be rescued either by the selective expression of wild-type Cactus protein in the larval lymph gland or by the introduction of mutations in Toll, tube or pelle. Cactus, Toll, Tube and Pelle proteins are expressed in the nascent hemocytes of the larval lymph gland. Our results suggest that the Toll/Cactus signal transduction pathway plays a significant role in regulating hemocyte proliferation and hemocyte density in the Drosophila larva. These findings are discussed in light of similar hematopoietic functions of Rel/I(kappa)B-family proteins in mice.
Collapse
Affiliation(s)
- P Qiu
- Biology Department, City College, New York, NY 10031, USA
| | | | | |
Collapse
|
587
|
Nicolas E, Reichhart JM, Hoffmann JA, Lemaitre B. In vivo regulation of the IkappaB homologue cactus during the immune response of Drosophila. J Biol Chem 1998; 273:10463-9. [PMID: 9553105 DOI: 10.1074/jbc.273.17.10463] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dorsoventral regulatory gene pathway (spätzle/Toll/cactus) controls the expression of several antimicrobial genes during the immune response of Drosophila. This regulatory cascade shows striking similarities with the cytokine-induced activation cascade of NF-kappaB during the inflammatory response in mammals. Here, we have studied the regulation of the IkappaB homologue Cactus in the fat body during the immune response. We observe that the cactus gene is up-regulated in response to immune challenge. Interestingly, the expression of the cactus gene is controlled by the spätzle/Toll/cactus gene pathway, indicating that the cactus gene is autoregulated. We also show that two Cactus isoforms are expressed in the cytoplasm of fat body cells and that they are rapidly degraded and resynthesized after immune challenge. This degradation is also dependent on the Toll signaling pathway. Altogether, our results underline the striking similarities between the regulation of IkappaB and cactus during the immune response.
Collapse
Affiliation(s)
- E Nicolas
- Institut de Biologie Moléculaire et Cellulaire, UPR 9022 du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
588
|
Wu LP, Anderson KV. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 1998; 392:93-7. [PMID: 9510254 DOI: 10.1038/32195] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Drosophila immune response uses many of the same components as the mammalian innate immune response, including signalling pathways that activate transcription factors of the Rel/NK-kappaB family. In response to infection, two Rel proteins, Dif and Dorsal, translocate from the cytoplasm to the nuclei of larval fat-body cells. The Toll signalling pathway, which controls dorsal-ventral patterning during Drosophila embryogenesis, regulates the nuclear import of Dorsal in the immune response, but here we show that the Toll pathway is not required for nuclear import of Dif. Cytoplasmic retention of both Dorsal and Dif depends on Cactus protein; nuclear import of Dorsal and Dif is accompanied by degradation of Cactus. Therefore the two signalling pathways that target Cactus for degradation must discriminate between Cactus-Dorsal and Cactus-Dif complexes. We identified new genes that are required for normal induction of transcription of an antibacterial peptide during the immune response. Mutations in three of these genes prevent nuclear import of Dif in response to infection, and define new components of signalling pathways involving Rel. Mutations in three other genes cause constitutive nuclear localization of Dif; these mutations may block Rel protein activity by a novel mechanism.
Collapse
Affiliation(s)
- L P Wu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
589
|
Abstract
Research over the past few years has begun to provide significant advances in our understanding of the interplay between the innate and adaptive immune systems. New findings in several model systems reveal remarkable parallels and conservation of ancient host defense pathways in organisms separated by over a billion years of evolution.
Collapse
Affiliation(s)
- R Medzhitov
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
590
|
Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 1998; 95:588-93. [PMID: 9435236 PMCID: PMC18464 DOI: 10.1073/pnas.95.2.588] [Citation(s) in RCA: 1238] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/1997] [Accepted: 11/18/1997] [Indexed: 02/05/2023] Open
Abstract
The discovery of sequence homology between the cytoplasmic domains of Drosophila Toll and human interleukin 1 receptors has sown the conviction that both molecules trigger related signaling pathways tied to the nuclear translocation of Rel-type transcription factors. This conserved signaling scheme governs an evolutionarily ancient immune response in both insects and vertebrates. We report the molecular cloning of a class of putative human receptors with a protein architecture that is similar to Drosophila Toll in both intra- and extracellular segments. Five human Toll-like receptors--named TLRs 1-5--are probably the direct homologs of the fly molecule and, as such, could constitute an important and unrecognized component of innate immunity in humans. Intriguingly, the evolutionary retention of TLRs in vertebrates may indicate another role--akin to Toll in the dorsoventralization of the Drosophila embryo--as regulators of early morphogenetic patterning. Multiple tissue mRNA blots indicate markedly different patterns of expression for the human TLRs. By using fluorescence in situ hybridization and sequence-tagged site database analyses, we also show that the cognate Tlr genes reside on chromosomes 4 (TLRs 1, 2, and 3), 9 (TLR4), and 1 (TLR5). Structure prediction of the aligned Toll-homology domains from varied insect and human TLRs, vertebrate interleukin 1 receptors and MyD88 factors, and plant disease-resistance proteins recognizes a parallel beta/alpha fold with an acidic active site; a similar structure notably recurs in a class of response regulators broadly involved in transducing sensory information in bacteria.
Collapse
Affiliation(s)
- F L Rock
- Department of Molecular Biology, DNAX Research Institute, Palo Alto, CA 94304-1104, USA
| | | | | | | | | |
Collapse
|
591
|
Affiliation(s)
- R Medzhitov
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
592
|
Hutcheson SW. Current concepts of active defense in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:59-90. [PMID: 15012493 DOI: 10.1146/annurev.phyto.36.1.59] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A growing body of evidence indicates that elicitation of primary active defense responses results from a recognition event frequently involving protein-protein interactions. Most pathogen avirulence determinants eliciting resistance gene-dependent responses have been shown to be proteins with no apparent enzymic activity. Disruption of the tertiary and quaternary structure of these proteins abolishes their elicitor activity. Critical to their elicitor activity is their display by the pathogen. Resistance genes are proposed to function as receptors for the eliciting proteins. The most consistent feature of resistance gene products is the presence of potential protein binding domains in the form of leucine-rich repeat regions, and there is direct evidence for the physical interaction of elicitor proteins and receptor proteins in several cases. Thus in many but not all cases the primary recognition event eliciting an active defense response during incompatible interactions appears to be a protein-protein interaction occurring between a specific pathogen protein and a strategically placed receptor protein in the host cell. The interaction of elicitor protein with the receptor protein activates a signal transduction pathway leading to programmed cell death and an oxidative burst.
Collapse
Affiliation(s)
- S W Hutcheson
- Department of Cell Biology and Molecular Genetics, and the Center for Agricultural Biotechnology of the University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
593
|
Dushay MS, Eldon ED. Drosophila immune responses as models for human immunity. Am J Hum Genet 1998; 62:10-4. [PMID: 9443887 PMCID: PMC1376818 DOI: 10.1086/301694] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- M S Dushay
- Department of Biological Sciences, University of Notre Dame, IN 46556-5645, USA
| | | |
Collapse
|
594
|
Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11:3482-96. [PMID: 9407039 PMCID: PMC316809 DOI: 10.1101/gad.11.24.3482] [Citation(s) in RCA: 817] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Accepted: 11/04/1997] [Indexed: 02/05/2023]
Abstract
NF-kappaB is a family of related, dimeric transcription factors that are readily activated in cells by signals associated with stress or pathogens. These factors are critical to host defense, as demonstrated previously with mice deficient in individual subunits of NF-kappaB. We have generated mice deficient in both the p50 and p52 subunits of NF-kappaB to reveal critical functions that may be shared by these two highly homologous proteins. We now demonstrate that unlike the respective single knockout mice, the p50/p52 double knockout mice fail to generate mature osteoclasts and B cells, apparently because of defects that track with these lineages in adoptive transfer experiments. Furthermore, these mice present markedly impaired thymic and splenic architectures and impaired macrophage functions. The blocks in osteoclast and B-cell maturation were unexpected. Lack of mature osteoclasts caused severe osteopetrosis, a family of diseases characterized by impaired osteoclastic bone resorption. These findings now establish critical roles for NF-kappaB in development and expand its repertoire of roles in the physiology of differentiated hematopoietic cells.
Collapse
Affiliation(s)
- G Franzoso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
595
|
Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997; 7:837-47. [PMID: 9430229 DOI: 10.1016/s1074-7613(00)80402-1] [Citation(s) in RCA: 851] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IL-1 is a proinflammatory cytokine that signals through a receptor complex of two different transmembrane chains to generate multiple cellular responses, including activation of the transcription factor NF-kappaB. Here we show that MyD88, a previously described protein of unknown function, is recruited to the IL-1 receptor complex following IL-1 stimulation. MyD88 binds to both IRAK (IL-1 receptor-associated kinase) and the heterocomplex (the signaling complex) of the two receptor chains and thereby mediates the association of IRAK with the receptor. Ectopic expression of MyD88 or its death domain-containing N-terminus activates NF-kappaB. The C-terminus of MyD88 interacts with the IL-1 receptor and blocks NF-kappaB activation induced by IL-1, but not by TNF. Thus, MyD88 plays the same role in IL-1 signaling as TRADD and Tube do in TNF and Toll pathways, respectively: it couples a serine/threonine protein kinase to the receptor complex.
Collapse
Affiliation(s)
- H Wesche
- Tularik, Incorporated, South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
596
|
Abstract
Drosophila responds to a septic injury by the rapid synthesis of antimicrobial peptides. These molecules are predominantly produced by the fat body, a functional equivalent of mammalian liver, and are secreted into the hemolymph where their concentrations can reach up to 100 microM. Six distinct antibacterial peptides (plus isoforms) and one antifungal peptide have been characterized in Drosophila and their genes cloned. The induction of the gene encoding the antifungal peptide relies on the spätzle/Toll/cactus gene cassette, which is involved in the control of dorsoventral patterning in the embryo, and shows interesting structural and functional similarities with cytokine-induced activation of NF-kappa B in mammalian cells. An additional pathway, dependent on the as yet unidentified imd (for immune-deficiency) gene, is required for the full induction of the antibacterial peptide genes. Mutants deficient for the Toll and imd pathways exhibit a severely reduced survival to fungal and bacterial infections, respectively. Recent data on the molecular mechanisms underlying recognition of non-self are also discussed in this review.
Collapse
Affiliation(s)
- M Meister
- UPR 9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
597
|
Feldman RM, Correll CC, Kaplan KB, Deshaies RJ. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 1997; 91:221-30. [PMID: 9346239 DOI: 10.1016/s0092-8674(00)80404-3] [Citation(s) in RCA: 670] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In S. cerevisiae, the G1/S transition requires Cdc4p, Cdc34p, Cdc53p, Skp1p, and the Cln/Cdc28p cyclin-dependent kinase (Cdk). These proteins are thought to promote the proteolytic inactivation of the S-phase Cdk inhibitor Sic1p. We show here that Cdc4p, Cdc53p, and Skp1p assemble into a ubiquitin ligase complex named SCFCdc4p. When mixed together, SCFCdc4p subunits, E1 enzyme, the E2 enzyme Cdc34p, and ubiquitin are sufficient to reconstitute ubiquitination of Cdk-phosphorylated Sic1p. Phosphorylated Sic1p substrate is specifically targeted for ubiquitination by binding to a Cdc4p/Skp1p subcomplex. Taken together, these data illuminate the molecular basis for the G1/S transition in budding yeast and suggest a general mechanism for phosphorylation-targeted ubiquitination in eukaryotes.
Collapse
Affiliation(s)
- R M Feldman
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
598
|
Williams MJ, Rodriguez A, Kimbrell DA, Eldon ED. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J 1997; 16:6120-30. [PMID: 9321392 PMCID: PMC1326296 DOI: 10.1093/emboj/16.20.6120] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mammals and insects employ similar Rel/NF-kappaB signaling cascades in their humoral immune responses. The mammalian interleukin-1 type I receptor (IL-1R) is one way of activating this cascade. The Drosophila Toll protein, whose cytoplasmic domain shows striking similarity to that of the IL-1R, acts in the humoral antimicrobial response. Here we demonstrate that a second IL-1R-related Drosophila protein, 18-Wheeler (18W), is a critical component of the humoral immune response. 18-wheeler is expressed in the larval fat body, the primary organ of antimicrobial peptide synthesis. In the absence of the 18W receptor, larvae are more susceptible to bacterial infection. Nuclear translocation of the Rel protein Dorsal-like immunity factor (Dif) is inhibited, though nuclear translocation of another Rel protein, Dorsal, is unaffected. Induction of several antibacterial genes is reduced following infection, relative to wild-type: attacin is reduced by 95%, cecropin by 65% and diptericin by 12%. Finally, 18-wheeler (18w) expression is induced in response to infection and, in addition to the receptor form, four immune-specific transcripts and proteins are produced.
Collapse
Affiliation(s)
- M J Williams
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-5645, USA
| | | | | | | |
Collapse
|
599
|
Abstract
Septic injury induces in Drosophila the rapid and transient transcription of several genes encoding potent antimicrobial peptides. Significant structural and functional similarities exist between the injury-induced signalling cascades leading to antimicrobial peptide gene expression in Drosophila and cytokine-induced expression of mammalian acute-phase proteins. Here, the authors discuss their understanding of these pathways and their relationships to those found in mammalian cells. They also analyse non-self recognition and the role of blood cells in Drosophila host defence.
Collapse
|
600
|
Huang AM, Rusch J, Levine M. An anteroposterior Dorsal gradient in the Drosophila embryo. Genes Dev 1997; 11:1963-73. [PMID: 9271119 PMCID: PMC316408 DOI: 10.1101/gad.11.15.1963] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/1997] [Accepted: 06/19/1997] [Indexed: 02/05/2023]
Abstract
Dorsoventral (DV) patterning of the Drosophila embryo is initiated by a broad Dorsal (Dl) nuclear gradient, which is regulated by a conserved signaling pathway that includes the Toll receptor and Pelle kinase. We investigate the consequences of expressing a constitutively activated form of the Toll receptor, Toll(10b), in anterior regions of the early embryo using the bicoid 3' UTR. Localized Toll(10b) products result in the formation of an ectopic, anteroposterior (AP) Dl nuclear gradient along the length of the embryo. The analysis of both authentic dorsal target genes and defined synthetic promoters suggests that the ectopic gradient is sufficient to generate the full repertory of DV patterning responses along the AP axis of the embryo. For example, mesoderm determinants are activated in the anterior third of the embryo, whereas neurogenic genes are expressed in central regions. These results raise the possibility that Toll signaling components diffuse in the plasma membrane or syncytial cytoplasm of the early embryo. This study also provides evidence that neurogenic repressors may be important for the establishment of the sharp mesoderm/neuroectoderm boundary in the early embryo.
Collapse
Affiliation(s)
- A M Huang
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|