551
|
Li Q, Li H, Yin C, Wang X, Jiang Q, Zhang R, Ge F, Chen Y, Yang L. Genome-Wide Identification and Characterization of Xyloglucan Endotransglycosylase/Hydrolase in Ananas comosus during Development. Genes (Basel) 2019; 10:E537. [PMID: 31315260 PMCID: PMC6678617 DOI: 10.3390/genes10070537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell-wall-modifying enzyme participating in diverse cell morphogenetic processes and adaptation to stress. In this study, 48 XTH genes were identified from two pineapple (Ananas comosus) cultivars ('F153' and 'MD2') and designated Ac(F153)XTH1 to -24 and Ac(MD2)XTH1 to -24 based on their orthology with Arabidopsis thaliana genes. Endoglucanase family 16 members were identified in addition to XTHs of glycoside hydrolase family 16. Phylogenetic analysis clustered the XTHs into three major groups (Group I/II, III and Ancestral Group) and Group III was subdivided into Group IIIA and Group IIIB. Similar gene structure and motif number were observed within a group. Two highly conserved domains, glycosyl hydrolase family 16 (GH16-XET) and xyloglucan endotransglycosylase C-terminus (C-XET), were detected by multiple sequences alignment of all XTHs. Segmental replication were detected in the two cultivars, with only the paralogous pair Ac(F153)XTH7-Ac(F153)XTH18 presented in 'F153' prior to genomic expansion. Transcriptomic analysis indicated that XTHs were involved in the regulation of fruit ripening and crassulacean acid metabolism with tissue specificity and quantitative real-time PCR analysis suggested that Ac(MD2)XTH18 was involved in root growth. The results enhance our understanding of XTHs in the plant kingdom and provide a basis for further studies of functional diversity in A. comosus.
Collapse
Affiliation(s)
- Qingyun Li
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Huayang Li
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chongyang Yin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaotong Wang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Qing Jiang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Zhang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Fangfang Ge
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yudong Chen
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
552
|
Pu Y, Hou L, Guo Y, Ullah I, Yang Y, Yue Y. Genome-wide analysis of the callose enzyme families of fertile and sterile flower buds of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). FEBS Open Bio 2019; 9:1432-1449. [PMID: 31168951 PMCID: PMC6668379 DOI: 10.1002/2211-5463.12685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/10/2019] [Accepted: 06/04/2019] [Indexed: 12/03/2022] Open
Abstract
Callose is a β‐1,3‐glucan commonly found in higher plants that plays an important role in regulating plant pollen development. It is synthesized by glucan synthase‐like (GSL) and is degraded by the enzyme endo‐1,3‐β‐glucosidase. However, genome‐wide analyses of callose GSL and endo‐1,3‐β‐glucosidase enzymes in fertile and sterile flower buds of Chinese cabbage have not yet been reported. Here, we show that delayed callose degradation at the tetrad stage may be the main cause of microspore abortion in Chinese cabbage with nuclear sterility near‐isogenic line ‘10L03’. Fifteen callose GSLs and 77 endo‐1,3‐β‐glucosidase enzymes were identified in Chinese cabbage. Phylogenetic, gene structural and chromosomal analyses revealed that the expansion occurred due to three polyploidization events of these two gene families. Expression pattern analysis showed that the GSL and endo‐1,3‐β‐glucosidase enzymes are involved in the development of various tissues and that the genes functionally diverged during long‐term evolution. Relative gene expression analysis of Chinese cabbage flowers at different developmental stages showed that high expression of the synthetic enzyme BraA01g041620 and low expression of AtA6‐homologous genes (BraA04g008040, BraA07g009320, BraA01g030220 and BraA03g040850) and two other genes (BraA10g020080 and BraA05g038340) for degrading enzymes in the meiosis and tetrad stages may cause nuclear sterility in the near‐isogenic line ‘10L03’. Overall, our data provide an important foundation for comprehending the potential roles of the callose GSL and endo‐1,3‐β‐glucosidase enzymes in regulating pollen development in Chinese cabbage.
Collapse
Affiliation(s)
- Yanan Pu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China.,Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Hou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Yingqi Guo
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ikram Ullah
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Yongping Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yanling Yue
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
553
|
Ulfig A, Schulz AV, Müller A, Lupilov N, Leichert LI. N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins. eLife 2019; 8:47395. [PMID: 31298656 PMCID: PMC6650281 DOI: 10.7554/elife.47395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Hypochlorous acid (HOCl), a powerful antimicrobial oxidant, is produced by neutrophils to fight infections. Here, we show that N-chlorination, induced by HOCl concentrations encountered at sites of inflammation, converts blood plasma proteins into chaperone-like holdases that protect other proteins from aggregation. This chaperone-like conversion was reversible by antioxidants and was abrogated by prior methylation of basic amino acids. Furthermore, reversible N-chlorination of basic amino acid side chains is the major factor that converts plasma proteins into efficient activators of immune cells. Finally, HOCl-modified serum albumin was found to act as a pro-survival molecule that protects neutrophils from cell death induced by highly immunogenic foreign antigens. We propose that activation and enhanced persistence of neutrophils mediated by HOCl-modified plasma proteins, resulting in the increased and prolonged generation of ROS, including HOCl, constitutes a potentially detrimental positive feedback loop that can only be attenuated through the reversible nature of the modification involved.
Collapse
Affiliation(s)
- Agnes Ulfig
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Anton V Schulz
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Müller
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lars I Leichert
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
554
|
Hao Q, Zhang L, Yang Y, Shan Z, Zhou XA. Genome-Wide Analysis of the WOX Gene Family and Function Exploration of GmWOX18 in Soybean. PLANTS 2019; 8:plants8070215. [PMID: 31373320 PMCID: PMC6681341 DOI: 10.3390/plants8070215] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
WUSCHEL-related homeobox (WOX) is a family of transcription factors that are unique to plants and is characterized by the presence of a homeodomain. The WOX transcription factor plays an important role in regulating plant growth and development and the response to abiotic stress. Soybean is one of the most important oil crops worldwide. In this study, based on the available genome data of soybean, the WOX gene family was identified by bioinformatics analysis. The chromosome distribution, gene and protein structures, phylogenetic relationship and gene expression patterns of this family were comprehensively compared. The results showed that a total of 33 putative WOX genes in the soybean genome were found and then designated as GmWOX1- GmWOX33, which were distributed across 19 chromosomes except chromosome 16. Multiple sequence analysis of the GmWOX gene family revealed a highly conserved homeodomain. Phylogenetic tree analysis showed that 33 WOX genes could be divided into three major clades (modern/WUS, intermediate and ancient) in soybean. Of these 33 WOX genes, some showed differential expression patterns in the tested tissues (leaves, pods, unopen and open flowers, nodules, seed, roots, root hairs, stems, shoot apical meristems and shoot tips). In addition, the expression profile and qRT-PCR analysis showed that most of the GmWOX genes responded to different abiotic stress treatments (cold and drought). According to the expression pattern of GmWOX genes in the high regeneration capacity soybean material P3, overexpression of GmWOX18 was selected for function analysis. The overexpression of GmWOX18 increased the regeneration ability of clustered buds. The results will provide valuable information for further studies on the roles of WOX genes in regulating soybean growth, development and responses to abiotic stress, as well as a basis for the functional identification and analysis of WOX genes in soybean.
Collapse
Affiliation(s)
- Qingnan Hao
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China
- Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Ling Zhang
- Jilin Provincial Key laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China.
| | - Yanyan Yang
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China
| | - Zhihui Shan
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Xin-An Zhou
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, China.
- Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
555
|
Chen IS, Liu C, Tateyama M, Karbat I, Uesugi M, Reuveny E, Kubo Y. Non-sedating antihistamines block G-protein-gated inwardly rectifying K + channels. Br J Pharmacol 2019; 176:3161-3179. [PMID: 31116876 DOI: 10.1111/bph.14717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/19/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE A second-generation antihistamine, terfenadine, is known to induce arrhythmia by blocking hERG channels. In this study, we have shown that terfenadine also inhibits the activity of G-protein-gated inwardly rectifying K+ (GIRK) channels, which regulate the excitability of neurons and cardiomyocytes. To clarify the underlying mechanism(s), we examined the effects of several antihistamines on GIRK channels and identified the structural determinant for the inhibition. EXPERIMENTAL APPROACH Electrophysiological recordings were made in Xenopus oocytes and rat atrial myocytes to analyse the effects of antihistamines on various GIRK subunits (Kir 3.x). Mutagenesis analyses identified the residues critical for inhibition by terfenadine and the regulation of ion selectivity. The potential docking site of terfenadine was analysed by molecular docking. KEY RESULTS GIRK channels containing Kir 3.1 subunits heterologously expressed in oocytes and native GIRK channels in atrial myocytes were inhibited by terfenadine and other non-sedating antihistamines. In Kir 3.1 subunits, mutation of Phe137, located in the centre of the pore helix, to the corresponding Ser in Kir 3.2 subunits reduced the inhibition by terfenadine. Introduction of an amino acid with a large side chain in Kir 3.2 subunits at Ser148 increased the inhibition. When this residue was mutated to a non-polar amino acid, the channel became permeable to Na+ . Phosphoinositide-mediated activity was also decreased by terfenadine. CONCLUSION AND IMPLICATIONS The Phe137 residue in Kir 3.1 subunits is critical for inhibition by terfenadine. This study provides novel insights into the regulation of GIRK channels by the pore helix and information for drug design.
Collapse
Affiliation(s)
- I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Chang Liu
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Japan.,Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
556
|
Mallam AL, Marcotte EM. Systems-wide Studies Uncover Commander, a Multiprotein Complex Essential to Human Development. Cell Syst 2019; 4:483-494. [PMID: 28544880 DOI: 10.1016/j.cels.2017.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 11/27/2022]
Abstract
Recent mass spectrometry maps of the human interactome independently support the existence of a large multiprotein complex, dubbed "Commander." Broadly conserved across animals and ubiquitously expressed in nearly every human cell type examined thus far, Commander likely plays a fundamental cellular function, akin to other ubiquitous machines involved in expression, proteostasis, and trafficking. Experiments on individual subunits support roles in endosomal protein sorting, including the trafficking of Notch proteins, copper transporters, and lipoprotein receptors. Commander is critical for vertebrate embryogenesis, and defects in the complex and its interaction partners disrupt craniofacial, brain, and heart development. Here, we review the synergy between large-scale proteomic efforts and focused studies in the discovery of Commander, describe its composition, structure, and function, and discuss how it illustrates the power of systems biology. Based on 3D modeling and biochemical data, we draw strong parallels between Commander and the retromer cargo-recognition complex, laying a foundation for future research into Commander's role in human developmental disorders.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
557
|
Quantitative Proteomic Analyses of a Pathogenic Strain and Its Highly Passaged Attenuated Strain of Mycoplasma hyopneumoniae. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4165735. [PMID: 31355261 PMCID: PMC6634062 DOI: 10.1155/2019/4165735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, a chronic respiratory disease in swine resulting in enormous economic losses. To identify the components that contribute to virulence and unveil those biological processes potentially related to attenuation, we used isobaric tags for relative and absolute quantification technology (iTRAQ) to compare the protein profiles of the virulent M. hyopneumoniae strain 168 and its attenuated highly passaged strain 168L. We identified 489 proteins in total, 70 of which showing significant differences in level of expression between the two strains. Remarkably, proteins participating in inositol phosphate metabolism were significantly downregulated in the virulent strain, while some proteins involved in nucleoside metabolism were upregulated. We also mined a series of novel promising virulence-associated factors in our study compared with those in previous reports, such as some moonlighting adhesins, transporters, lipoate-protein ligase, and ribonuclease and several hypothetical proteins with conserved functional domains, deserving further research. Our survey constitutes an iTRAQ-based comparative proteomic analysis of a virulent M. hyopneumoniae strain and its attenuated strain originating from a single parent with a well-characterized genetic background and lays the groundwork for future work to mine for potential virulence factors and identify candidate vaccine proteins.
Collapse
|
558
|
Genome-Wide Analysis of Serine/Arginine-Rich Protein Family in Wheat and Brachypodium distachyon. PLANTS 2019; 8:plants8070188. [PMID: 31247888 PMCID: PMC6681277 DOI: 10.3390/plants8070188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/15/2022]
Abstract
By regulating the pre-mRNA splicing of other genes and themselves, plant serine/arginine-rich (SR) proteins play important roles in development and in response to abiotic stresses. Presently, the functions of most plant SR protein genes remain unclear. Wheat (Triticumaestivum) and Brachypodiumdistachyon are closely related species. In this study, 40 TaSR and 18 BdSR proteins were identified respectively, and they were classified into seven subfamilies: SR, RS, SCL, RSZ, RS2Z, SC35, and SR45. Similar to Arabidopsis and rice SR protein genes, most TaSR and BdSR protein genes are expressed extensively. Surprisingly, real-time polymerase chain reaction (RT-PCR) analyses showed that no alternative splicing event was found in TaSR protein genes, and only six BdSR protein genes are alternatively spliced genes. The detected alternatively spliced BdSR protein genes and transcripts are much fewer than in Arabidopsis, rice, maize, and sorghum. In the promoter regions, 92 development-related, stress-related, and hormone-related cis-elements were detected, indicating their functions in development and in response to environmental stresses. Meanwhile, 19 TaSR and 16 BdSR proteins were predicted to interact with other SR proteins or non-SR proteins, implying that they are involved in other functions in addition to modulating pre-mRNA splicing as essential components of the spliceosome. These results lay a foundation for further analyses of these genes.
Collapse
|
559
|
Chatterjee M, Pollard TD. The Functionally Important N-Terminal Half of Fission Yeast Mid1p Anillin Is Intrinsically Disordered and Undergoes Phase Separation. Biochemistry 2019; 58:3031-3041. [PMID: 31243991 DOI: 10.1021/acs.biochem.9b00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Division of fungal and animal cells depends on scaffold proteins called anillins. Cytokinesis by the fission yeast Schizosaccharomyces pombe is compromised by the loss of anillin Mid1p (Mid1, UniProtKB P78953 ), because cytokinesis organizing centers, called nodes, are misplaced and fail to acquire myosin-II, so they assemble slowly into abnormal contractile rings. The C-terminal half of Mid1p consists of lipid binding C2 and PH domains, but the N-terminal half (Mid1p-N452) performs most of the functions of the full-length protein. Little is known about the structure of the N-terminal half of Mid1p, so we investigated its physical properties using structure prediction tools, spectroscopic techniques, and hydrodynamic measurements. The data indicate that Mid1p-N452 is intrinsically disordered but moderately compact. Recombinant Mid1p-N452 purified from insect cells was phosphorylated, which weakens its tendency to aggregate. Purified Mid1p-N452 demixes into liquid droplets at concentrations far below its concentration in nodes. These physical properties are appropriate for scaffolding other proteins in nodes.
Collapse
|
560
|
Yuan Y, Zhang XY, Zhao Y, Zhang H, Zhou YF, Gao J. A Novel PL9 Pectate Lyase from Paenibacillus polymyxa KF-1: Cloning, Expression, and Its Application in Pectin Degradation. Int J Mol Sci 2019; 20:E3060. [PMID: 31234557 PMCID: PMC6627557 DOI: 10.3390/ijms20123060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Pectate lyases play an important role in pectin degradation, and therefore are highly useful in the food and textile industries. Here, we report on the cloning of an alkaline pectate lyase gene (pppel9a) from Paenibacillus polymyxa KF-1. The full-length gene (1350 bp) encodes for a 449-residue protein that belongs to the polysaccharide lyase family 9 (PL9). Recombinant PpPel9a produced in Escherichia coli was purified to electrophoretic homogeneity in a single step using Ni2+-NTA affinity chromatography. The enzyme activity of PpPel9a (apparent molecular weight of 45.3 kDa) was found to be optimal at pH 10.0 and 40 °C, with substrate preference for homogalacturonan type (HG) pectins vis-à-vis rhamnogalacturonan-I (RG-I) type pectins. Using HG-type pectins as substrate, PpPel9a showed greater activity with de-esterified HGs. In addition, PpPel9a was active against water-soluble pectins isolated from different plants. Using this lyase, we degraded citrus pectin, purified fractions using Diethylaminoethyl (DEAE)-sepharose column chromatography, and characterized the main fraction MCP-0.3. High-performance gel permeation chromatography (HPGPC) analysis showed that the molecular mass of citrus pectin (~230.2 kDa) was reduced to ~24 kDa upon degradation. Ultra-performance liquid chromatography - tandem mass spectrometer (UPLC-MS) and monosaccharide composition analyses demonstrated that PpPel9a worked as an endo-pectate lyase, which acted primarily on the HG domain of citrus pectin. In vitro testing showed that the degradation product MCP-0.3 significantly promotes the growth of Lactobacillus plantarum and L. rhamnosus. In this regard, the enzyme has potential in the preparation of pharmacologically active pectin products.
Collapse
Affiliation(s)
- Ye Yuan
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Xin-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Yan Zhao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Han Zhang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yi-Fa Zhou
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Juan Gao
- School of Life Sciences, Northeast Normal University, Changchun 130024, China.
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
561
|
Lin JLJ. Characterization of the novel cardiolipin binding regions identified on the protease and lipid activated PKC-related kinase 1. Protein Sci 2019; 28:1473-1486. [PMID: 31125460 DOI: 10.1002/pro.3663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 11/09/2022]
Abstract
Protein kinase C-related kinase 1 (PRK1) or PKN is a protease and lipid activated protein kinase that acted downstream of the RhoA or Rac1 pathway. PRK1 comprises a unique regulatory domain and a PKC homologous kinase domain. The regulatory domain of PRK1 consists of homologous region -1 (HR1) and -2 (HR2). PRK1-(HR1) features a pseudosubstrate motif that overlapped with the putative cardiolipin and known RhoA binding sites. In fact, cardiolipin is the most potent lipid activator for PRK1 in respect of its either auto- or substrate phosphorylation activity. This study was thus aimed to characterize the binding region(s) of cardiolipin that was previously suggested for the regulatory domain of PRK1. The principal findings of this work established (i) PRK1-(HR1) folded into an active conformation where high affinity binding sites (mainly located in HR1a subdomain) were accessible for cardiolipin binding to protect against limited Lys-C digestion, (ii) the binding nature between acidic phospholipids and PRK1 (HR1) involved both polar and nonpolar components consistent with the amphipathic nature of the known cardiolipin-binding motifs, (iii) identification of the molecule masses of the Lys-C fragments of PRK1-(HR1) complexed with cardiolipin molecule, and (iv) appreciable reductions in the secondary structural contents at 222 nm measured by circular dichroism analyses demonstrated the binding of cardiolipin elicited the disruptive effect that was most evident among all phospholipids tested, suggestive of a functional correlation between the extents of helical disruption and PRK1 activation.
Collapse
Affiliation(s)
- Jason L J Lin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
562
|
Hasanbašić S, Taler-Verčič A, Puizdar V, Stoka V, Tušek Žnidarič M, Vilfan A, Berbić S, Žerovnik E. Prolines Affect the Nucleation Phase of Amyloid Fibrillation Reaction; Mutational Analysis of Human Stefin B. ACS Chem Neurosci 2019; 10:2730-2740. [PMID: 30924329 PMCID: PMC6727212 DOI: 10.1021/acschemneuro.8b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
![]()
Proline
residues play a prominent role in protein folding and aggregation.
We investigated the influence of single prolines and their combination
on oligomerization and the amyloid fibrillation reaction of human
stefin B (stB). The proline mutants influenced the distribution of
oligomers between monomers, dimers, and tetramers as shown by the
size-exclusion chromatography. Only P74S showed higher oligomers,
reminiscent of the molten globule reported previously for the P74S
of stB-Y31 variant. The proline mutants also inhibited to various
degree the amyloid fibrillation reaction. At 30 and 37 °C, inhibition
was complete for the P74S single mutant, two double mutants (P6L P74S
and P74S P79S), and for the triple mutant P6L P11S P74S. At 30 °C
the single mutant P6L completely inhibited the reaction, while P11S
and P79S formed amyloid fibrils with a prolonged lag phase. P36D did
not show a lag phase, reminiscent of a downhill polymerization model.
At 37 °C in addition to P36D, P11S, and P79S, P6L and P11S P74S
also started to fibrillate; however, the yield of the fibrils was
much lower than that of the wild-type protein as judged by transmission
electron microscopy. Thus, Pro 74 cis/trans isomerization
proves to be the key event, acting as a switch toward an amyloid transition.
Using our previous model of nucleation and growth, we simulated the
kinetics of all the mutants that exhibited sigmoidal fibrillation
curves. To our surprise, the nucleation phase was most affected by
Pro cis/trans isomerism, rather than the fibril elongation
phase.
Collapse
Affiliation(s)
- Samra Hasanbašić
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, Department of Biochemistry, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina
| | - Ajda Taler-Verčič
- Center of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | | | - Veronika Stoka
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | - Selma Berbić
- Faculty of Pharmacy, Department of Biochemistry, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina
| | - Eva Žerovnik
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
- Center of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
563
|
Chen W, Hao WJ, Xu YX, Zheng C, Ni DJ, Yao MZ, Chen L. Isolation and Characterization of CsWRKY7, a Subgroup IId WRKY Transcription Factor from Camellia sinensis, Linked to Development in Arabidopsis. Int J Mol Sci 2019; 20:ijms20112815. [PMID: 31181825 PMCID: PMC6600228 DOI: 10.3390/ijms20112815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors (TFs) containing one or two WRKY domains are a class of plant TFs that respond to diverse abiotic stresses and are associated with developmental processes. However, little has been known about the function of WRKY gene in tea plant. In this study, a subgroup IId WRKY gene CsWRKY7 was isolated from Camellia sinensis, which displayed amino acid sequence homology with Arabidopsis AtWRKY7 and AtWRKY15. Subcellular localization prediction indicated that CsWRKY7 localized to nucleus. Cis-acting elements detected in the promotor region of CsWRKY7 are mainly involved in plant response to environmental stress and growth. Consistently, expression analysis showed that CsWRKY7 transcripts responded to NaCl, mannitol, PEG, and diverse hormones treatments. Additionally, CsWRKY7 exhibited a higher accumulation both in old leaves and roots compared to bud. Seed germination and root growth assay indicated that overexpressed CsWRKY7 in transgenic Arabidopsis was not sensitive to NaCl, mannitol, PEG, and low concentration of ABA treatments. CsWRKY7 overexpressing Arabidopsis showed a late-flowering phenotype under normal conditions compared to wild type. Furthermore, gene expression analysis showed that the transcription levels of the flowering time integrator gene FLOWERING LOCUS T (FT) and the floral meristem identity genes APETALA1 (AP1) and LEAFY (LFY) were lower in WRKY7-OE than in the WT. Taken together, these findings indicate that CsWRKY7 TF may participate in plant growth. This study provides a potential strategy to breed late-blooming tea cultivar.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture; Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, Zhejiang, China.
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
| | - Wan-Jun Hao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture; Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, Zhejiang, China.
| | - Yan-Xia Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture; Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, Zhejiang, China.
| | - Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture; Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, Zhejiang, China.
| | - De-Jiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China.
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture; Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, Zhejiang, China.
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture; Tea Research Institute Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, Zhejiang, China.
| |
Collapse
|
564
|
Abstract
The origin of novel genes and beneficial functions is of fundamental interest in evolutionary biology. New genes can originate from different mechanisms, including horizontal gene transfer, duplication-divergence, and de novo from noncoding DNA sequences. Comparative genomics has generated strong evidence for de novo emergence of genes in various organisms, but experimental demonstration of this process has been limited to localized randomization in preexisting structural scaffolds. This bypasses the basic requirement of de novo gene emergence, i.e., lack of an ancestral gene. We constructed highly diverse plasmid libraries encoding randomly generated open reading frames and expressed them in Escherichia coli to identify short peptides that could confer a beneficial and selectable phenotype in vivo (in a living cell). Selections on antibiotic-containing agar plates resulted in the identification of three peptides that increased aminoglycoside resistance up to 48-fold. Combining genetic and functional analyses, we show that the peptides are highly hydrophobic, and by inserting into the membrane, they reduce membrane potential, decrease aminoglycoside uptake, and thereby confer high-level resistance. This study demonstrates that randomized DNA sequences can encode peptides that confer selective benefits and illustrates how expression of random sequences could spark the origination of new genes. In addition, our results also show that this question can be addressed experimentally by expression of highly diverse sequence libraries and subsequent selection for specific functions, such as resistance to toxic compounds, the ability to rescue auxotrophic/temperature-sensitive mutants, and growth on normally nonused carbon sources, allowing the exploration of many different phenotypes.IMPORTANCE De novo gene origination from nonfunctional DNA sequences was long assumed to be implausible. However, recent studies have shown that large fractions of genomic noncoding DNA are transcribed and translated, potentially generating new genes. Experimental validation of this process so far has been limited to comparative genomics, in vitro selections, or partial randomizations. Here, we describe selection of novel peptides in vivo using fully random synthetic expression libraries. The peptides confer aminoglycoside resistance by inserting into the bacterial membrane and thereby partly reducing membrane potential and decreasing drug uptake. Our results show that beneficial peptides can be selected from random sequence pools in vivo and support the idea that expression of noncoding sequences could spark the origination of new genes.
Collapse
|
565
|
Hubin E, Verghese PB, van Nuland N, Broersen K. Apolipoprotein E associated with reconstituted high-density lipoprotein-like particles is protected from aggregation. FEBS Lett 2019; 593:1144-1153. [PMID: 31058310 PMCID: PMC6617784 DOI: 10.1002/1873-3468.13428] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (APOE) genotype determines Alzheimer's disease (AD) susceptibility, with the APOE ε4 allele being an established risk factor for late‐onset AD. The ApoE lipidation status has been reported to impact amyloid‐beta (Aβ) peptide metabolism. The details of how lipidation affects ApoE behavior remain to be elucidated. In this study, we prepared lipid‐free and lipid‐bound ApoE particles, mimicking the high‐density lipoprotein particles found in vivo, for all three isoforms (ApoE2, ApoE3, and ApoE4) and biophysically characterized them. We find that lipid‐free ApoE in solution has the tendency to aggregate in vitro in an isoform‐dependent manner under near‐physiological conditions and that aggregation is impeded by lipidation of ApoE.
Collapse
Affiliation(s)
- Ellen Hubin
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Philip B Verghese
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nico van Nuland
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Kerensa Broersen
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Applied Stem Cell Technologies, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
566
|
Silencing of Aberrant Secretory Protein Expression by Disease-Associated Mutations. J Mol Biol 2019; 431:2567-2580. [PMID: 31100385 DOI: 10.1016/j.jmb.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022]
Abstract
Signal recognition particle (SRP) recognizes signal sequences of secretory proteins and targets them to the endoplasmic reticulum membrane for translocation. Many human diseases are connected with defects in signal sequences. The current dogma states that the molecular basis of the disease-associated mutations in the secretory proteins is connected with defects in their transport. Here, we demonstrate for several secretory proteins with disease-associated mutations that the molecular mechanism is different from the dogma. Positively charged or helix-breaking mutations in the signal sequence hydrophobic core prevent synthesis of the aberrant proteins and lead to degradation of their mRNAs. The degree of mRNA depletion depends on the location and severity of the mutation in the signal sequence and correlates with inhibition of SRP interaction. Thus, SRP protects secretory protein mRNAs from degradation. The data demonstrate that if disease-associated mutations obstruct SRP interaction, they lead to silencing of the mutated protein expression.
Collapse
|
567
|
Comparative Analysis of the aquaporin Gene Family in 12 Fish Species. Animals (Basel) 2019; 9:ani9050233. [PMID: 31086002 PMCID: PMC6562760 DOI: 10.3390/ani9050233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Aquaporins (Aqps) are a group of membrane proteins. In this study, 166 Aqp genes were identified in 12 fish species. Gene organization, motif distribution, recombination, and selection pressure were performed to investigate their evolutionary characteristics. In addition, expression profiles of Aqps were also examined under pathogens infection and organophosphorus pesticide stress. This study will provide a useful reference for further functional study. Abstract Aquaporins (Aqps) are a class of water channel proteins that play key roles in many physiological functions and cellular processes. Here, we analyzed 166 putative Aqp genes in 12 fish species and divided them into four groups. Gene organization and motif distribution analyses suggested potentially conserved functions in each group. Several recombination events were identified in some members, which accelerate their divergence in evolution. Furthermore, a few positive selection sites were identified, and mutations at these sites could alter the stability of Aqp proteins. In addition, expression profiles of some Aqp genes under pathogen infection and organophosphorus pesticide stress were also investigated. The result implied that several Aqp genes may affect different immune responses and osmoregulation. This study provides a comparative analysis of the fish Aqp gene family to facilitate further functional analyses.
Collapse
|
568
|
Zhang P, Zhang Z, Li ZF, Chen Q, Li YY, Gong Y, Yue XJ, Sheng DH, Zhang YM, Wu C, Li YZ. Phylogeny-guided characterization of glycosyltransferases for epothilone glycosylation. Microb Biotechnol 2019; 12:763-774. [PMID: 31069998 PMCID: PMC6559208 DOI: 10.1111/1751-7915.13421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 12/03/2022] Open
Abstract
Glycosylation of natural products can influence their pharmacological properties, and efficient glycosyltransferases (GTs) are critical for this purpose. The polyketide epothilones are potent anti‐tumour compounds, and YjiC is the only reported GT for the glycosylation of epothilone. In this study, we phylogenetically analysed 8261 GTs deposited in CAZy database and revealed that YjiC locates in a subbranch of the Macrolide I group, forming the YjiC‐subbranch with 160 GT sequences. We demonstrated that the YjiC‐subbranch GTs are normally efficient in epothilone glycosylation, but some showed low glycosylation activities. Sequence alignment of YjiC‐subbranch showed that the 66th and 77th amino acid residues, which were close to the catalytic cavity in molecular docking model, were conserved in five high‐active GTs (Q66 and P77) but changed in two low‐efficient GTs. Site‐directed residues swapping at the two positions in the two low‐active GTs (BssGT and BamGT) and the high‐active GT BsGT‐1 demonstrated that the two amino acid residues played an important role in the catalytic efficiency of epothilone glycosylation. This study highlights that the potent GTs for appointed compounds are phylogenetically grouped with conserved residues for the catalytic efficiency.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhi-Feng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qi Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yao-Yao Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
569
|
Li GW, Chen XL, Chen LH, Wang WQ, Wu JX. Functional Analysis of the Chemosensory Protein GmolCSP8 From the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2019; 10:552. [PMID: 31133881 PMCID: PMC6516043 DOI: 10.3389/fphys.2019.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Chemosensory proteins (CSPs) belong to a family of small water-soluble proteins that can selectively bind and transport odorant molecules for olfactory communication in insects. To date, their definite physiological functions in olfaction remain controversial when compared with odorant binding proteins (OBPs). To investigate the functions of CSPs in the oriental fruit moth Grapholita molesta, we determined the tissue expression patterns and binding properties of the CSP, GmolCSP8. The key binding sites of GmolCSP8 with a representative ligand were evaluated using molecular flexible docking, site-directed mutagenesis and ligand-binding experiments. Multiple sequence alignment and phylogenetic analysis showed that GmolCSP8 possesses a typical conserved four cysteines motif and shares high sequence identity with some CSP members of other Lepidopteran insects. GmolCSP8 was predominantly expressed in the wings and antennae of both male and female adults and may be involve in contact chemoreception. Recombinant GmolCSP8 (rGmolCSP8) exhibited specific-binding affinities to small aliphatic alcohols (C4–12) and had the strongest binding affinity to 1-hexanol. The three-dimensional structure of GmolCSP8 was constructed using the structure of sgCSP4 as a template. Site-directed mutagenesis and ligand-binding experiments confirmed that Thr27 is the key binding site in GmolCSP8 for 1-hexanol binding, because this residue can form hydrogen bond with the oxygen atom of the hydroxyl group in 1-hexanol, and Leu30 may play an important role in binding to 1-hexanol. We found that pH significantly affected the binding affinities of rGmolCSP8 to ligand, revealing that ligand-binding and -release by this protein is related to a pH-dependent conformational transition. Based on these results, we infer that GmolCSP8 may participate in the recognition and transportation of 1-hexanol and other small aliphatic alcohols.
Collapse
Affiliation(s)
- Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Li-Hui Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Wen-Qiang Wang
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
570
|
Liu T, Luo T, Guo X, Zou X, Zhou D, Afrin S, Li G, Zhang Y, Zhang R, Luo Z. PgMYB2, a MeJA-Responsive Transcription Factor, Positively Regulates the Dammarenediol Synthase Gene Expression in Panax Ginseng. Int J Mol Sci 2019; 20:ijms20092219. [PMID: 31064108 PMCID: PMC6539309 DOI: 10.3390/ijms20092219] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
The MYB transcription factor family members have been reported to play different roles in plant growth regulation, defense response, and secondary metabolism. However, MYB gene expression has not been reported in Panax ginseng. In this study, we isolated a gene from ginseng adventitious root, PgMYB2, which encodes an R2R3-MYB protein. Subcellular localization revealed that PgMYB2 protein was exclusively detected in the nucleus of Allium cepa epidermis. The highest expression level of PgMYB2 was found in ginseng root and it was significantly induced by plant hormones methyl jasmonate (MeJA). Furthermore, the binding interaction between PgMYB2 protein and the promoter of dammarenediol synthase (DDS) was found in the yeast strain Y1H Gold. Moreover, the electrophoretic mobility shift assay (EMSA) identified the binding site of the interaction and the results of transiently overexpressing PgMYB2 in plants also illustrated that it may positively regulate the expression of PgDDS. Based on the key role of PgDDS gene in ginsenoside synthesis, it is reasonable to believe that this report will be helpful for the future studies on the MYB family in P. ginseng and ultimately improving the ginsenoside production through genetic and metabolic engineering.
Collapse
Affiliation(s)
- Tuo Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
| | - Tiao Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
- School of Stomatology of Changsha Medical University, Changsha 410006, China.
| | - Xiangqian Guo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
| | - Xian Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
| | - Donghua Zhou
- School of Stomatology of Changsha Medical University, Changsha 410006, China.
| | - Sadia Afrin
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
| | - Gui Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
| | - Ru Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410008, China.
| |
Collapse
|
571
|
Khanom S, Jang J, Lee OR. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis. J Ginseng Res 2019; 43:645-653. [PMID: 31695570 PMCID: PMC6823764 DOI: 10.1016/j.jgr.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 12/02/2022] Open
Abstract
Background Cytochrome P450 enzymes catalyze a wide range of reactions in plant metabolism. Besides their physiological functions on primary and secondary metabolites, P450s are also involved in herbicide detoxification via hydroxylation or dealkylation. Ginseng as a perennial plant offers more sustainable solutions to herbicide resistance. Methods Tissue-specific gene expression and differentially modulated transcripts were monitored by quantitative real-time polymerase chain reaction. As a tool to evaluate the function of PgCYP736A12, the 35S promoter was used to overexpress the gene in Arabidopsis. Protein localization was visualized using confocal microscopy by tagging the fluorescent protein. Tolerance to herbicides was analyzed by growing seeds and seedlings on Murashige and Skoog medium containing chlorotoluron. Results The expression of PgCYP736A12 was three-fold more in leaves compared with other tissues from two-year-old ginseng plants. Transcript levels were similarly upregulated by treatment with abscisic acid, hydrogen peroxide, and NaCl, the highest being with salicylic acid. Jasmonic acid treatment did not alter the mRNA levels of PgCYP736A12. Transgenic lines displayed slightly reduced plant height and were able to tolerate the herbicide chlorotoluron. Reduced stem elongation might be correlated with increased expression of genes involved in bioconversion of gibberellin to inactive forms. PgCYP736A12 protein localized to the cytoplasm and nucleus. Conclusion PgCYP736A12 does not respond to the well-known secondary metabolite elicitor jasmonic acid, which suggests that it may not function in ginsenoside biosynthesis. Heterologous overexpression of PgCYP736A12 reveals that this gene is actually involved in herbicide metabolism.
Collapse
Affiliation(s)
- Sanjida Khanom
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jinhoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
572
|
Petronikolou N, Ortega MA, Borisova SA, Nair SK, Metcalf WW. Molecular Basis of Bacillus subtilis ATCC 6633 Self-Resistance to the Phosphono-oligopeptide Antibiotic Rhizocticin. ACS Chem Biol 2019; 14:742-750. [PMID: 30830751 DOI: 10.1021/acschembio.9b00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhizocticins are phosphono-oligopeptide antibiotics that contain a toxic C-terminal ( Z) -l -2-amino-5-phosphono-3-pentenoic acid (APPA) moiety. APPA is an irreversible inhibitor of threonine synthase (ThrC), a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the conversion of O-phospho-l-homoserine to l-threonine. ThrCs are essential for the viability of bacteria, plants, and fungi and are a target for antibiotic development, as de novo threonine biosynthetic pathway is not found in humans. Given the ability of APPA to interfere in threonine metabolism, it is unclear how the producing strain B. subtilis ATCC 6633 circumvents APPA toxicity. Notably, in addition to the housekeeping APPA-sensitive ThrC ( BsThrC), B. subtilis encodes a second threonine synthase (RhiB) encoded within the rhizocticin biosynthetic gene cluster. Kinetic and spectroscopic analyses show that PLP-dependent RhiB is an authentic threonine synthase, converting O-phospho-l-homoserine to threonine with a catalytic efficiency comparable to BsThrC. To understand the structural basis of inhibition, we determined the crystal structure of APPA bound to the housekeeping BsThrC, revealing a covalent complex between the inhibitor and PLP. Structure-based sequence analyses reveal structural determinants within the RhiB active site that contribute to rendering this ThrC homologue resistant to APPA. Together, this work establishes the self-resistance mechanism utilized by B. subtilis ATCC 6633 against APPA exemplifying one of many ways by which bacteria can overcome phosphonate toxicity.
Collapse
Affiliation(s)
- Nektaria Petronikolou
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Manuel A. Ortega
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Svetlana A. Borisova
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana Illinois 61801, United States
| | - William W. Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Department of Microbiology, University of Illinois at Urbana−Champaign, Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
573
|
Mou Y, Liu Y, Tian S, Guo Q, Wang C, Wen S. Genome-Wide Identification and Characterization of the OPR Gene Family in Wheat ( Triticum aestivum L.). Int J Mol Sci 2019; 20:ijms20081914. [PMID: 31003470 PMCID: PMC6514991 DOI: 10.3390/ijms20081914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs), which belong to the old yellow enzyme (OYE) family, are flavin mononucleotide (FMN)-dependent oxidoreductases with critical functions in plants. Despite the clear characteristics of growth and development, as well as the defense responses in Arabidopsis, tomato, rice, and maize, the potential roles of OPRs in wheat are not fully understood. Here, forty-eight putative OPR genes were found and classified into five subfamilies, with 6 in sub. I, 4 in sub. II, 33 in sub. III, 3 in sub. IV, and 2 in sub. V. Similar gene structures and conserved protein motifs of TaOPRs in wheat were identified in the same subfamilies. An analysis of cis-acting elements in promoters revealed that the functions of OPRs in wheat were mostly related to growth, development, hormones, biotic, and abiotic stresses. A total of 14 wheat OPR genes were identified as tandem duplicated genes, while 37 OPR genes were segmentally duplicated genes. The expression patterns of TaOPRs were tissue- and stress-specific, and the expression of TaOPRs could be regulated or induced by phytohormones and various stresses. Therefore, there were multiple wheat OPR genes, classified into five subfamilies, with functional diversification and specific expression patterns, and to our knowledge, this was the first study to systematically investigate the wheat OPR gene family. The findings not only provide a scientific foundation for the comprehensive understanding of the wheat OPR gene family, but could also be helpful for screening more candidate genes and breeding new varieties of wheat, with a high yield and stress resistance.
Collapse
Affiliation(s)
- Yifei Mou
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuanyuan Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shujun Tian
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qiping Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chengshe Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shanshan Wen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
574
|
An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging. Nat Chem Biol 2019; 15:433-436. [PMID: 30936501 PMCID: PMC6563924 DOI: 10.1038/s41589-019-0256-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
Fluorescent indicators are widely used to visualize calcium dynamics downstream of membrane depolarization or G protein-coupled receptor activation, but are poorly suited for non-invasive imaging in mammals. Here, we report a bright calcium-modulated bioluminescent indicator named Orange CaMBI. Orange CaMBI reports calcium dynamics in single cells and, in the context of a transgenic mouse, reveals calcium oscillations in whole organs in an entirely noninvasive manner.
Collapse
|
575
|
Rathnayake UM, Hendrickson TL. Bacterial Aspartyl-tRNA Synthetase Has Glutamyl-tRNA Synthetase Activity. Genes (Basel) 2019; 10:genes10040262. [PMID: 30939863 PMCID: PMC6523644 DOI: 10.3390/genes10040262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/03/2023] Open
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are well established as the translators of the genetic code, because their products, the aminoacyl-tRNAs, read codons to translate messenger RNAs into proteins. Consequently, deleterious errors by the aaRSs can be transferred into the proteome via misacylated tRNAs. Nevertheless, many microorganisms use an indirect pathway to produce Asn-tRNAAsn via Asp-tRNAAsn. This intermediate is produced by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) that has retained its ability to also generate Asp-tRNAAsp. Here we report the discovery that ND-AspRS and its discriminating counterpart, AspRS, are also capable of specifically producing Glu-tRNAGlu, without producing misacylated tRNAs like Glu-tRNAAsn, Glu-tRNAAsp, or Asp-tRNAGlu, thus maintaining the fidelity of the genetic code. Consequently, bacterial AspRSs have glutamyl-tRNA synthetase-like activity that does not contaminate the proteome via amino acid misincorporation.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Asparagine/chemistry
- Asparagine/genetics
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Genetic Code/genetics
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/genetics
- Mycobacterium smegmatis/chemistry
- Mycobacterium smegmatis/genetics
- Protein Conformation
- Proteome/chemistry
- Proteome/genetics
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Udumbara M Rathnayake
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | - Tamara L Hendrickson
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
576
|
Shahul Hameed UF, Liao C, Radhakrishnan AK, Huser F, Aljedani SS, Zhao X, Momin AA, Melo FA, Guo X, Brooks C, Li Y, Cui X, Gao X, Ladbury JE, Jaremko Ł, Jaremko M, Li J, Arold ST. H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing. Nucleic Acids Res 2019; 47:2666-2680. [PMID: 30597093 PMCID: PMC6411929 DOI: 10.1093/nar/gky1299] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
As an environment-dependent pleiotropic gene regulator in Gram-negative bacteria, the H-NS protein is crucial for adaptation and toxicity control of human pathogens such as Salmonella, Vibrio cholerae or enterohaemorrhagic Escherichia coli. Changes in temperature affect the capacity of H-NS to form multimers that condense DNA and restrict gene expression. However, the molecular mechanism through which H-NS senses temperature and other physiochemical parameters remains unclear and controversial. Combining structural, biophysical and computational analyses, we show that human body temperature promotes unfolding of the central dimerization domain, breaking up H-NS multimers. This unfolding event enables an autoinhibitory compact H-NS conformation that blocks DNA binding. Our integrative approach provides the molecular basis for H-NS-mediated environment-sensing and may open new avenues for the control of pathogenic multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Chenyi Liao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Anand K Radhakrishnan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Franceline Huser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Safia S Aljedani
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Xiaochuan Zhao
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Afaque A Momin
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| | - Fernando A Melo
- Department of Physics (IBILCE), São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Xianrong Guo
- King Abdullah University of Science and Technology (KAUST), Imaging and Characterization Core Lab, Thuwal, 23955-6900, Saudi Arabia
| | - Claire Brooks
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Yu Li
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, VT 05405, USA
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900,Saudi Arabia
| |
Collapse
|
577
|
Pourseif MM, Yousefpour M, Aminianfar M, Moghaddam G, Nematollahi A. A multi-method and structure-based in silico vaccine designing against Echinococcus granulosus through investigating enolase protein. ACTA ACUST UNITED AC 2019; 9:131-144. [PMID: 31508329 PMCID: PMC6726745 DOI: 10.15171/bi.2019.18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022]
Abstract
![]()
Introduction: Hydatid disease is a ubiquitous parasitic zoonotic disease, which causes different medical, economic and serious public health problems in some parts of the world. The causal organism is a multi-stage parasite named Echinococcus granulosus whose life cycle is dependent on two types of mammalian hosts viz definitive and intermediate hosts.
Methods: In this study, enolase, as a key functional enzyme in the metabolism of E. granulosus (EgEnolase), was targeted through a comprehensive in silico modeling analysis and designing a host-specific multi-epitope vaccine. Three-dimensional (3D) structure of enolase was modeled using MODELLER v9.18 software. The B-cell epitopes (BEs) were predicted based on the multi-method approach and via some authentic online predictors. ClusPro v2.0 server was used for docking-based T-helper epitope prediction. The 3D structure of the vaccine was modeled using the RaptorX server. The designed vaccine was evaluated for its immunogenicity, physicochemical properties, and allergenicity. The codon optimization of the vaccine sequence was performed based on the codon usage table of E. coli K12. Finally, the energy minimization and molecular docking were implemented for simulating the vaccine binding affinity to the TLR-2 and TLR-4 and the complex stability.
Results: The designed multi-epitope vaccine was found to induce anti-EgEnolase immunity which may have the potential to prevent the survival and proliferation of E. granulosus into the definitive host.
Conclusion: Based on the results, this step-by-step immunoinformatics approach could be considered as a rational platform for designing vaccines against such multi-stage parasites. Furthermore, it is proposed that this multi-epitope vaccine is served as a promising preventive anti-echinococcosis agent.
Collapse
Affiliation(s)
- Mohammad Mostafa Pourseif
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mitra Yousefpour
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Aminianfar
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Gholamali Moghaddam
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ahmad Nematollahi
- Department of Pathobiology, Veterinary College, University of Tabriz, Tabriz, Iran
| |
Collapse
|
578
|
Palomo-Ligas L, Gutiérrez-Gutiérrez F, Ochoa-Maganda VY, Cortés-Zárate R, Charles-Niño CL, Castillo-Romero A. Identification of a novel potassium channel (GiK) as a potential drug target in Giardia lamblia: Computational descriptions of binding sites. PeerJ 2019; 7:e6430. [PMID: 30834181 PMCID: PMC6397635 DOI: 10.7717/peerj.6430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background The protozoan Giardia lamblia is the causal agent of giardiasis, one of the main diarrheal infections worldwide. Drug resistance to common antigiardial agents and incidence of treatment failures have increased in recent years. Therefore, the search for new molecular targets for drugs against Giardia infection is essential. In protozoa, ionic channels have roles in their life cycle, growth, and stress response. Thus, they are promising targets for drug design. The strategy of ligand-protein docking has demonstrated a great potential in the discovery of new targets and structure-based drug design studies. Methods In this work, we identify and characterize a new potassium channel, GiK, in the genome of Giardia lamblia. Characterization was performed in silico. Because its crystallographic structure remains unresolved, homology modeling was used to construct the three-dimensional model for the pore domain of GiK. The docking virtual screening approach was employed to determine whether GiK is a good target for potassium channel blockers. Results The GiK sequence showed 24–50% identity and 50–90% positivity with 21 different types of potassium channels. The quality assessment and validation parameters indicated the reliability of the modeled structure of GiK. We identified 110 potassium channel blockers exhibiting high affinity toward GiK. A total of 39 of these drugs bind in three specific regions. Discussion The GiK pore signature sequence is related to the small conductance calcium-activated potassium channels (SKCa). The predicted binding of 110 potassium blockers to GiK makes this protein an attractive target for biological testing to evaluate its role in the life cycle of Giardia lamblia and potential candidate for the design of novel antigiardial drugs.
Collapse
Affiliation(s)
- Lissethe Palomo-Ligas
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Filiberto Gutiérrez-Gutiérrez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Verónica Yadira Ochoa-Maganda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rafael Cortés-Zárate
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Lisette Charles-Niño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
579
|
Bandekar SJ, Arang N, Tully ES, Tang BA, Barton BL, Li S, Gutkind JS, Tesmer JJG. Structure of the C-terminal guanine nucleotide exchange factor module of Trio in an autoinhibited conformation reveals its oncogenic potential. Sci Signal 2019; 12:12/569/eaav2449. [PMID: 30783010 DOI: 10.1126/scisignal.aav2449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The C-terminal guanine nucleotide exchange factor (GEF) module of Trio (TrioC) transfers signals from the Gαq/11 subfamily of heterotrimeric G proteins to the small guanosine triphosphatase (GTPase) RhoA, enabling Gαq/11-coupled G protein-coupled receptors (GPCRs) to control downstream events, such as cell motility and gene transcription. This conserved signal transduction axis is crucial for tumor growth in uveal melanoma. Previous studies indicate that the GEF activity of the TrioC module is autoinhibited, with release of autoinhibition upon Gαq/11 binding. Here, we determined the crystal structure of TrioC in its basal state and found that the pleckstrin homology (PH) domain interacts with the Dbl homology (DH) domain in a manner that occludes the Rho GTPase binding site, thereby suggesting the molecular basis of TrioC autoinhibition. Biochemical and biophysical assays revealed that disruption of the autoinhibited conformation destabilized and activated the TrioC module in vitro. Last, mutations in the DH-PH interface found in patients with cancer activated TrioC and, in the context of full-length Trio, led to increased abundance of guanosine triphosphate-bound RhoA (RhoA·GTP) in human cells. These mutations increase mitogenic signaling through the RhoA axis and, therefore, may represent cancer drivers operating in a Gαq/11-independent manner.
Collapse
Affiliation(s)
- Sumit J Bandekar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Ena S Tully
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brittany A Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brenna L Barton
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
580
|
Wang C, Wang Y, Pan Q, Chen S, Feng C, Hai J, Li H. Comparison of Trihelix transcription factors between wheat and Brachypodium distachyon at genome-wide. BMC Genomics 2019; 20:142. [PMID: 30770726 PMCID: PMC6377786 DOI: 10.1186/s12864-019-5494-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Plant Trihelix transcription factors, specifically bind to GT elements and play important roles in plant physiology and development. Wheat is a main cereal crop. Brachypodium distachyon is a close relative of wheat and has been described as a new model species for studying of grass functional genomics. Presently, little is known about wheat and B. distachyon Trihelix genes. RESULTS In 51 species, 2387 Trihelix genes were identified, including 80 wheat Trihelix genes and 27 B. distachyon Trihelix genes. Consistent with the results of previous studies, these genes were classified into five subfamilies: GT-1, GT-2, SIP1, GTγ, and SH4. Members of the same subfamily shared similar gene structures and common motifs. Most TaGT and BdGT genes contained many kinds of cis-elements, such as development-, stress-, and phytohormone-related cis-acting elements. Additionally, 21 randomly selected TaGT genes were mainly expressed in the roots and flowers, while the expression of 19 selected BdGT genes was constitutive. These results indicate that the roles of Trihelix genes in wheat and B. distachyon might have diversified during the evolutionary process. The expression of the most selected TaGT and BdGT genes was down-regulated when exposed to low temperatures, NaCl, ABA, and PEG, implying that TaGT and BdGT genes negatively respond to abiotic stress. On the contrary, the expression of some genes was up-regulated under heat stress. CONCLUSIONS Trihelix genes exist extensively in plants and have many functions. During the evolutionary process, this gene family expanded and their functions diversified. As a result, the expression pattern and functions of members of the same family might be different. This study lays a foundation for further functional analyses of TaGT and BdGT genes.
Collapse
Affiliation(s)
- Chengwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Yu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Qi Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Cuizhu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Jiangbo Hai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712000 China
| |
Collapse
|
581
|
Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BG505 SOSIP.664 and BG505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens. J Pharm Sci 2019; 108:2264-2277. [PMID: 30776383 PMCID: PMC6595180 DOI: 10.1016/j.xphs.2019.01.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 11/22/2022]
Abstract
The induction of broadly neutralizing antibodies (bNAbs) is a major goal in the development of an effective vaccine against HIV-1. A soluble, trimeric, germline (gI) bNAb-targeting variant of the HIV-1 envelope glycoprotein (termed BG505 SOSIP.v4.1-GT1.1 gp140, abbreviated to GT1.1) has recently been developed. Here, we have compared this new immunogen with the parental trimer from which it was derived, BG505 SOSIP.664 gp140. We used a comprehensive suite of biochemical and biophysical methods to determine physicochemical similarities and differences between the 2 trimers, and thereby assessed whether additional formulation development efforts were needed for the GT1.1 vaccine candidate. The overall higher order structure and oligomeric states of the 2 vaccine antigens were quite similar, as were their thermal, chemical, and colloidal stability profiles, as evaluated during accelerated stability studies. Overall, we conclude that the primary sequence changes made to create the gl bNAb-targeting GT1.1 trimer did not detrimentally affect its physicochemical properties or stability profiles from a pharmaceutical perspective. This developability assessment of the BG505 GT1.1 vaccine antigen supports using the formulation and storage conditions previously identified for the parental SOSIP.664 trimer and enables the development of GT1.1 for phase I clinical studies.
Collapse
|
582
|
Bialer MG, Ruiz-Ranwez V, Sycz G, Estein SM, Russo DM, Altabe S, Sieira R, Zorreguieta A. MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence. Sci Rep 2019; 9:2158. [PMID: 30770847 PMCID: PMC6377625 DOI: 10.1038/s41598-018-37668-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens responsible for a worldwide zoonosis. The envelope of Brucella exhibits unique characteristics that make these bacteria furtive pathogens and resistant to several host defence compounds. We have identified a Brucella suis gene (mapB) that appeared to be crucial for cell envelope integrity. Indeed, the typical resistance of Brucella to both lysozyme and the cationic lipopeptide polymyxin B was markedly reduced in a ∆mapB mutant. MapB turned out to represent a TamB orthologue. This last protein, together with TamA, a protein belonging to the Omp85 family, form a complex that has been proposed to participate in the translocation of autotransporter proteins across the outer membrane (OM). Accordingly, we observed that MapB is required for proper assembly of an autotransporter adhesin in the OM, as most of the autotransporter accumulated in the mutant cell periplasm. Both assessment of the relative amounts of other specific outer membrane proteins (OMPs) and a proteome approach indicated that the absence of MapB did not lead to an extensive alteration in OMP abundance, but to a reduction in the relative amounts of a protein subset, including proteins from the Omp25/31 family. Electron microscopy revealed that ∆mapB cells exhibit multiple anomalies in cell morphology, indicating that the absence of the TamB homologue in B. suis severely affects cell division. Finally, ∆mapB cells were impaired in macrophage infection and showed an attenuated virulence phenotype in the mouse model. Collectively, our results indicate that the role of B. suis TamB homologue is not restricted to participating in the translocation of autotransporters across the OM but that it is essential for OM stability and protein composition and that it is involved in cell envelope biogenesis, a process that is inherently coordinated with cell division.
Collapse
Affiliation(s)
- Magalí Graciela Bialer
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Verónica Ruiz-Ranwez
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Silvia Marcela Estein
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A), Tandil, Argentina
| | - Daniela Marta Russo
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
583
|
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 2019; 363:363/6427/eaat9931. [PMID: 30733391 DOI: 10.1126/science.aat9931] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/02/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022]
Abstract
The gut microbiota is implicated in the metabolism of many medical drugs, with consequences for interpersonal variation in drug efficacy and toxicity. However, quantifying microbial contributions to drug metabolism is challenging, particularly in cases where host and microbiome perform the same metabolic transformation. We combined gut commensal genetics with gnotobiotics to measure brivudine drug metabolism across tissues in mice that vary in a single microbiome-encoded enzyme. Informed by these measurements, we built a pharmacokinetic model that quantitatively predicts microbiome contributions to systemic drug and metabolite exposure, as a function of bioavailability, host and microbial drug-metabolizing activity, drug and metabolite absorption, and intestinal transit kinetics. Clonazepam studies illustrate how this approach disentangles microbiome contributions to metabolism of drugs subject to multiple metabolic routes and transformations.
Collapse
Affiliation(s)
- Michael Zimmermann
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Maria Zimmermann-Kogadeeva
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Rebekka Wegmann
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
584
|
Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS, Waters CM, Cooper VS, Neiditch MB. Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biol 2019; 17:e3000123. [PMID: 30716063 PMCID: PMC6361424 DOI: 10.1371/journal.pbio.3000123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/07/2023] Open
Abstract
The diffusible signal factors (DSFs) are a family of quorum-sensing autoinducers (AIs) produced and detected by numerous gram-negative bacteria. The DSF family AIs are fatty acids, differing in their acyl chain length, branching, and substitution but having in common a cis-2 double bond that is required for their activity. In both human and plant pathogens, DSFs regulate diverse phenotypes, including virulence factor expression, antibiotic resistance, and biofilm dispersal. Despite their widespread relevance to both human health and agriculture, the molecular basis of DSF recognition by their cellular receptors remained a mystery. Here, we report the first structure-function studies of the DSF receptor regulation of pathogenicity factor R (RpfR). We present the X-ray crystal structure of the RpfR DSF-binding domain in complex with the Burkholderia DSF (BDSF), which to our knowledge is the first structure of a DSF receptor in complex with its AI. To begin to understand the mechanistic role of the BDSF-RpfR contacts observed in the biologically important complex, we have also determined the X-ray crystal structure of the RpfR DSF-binding domain in complex with the inactive, saturated isomer of BDSF, dodecanoic acid (C12:0). In addition to these ligand-receptor complex structures, we report the discovery of a previously overlooked RpfR domain and show that it binds to and negatively regulates the DSF synthase regulation of pathogenicity factor F (RpfF). We have named this RpfR region the RpfF interaction (FI) domain, and we have determined its X-ray crystal structure alone and in complex with RpfF. These X-ray crystal structures, together with extensive complementary in vivo and in vitro functional studies, reveal the molecular basis of DSF recognition and the importance of the cis-2 double bond to DSF function. Finally, we show that throughout cellular growth, the production of BDSF by RpfF is post-translationally controlled by the RpfR N-terminal FI domain, affecting the cellular concentration of the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Thus, in addition to describing the molecular basis for the binding and specificity of a DSF for its receptor, we describe a receptor-synthase interaction regulating bacterial quorum-sensing signaling and second messenger signal transduction.
Collapse
Affiliation(s)
- Evan J. Waldron
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicolas L. Fernandez
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Emily Sileo
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daigo Inoyama
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
585
|
Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 2019; 20:101. [PMID: 30709338 PMCID: PMC6359794 DOI: 10.1186/s12864-019-5455-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). Results Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. Conclusions Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5455-1) contains supplementary material, which is available to authorized users.
Collapse
|
586
|
Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases. J Bacteriol 2019; 201:JB.00623-18. [PMID: 30455285 DOI: 10.1128/jb.00623-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
ExoU is a potent type III secretion system effector that is injected directly into mammalian cells by the opportunistic pathogen Pseudomonas aeruginosa As a ubiquitin-activated phospholipase A2 (PLA2), ExoU exhibits cytotoxicity by cleaving membrane phospholipids, resulting in lysis of the host cells and inhibition of the innate immune response. Recently, ExoU has been established as a model protein for a group of ubiquitin-activated PLA2 enzymes encoded by a variety of bacteria. Bioinformatic analyses of homologous proteins is a powerful approach that can complement and enhance the overall understanding of protein structure and function. To conduct homology studies, it is important to have efficient and effective tools to screen and to validate the putative homologs of interest. Here we make use of an Escherichia coli-based dual expression system to screen putative ubiquitin-activated PLA2 enzymes from a variety of bacteria that are known to colonize humans and to cause human infections. The screen effectively identified multiple ubiquitin-activated phospholipases, which were validated using both biological and biochemical techniques. In this study, two new ExoU orthologs were identified and the ubiquitin activation of the rickettsial enzyme RP534 was verified. Conversely, ubiquitin was not found to regulate the activity of several other tested enzymes. Based on structural homology analyses, functional properties were predicted for AxoU, a unique member of the group expressed by Achromobacter xylosoxidans IMPORTANCE Bacterial phospholipases act as intracellular and extracellular enzymes promoting the destruction of phospholipid barriers and inflammation during infections. Identifying enzymes with a common mechanism of activation is an initial step in understanding structural and functional properties. These properties serve as critical information for the design of specific inhibitors to reduce enzymatic activity and ameliorate host cell death. In this study, we identify and verify cytotoxic PLA2 enzymes from several bacterial pathogens. Similar to the founding member of the group, ExoU, these enzymes share the property of ubiquitin-mediated activation. The identification and validation of potential toxins from multiple bacterial species provide additional proteins from which to derive structural insights that could lead to paninhibitors useful for treating a variety of infections.
Collapse
|
587
|
Lu S, Parizi LF, Torquato RJS, Vaz Junior IS, Tanaka AS. Novel pseudo-aspartic peptidase from the midgut of the tick Rhipicephalus microplus. Sci Rep 2019; 9:435. [PMID: 30679545 PMCID: PMC6345952 DOI: 10.1038/s41598-018-36849-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022] Open
Abstract
The characterization of Rhipicephalus microplus tick physiology can support efforts to develop and improve the efficiency of control methods. A sequence containing a domain with similarity to one derived from the aspartic peptidase family was isolated from the midgut of engorged female R. microplus. The lack of the second catalytic aspartic acid residue suggest that it may be a pseudo-aspartic peptidase, and it was named RmPAP. In this work we confirm the lack of proteolytic activity of RmPAP and investigate it’s non-proteolytic interaction with bovine hemoglobin by Surface Plasmon Resonance and phage display. Moreover we carried out RNAi interference and artificial feeding of ticks with anti-RmPAP antibodies to assess it’s possible biological role, although no changes were observed in the biological parameters evaluated. Overall, we hypothesize that RmPAP may act as a carrier of hemoglobin/heme between the tick midgut and the ovaries.
Collapse
Affiliation(s)
- S Lu
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil
| | - L F Parizi
- Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil
| | - R J S Torquato
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil
| | - I S Vaz Junior
- Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil.,School of Veterinary, Federal University of Rio Grande do Sul (UFRGS), RS, Brazil.,National Institute of Science and Technology in Molecular Entomology (INTC-EM), RJ, Brazil
| | - A S Tanaka
- Department of Biochemistry, Federal University of Sao Paulo (UNIFESP), SP, Brazil. .,National Institute of Science and Technology in Molecular Entomology (INTC-EM), RJ, Brazil.
| |
Collapse
|
588
|
Jang JH, Lee OR. Overexpression of ginseng patatin-related phospholipase pPLAIIIβ alters the polarity of cell growth and decreases lignin content in Arabidopsis. J Ginseng Res 2019; 44:321-331. [PMID: 32148415 PMCID: PMC7031755 DOI: 10.1016/j.jgr.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background The patatin-related phospholipase AIII family (pPLAIIIs) genes alter cell elongation and cell wall composition in Arabidopsis and rice plant, suggesting diverse commercial purposes of the economically important medicinal ginseng plant. Herein, we show the functional characterization of a ginseng pPLAIII gene for the first time and discuss its potential applications. Methods pPLAIIIs were identified from ginseng expressed sequence tag clones and further confirmed by search against ginseng database and polymerase chain reaction. A clone showing the highest homology with pPLAIIIβ was shown to be overexpressed in Arabidopsis using Agrobacterium. Quantitative polymerase chain reaction was performed to analyze ginseng pPLAIIIβ expression. Phenotypes were observed using a low-vacuum scanning electron microscope. Lignin was stained using phloroglucinol and quantified using acetyl bromide. Results The PgpPLAIIIβ transcripts were observed in all organs of 2-year-old ginseng. Overexpression of ginseng pPLAIIIβ (PgpPLAIIIβ-OE) in Arabidopsis resulted in small and stunted plants. It shortened the trichomes and decreased trichome number, indicating defects in cell polarity. Furthermore, OE lines exhibited enlarged seeds with less number per silique. The YUCCA9 gene was downregulated in the OE lines, which is reported to be associated with lignification. Accordingly, lignin was stained less in the OE lines, and the expression of two transcription factors related to lignin biosynthesis was also decreased significantly. Conclusion Overexpression of pPLAIIIβ retarded cell elongation in all the tested organs except seeds, which were longer and thicker than those of the controls. Shorter root length is related to auxin-responsive genes, and its stunted phenotype showed decreased lignin content.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ok Ran Lee
- Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
589
|
Lorente E, Martín-Galiano AJ, Barnea E, Barriga A, Palomo C, García-Arriaza J, Mir C, Lauzurica P, Esteban M, Admon A, López D. Proteomics Analysis Reveals That Structural Proteins of the Virion Core and Involved in Gene Expression Are the Main Source for HLA Class II Ligands in Vaccinia Virus-Infected Cells. J Proteome Res 2019; 18:900-911. [PMID: 30629447 DOI: 10.1021/acs.jproteome.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protective cellular and humoral immune responses require previous recognition of viral antigenic peptides complexed with human leukocyte antigen (HLA) class II molecules on the surface of the antigen presenting cells. The HLA class II-restricted immune response is important for the control and the clearance of poxvirus infection including vaccinia virus (VACV), the vaccine used in the worldwide eradication of smallpox. In this study, a mass spectrometry analysis was used to identify VACV ligands bound to HLA-DR and -DP class II molecules present on the surface of VACV-infected cells. Twenty-six naturally processed viral ligands among the tens of thousands of cell peptides bound to HLA class II proteins were identified. These viral ligands arose from 19 parental VACV proteins: A4, A5, A18, A35, A38, B5, B13, D1, D5, D7, D12, D13, E3, E8, H5, I2, I3, J2, and K2. The majority of these VACV proteins yielded one HLA ligand and were generated mainly, but not exclusively, by the classical HLA class II antigen processing pathway. Medium-sized and abundant proteins from the virion core and/or involved in the viral gene expression were the major source of VACV ligands bound to HLA-DR and -DP class II molecules. These findings will help to understand the effectiveness of current poxvirus-based vaccines and will be important in the design of new ones.
Collapse
Affiliation(s)
| | | | - Eilon Barnea
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | | | | - Juan García-Arriaza
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | | | | | - Mariano Esteban
- Department of Molecular and Cellular Biology , Centro Nacional de Biotecnología , Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid , Spain
| | - Arie Admon
- Department of Biology , Technion-Israel Institute of Technology , 32000 Haifa , Israel
| | | |
Collapse
|
590
|
Computational characterization of the peptidome in transporter associated with antigen processing (TAP)-deficient cells. PLoS One 2019; 14:e0210583. [PMID: 30645615 PMCID: PMC6333353 DOI: 10.1371/journal.pone.0210583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is a key element of the major histocompatibility complex (MHC) class I antigen processing and presentation pathway. Nonfunctional TAP complexes impair the translocation of cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen. This drastic reduction in the available peptide repertoire leads to a significant decrease in MHC class I cell surface expression. Using mass spectrometry, different studies have analyzed the cellular MHC class I ligandome from TAP-deficient cells, but the analysis of the parental proteins, the source of these ligands, still deserves an in-depth analysis. In the present report, several bioinformatics protocols were applied to investigate the nature of parental proteins for the previously identified TAP-independent MHC class I ligands. Antigen processing in TAP-deficient cells mainly focused on small, abundant or highly integral transmembrane proteins of the cellular proteome. This process involved abundant proteins of the central RNA metabolism. In addition, TAP-independent ligands were preferentially cleaved from the N- and C-terminal ends with respect to the central regions of the parental proteins. The abundance of glycine, proline and aromatic residues in the C-terminal sequences from TAP-independently processed proteins allows the accessibility and specificity required for the proteolytic activities that generates the TAP-independent ligandome. This limited proteolytic activity towards a set of preferred proteins in a TAP-negative environment would therefore suffice to promote the survival of TAP-deficient individuals.
Collapse
|
591
|
Tanhaeian A, Damavandi MS, Mansury D, Ghaznini K. Expression in eukaryotic cells and purification of synthetic gene encoding enterocin P: a bacteriocin with broad antimicrobial spectrum. AMB Express 2019; 9:6. [PMID: 30617751 PMCID: PMC6323060 DOI: 10.1186/s13568-018-0729-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/31/2018] [Indexed: 01/13/2023] Open
Abstract
Due to the emergence of multidrug-resistant bacteria, treatment options for infectious diseases are decreasing. Bacteriocins are small antimicrobial peptides produced by numerous bacteria that offer alternative therapeutic strategies to combat multidrug-resistant bacterial infections. We evaluated the cloning, functional expression, and antimicrobial activities of enterocin P (EntP), a class II bacteriocin member, in Chinese hamster ovary (CHO) cells. A synthetic gene matching CHO cell codon usage was designed from the known mature amino acid sequence of EntP and cloned into the protein expression vector pcDNA™3.1(+). CHO cells were transformed with the recombinant plasmid and cultured, and the recombinant protein was purified by affinity chromatography. Antimicrobial activities of the recombinant EntP were evaluated on Gram-positive, Gram-negative, and multidrug-resistant pathogens. Recombinant EntP inhibited growth of a variety of bacteria, including pathogenic species known to cause nosocomial infections, often with multidrug-resistant strains. In addition, recombinant EntP demonstrated broad antimicrobial activities in both high salt medium and human plasma and was stable at high temperatures. The broad antimicrobial activity and stability of EntP make it an attractive therapeutic candidate, particularly for treatment of multidrug-resistant bacterial infections.
Collapse
|
592
|
Hennessy M, Granade ME, Hassaninasab A, Wang D, Kwiatek JM, Han GS, Harris TE, Carman GM. Casein kinase II-mediated phosphorylation of lipin 1β phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3β protein. J Biol Chem 2019; 294:2365-2374. [PMID: 30617183 DOI: 10.1074/jbc.ra118.007246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian lipin 1 phosphatidate phosphatase is a key regulatory enzyme in lipid metabolism. By catalyzing phosphatidate dephosphorylation, which produces diacylglycerol, the enzyme plays a major role in the synthesis of triacylglycerol and membrane phospholipids. The importance of lipin 1 to lipid metabolism is exemplified by cellular defects and lipid-based diseases associated with its loss or overexpression. Phosphorylation of lipin 1 governs whether it is associated with the cytoplasm apart from its substrate or with the endoplasmic reticulum membrane where its enzyme reaction occurs. Lipin 1β is phosphorylated on multiple sites, but less than 10% of them are ascribed to a specific protein kinase. Here, we demonstrate that lipin 1β is a bona fide substrate for casein kinase II (CKII), a protein kinase that is essential to viability and cell cycle progression. Phosphoamino acid analysis and phosphopeptide mapping revealed that lipin 1β is phosphorylated by CKII on multiple serine and threonine residues, with the former being major sites. Mutational analysis of lipin 1β and its peptides indicated that Ser-285 and Ser-287 are both phosphorylated by CKII. Substitutions of Ser-285 and Ser-287 with nonphosphorylatable alanine attenuated the interaction of lipin 1β with 14-3-3β protein, a regulatory hub that facilitates the cytoplasmic localization of phosphorylated lipin 1. These findings advance our understanding of how phosphorylation of lipin 1β phosphatidate phosphatase regulates its interaction with 14-3-3β protein and intracellular localization and uncover a mechanism by which CKII regulates cellular physiology.
Collapse
Affiliation(s)
- Meagan Hennessy
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Mitchell E Granade
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Azam Hassaninasab
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Dana Wang
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Joanna M Kwiatek
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Gil-Soo Han
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - George M Carman
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| |
Collapse
|
593
|
de Maat S, Clark CC, Boertien M, Parr N, Sanrattana W, Hofman ZLM, Maas C. Factor XII truncation accelerates activation in solution. J Thromb Haemost 2019; 17:183-194. [PMID: 30394658 PMCID: PMC7379707 DOI: 10.1111/jth.14325] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Essentials During contact system activation, factor XII is progressively cleaved by plasma kallikrein. We investigated the role of factor XII truncation in biochemical studies. Factor XII contains naturally occurring truncating cleavage sites for a variety of enzymes. Truncation of factor XII primes it for activation in solution through exposure of R353. SUMMARY: Background The contact activation system and innate immune system are interlinked in inflammatory pathology. Plasma kallikrein (PKa) is held responsible for the stepwise processing of factor XII (FXII). A first cleavage activates FXII (into FXIIa); subsequent cleavages truncate it. This truncation eliminates its surface-binding domains, which negatively regulates surface-dependent coagulation. Objectives To investigate the influence of FXII truncation on its activation and downstream kallikrein-kinin system activation. Methods We study activation of recombinant FXII variants by chromogenic assays, by FXIIa ELISA and western blotting. Results We demonstrate that FXII truncation primes it for activation by PKa in solution. We demonstrate this phenomenon in three settings. (i) Truncation at a naturally occurring PKa-sensitive cleavage site, R334, accelerates FXIIa formation in solution. A site-directed mutant FXII-R334A displays ~50% reduced activity when exposed to PKa. (ii) A pathogenic mutation in FXII that causes hereditary angioedema, introduces an additional plasmin-sensitive cleavage site. Truncation at this site synergistically accelerates FXII activation in solution. (iii) We identify new, naturally occurring cleavage sites in FXII that have so far not been functionally linked to contact system activation. As examples, we show that non-activating truncation of FXII by neutrophil elastase and cathepsin K primes it for activation by PKa in solution. Conclusions FXII truncation, mediated by either pathogenic mutations or naturally occurring cleavage sites, primes FXII for activation in solution. We propose that the surface-binding domains of FXII shield its activating cleavage site, R353. This may help to explain how the contact system contributes to inflammatory pathology.
Collapse
Affiliation(s)
- S. de Maat
- Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - C. C. Clark
- Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - M. Boertien
- Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - N. Parr
- Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - W. Sanrattana
- Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Z. L. M. Hofman
- Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - C. Maas
- Department of Clinical Chemistry and HaematologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
594
|
Cebrián R, Macia-Valero A, Jati AP, Kuipers OP. Design and Expression of Specific Hybrid Lantibiotics Active Against Pathogenic Clostridium spp. Front Microbiol 2019; 10:2154. [PMID: 31616392 PMCID: PMC6768957 DOI: 10.3389/fmicb.2019.02154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile has been reported as the most common cause of nosocomial diarrhea (antibiotic-associated diarrhea), resulting in significant morbidity and mortality in hospitalized patients. The resistance of the clostridial spores to antibiotics and their side effects on the gut microbiota are two factors related to the emergence of infection and its relapses. Lantibiotics provide an innovative alternative for cell growth inhibition due to their dual mechanism of action (membrane pore-forming and cell wall synthesis inhibition) and low resistance rate. Based on the fact that bacteriocins are usually active against bacteria closely related to the producer strains, a new dual approach combining genome mining and synthetic biology was performed, by designing new lantibiotics with high activity and specificity toward Clostridium. We first attempted the heterologous expression of putative lantibiotics identified following Clostridium genome mining. Subsequently, we designed new hybrid lantibiotics combining the start or end of the putative clostridial peptides and the start or end parts of nisin. The designed peptides were cloned and expressed using the nisin biosynthetic machinery in Lactococcus lactis. From the 20 initial peptides, only 1 fulfilled the requirements established in this work to be considered as a good candidate: high heterologous production level and high specificity/activity against clostridial species. The high specificity and activity observed for the peptide AMV10 makes it an interesting candidate as an alternative to traditional antibiotics in the treatment of C. difficile infections, avoiding side effects and protecting the normal gut microbiota.
Collapse
|
595
|
Veggiani G, Huang H, Yates BP, Tong J, Kaneko T, Joshi R, Li SSC, Moran MF, Gish G, Sidhu SS. Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Sci 2018; 28:403-413. [PMID: 30431205 DOI: 10.1002/pro.3551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Abstract
Protein phosphorylation is the most abundant post-translational modification in cells. Src homology 2 (SH2) domains specifically recognize phosphorylated tyrosine (pTyr) residues to mediate signaling cascades. A conserved pocket in the SH2 domain binds the pTyr side chain and the EF and BG loops determine binding specificity. By using large phage-displayed libraries, we engineered the EF and BG loops of the Fyn SH2 domain to alter specificity. Engineered SH2 variants exhibited distinct specificity profiles and were able to bind pTyr sites on the epidermal growth factor receptor, which were not recognized by the wild-type Fyn SH2 domain. Furthermore, mass spectrometry showed that SH2 variants with additional mutations in the pTyr-binding pocket that enhanced affinity were highly effective for enrichment of diverse pTyr peptides within the human proteome. These results showed that engineering of the EF and BG loops could be used to tailor SH2 domain specificity, and SH2 variants with diverse specificities and high affinities for pTyr residues enabled more comprehensive analysis of the human phosphoproteome. STATEMENT: Src Homology 2 (SH2) domains are modular domains that recognize phosphorylated tyrosine embedded in proteins, transducing these post-translational modifications into cellular responses. Here we used phage display to engineer hundreds of SH2 domain variants with altered binding specificities and enhanced affinities, which enabled efficient and differential enrichment of the human phosphoproteome for analysis by mass spectrometry. These engineered SH2 domain variants will be useful tools for elucidating the molecular determinants governing SH2 domains binding specificity and for enhancing analysis and understanding of the human phosphoproteome.
Collapse
Affiliation(s)
- Gianluca Veggiani
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Haiming Huang
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Bradley P Yates
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Jiefei Tong
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - Tomonori Kaneko
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Rakesh Joshi
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Shawn S C Li
- Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Michael F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,The Hospital for Sick Children, SPARC Biocentre, Toronto, Ontario, M5G 0A4, Canada
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Sachdev S Sidhu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|
596
|
Liao Q, Zhou T, Yao JY, Han QF, Song HX, Guan CY, Hua YP, Zhang ZH. Genome-scale characterization of the vacuole nitrate transporter Chloride Channel (CLC) genes and their transcriptional responses to diverse nutrient stresses in allotetraploid rapeseed. PLoS One 2018; 13:e0208648. [PMID: 30571734 PMCID: PMC6301700 DOI: 10.1371/journal.pone.0208648] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
The Chloride Channel (CLC) gene family is reported to be involved in vacuolar nitrate (NO3-) transport. Nitrate distribution to the cytoplasm is beneficial for enhancing NO3- assimilation and plays an important role in the regulation of nitrogen (N) use efficiency (NUE). In this study, genomic information, high-throughput transcriptional profiles, and gene co-expression analysis were integrated to identify the CLCs (BnaCLCs) in Brassica napus. The decreased NO3- concentration in the clca-2 mutant up-regulated the activities of nitrate reductase and glutamine synthetase, contributing to increase N assimilation and higher NUE in Arabidopsis thaliana. The genome-wide identification of 22BnaCLC genes experienced strong purifying selection. Segmental duplication was the major driving force in the expansion of the BnaCLC gene family. The most abundant cis-acting regulatory elements in the gene promoters, including DNA-binding One Zinc Finger, W-box, MYB, and GATA-box, might be involved in the transcriptional regulation of BnaCLCs expression. High-throughput transcriptional profiles and quantitative real-time PCR results showed that BnaCLCs responded differentially to distinct NO3- regimes. Transcriptomics-assisted gene co-expression network analysis identified BnaA7.CLCa-3 as the core member of the BnaCLC family, and this gene might play a central role in vacuolar NO3- transport in crops. The BnaCLC members also showed distinct expression patterns under phosphate depletion and cadmium toxicity. Taken together, our results provide comprehensive insights into the vacuolar BnaCLCs and establish baseline information for future studies on BnaCLCs-mediated vacuolar NO3- storage and its effect on NUE.
Collapse
Affiliation(s)
- Qiong Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Ting Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Jun-yue Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Qing-fen Han
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Chun-yun Guan
- National Center of Oilseed Crops Improvement, Hunan Branch, Changsha, China
| | - Ying-peng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- * E-mail: (ZHZ); (YPH)
| | - Zhen-hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- * E-mail: (ZHZ); (YPH)
| |
Collapse
|
597
|
A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Structure 2018; 27:229-240.e4. [PMID: 30581045 DOI: 10.1016/j.str.2018.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/06/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
The N-terminal transactivation domain (NTD) of estrogen receptor alpha, a well-known member of the family of intrinsically disordered proteins, mediates the receptor's transactivation function. However, an accurate molecular dissection of NTD's structure-function relationships remains elusive. Here, we show that the NTD adopts a mostly disordered, unexpectedly compact conformation that undergoes structural expansion on chemical denaturation. By combining small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational modeling, we derive the ensemble-structures of the NTD and determine its ensemble-contact map revealing metastable long-range contacts, e.g., between residues I33 and S118. We show that mutation at S118, a known phosphorylation site, promotes conformational changes and increases coactivator binding. We further demonstrate via fluorine-19 (19F) nuclear magnetic resonance that mutations near I33 alter 19F chemical shifts at S118, confirming the proposed I33-S118 contact in the ensemble of structural disorder. These findings extend our understanding of how specific contact metastability mediates critical functions of disordered proteins.
Collapse
|
598
|
Human erythrocyte band 3 is a host receptor for Plasmodium falciparum glutamic acid-rich protein. Blood 2018; 133:470-480. [PMID: 30545833 DOI: 10.1182/blood-2018-07-865451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a major global threat to human health and economic development. Microvascular lesions caused by Plasmodium falciparum-infected human erythrocytes/red blood cells are hallmarks of severe pathogenesis contributing to high mortality, particularly in children from sub-Saharan Africa. In this study, we used a phage display complementary DNA library screening strategy to identify P falciparum glutamic acid-rich protein (PfGARP) as a secreted ligand that recognizes an ectodomain of human erythrocyte anion-exchanger, band 3/AE1, as a host receptor. Domain mapping of PfGARP revealed distinct nonoverlapping repeats encoding the immune response epitopes and core erythrocyte-binding activity. Synthetic peptides derived from the erythrocyte-binding repeats of PfGARP induced erythrocyte aggregation reminiscent of the rosetting phenomenon. Using peptides derived from the immunogenic repeats, a quantitative immunoassay was developed to detect a selective immune response against PfGARP in human plasma samples obtained from patients in rural Mali, suggesting the feasibility of PfGARP as a potential biomarker of disease progression. Collectively, our results suggest that PfGARP may play a functional role in enhancing the adhesive properties of human erythrocytes by engaging band 3 as a host receptor. We propose that immunological and pharmacological inhibition of PfGARP may unveil new therapeutic options for mitigating lesions in cerebral and pregnancy-associated malaria.
Collapse
|
599
|
Triantaphyllopoulos KA, Baltoumas FA, Hamodrakas SJ. Structural characterization and molecular dynamics simulations of the caprine and bovine solute carrier family 11 A1 (SLC11A1). J Comput Aided Mol Des 2018; 33:265-285. [PMID: 30543052 DOI: 10.1007/s10822-018-0179-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
Abstract
Natural Resistance-Associated Macrophage Proteins are a family of transmembrane divalent metal ion transporters, with important implications in life of both bacteria and mammals. Among them, the Solute Carrier family 11 member A1 (SLC11A1) has been implicated with susceptibility to infection by Mycobacterium avium subspecies paratuberculosis (MAP), potentially causing Crohn's disease in humans and paratuberculosis (PTB) in ruminants. Our previous research had focused on sequencing the mRNA of the caprine slc11a1 gene and pinpointed polymorphisms that contribute to caprine SLC11A1's susceptibility to infection by MAP in PTB. Despite its importance, little is known on the structural/dynamic features of mammalian SLC11A1 that may influence its function under normal or pathological conditions at the protein level. In this work we studied the structural architecture of SLC11A1 in Capra hircus and Bos taurus through molecular modeling, molecular dynamics simulations in different, functionally relevant configurations, free energy calculations of protein-metal interactions and sequence conservation analysis. The results of this study propose a three dimensional structure for SLC11A1 with conserved sequence and structural features and provide hints for a potential mechanism through which divalent metal ion transport is conducted. Given the importance of SLC11A1 in susceptibility to PTB, this study provides a framework for further studies on the structure and dynamics of SLC11A1 in other organisms, to gain 3D structural insight into the macromolecular arrangements of SLC11A1 but also suggesting a potential mechanism which divalent metal ion transport is conducted.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855, Athens, Greece.
| | - Fotis A Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Stavros J Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| |
Collapse
|
600
|
Wang T, Song H, Zhang B, Lu Q, Liu Z, Zhang S, Guo R, Wang C, Zhao Z, Liu J, Peng R. Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet ( Setaria italica L.). 3 Biotech 2018; 8:486. [PMID: 30498660 PMCID: PMC6240016 DOI: 10.1007/s13205-018-1502-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutases (SODs) play important roles in plant growth, development, and response to abiotic stresses. Despite SOD gene families have been identified in various plant species, little is known in foxtail millet (Setaria italica L.). In this study, a systematic analysis of SOD gene family was performed in foxtail millet and the expression pattern of SOD genes in response to abiotic stressors was analyzed at the whole-genomic level. Eight SOD genes were identified in foxtail millet, including 4 Cu/ZnSODs, 3 FeSODs, and 1 MnSOD. These SiSODs are unevenly distributed across 5 of the 9 chromosomes. Phylogenetic analysis showed that SOD proteins could be divided into two major categories (Cu/ZnSODs and Fe-MnSODs), containing seven subgroups, from foxtail millet and other plant species. SOD genes have conserved motif and exon/intron composition in the same subgroup among Setaria italica, Setaria viridis, and Oryza sativa. Additionally, many cis-elements that respond to different stressors were distributed at different densities in the promoters of 8 SiSODs. The expression patterns of SiSODs in different tissues and different abiotic stressors indicated that the SiSODs may play important roles in reactive oxygen species scavenging, caused by various stressors in foxtail millet. This study provides a foundation for the further cloning and functional verification of the SOD gene family response to environmental stimuli in foxtail millet.
Collapse
Affiliation(s)
- Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, Anyang, Henan 455000 China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Quanwei Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Zhen Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Ruilin Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Cong Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Zilin Zhao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang, Henan 455000 China
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan 455000 China
| |
Collapse
|