551
|
HLA Immune Function Genes in Autism. AUTISM RESEARCH AND TREATMENT 2012; 2012:959073. [PMID: 22928105 PMCID: PMC3420779 DOI: 10.1155/2012/959073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022]
Abstract
The human leukocyte antigen (HLA) genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects.
Collapse
|
552
|
Kaura V, Bonner S. Subarachnoid haemorrhage: Early clinical indicators and biomarkers. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2012. [DOI: 10.1016/j.tacc.2011.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
553
|
Zou J, Vetreno RP, Crews FT. ATP-P2X7 receptor signaling controls basal and TNFα-stimulated glial cell proliferation. Glia 2012; 60:661-73. [PMID: 22298391 DOI: 10.1002/glia.22302] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/05/2012] [Accepted: 01/12/2012] [Indexed: 01/25/2023]
Abstract
Activation and proliferation of glial cells and their progenitors is a key process of neuroinflammation associated with many neurodegenerative disorders. Under neuropathological conditions where glial cell activation and proliferation is evident, controlling the population of glia might be of therapeutic importance. The proliferative action of the cytokine tumor necrosis factor alpha (TNFα) on microglia has been reported, but the molecular mechanism of TNFα regulation of glial cell proliferation is largely unknown. Using a model of organotypic hippocampal-entorhinal cortex (HEC) slice culture, we investigated the role of ATP-P2X(7) receptor signaling in glial proliferation by TNFα. Populations of proliferating cells in HEC culture were labeled with 5-bromo-2'-deoxyuridine (BrdU). Treatment with TNFα induced strong expression of P2X(7) receptor mRNA and immunoreactivity in BrdU+ cells while markedly increasing proliferation of BrdU+ cells. In addition, TNFα increased aquaporin 4 (AQP4) expression, an ion channel involved in glial proliferation. The proliferative action of TNFα was attenuated by blocking the P2X(7) receptors with the specific antagonists oxATP, BBG, and KN62, or by lowering extracellular ATP with ATP hydrolysis apyrase. Basal proliferation of BrdU+ cells was also sensitive to blockade of ATP-P2X(7) signaling. Furthermore, TNFα activation of P2X(7) receptors appear to regulate AQP4 expression through protein kinase C cascade and down regulation of AQP4 expression can reduce TNFα-stimulated BrdU+ cell proliferation. Taken together, these novel findings demonstrate the importance of ATP-P2X(7) signaling in controlling proliferation of glial progenitors under the pathological conditions associated with increased TNFα.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | |
Collapse
|
554
|
Harms AS, Lee JK, Nguyen TA, Chang J, Ruhn KM, Treviño I, Tansey MG. Regulation of microglia effector functions by tumor necrosis factor signaling. Glia 2012; 60:189-202. [PMID: 21989628 PMCID: PMC3232308 DOI: 10.1002/glia.21254] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 09/20/2011] [Indexed: 11/07/2022]
Abstract
The exact biological role of the cytokine tumor necrosis factor (TNF) in the central nervous system (CNS) is not well understood; but overproduction of TNF by activated microglia has been implicated in neuronal death, suggesting that TNF inhibition in the CNS may be a viable neuroprotective strategy. We investigated the role of TNF signaling in regulation of microglia effector functions using molecular, cellular, and functional analyses of postnatal and adult microglia populations in the CNS. No differences were found by flow cytometric analyses in the basal activation state between TNF-null and wild-type mice. Although TNF-null microglia displayed an atypical morphology with cytoplasmic vacuoles in response to stimulation with lipopolysaccharide (LPS), the phagocytic response of TNF-null microglia to Escherichia coli particles in vitro was normal and there were no signs of enhanced caspase 3 activation or apoptosis. Functionally, conditioned media from LPS-stimulated TNF-null microglia was found to have significantly reduced levels of IL-10, IL-6, IL-1β, IL-12, and CXCL1 relative to wild-type microglia and exerted no cytotoxic effects on neurally differentiated dopaminergic (DA) MN9D cells. In contrast, incubation of wild-type microglia with TNF inhibitors selectively depleted the levels of soluble TNF and its cytotoxicity on MN9D cells. To distinguish whether reduced cytotoxicity by LPS-activated TNF-null microglia could be attributed to deficient autocrine TNF signaling, we employed primary microglia deficient in one or both TNF receptors (TNFR1 and TNFR2) in co-culture with MN9D cells and found that neither receptor is required to elicit LPS-evoked TNF production and cytotoxicity on DA cells.
Collapse
Affiliation(s)
- Ashley S. Harms
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Jae-Kyung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Thi A. Nguyen
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Kelly M. Ruhn
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Isaac Treviño
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Malú G. Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| |
Collapse
|
555
|
Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 2012; 9:23. [PMID: 22277195 PMCID: PMC3298520 DOI: 10.1186/1742-2094-9-23] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic neuroinflammation is a hallmark of several neurological disorders associated with cognitive loss. Activated microglia and secreted factors such as tumor necrosis factor (TNF)-α are key mediators of neuroinflammation and may contribute to neuronal dysfunction. Our study was aimed to evaluate the therapeutic potential of a novel analog of thalidomide, 3,6'-dithiothalidomide (DT), an agent with anti-TNF-α activity, in a model of chronic neuroinflammation. METHODS Lipopolysaccharide or artificial cerebrospinal fluid was infused into the fourth ventricle of three-month-old rats for 28 days. Starting on day 29, animals received daily intraperitoneal injections of DT (56 mg/kg/day) or vehicle for 14 days. Thereafter, cognitive function was assessed by novel object recognition, novel place recognition and Morris water maze, and animals were euthanized 25 min following water maze probe test evaluation. RESULTS Chronic LPS-infusion was characterized by increased gene expression of the proinflammatory cytokines TNF-α and IL-1β in the hippocampus. Treatment with DT normalized TNF-α levels back to control levels but not IL-1β. Treatment with DT attenuated the expression of TLR2, TLR4, IRAK1 and Hmgb1, all genes involved in the TLR-mediated signaling pathway associated with classical microglia activation. However DT did not impact the numbers of MHC Class II immunoreactive cells. Chronic neuroinflammation impaired novel place recognition, spatial learning and memory function; but it did not impact novel object recognition. Importantly, treatment with DT restored cognitive function in LPS-infused animals and normalized the fraction of hippocampal neurons expressing the plasticity-related immediate-early gene Arc. CONCLUSION Our data demonstrate that the TNF-α synthesis inhibitor DT can significantly reverse hippocampus-dependent cognitive deficits induced by chronic neuroinflammation. These results suggest that TNF-α is a critical mediator of chronic neuroinflammation-induced neuronal dysfunction and cognitive impairment and targeting its synthesis could provide an effective therapeutic approach to several human neurodegenerative diseases.
Collapse
Affiliation(s)
- Karim Belarbi
- Brain and Spinal Injury Center, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
556
|
Abstract
Abstract
Collapse
|
557
|
Lafuente JV, Ortuzar N, Bengoetxea H, Bulnes S, Argandoña EG. Vascular Endothelial Growth Factor and Other Angioglioneurins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:317-46. [DOI: 10.1016/b978-0-12-386986-9.00012-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
558
|
Zhang Y, Zhang FG, Meng C, Tian SY, Wang YX, Zhao W, Chen J, Zhang XS, Liang Y, Zhang SD, Xing YJ. Inhibition of sevoflurane postconditioning against cerebral ischemia reperfusion-induced oxidative injury in rats. Molecules 2011; 17:341-54. [PMID: 22210172 PMCID: PMC6268413 DOI: 10.3390/molecules17010341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 11/16/2022] Open
Abstract
The volatile anesthetic sevoflurane is capable of inducing preconditioning and postconditioning effects in the brain. In this study, we investigated the effects of sevoflurane postconditioning on antioxidant and immunity indexes in cerebral ischemia reperfusion (CIR) rats. Rats were randomly assigned to five separate experimental groups I–V. In the sham group (I), rats were subjected to the same surgery procedures except for occlusion of the middle cerebral artery and exposed to 1.0 MAC sevoflurane 90 min after surgery for 30 min. IR control rats (group II) were subjected to middle cerebral artery occlusion (MCAO) for 90 min and exposed to O2 for 30 min at the beginning of reperfusion. Sevoflurane 0.5, 1.0 and 1.5 groups (III, IV, V) were all subjected to MCAO for 90 min, but at the beginning of reperfusion exposed to 0.5 MAC, 1.0 MAC or 1.5 MAC sevoflurane for 30 min, respectively. Results showed that sevoflurane postconditioning can decrease serum tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nitric oxide (NO), nitric oxide synthase (NOS) and increase serum interleukin-10 (IL-10) levels in cerebral ischemia reperfusion rats. In addition, sevoflurane postconditioning can still decrease blood lipid, malondialdehyde (MDA) levels, infarct volume and increase antioxidant enzymes activities, normal pyramidal neurons density in cerebral ischemia reperfusion rats. It can be concluded that sevoflurane postconditioning may decrease blood and brain oxidative injury and enhance immunity indexes in cerebral ischemia reperfusion rats.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China; (Y.Z.); (Y.-X.W.); (J.C.); (X.-S.Z.); (Y.L.)
| | - Fu-Geng Zhang
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin 300060, China;
| | - Chun Meng
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China; (Y.Z.); (Y.-X.W.); (J.C.); (X.-S.Z.); (Y.L.)
- Author to whom correspondence should be addressed; ; Tel.: +86-022-6036-7500; Fax: +86-022-6036-7500
| | - Shou-Yuan Tian
- Department of Anesthesiology, The First Hospital Affiliated Shanxi Medical University, Taiyuan, Shanxi 030001, China;
| | - Ya-Xin Wang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China; (Y.Z.); (Y.-X.W.); (J.C.); (X.-S.Z.); (Y.L.)
| | - Wei Zhao
- Metabolic Disease Hospital, Tianjin Medical University, Tianjin 300070, China
- Key Lab of Hormones and Development, Ministry of Health and Tianjin, Tianjin 300070, China;
| | - Jun Chen
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China; (Y.Z.); (Y.-X.W.); (J.C.); (X.-S.Z.); (Y.L.)
| | - Xiu-Shan Zhang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China; (Y.Z.); (Y.-X.W.); (J.C.); (X.-S.Z.); (Y.L.)
| | - Yu Liang
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin 300060, China; (Y.Z.); (Y.-X.W.); (J.C.); (X.-S.Z.); (Y.L.)
| | - Shi-Dong Zhang
- Department of Anesthesiology, Jinghai Hospital, Tianjin 300060, China;
| | - Yan-Jie Xing
- Department of Anesthesiology, Tangshan City Worker Hospital, Tianjin 300060, China;
| |
Collapse
|
559
|
Xing B, Bachstetter AD, Van Eldik LJ. Microglial p38α MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFα. Mol Neurodegener 2011; 6:84. [PMID: 22185458 PMCID: PMC3292986 DOI: 10.1186/1750-1326-6-84] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022] Open
Abstract
Background The p38α MAPK isoform is a well-established therapeutic target in peripheral inflammatory diseases, but the importance of this kinase in pathological microglial activation and detrimental inflammation in CNS disorders is less well understood. To test the role of the p38α MAPK isoform in microglia-dependent neuron damage, we used primary microglia from wild-type (WT) or p38α MAPK conditional knockout (KO) mice in co-culture with WT cortical neurons, and measured neuron damage after LPS insult. Results We found that neurons in co-culture with p38α-deficient microglia were protected against LPS-induced synaptic loss, neurite degeneration, and neuronal death. The involvement of the proinflammatory cytokine TNFα was demonstrated by the findings that p38α KO microglia produced much less TNFα in response to LPS compared to WT microglia, that adding back TNFα to KO microglia/neuron co-cultures increased the LPS-induced neuron damage, and that neutralization of TNFα in WT microglia/neuron co-cultures prevented the neuron damage. These results using cell-selective, isoform-specific KO mice demonstrate that the p38α MAPK isoform in microglia is a key mediator of LPS-induced neuronal and synaptic dysfunction. The findings also provide evidence that a major mechanism by which LPS activation of microglia p38α MAPK signaling leads to neuron damage is through up-regulation of the proinflammatory cytokine TNFα. Conclusions The data suggest that selective targeting of p38α MAPK signaling should be explored as a potential therapeutic strategy for CNS disorders where overproduction of proinflammatory cytokines is implicated in disease progression.
Collapse
Affiliation(s)
- Bin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
560
|
Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways. Vascul Pharmacol 2011; 56:131-41. [PMID: 22155163 DOI: 10.1016/j.vph.2011.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/04/2011] [Accepted: 11/28/2011] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion.
Collapse
|
561
|
Caminero A, Comabella M, Montalban X. Role of tumour necrosis factor (TNF)-α and TNFRSF1A R92Q mutation in the pathogenesis of TNF receptor-associated periodic syndrome and multiple sclerosis. Clin Exp Immunol 2011; 166:338-45. [PMID: 22059991 PMCID: PMC3232381 DOI: 10.1111/j.1365-2249.2011.04484.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 12/31/2022] Open
Abstract
It has long been known that tumour necrosis factor (TNF)/TNFRSF1A signalling is involved in the pathophysiology of multiple sclerosis (MS). Different genetic and clinical findings over the last few years have generated renewed interest in this relationship. This paper provides an update on these recent findings. Genome-wide association studies have identified the R92Q mutation in the TNFRSF1A gene as a genetic risk factor for MS (odds ratio 1·6). This allele, which is also common in the general population and in other inflammatory conditions, therefore only implies a modest risk for MS and provides yet another piece of the puzzle that defines the multiple genetic risk factors for this disease. TNFRSF1A mutations have been associated with an autoinflammatory disease known as TNF receptor-associated periodic syndrome (TRAPS). Clinical observations have identified a group of MS patients carrying the R92Q mutation who have additional TRAPS symptoms. Hypothetically, the co-existence of MS and TRAPS or a co-morbidity relationship between the two could be mediated by this mutation. The TNFRSF1A R92Q mutation behaves as a genetic risk factor for MS and other inflammatory diseases, including TRAPS. Nevertheless, this mutation does not appear to be a severity marker of the disease, neither modifying the clinical progression of MS nor its therapeutic response. An alteration in TNF/TNFRS1A signalling may increase proinflammatory signals; the final clinical phenotype may possibly be determined by other genetic or environmental modifying factors that have not yet been identified.
Collapse
Affiliation(s)
- A Caminero
- Centre d'Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | | | | |
Collapse
|
562
|
Jebelli JD, Hooper C, Garden GA, Pocock JM. Emerging roles of p53 in glial cell function in health and disease. Glia 2011; 60:515-25. [PMID: 22105777 DOI: 10.1002/glia.22268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that p53, a tumor suppressor protein primarily involved in cancer biology, coordinates a wide range of novel functions in the CNS including the mediation of pathways underlying neurodegenerative disease pathogenesis. Moreover, an evolving concept in cell and molecular neuroscience is that glial cells are far more fundamental to disease progression than previously thought, which may occur via a noncell-autonomous mechanism that is heavily dependent on p53 activities. As a crucial hub connecting many intracellular control pathways, including cell-cycle control and apoptosis, p53 is ideally placed to coordinate the cellular response to a range of stresses. Although neurodegenerative diseases each display a distinct and diverse molecular pathology, apoptosis is a widespread hallmark feature and the multimodal capacity of the p53 system to orchestrate apoptosis and glial cell behavior highlights p53 as a potential unifying target for therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Joseph D Jebelli
- Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
563
|
Fischer R, Maier O, Siegemund M, Wajant H, Scheurich P, Pfizenmaier K. A TNF receptor 2 selective agonist rescues human neurons from oxidative stress-induced cell death. PLoS One 2011; 6:e27621. [PMID: 22110694 PMCID: PMC3215731 DOI: 10.1371/journal.pone.0027621] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/20/2011] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor (TNF) plays a dual role in neurodegenerative diseases. Whereas TNF receptor (TNFR) 1 is predominantly associated with neurodegeneration, TNFR2 is involved in tissue regeneration and neuroprotection. Accordingly, the availability of TNFR2-selective agonists could allow the development of new therapeutic treatments of neurodegenerative diseases. We constructed a soluble, human TNFR2 agonist (TNC-scTNF(R2)) by genetic fusion of the trimerization domain of tenascin C to a TNFR2-selective single-chain TNF molecule, which is comprised of three TNF domains connected by short peptide linkers. TNC-scTNF(R2) specifically activated TNFR2 and possessed membrane-TNF mimetic activity, resulting in TNFR2 signaling complex formation and activation of downstream signaling pathways. Protection from neurodegeneration was assessed using the human dopaminergic neuronal cell line LUHMES. First we show that TNC-scTNF(R2) interfered with cell death pathways subsequent to H(2)O(2) exposure. Protection from cell death was dependent on TNFR2 activation of the PI3K-PKB/Akt pathway, evident from restoration of H(2)O(2) sensitivity in the presence of PI3K inhibitor LY294002. Second, in an in vitro model of Parkinson disease, TNC-scTNF(R2) rescues neurons after induction of cell death by 6-OHDA. Since TNFR2 is not only promoting anti-apoptotic responses but also plays an important role in tissue regeneration, activation of TNFR2 signaling by TNC-scTNF(R2) appears a promising strategy to ameliorate neurodegenerative processes.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
564
|
Brambilla R, Ashbaugh JJ, Magliozzi R, Dellarole A, Karmally S, Szymkowski DE, Bethea JR. Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. ACTA ACUST UNITED AC 2011; 134:2736-54. [PMID: 21908877 DOI: 10.1093/brain/awr199] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumour necrosis factor is linked to the pathophysiology of various neurodegenerative disorders including multiple sclerosis. Tumour necrosis factor exists in two biologically active forms, soluble and transmembrane. Here we show that selective inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis. Treatment with XPro1595, a selective soluble tumour necrosis factor blocker, improves the clinical outcome, whereas non-selective inhibition of both forms of tumour necrosis factor with etanercept does not result in protection. The therapeutic effect of XPro1595 is associated with axon preservation and improved myelin compaction, paralleled by increased expression of axon-specific molecules (e.g. neurofilament-H) and reduced expression of non-phosphorylated neurofilament-H which is associated with axon damage. XPro1595-treated mice show significant remyelination accompanied by elevated expression of myelin-specific genes and increased numbers of oligodendrocyte precursors. Immunohistochemical characterization of tumour necrosis factor receptors in the spinal cord following experimental autoimmune encephalomyelitis shows tumour necrosis factor receptor 1 expression in neurons, oligodendrocytes and astrocytes, while tumour necrosis factor receptor 2 is localized in oligodendrocytes, oligodendrocyte precursors, astrocytes and macrophages/microglia. Importantly, a similar pattern of expression is found in post-mortem spinal cord of patients affected by progressive multiple sclerosis, suggesting that pharmacological modulation of tumour necrosis factor receptor signalling may represent an important target in affecting not only the course of mouse experimental autoimmune encephalomyelitis but human multiple sclerosis as well. Collectively, our data demonstrate that selective inhibition of soluble tumour necrosis factor improves recovery following experimental autoimmune encephalomyelitis, and that signalling mediated by transmembrane tumour necrosis factor is essential for axon and myelin preservation as well as remyelination, opening the possibility of a new avenue of treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Roberta Brambilla
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
565
|
Di Napoli M, Shah IM. Neuroinflammation and cerebrovascular disease in old age: a translational medicine perspective. J Aging Res 2011; 2011:857484. [PMID: 22132330 PMCID: PMC3205617 DOI: 10.4061/2011/857484] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/10/2011] [Indexed: 11/20/2022] Open
Abstract
The incidence of cerebrovascular disease is highest in the elderly population. However, the pathophysiological mechanisms of brain response to cerebral ischemia in old age are currently poorly understood. Ischemic changes in the commonly used young animal stroke models do not reflect the molecular changes associated with the aged brain. Neuroinflammation and oxidative stress are important pathogenic processes occurring during the acute phase of cerebral ischemia. Free radical generation is also implicated in the aging process, and the combination of these effects in elderly stroke patients could explain the higher risk of morbidity and mortality. A better understanding of stroke pathophysiology in the elderly patient would assist in the development of new therapeutic strategies for this vulnerable age group. With the increasing use of reperfusion therapies, inflammatory pathways and oxidative stress remain attractive therapeutic targets for the development of adjuvant neuroprotective agents. This paper will discuss these molecular aspects of acute stroke and senescence from a bench-to-bedside research perspective.
Collapse
Affiliation(s)
- Mario Di Napoli
- Neurological Service, San Camillo de'Lellis General Hospital, 02100 Rieti, Italy
| | | |
Collapse
|
566
|
Dasgupta S, Wang G, Yu RK. Sulfoglucuronosyl paragloboside promotes endothelial cell apoptosis in inflammation: elucidation of a novel glycosphingolipid-signaling pathway. J Neurochem 2011; 119:749-59. [PMID: 21916893 DOI: 10.1111/j.1471-4159.2011.07483.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfoglucuronosyl paragloboside (SGPG), a minor glycosphingolipid of endothelial cells, is a ligand for L-selectin and has been implicated in neuro-inflammatory diseases, such as Guillian-Barré syndrome. Inflammatory cytokines, such as TNFα and IL-1β, up-regulate SGPG expression by stimulating gene expression for glucuronosyltransferases, both P and S forms (GlcATp and GlcATs), and the human natural killer antigen (HNK-1) sulfotransferase (HNK-1 ST). Transfection of a human cerebromicrovascular endothelial cell (SV-HCEC) line with HNK-1 ST siRNA down-regulated SGPG expression, inhibited cytokine-stimulated T-cell adhesion, and offered protection against apoptosis. However, the precise mechanisms of SGPG elevation in endothelial cell apoptosis and the maintenance of blood-brain or blood-nerve barrier integrity in inflammation have not been elucidated. Blocking SGPG expression inhibited cytokine-mediated stimulation of NF-κB activity but stimulated MAP kinase activity. Furthermore, elevation of SGPG by over-expression of GlcATp and GlcATs triggered endothelial cell apoptosis, with GlcATs being more potent than GlcATp. Although SGPG-mediated endothelial cell apoptosis was preceded by inhibiting the intracellular NF-κB activity, interfering with Akt and ERK activation and stimulating caspase 3 in SV-HCECs, HNK-1ST siRNA transfection also interfered with IκB phosphorylation but stimulated ERK activation. Our data indicate that SGPG is a critical regulatory molecule for maintaining endothelial cell survival and blood-brain or blood-nerve barrier function.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
567
|
Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 2011; 6:e25416. [PMID: 21980451 PMCID: PMC3182203 DOI: 10.1371/journal.pone.0025416] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/02/2011] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that inducing autophagy ameliorates early cognitive deficits associated with the build-up of soluble amyloid-β (Aβ). However, the effects of inducing autophagy on plaques and tangles are yet to be determined. While soluble Aβ and tau represent toxic species in Alzheimer's disease (AD) pathogenesis, there is well documented evidence that plaques and tangles also are detrimental to normal brain function. Thus, it is critical to assess the effects of inducing autophagy in an animal model with established plaques and tangles. Here we show that rapamycin, when given prophylactically to 2-month-old 3xTg-AD mice throughout their life, induces autophagy and significantly reduces plaques, tangles and cognitive deficits. In contrast, inducing autophagy in 15-month-old 3xTg-AD mice, which have established plaques and tangles, has no effects on AD-like pathology and cognitive deficits. In conclusion, we show that autophagy induction via rapamycin may represent a valid therapeutic strategy in AD when administered early in the disease progression.
Collapse
Affiliation(s)
- Smita Majumder
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Arlan Richardson
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Randy Strong
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Salvatore Oddo
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
568
|
Ma SL, Lam LCW. Panel of Genetic Variations as a Potential Non-invasive Biomarker for Early Diagnosis of Alzheimer's Disease. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2011; 9:54-66. [PMID: 23429712 PMCID: PMC3569084 DOI: 10.9758/cpn.2011.9.2.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Biomarkers such as levels of amyloid beta (Aβ) in cerebrospinal fluid and ApoE genotyping were suggested for the diagnosis of AD, however, the result is either non-conclusive or with invasive procedure. Genome-wide association studies (GWASs) for AD suggested single nucleotide polymorphisms (SNPs) in many genes are associated with the risk of AD, but each only contributed with small effect to the disease. By incorporating a panel of established genetic susceptibility factors, the risk of an individual in getting AD could be better estimated. Further research will be required to reveal if adding to the current well-developed clinical diagnosis protocol, the accuracy and specificity of diagnosis of AD would be greatly improved and if this might also be beneficial in identifying pre-symptomatic AD patients for early diagnosis and intervention of the disease.
Collapse
Affiliation(s)
- Suk Ling Ma
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. ; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | |
Collapse
|
569
|
Levesque S, Surace MJ, McDonald J, Block ML. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation 2011; 8:105. [PMID: 21864400 PMCID: PMC3184279 DOI: 10.1186/1742-2094-8-105] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/24/2011] [Indexed: 12/21/2022] Open
Abstract
Background Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. Objective We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Methods Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m3) by inhalation over 6 months. Results DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m3 significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m3 and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m3) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m3 exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Conclusions Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain.
Collapse
Affiliation(s)
- Shannon Levesque
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
570
|
Singh S, Swarnkar S, Goswami P, Nath C. Astrocytes and microglia: responses to neuropathological conditions. Int J Neurosci 2011; 121:589-97. [PMID: 21827229 DOI: 10.3109/00207454.2011.598981] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activated astrocytes and microglia, hallmark of neurodegenerative diseases release different factors like array of pro and anti-inflammatory cytokines, free radicals, anti-oxidants, and neurotrophic factors during neurodegeneration which further contribute to neuronal death as well as in survival mechanisms. Astrocytes act as double-edged sword exerting both detrimental and neuroprotective effects while microglial cells are attributed more in neurodegenerative mechanisms. The dual and insufficient knowledge about the precise role of glia in neurodegeneration showed the need for further investigations and thorough review of the function of glia in neurodegeneration. In this review, we consolidate and categorize the glia-released factors which contribute in degenerative and protective mechanisms during neuropathological conditions.
Collapse
Affiliation(s)
- Sarika Singh
- Toxicology Division, Central Drug Research Institute-CSIR-CDRI, Lucknow, India.
| | | | | | | |
Collapse
|
571
|
Montgomery SL, Mastrangelo MA, Habib D, Narrow WC, Knowlden SA, Wright TW, Bowers WJ. Ablation of TNF-RI/RII expression in Alzheimer's disease mice leads to an unexpected enhancement of pathology: implications for chronic pan-TNF-α suppressive therapeutic strategies in the brain. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2053-70. [PMID: 21835156 DOI: 10.1016/j.ajpath.2011.07.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by severe memory loss and cognitive impairment. Neuroinflammation, including the extensive production of pro-inflammatory molecules and the activation of microglia, has been implicated in the disease process. Tumor necrosis factor (TNF)-α, a prototypic pro-inflammatory cytokine, is elevated in AD, is neurotoxic, and colocalizes with amyloid plaques in AD animal models and human brains. We previously demonstrated that the expression of TNF-α is increased in AD mice at ages preceding the development of hallmark amyloid and tau pathological features and that long-term expression of this cytokine in these mice leads to marked neuronal death. Such observations suggest that TNF-α signaling promotes AD pathogenesis and that therapeutics suppressing this cytokine's activity may be beneficial. To dissect TNF-α receptor signaling requirements in AD, we generated triple-transgenic AD mice (3xTg-AD) lacking both TNF-α receptor 1 (TNF-RI) and 2 (TNF-RII), 3xTg-ADxTNF-RI/RII knock out, the cognate receptors of TNF-α. These mice exhibit enhanced amyloid and tau-related pathological features by the age of 15 months, in stark contrast to age-matched 3xTg-AD counterparts. Moreover, 3xTg-ADxTNF-RI/RII knock out-derived primary microglia reveal reduced amyloid-β phagocytic marker expression and phagocytosis activity, indicating that intact TNF-α receptor signaling is critical for microglial-mediated uptake of extracellular amyloid-β peptide pools. Overall, our results demonstrate that globally ablated TNF receptor signaling exacerbates pathogenesis and argues against long-term use of pan-anti-TNF-α inhibitors for the treatment of AD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Aging/pathology
- Alzheimer Disease/drug therapy
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Alzheimer Disease/physiopathology
- Amyloid/metabolism
- Amyloid beta-Protein Precursor/genetics
- Animals
- Brain/metabolism
- Brain/pathology
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- CA3 Region, Hippocampal/pathology
- CA3 Region, Hippocampal/physiopathology
- Calcium-Binding Proteins/metabolism
- Crosses, Genetic
- Female
- Humans
- Lipopolysaccharide Receptors/metabolism
- Long-Term Potentiation
- Male
- Mice
- Mice, Knockout
- Microfilament Proteins/metabolism
- Microglia/metabolism
- Microglia/pathology
- Phagocytosis
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Synapses/metabolism
- Transgenes/genetics
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
- tau Proteins/genetics
Collapse
Affiliation(s)
- Sara L Montgomery
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY14642, USA.
| | | | | | | | | | | | | |
Collapse
|
572
|
Khandelwal PJ, Herman AM, Moussa CEH. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011; 238:1-11. [PMID: 21820744 DOI: 10.1016/j.jneuroim.2011.07.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022]
Abstract
Inflammation is secondary to protein accumulation in neurodegenerative diseases, including Alzheimer's, Parkinson's and Amyotrophic Lateral Sclerosis. Emerging evidence indicate sustained inflammatory responses, involving microglia and astrocytes in animal models of neurodegeneration. It is unknown whether inflammation is beneficial or detrimental to disease progression and how inflammatory responses are induced within the CNS. Persistence of an inflammatory stimulus or failure to resolve sustained inflammation can result in pathology, thus, mechanisms that counteract inflammation are indispensable. Here we review studies on inflammation mediated by innate and adaptive immunity in the early stages of neurodegeneration and highlight important areas for future investigation.
Collapse
Affiliation(s)
- Preeti J Khandelwal
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
573
|
Understanding the role of inflammatory-related pathways in the pathophysiology and treatment of psychiatric disorders: evidence from human peripheral studies and CNS studies. Int J Neuropsychopharmacol 2011; 14:997-1012. [PMID: 21156092 DOI: 10.1017/s1461145710001410] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many lines of evidence now support the hypothesis that inflammation-related pathways are involved in the pathophysiology of psychiatric disorders. Much of the data underpinning this hypothesis has come from the study of inflammation-related proteins in blood of individuals with mood disorders and schizophrenia. Significantly, recent data have emerged to suggest that changes in inflammation-related pathways are present in the CNS of subjects with psychiatric disorders. It is therefore timely to overview how such data, plus data on the role of inflammation-related proteins in CNS function, is contributing to understanding the pathophysiology of mood disorders and schizophrenia. In addition, it has been suggested that antidepressants, mood stabilizers and antipsychotic drugs act on inflammation-related pathways and therefore measuring levels of inflammation-related proteins in blood may be useful in monitoring treatment responsiveness. Despite these important neuropsychopharmacological discoveries, there is no clear understanding as to how inflammatory-related pathways can precipitate the onset of psychiatric symptoms. This review will focus on data suggesting that acute-reactive proteins and cytokines are affected by the pathophysiology of mood disorders and schizophrenia, that levels of blood inflammation-related proteins before and after treatment might be useful in the diagnosis of psychiatric disorders or measuring responsiveness to drug treatment. Finally, it will be postulated how changes in these proteins affect CNS function to cause psychiatric disorders.
Collapse
|
574
|
Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2980-3018. [PMID: 21845170 PMCID: PMC3155341 DOI: 10.3390/ijerph8072980] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/05/2011] [Accepted: 07/13/2011] [Indexed: 02/07/2023]
Abstract
Microglia are resident cells of the brain involved in regulatory processes critical for development, maintenance of the neural environment, injury and repair. They belong to the monocytic-macrophage lineage and serve as brain immune cells to orchestrate innate immune responses; however, they are distinct from other tissue macrophages due to their relatively quiescent phenotype and tight regulation by the CNS microenvironment. Microglia actively survey the surrounding parenchyma and respond rapidly to changes such that any disruption to neural architecture or function can contribute to the loss in regulation of the microglia phenotype. In many models of neurodegeneration and neurotoxicity, early events of synaptic degeneration and neuronal loss are accompanied by an inflammatory response including activation of microglia, perivascular monocytes, and recruitment of leukocytes. In culture, microglia have been shown to be capable of releasing several potentially cytotoxic substances, such as reactive oxygen intermediates, nitric oxide, proteases, arachidonic acid derivatives, excitatory amino acids, and cytokines; however, they also produce various neurotrophic factors and quench damage from free radicals and excitotoxins. As the primary source for pro-inflammatory cytokines, microglia are implicated as pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Neuroinflammation should be considered as a balanced network of processes whereby subtle modifications can shift the cells toward disparate outcomes. For any evaluation of neuroinflammation and microglial responses, within the framework of neurotoxicity or degeneration, one key question in determining the consequence of neuroinflammation is whether the response is an initiating event or the consequence of tissue damage. As examples of environmental exposure-related neuroinflammation in the literature, we provide an evaluation of data on manganese and diesel exhaust particles.
Collapse
|
575
|
Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 2011; 7:42-59. [PMID: 21728035 DOI: 10.1007/s11481-011-9287-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 12/12/2022]
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is a prototypic pro-inflammatory cytokine involved in the innate immune response. TNF-α ligation and downstream signaling with one of its cognate receptors, TNF-RI or TNF-RII, modulates fundamental processes in the brain including synapse formation and regulation, neurogenesis, regeneration, and general maintenance of the central nervous system (CNS). During states of chronic neuroinflammation, extensive experimental evidence implicates TNF-α as a key mediator in disease progression, gliosis, demyelination, inflammation, blood-brain-barrier deterioration, and cell death. This review explores the complex roles of TNF-α in the CNS under normal physiologic conditions and during neurodegeneration. We focus our discussion on Multiple Sclerosis, Parkinson's disease, and Alzheimer's disease, relaying the outcomes of preclinical and clinical testing of TNF-α directed therapeutic strategies, and arguing that despite the wealth of functions attributed to this central cytokine, surprisingly little is known about the cell type- and stage-specific roles of TNF-α in these debilitating disorders.
Collapse
Affiliation(s)
- Sara L Montgomery
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
576
|
Arnett S, Alleva L, Korossy-Horwood R, Clark I. Chronic fatigue syndrome – A neuroimmunological model. Med Hypotheses 2011; 77:77-83. [DOI: 10.1016/j.mehy.2011.03.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 01/18/2023]
|
577
|
Tulner DM, Smith ORF, Schins A, de Jonge P, Quere M, Delanghe JR, Crijns HJ, den Boer JA, Korf J, Honig A. Antidepressive effect of mirtazapine in post-myocardial infarction depression is associated with soluble TNF-R1 increase: data from the MIND-IT. Neuropsychobiology 2011; 63:169-76. [PMID: 21228609 DOI: 10.1159/000321624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depressive disorder after myocardial infarction (MI) is associated with increased cardiac morbidity and mortality. Immune activity such as inflammation might be implicated as an underlying mechanism. The purpose of this study is to investigate whether the response to an antidepressant in post-MI depression is associated with changes of inflammatory markers in serum. METHODS In a double-blind placebo-controlled study with mirtazapine 30 mg/day (50 patients), the antidepressive effect was related to immune activation parameters. The cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), the soluble cytokine receptors sIL-6R, sTNF-R1 and sTNF-R2, and the inflammation-sensitive plasma proteins C-reactive protein and neopterin were assessed. RESULTS Subgroup analyses revealed a highly significant correlation of pronounced sTNF-R1 increase with a decrease in depressive symptoms in antidepressant responders. CONCLUSION Significant effects on inflammation accompany the therapeutic efficacy of mirtazapine in contrast to the therapeutic efficacy of placebo and the nontherapeutic efficacy of mirtazapine.
Collapse
Affiliation(s)
- D M Tulner
- Department of Psychiatry, Medical Centre Leeuwarden, Leeuwarden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10:471-80. [PMID: 21511199 DOI: 10.1016/s1474-4422(11)70066-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is the second most common cause of death worldwide and a major cause of acquired disability in adults. Despite tremendous progress in understanding the pathophysiology of stroke, translation of this knowledge into effective therapies has largely failed, with the exception of thrombolysis, which only benefits a small proportion of patients. Systemic and local immune responses have important roles in causing stroke and are implicated in the primary and secondary progression of ischaemic lesions, as well as in repair, recovery, and overall outcome after a stroke. However, potential therapeutic targets in the immune system and inflammatory responses have not been well characterised. Development of novel and effective therapeutic strategies for stroke will require further investigation of these pathways in terms of their temporal profile (before, during, and after stroke) and risk-to-benefit therapeutic ratio of modulating them.
Collapse
Affiliation(s)
- Richard Macrez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, UMR CNRS 6232 Ci-NAPs, Cyceron, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|
579
|
Thompson SJ, Ashley MD, Stöhr S, Schindler C, Li M, McCarthy-Culpepper KA, Pearson AN, Xiong ZG, Simon RP, Henshall DC, Meller R. Suppression of TNF receptor-1 signaling in an in vitro model of epileptic tolerance. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2011; 3:120-132. [PMID: 21760970 PMCID: PMC3134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
Tumor necrosis factor-α (TNFα) is a pleiotropic cytokine that can regulate cell survival, inflammation or, under certain circumstances, trigger cell death. Previous work in rat seizure models and analysis of temporal lobe samples from epilepsy patients has suggested seizures activate TNF receptor 1 (TNFR1). Here we explored the activation and functional significance of TNFR1 signaling in the mouse hippocampus using in vitro and in vivo models of seizure-induced neuronal injury. Focal-onset status epilepticus in mice upregulated TNFR1 levels and led to formation of TNFR1-TNFR-associated death domain (TRADD) and TRADD-Fas-associated death domain (FADD) binding. Seizure-like injury modeled in vitro by removal of chronic excitatory blockade in mouse hippocampal neurons also activated this TNFR1 signaling pathway. Prior exposure of hippocampal neurons to a non-harmful seizure episode, via NMDA receptor blockade, 24 h prior to injurious seizures significantly reduced cell death and modeled epileptic tolerance in vitro. TNFR1 complex formation with TRADD and TRADD-FADD binding were reduced in tolerant cells. Finally, TNFR1 signaling and cell death were reduced by PKF-242-484, a dual matrix metaloproteinase/TNFα converting enzyme inhibitor. The present study shows that TNFR1 signaling is activated in mouse seizure models and may contribute to neuropathology in vitro and in vivo while suppression of this pathway may underlie neuroprotection in epileptic tolerance.
Collapse
Affiliation(s)
- Simon J Thompson
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
| | - Michelle D Ashley
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
| | - Sabine Stöhr
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
| | - Clara Schindler
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
| | - Minghua Li
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
| | | | - Andrea N Pearson
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
- Neuroscience Institute, Morehouse School of Medicine720 Westview Drive, Atlanta, GA, 30310-1495
| | - Zhi-Gang Xiong
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
- Neuroscience Institute, Morehouse School of Medicine720 Westview Drive, Atlanta, GA, 30310-1495
| | - Roger P Simon
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
- Neuroscience Institute, Morehouse School of Medicine720 Westview Drive, Atlanta, GA, 30310-1495
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in IrelandDublin 2, Ireland
| | - Robert Meller
- RS Dow Neurobiology Laboratories, Legacy Research1225 NE 2nd Ave, Portland, Oregon, 97232, USA
- Neuroscience Institute, Morehouse School of Medicine720 Westview Drive, Atlanta, GA, 30310-1495
| |
Collapse
|
580
|
Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 2011; 36:177-90. [PMID: 21645544 DOI: 10.1016/j.neubiorev.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
|
581
|
Simmons CR, Zou F, Younkin SG, Estus S. Rheumatoid arthritis-associated polymorphisms are not protective against Alzheimer's disease. Mol Neurodegener 2011; 6:33. [PMID: 21595938 PMCID: PMC3120711 DOI: 10.1186/1750-1326-6-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/19/2011] [Indexed: 01/29/2023] Open
Abstract
Background Rheumatoid arthritis (RA) and Alzheimer's disease (AD) are inversely associated. To test the hypothesis that genetic elements associated with increased RA risk are associated with decreased AD risk, we evaluated RA genetic risk factors recently identified in genome-wide association studies (GWAS) for their association with AD in a two-stage, case-control analysis. Results In our Stage 1 analysis of ~800 AD and ~1,200 non-AD individuals, three of seventeen RA-associated SNPs were nominally associated with AD (p < 0.05) with one SNP, rs2837960, retaining significance after correction for multiple testing (p = 0.03). The rs2837960_G (minor) allele, which is associated with increased RA risk, was associated with increased AD risk. Analysis of these three SNPs in a Stage 2 population, consisting of ~1,100 AD and ~2,600 non-AD individuals, did not confirm their association with AD. Analysis of Stage 1 and 2 combined suggested that rs2837960 shows a trend for association with AD. When the Stage 2 population was age-matched for the Stage 1 population, rs2837960 exhibited a non-significant trend with AD. Combined analysis of Stage 1 and the age-matched Stage 2 subset showed a significant association of rs2837960 with AD (p = 0.002, OR 1.24) that retained significance following correction for age, sex and APOE (p = 0.02, OR = 1.20). Rs2837960 is near BACE2, which encodes an aspartic protease capable of processing the AD-associated amyloid precursor protein. Testing for an association between rs2837960 and the expression of BACE2 isoforms in human brain, we observed a trend between rs2837960 and the total expression of BACE2 and the expression of a BACE2 transcript lacking exon 7 (p = 0.07 and 0.10, respectively). Conclusions RA-associated SNPs are generally not associated with AD. Moreover, rs2837960_G is associated with increased risk of both RA and, in individuals less than 80 years of age, with AD. Overall, these results contest the hypothesis that genetic variants associated with RA confer protection against AD. Further investigation of rs2837960 is necessary to elucidate the mechanism by which rs2837960 contributes to both AD and RA risk, likely via modulation of BACE2 expression.
Collapse
Affiliation(s)
- Christopher R Simmons
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
582
|
Andrade P, Visser-Vandewalle V, Hoffmann C, Steinbusch HWM, Daemen MA, Hoogland G. Role of TNF-alpha during central sensitization in preclinical studies. Neurol Sci 2011; 32:757-71. [PMID: 21559854 PMCID: PMC3171667 DOI: 10.1007/s10072-011-0599-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 04/20/2011] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a principal mediator in pro-inflammatory processes that involve necrosis, apoptosis and proliferation. Experimental and clinical evidence demonstrate that peripheral nerve injury results in activation and morphological changes of microglial cells in the spinal cord. These adjustments occur in order to initiate an inflammatory cascade in response to the damage. Between the agents involved in this reaction, TNF-α is recognized as a key player in this process as it not only modulates lesion formation, but also because it is suggested to induce nociceptive signals. Nowadays, even though the function of TNF-α in inflammation and pain production seems to be generally accepted, diverse sources of literature point to different pathways and outcomes. In this review, we systematically searched and reviewed original articles from the past 10 years on animal models of peripheral nervous injury describing TNF-α expression in neural tissue and pain behavior.
Collapse
Affiliation(s)
- Pablo Andrade
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, Box 38, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
583
|
Caminero A, Comabella M, Montalban X. Tumor necrosis factor alpha (TNF-α), anti-TNF-α and demyelination revisited: An ongoing story. J Neuroimmunol 2011; 234:1-6. [DOI: 10.1016/j.jneuroim.2011.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/21/2011] [Accepted: 03/10/2011] [Indexed: 12/31/2022]
|
584
|
Zhao X, Laver T, DeVos A, Twitty G, DeVos M, Benveniste EN, Nozell SE. An NF-κB p65-cIAP2 link is necessary for mediating resistance to TNF-α induced cell death in gliomas. J Neurooncol 2011; 102:367-81. [PMID: 21279667 PMCID: PMC3736577 DOI: 10.1007/s11060-010-0346-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 08/06/2010] [Indexed: 01/20/2023]
Abstract
Malignant gliomas are diffusively infiltrative and remain among the deadliest of all cancers. NF-κB is a transcription factor that mediates cell growth, migration and invasion, angiogenesis and resistance to apoptosis. Normally, the activity of NF-κB is tightly regulated by numerous mechanisms. However, in many cancers, NF-κB is constitutively activated and may function as a tumor promoter. Herein, we show that in gliomas, NF-κB is constitutively activated and the levels of cIAP2, Bcl-2, Bcl-xL and Survivin are elevated. These genes are regulated by NF-κB and can inhibit apoptosis. To understand the potential role of NF-κB p65 in suppressing apoptosis, we generated human glioma cell lines that inducibly express shRNA molecules specific for p65. We demonstrate that in the absence of p65, TNF-α induced cIAP2 expression is significantly reduced while the levels of Bcl-2, Bcl-xL and Survivin are not affected. These data suggest that of these genes, only cIAP2 is a direct target of p65, which was confirmed using RT-PCR and chromatin immunoprecipitation (ChIP) assays. By reducing the levels of p65 and/or cIAP2 levels, we demonstrate that the levels of RIP poly-ubiquitination are reduced, and that p65-deficient glioma cells are more sensitive to the cytotoxic effects of TNF-α. Specifically, in the presence of TNF-α glioma cells lacking p65 and/or cIAP2 showed cellular proliferation defects and underwent cell death. These data suggest that NF-κB and/or cIAP2 may be therapeutically relevant targets for the treatment of malignant gliomas.
Collapse
Affiliation(s)
| | | | - Annelies DeVos
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| | - George Twitty
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| | - Marijke DeVos
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| | - Etty N. Benveniste
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| | - Susan E. Nozell
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| |
Collapse
|
585
|
Husain S, Liou GI, Crosson CE. Opioid receptor activation: suppression of ischemia/reperfusion-induced production of TNF-α in the retina. Invest Ophthalmol Vis Sci 2011; 52:2577-83. [PMID: 21282567 DOI: 10.1167/iovs.10-5629] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The detrimental role of TNF-α in ischemia-induced tissue damage is known. The authors study examined whether opioid receptor activation alters TNF-α levels in the postischemic retina. METHODS Retinal ischemia was induced by raising the intraocular pressure above systolic blood pressure (155-160 mm Hg) for 45 minutes. Rats were pretreated with the opioid receptor agonist morphine (1 mg/kg; intraperitoneally) before injury. Selected animals were pretreated with the opioid antagonist naloxone (3 mg/kg; intraperitoneally). Human optic nerve head (ONH) astrocytes and rat microglial cells were treated with morphine (0.1-1 μM) for 24 hours and then treated with 10 μg/mL or 30 ng/mL lipopolysaccharide (LPS), respectively. TNF-α was measured by ELISA. Opioid receptor subtypes in astrocytes and microglia were determined by Western blot analysis. RESULTS There was a time-dependent increase in TNF-α production; the maximum production occurred at 4 hours after ischemia and localized to the inner retinal regions. Ischemia-induced TNF-α production was significantly inhibited by morphine. In astrocytes and microglia, LPS triggered a robust increase in the release of TNF-α, which was significantly inhibited (P < 0.05) by morphine. Naloxone reversed the morphine-induced suppression of TNF-α production in vivo and in vitro. Both ONH astrocytes and microglial cells expressed δ-, κ-, and μ-opioid receptor subtypes. CONCLUSIONS These data provide evidence that the production of TNF-α after ischemia/reperfusion injury is an early event and that opioid receptor activation reduces the production of TNF-α. Immunohistochemistry data and in vitro studies provide evidence that ONH astrocytes and microglial cells are the primary sources for the TNF-α production under ischemic/inflammatory conditions. Activation of one or more opioid receptors can reduce ischemic/reperfusion injury by the suppression of TNF-α production.
Collapse
Affiliation(s)
- Shahid Husain
- Hewitt Laboratory, Ola B. Williams Glaucoma Center, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, 167 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
586
|
Flood PM, Qian L, Peterson LJ, Zhang F, Shi JS, Gao HM, Hong JS. Transcriptional Factor NF-κB as a Target for Therapy in Parkinson's Disease. PARKINSONS DISEASE 2011; 2011:216298. [PMID: 21603248 PMCID: PMC3095232 DOI: 10.4061/2011/216298] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/21/2011] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by chronic inflammation. Nuclear factor κB (NF-κB) is a family of inducible transcription factors that are expressed in a wide variety of cells and tissues, including microglia, astrocytes, and neurons, and the classical NF-κB pathway plays a key role in the activation and regulation of inflammatory mediator production during inflammation. Activation of the classical NF-κB pathway is mediated through the activity of the IKK kinase complex, which consists of a heterotrimer of IKKα, IKKβ, and IKKγ subunits. Targeting NF-κB has been proposed as an approach to the treatment of acute and chronic inflammatory conditions, and the use of inhibitors specific for either IKKβ or IKKγ has now been found to inhibit neurodegeneration of TH+ DA-producing neurons in murine and primate models of Parkinson's disease. These studies suggest that targeting the classical pathway of NF-κB through the inhibition of the IKK complex can serve as a useful therapeutic approach to the treatment of PD.
Collapse
Affiliation(s)
- Patrick M Flood
- Department of Periodontology and the Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599-7454, USA
| | | | | | | | | | | | | |
Collapse
|
587
|
The duality of TNF signaling outcomes in the brain: potential mechanisms? Exp Neurol 2011; 229:198-200. [PMID: 21377463 DOI: 10.1016/j.expneurol.2011.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/20/2011] [Indexed: 11/20/2022]
|
588
|
Mayer AMS, Clifford JA, Aldulescu M, Frenkel JA, Holland MA, Hall ML, Glaser KB, Berry J. Cyanobacterial Microcystis aeruginosa lipopolysaccharide elicits release of superoxide anion, thromboxane B₂, cytokines, chemokines, and matrix metalloproteinase-9 by rat microglia. Toxicol Sci 2011; 121:63-72. [PMID: 21362633 DOI: 10.1093/toxsci/kfr045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microcystis aeruginosa (M. aeruginosa) is a cosmopolitan Gram-negative cyanobacterium that may contaminate freshwater by releasing toxins, such as lipopolysaccharide (LPS) during aquatic blooms, affecting environmental and human health. The putative toxic effects of cyanobacterial LPS on brain microglia, a glial cell type that constitutes the main leukocyte-dependent source of reactive oxygen species in the central nervous system, are presently unknown. We tested the hypothesis that in vitro concentration- and time-dependent exposure to M. aeruginosa LPS strain UTCC 299 would activate rat microglia and the concomitant generation of superoxide anion (O₂⁻). After a 17-h exposure of microglia to M.aeruginosa LPS, the following concentration-dependent responses were observed: 0.1-100 ng/ml M. aeruginosa LPS enhanced O₂⁻ generation, with limited inflammatory mediator generation; 1000-10,000 ng/ml M. aeruginosa LPS caused thromboxane B₂ (TXB₂), matrix metalloproteinase-9 (MMP-9), and macrophage inflammatory protein-2 (MIP-2/CXCL2) release, concurrent with maximal O₂⁻ generation; 100,000 ng/mL M. aeruginosa LPS deactivated O₂⁻ production but maintained elevated levels of TXB₂, MMP-9, tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), and interleukin-6 (IL-6), macrophage inflammatory protein 1α (MIP-1α/CCL3), and MIP-2/CXCL2, with concomitant lactic dehydrogenase release. Although M. aeruginosa LPS was consistently less potent than Escherichia coli LPS, with the exception of O₂⁻, TXB₂, and MCP-1/CCL2 generation, it was more efficacious because higher levels of MMP-9, TNF-α, IL-1α, IL-6, MIP-1α/CCL3, and MIP-2/CXCL2 were produced. Our in vitro studies suggest that one or more of the inflammatory mediators released during M. aeruginosa LPS stimulation of microglia may play a critical role in the subsequent ability of microglia to generate O₂⁻. To our knowledge, this is the first experimental evidence that LPS isolated from a M. aeruginosa strain, can activate brain microglia in vitro, as well as the release of O₂⁻, and other inflammatory mediators hypothesized to be involved in neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | | | | | | | | | | | | | |
Collapse
|
589
|
Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediators Inflamm 2011; 2010:372423. [PMID: 21490702 PMCID: PMC3068595 DOI: 10.1155/2010/372423] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/14/2010] [Accepted: 12/27/2010] [Indexed: 12/25/2022] Open
Abstract
This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.
Collapse
|
590
|
Qian L, Wu HM, Chen SH, Zhang D, Ali SF, Peterson L, Wilson B, Lu RB, Hong JS, Flood PM. β2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. THE JOURNAL OF IMMUNOLOGY 2011; 186:4443-54. [PMID: 21335487 DOI: 10.4049/jimmunol.1002449] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of the β2 adrenergic receptor (β2AR) in the regulation of chronic neurodegenerative inflammation within the CNS is poorly understood. The purpose of this study was to determine neuroprotective effects of long-acting β2AR agonists such as salmeterol in rodent models of Parkinson's disease. Results showed salmeterol exerted potent neuroprotection against both LPS and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium-induced dopaminergic neurotoxicity both in primary neuron-glia cultures (at subnanomolar concentrations) and in mice (1-10 μg/kg/day doses). Further studies demonstrated that salmeterol-mediated neuroprotection is not a direct effect on neurons; instead, it is mediated through the inhibition of LPS-induced microglial activation. Salmeterol significantly inhibited LPS-induced production of microglial proinflammatory neurotoxic mediators, such as TNF-α, superoxide, and NO, as well as the inhibition of TAK1-mediated phosphorylation of MAPK and p65 NF-κB. The anti-inflammatory effects of salmeterol required β2AR expression in microglia but were not mediated through the conventional G protein-coupled receptor/cAMP pathway. Rather, salmeterol failed to induce microglial cAMP production, could not be reversed by either protein kinase A inhibitors or an exchange protein directly activated by cAMP agonist, and was dependent on β-arrestin2 expression. Taken together, our results demonstrate that administration of extremely low doses of salmeterol exhibit potent neuroprotective effects by inhibiting microglial cell activation through a β2AR/β-arrestin2-dependent but cAMP/protein kinase A-independent pathway.
Collapse
Affiliation(s)
- Li Qian
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
591
|
Khuman J, Meehan WP, Zhu X, Qiu J, Hoffmann U, Zhang J, Giovannone E, Lo EH, Whalen MJ. Tumor necrosis factor alpha and Fas receptor contribute to cognitive deficits independent of cell death after concussive traumatic brain injury in mice. J Cereb Blood Flow Metab 2011; 31:778-89. [PMID: 20940727 PMCID: PMC3049532 DOI: 10.1038/jcbfm.2010.172] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor alpha (TNFα) and Fas receptor contribute to cell death and cognitive dysfunction after focal traumatic brain injury (TBI). We examined the role of TNFα/Fas in postinjury functional outcome independent of cell death in a novel closed head injury (CHI) model produced with weight drop and free rotational head movement in the anterior-posterior plane. The CHI produced no cerebral edema or blood-brain barrier damage at 24 to 48 hours, no detectable cell death, occasional axonal injury (24 hours), and no brain atrophy or hippocampal cell loss (day 60). Microglia and astrocytes were activated (48 to 72 hours). Tumor necrosis factor-α mRNA, Fas mRNA, and TNFα protein were increased in the brain at 3 to 6 hours after injury (P<0.001 versus sham injured). In wild-type (WT) mice, CHI produced hidden platform (P=0.009) and probe deficits (P=0.001) in the Morris water maze versus sham. Surprisingly, injured TNFα/Fas knockout (KO) mice performed worse in hidden platform trials (P=0.036) but better in probe trials than did WT mice (P=0.0001). Administration of recombinant TNFα to injured TNFα/Fas KO mice reduced probe trial performance to that of WT. Thus, TNFα/Fas influence cognitive deficits independent of cell death after CHI. Therapies targeting TNFα/Fas together may be inappropriate for patients with concussive TBI.
Collapse
Affiliation(s)
- Jugta Khuman
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
592
|
Tufekci KU, Genc S, Genc K. The endotoxin-induced neuroinflammation model of Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:487450. [PMID: 21331154 PMCID: PMC3034925 DOI: 10.4061/2011/487450] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/18/2010] [Accepted: 12/16/2010] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Although the exact cause of the dopaminergic neurodegeneration remains elusive, recent postmortem and experimental studies have revealed an essential role for neuroinflammation that is initiated and driven by activated microglial and infiltrated peripheral immune cells and their neurotoxic products (such as proinflammatory cytokines, reactive oxygen species, and nitric oxide) in the pathogenesis of PD. A bacterial endotoxin-based experimental model of PD has been established, representing a purely inflammation-driven animal model for the induction of nigrostriatal dopaminergic neurodegeneration. This model, by itself or together with genetic and toxin-based animal models, provides an important tool to delineate the precise mechanisms of neuroinflammation-mediated dopaminergic neuron loss. Here, we review the characteristics of this model and the contribution of neuroinflammatory processes, induced by the in vivo administration of bacterial endotoxin, to neurodegeneration. Furthermore, we summarize the recent experimental therapeutic strategies targeting endotoxin-induced neuroinflammation to elicit neuroprotection in the nigrostriatal dopaminergic system. The potential of the endotoxin-based PD model in the development of an early-stage specific diagnostic biomarker is also emphasized.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | - Sermin Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| |
Collapse
|
593
|
Carvalho-Sousa CE, da Silveira Cruz-Machado S, Tamura EK, Fernandes PACM, Pinato L, Muxel SM, Cecon E, Markus RP. Molecular basis for defining the pineal gland and pinealocytes as targets for tumor necrosis factor. Front Endocrinol (Lausanne) 2011; 2:10. [PMID: 22654792 PMCID: PMC3356111 DOI: 10.3389/fendo.2011.00010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/27/2011] [Indexed: 01/15/2023] Open
Abstract
The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target of TNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response.
Collapse
Affiliation(s)
- Claudia Emanuele Carvalho-Sousa
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | | | - Eduardo Koji Tamura
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Pedro A. C. M. Fernandes
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Therapy, Universidade Estadual PaulistaMarília, Brazil
| | - Sandra M. Muxel
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Erika Cecon
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Regina P. Markus
- *Correspondence: Regina P. Markus, Laboratory of Chronopharmacology, Institute of Bioscience, Universidade de São Paulo, Rua do Matão, Travessa 14, 05508-900 São Paulo, Brazil. e-mail:
| |
Collapse
|
594
|
García E, Villeda-Hernández J, Pedraza-Chaverrí J, Maldonado PD, Santamaría A. S-allylcysteine reduces the MPTP-induced striatal cell damage via inhibition of pro-inflammatory cytokine tumor necrosis factor-α and inducible nitric oxide synthase expressions in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 18:65-73. [PMID: 20576415 DOI: 10.1016/j.phymed.2010.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/17/2010] [Accepted: 04/23/2010] [Indexed: 05/29/2023]
Abstract
We have recently demonstrated that S-allylcysteine (SAC) induces protection on neurochemical, biochemical and behavioral markers of striatal damage in different neurotoxic animal models - including a murine model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridinium (MPTP) injection to mice - indicating that pro-oxidant reactions underlie neurotoxicity in these models (García et al. 2008). In this work we investigated whether SAC can protect the striatum of mice from the morphological alterations in the MPTP toxic model, and if this response is correlated with a reduction in pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expressions, and further reduction in astrocyte activation (glial fibrillary acidic protein (GFAP) expression). The striatal tissue from MPTP injected animals (30 mg/kg, i.p., ×5 days) showed a significant degree of cell damage and enhanced immunoreactivities to GFAP, TNF-α and iNOS, as well as an enhanced number of apoptotic nuclei. Treatment of mice with SAC (120 mg/kg, i.p., ×5 days) in parallel to MPTP significantly reduced or prevented all these markers. Our results suggest that MPTP-induced morphological alterations recruit a pro-inflammatory component triggered by cytokine TNF-α release and nitric oxide formation, which is sensitive to the antioxidant properties of SAC. This antioxidant is an effective experimental tool to reduce the brain lesions associated with oxidative damage and inflammatory responses.
Collapse
Affiliation(s)
- Esperanza García
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, México DF, Mexico
| | | | | | | | | |
Collapse
|
595
|
Abstract
The nuclear factor kappa B (NF-kappaB) transcription factor system plays multiple roles in the function of the nervous system during development and postnatal physiology. In the developing nervous system, neurite outgrowth could be regulated by both canonical and alternative NF-kappaB signaling pathways. The degree and site of NF-kappaB activation could promote or inhibit neuronal survival in a complex, signal and subunit-dependent manner. The significance and mechanistic basis of some of NF-kappaB activity in neurons have remained controversial. We discuss our current understanding and recent findings with regard to the roles of NF-kappaB in the neurite outgrowth and neuronal survival, and how NF-kappaB activation is associated with the pathophysiology of ischemic/ traumatic injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University ofSingapore, 8 Medical Drive, Singapore 117597
| | | |
Collapse
|
596
|
Du S, Sandoval F, Trinh P, Umeda E, Voskuhl R. Estrogen receptor-β ligand treatment modulates dendritic cells in the target organ during autoimmune demyelinating disease. Eur J Immunol 2010; 41:140-50. [PMID: 21182085 DOI: 10.1002/eji.201040796] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/30/2010] [Accepted: 10/29/2010] [Indexed: 11/10/2022]
Abstract
Estrogens act upon nuclear estrogen receptors (ER) to ameliorate cell-mediated autoimmune disease. As most immunomodulatory effects of estrogens in EAE have been attributed to the function of ER-α, we previously demonstrated that ER-β ligand treatment reduced disease severity without affecting peripheral cytokine production or levels of CNS inflammation, suggesting a direct neuroprotective effect; however, the effect of ER-β treatment on the function of immune cells within the target organ remained unknown. Here, we used adoptive transfer studies to show that ER-β ligand treatment was protective in the effector, but not the induction phase of EAE, as shown by decreased clinical disease severity with the preservation of axons and myelin in spinal cords. The analysis of the immune cell infiltrates in the CNS revealed that while ER-β ligand treatment did not reduce overall levels of CNS inflammation, there was a decrease in the DC percentage, and these CNS DC had decreased TNF-α production. Finally, experiments using DC deficient in ER-β revealed that the expression of ER-β on DC was essential for protective effects of ER-β ligand treatment in EAE. Our results demonstrate for the first time an effect of ER-β ligand treatment in vivo on DC in the target organ of a prototypic cell-mediated autoimmune disease.
Collapse
Affiliation(s)
- Sienmi Du
- UCLA Department of Physiological Sciences, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
597
|
Kim S, Steelman AJ, Koito H, Li J. Astrocytes promote TNF-mediated toxicity to oligodendrocyte precursors. J Neurochem 2010; 116:53-66. [PMID: 21044081 DOI: 10.1111/j.1471-4159.2010.07084.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuroinflammation and increased production of tumor necrosis factor (TNF) in the CNS have been implicated in many neurological diseases including white matter disorders periventricular leukomalacia and multiple sclerosis. However, the exact role of TNF in these diseases and how it mediates oligodendrocyte injury remain unclear. Previously, we demonstrated that lipopolysaccharide (LPS) selectively kills oligodendrocyte precursors (preOLs) in a non-cell autonomous fashion through the induction of TNF in mixed glial cultures. Here, we report that activation of oligodendroglial, but not astroglial and microglial, TNFR1 is required for LPS toxicity, and that astrocytes promote TNF-mediated preOL death through a cell contact-dependent mechanism. Microglia were the sole source for TNF production in LPS-treated mixed glial cultures. Ablation of TNFR1 in mixed glia completely prevented LPS-induced death of preOLs. TNFR1-expressing preOLs were similarly susceptible to LPS treatment when seeded into wildtype and TNFR1(-/-) mixed glial cultures, demonstrating a requirement for oligodendroglial TNFR1 in the cell death. Although exogenous TNF failed to cause significant cell death in enriched preOL cultures, it became cytotoxic when preOLs were in contact with astrocytes. Collectively, our results demonstrate oligodendroglial TNFR1 in mediating inflammatory destruction of preOLs and suggest a previously unrecognized role for astrocytes in promoting TNF toxicity to preOLs.
Collapse
Affiliation(s)
- Sunja Kim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|
598
|
|
599
|
Brenneis C, Coste O, Altenrath K, Angioni C, Schmidt H, Schuh CD, Zhang DD, Henke M, Weigert A, Brüne B, Rubin B, Nusing R, Scholich K, Geisslinger G. Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation. J Biol Chem 2010; 286:2331-42. [PMID: 21075851 DOI: 10.1074/jbc.m110.157362] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A major immunological response during neuroinflammation is the activation of microglia, which subsequently release proinflammatory mediators such as prostaglandin E(2) (PGE(2)). Besides its proinflammatory properties, cyclooxygenase-2 (COX-2)-derived PGE(2) has been shown to exhibit anti-inflammatory effects on innate immune responses. Here, we investigated the role of microsomal PGE(2) synthase-1 (mPGES-1), which is functionally coupled to COX-2, in immune responses using a model of lipopolysaccharide (LPS)-induced spinal neuroinflammation. Interestingly, we found that activation of E-prostanoid (EP)2 and EP4 receptors, but not EP1, EP3, PGI(2) receptor (IP), thromboxane A(2) receptor (TP), PGD(2) receptor (DP), and PGF(2) receptor (FP), efficiently blocked LPS-induced tumor necrosis factor α (TNFα) synthesis and COX-2 and mPGES-1 induction as well as prostaglandin synthesis in spinal cultures. In vivo, spinal EP2 receptors were up-regulated in microglia in response to intrathecally injected LPS. Accordingly, LPS priming reduced spinal synthesis of TNFα, interleukin 1β (IL-1β), and prostaglandins in response to a second intrathecal LPS injection. Importantly, this reduction was only seen in wild-type but not in mPGES-1-deficient mice. Furthermore, intrathecal application of EP2 and EP4 agonists as well as genetic deletion of EP2 significantly reduced spinal TNFα and IL-1β synthesis in mPGES-1 knock-out mice after LPS priming. These data suggest that initial inflammation prepares the spinal cord for a negative feedback regulation by mPGES-1-derived PGE(2) followed by EP2 activation, which limits the synthesis of inflammatory mediators during chronic inflammation. Thus, our data suggest a role of mPGES-1-derived PGE(2) in resolution of neuroinflammation.
Collapse
Affiliation(s)
- Christian Brenneis
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Hospital of the Goethe-University, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
600
|
Beste C, Baune BT, Falkenstein M, Konrad C. Variations in the TNF-α Gene (TNF-α -308G→A) Affect Attention and Action Selection Mechanisms in a Dissociated Fashion. J Neurophysiol 2010; 104:2523-31. [DOI: 10.1152/jn.00561.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is growing interest to understand the molecular basis of complex cognitive processes. While neurotransmitter systems have frequently been examined, other, for example neuroimmunological factors have attracted much less interest. Recent evidence suggests that the A allele of the tumor necrosis factor alpha (TNF-α) 308G→A single nucleotide polymorphism (SNP; rs1800629) enhances cognitive functions. However, it is also known that TNF-α exerts divergent, region-specific effects on neuronal functioning. Thus the finding that the A allele is associated with enhanced cognitive performance may be due to regionally specific effects of TNF-α. In this study, associations between the TNF-α −308G→A single nucleotide polymorphism (rs1800629) and cognitive function in an event-related potential (ERP) study in healthy participants ( n = 96) are investigated. We focus on subprocesses of stimulus-response compatibility that are known to be mediated by different brain systems. The results show a dissociative effect of the TNF- 308G→A SNP on ERPs reflecting attentional (N1) versus conflict and action selection processes [N2 and early-lateralized readiness potential (e-LRP)] between the AA/AG and the GG genotypes. Compared with the GG genotype group, attentional processes (N1) were enhanced in the combined AA/AG genotype group, while conflict processing functions (N2) and the selection of actions (LRP) were reduced. The results refine the picture of the effects of the TNF-α −308G→A SNP on cognitive functions and emphasize the known divergent effects of TNF-α on brain functions.
Collapse
Affiliation(s)
- Christian Beste
- Institute for Cognitive Neuroscience, Department of Biopsychology, Ruhr-Universität Bochum, Germany
| | - Bernhard T. Baune
- Department of Psychiatry and Psychiatric Neuroscience, School of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Michael Falkenstein
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; and
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy and
- Interdisciplinary Center for Clinical Research, University of Münster, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| |
Collapse
|