601
|
Ceylan-Isik AF, Sreejayan N, Ren J. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. J Mol Cell Cardiol 2011; 50:107-16. [PMID: 21035453 PMCID: PMC3018539 DOI: 10.1016/j.yjmcc.2010.10.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/30/2022]
Abstract
ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated with TUDCA (50mg/kg/day, p.o.) or vehicle for 5 weeks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed. Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity and protein expression of intracellular Ca(2+) regulatory proteins were measured using (45)Ca(2+) uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lowered systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca(2+) properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decrease in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity.
Collapse
Affiliation(s)
- Asli F Ceylan-Isik
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
602
|
Body development in sows, feed intake and maternal capacity. Part 2: gilt body condition before and after lactation, reproductive performance and correlations with lactation feed intake. Animal 2011; 5:1855-67. [DOI: 10.1017/s1751731111001133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
603
|
Moon HS, Chamberland JP, Diakopoulos KN, Fiorenza CG, Ziemke F, Schneider B, Mantzoros CS. Leptin and amylin act in an additive manner to activate overlapping signaling pathways in peripheral tissues: in vitro and ex vivo studies in humans. Diabetes Care 2011; 34:132-8. [PMID: 20870968 PMCID: PMC3005478 DOI: 10.2337/dc10-0518] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Amylin interacts with leptin to alter metabolism. We evaluated, for the first time, amylin- and/or leptin-activated signaling pathways in human peripheral tissues (hPTs). RESEARCH DESIGN AND METHODS Leptin and amylin signaling studies were performed in vitro in human primary adipocytes (hPAs) and human peripheral blood mononuclear cells (hPBMCs) and ex vivo in human adipose tissue (hAT) from male versus female subjects, obese versus lean subjects, and subjects with subcutaneous versus omental adipose tissue. RESULTS The long form of leptin receptor was expressed in human tissues and cells studied in ex vivo and in vitro, respectively. Leptin and amylin alone and in combination activate signal transducer and activator of transcription 3 (STAT3), AMP-activated protein kinase, Akt, and extracellular signal-regulated kinase signaling pathways in hAT ex vivo and hPAs and hPBMCs in vitro; all phosphorylation events were saturable at leptin and amylin concentrations of ∼50 and ∼20 ng/ml, respectively. The effects of leptin and amylin on STAT3 phosphorylation in hPAs and hPBMCs in vitro were totally abolished under endoplasmic reticulum stress and/or in the presence of a STAT3 inhibitor. Results similar to those in the in vitro studies were observed in hAT studied ex vivo. CONCLUSIONS Leptin and amylin activate overlapping intracellular signaling pathways in humans and have additive, but not synergistic, effects in signaling pathways studied in hPTs in vitro and ex vivo.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
604
|
Abstract
The evolving concept of how nutrient excess and inflammation modulate metabolism provides new opportunities for strategies to correct the detrimental health consequences of obesity. In this review, we focus on the complex interplay among lipid overload, immune response, proinflammatory pathways and organelle dysfunction through which excess adiposity might lead to type 2 diabetes. We then consider evidence linking dysregulated CNS circuits to insulin resistance and results on nutrient-sensing pathways emerging from studies with calorie restriction. Subsequently, recent recommendations for the management of type 2 diabetes are discussed with emphasis on prevailing current therapeutic classes of biguanides, thiazolidinediones and incretin-based approaches.
Collapse
Affiliation(s)
- Christina Schwanstecher
- Molekulare Pharmakologie und Toxikologie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany.
| | | |
Collapse
|
605
|
Abstract
Exercise, together with a low-energy diet, is the first-line treatment for type 2 diabetes type 2 diabetes . Exercise improves insulin sensitivity insulin sensitivity by increasing the number or function of muscle mitochondria mitochondria and the capacity for aerobic metabolism, all of which are low in many insulin-resistant subjects. Cannabinoid 1-receptor antagonists and β-adrenoceptor agonists improve insulin sensitivity in humans and promote fat oxidation in rodents independently of reduced food intake. Current drugs for the treatment of diabetes are not, however, noted for their ability to increase fat oxidation, although the thiazolidinediones increase the capacity for fat oxidation in skeletal muscle, whilst paradoxically increasing weight gain.There are a number of targets for anti-diabetic drugs that may improve insulin sensitivity insulin sensitivity by increasing the capacity for fat oxidation. Their mechanisms of action are linked, notably through AMP-activated protein kinase, adiponectin, and the sympathetic nervous system. If ligands for these targets have obvious acute thermogenic activity, it is often because they increase sympathetic activity. This promotes fuel mobilisation, as well as fuel oxidation. When thermogenesis thermogenesis is not obvious, researchers often argue that it has occurred by using the inappropriate device of treating animals for days or weeks until there is weight (mainly fat) loss and then expressing energy expenditure energy expenditure relative to body weight. In reality, thermogenesis may have occurred, but it is too small to detect, and this device distracts us from really appreciating why insulin sensitivity has improved. This is that by increasing fatty acid oxidation fatty acid oxidation more than fatty acid supply, drugs lower the concentrations of fatty acid metabolites that cause insulin resistance. Insulin sensitivity improves long before any anti-obesity effect can be detected.
Collapse
Affiliation(s)
- Jonathan R S Arch
- Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| |
Collapse
|
606
|
ER Stress and Iron Homeostasis: A New Frontier for the UPR. Biochem Res Int 2010; 2011:896474. [PMID: 21197476 PMCID: PMC3010616 DOI: 10.1155/2011/896474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/01/2010] [Indexed: 02/07/2023] Open
Abstract
The C282Y mutation of HFE accounts for the majority of cases of the iron overload disease Hereditary Hemochromatosis (HH).
The conformational changes introduced by this mutation impair the HFE association with β2-microglobulin
(β2m) and the cell surface expression of the protein: with two major consequences. From a functional perspective,
the ability of HFE to bind to transferrin receptors 1 and 2 is lost in the C282Y mutant, thus affecting hepcidin regulation. Also due to the faulty
assembly with β2m, HFE-C282Y molecules remain in the endoplasmic reticulum (ER) as aggregates that undergo
proteasomal degradation and activate an Unfolded Protein Response (UPR). UPR activation, regardless of the ER stress stimuli, was shown
to reshape the expression profile of iron-related genes and to decrease MHC-I cell surface expression. The possibility of a HFE-C282Y-mediated
interplay between the UPR and iron homeostasis influencing disease progression and the clinical heterogeneity among C282Y carriers is
discussed. The responsiveness of the ER chaperone calreticulin to both ER and iron-induced oxidative stresses, and its correlation with HH
patients' phenotype, reinforce the interest of dissecting the UPR signaling/iron metabolism crosstalk and points to the potential
clinical value of use of pharmacological chaperones in HFE-HH.
Collapse
|
607
|
Tsutsumi A, Motoshima H, Kondo T, Kawasaki S, Matsumura T, Hanatani S, Igata M, Ishii N, Kinoshita H, Kawashima J, Taketa K, Furukawa N, Tsuruzoe K, Nishikawa T, Araki E. Caloric restriction decreases ER stress in liver and adipose tissue in ob/ob mice. Biochem Biophys Res Commun 2010; 404:339-44. [PMID: 21134353 DOI: 10.1016/j.bbrc.2010.11.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/26/2010] [Indexed: 11/26/2022]
Abstract
Endoplasmic reticulum (ER) stress plays a crucial role in the development of insulin resistance and diabetes. Although caloric restriction (CR) improves obesity-related disorders, the effects of CR on ER stress in obesity remain unknown. To investigate how CR affects ER stress in obesity, ob/ob mice were assigned to either ad libitum (AL) (ob-AL) or CR (ob-CR) feeding (2 g food/day) for 1-4 weeks. The body weight (BW) of ob-CR mice decreased to the level of lean AL-fed littermates (lean-AL) within 2 weeks. BW of lean-AL and ob-CR mice was less than that of ob-AL mice. The ob-CR mice showed improved glucose tolerance and hepatic insulin action compared with ob-AL mice. Levels of ER stress markers such as phosphorylated PKR-like ER kinase (PERK) and eukaryotic translation initiation factor 2α and the mRNA expression of activating transcription factor 4 were significantly higher in the liver and epididymal fat from ob-AL mice compared with lean-AL mice. CR for 2 and 4 weeks significantly reduced all of these markers to less than 35% and 50%, respectively, of the levels in ob-AL mice. CR also significantly reduced the phosphorylation of insulin receptor substrate (IRS)-1 and c-Jun NH(2)-terminal kinase (JNK) in ob/ob mice. The CR-mediated decrease in PERK phosphorylation was similar to that induced by 4-phenyl butyric acid, which reduces ER stress in vivo. In conclusion, CR reduced ER stress and improved hepatic insulin action by suppressing JNK-mediated IRS-1 serine-phosphorylation in ob/ob mice.
Collapse
Affiliation(s)
- Atsuyuki Tsutsumi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
608
|
Briancon N, McNay DE, Maratos-Flier E, Flier JS. Combined neural inactivation of suppressor of cytokine signaling-3 and protein-tyrosine phosphatase-1B reveals additive, synergistic, and factor-specific roles in the regulation of body energy balance. Diabetes 2010; 59:3074-84. [PMID: 20876718 PMCID: PMC2992768 DOI: 10.2337/db10-0481] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The adipokine hormone leptin triggers signals in the brain that ultimately lead to decreased feeding and increased energy expenditure. However, obesity is most often associated with elevated plasma leptin levels and leptin resistance. Suppressor of cytokine signaling (SOCS)-3 and protein-tyrosine phosphatase 1B (PTP-1B) are two endogenous inhibitors of tyrosine kinase signaling pathways and suppress both insulin and leptin signaling via different molecular mechanisms. Brain-specific inactivation of these genes individually in the mouse partially protects against diet-induced obesity (DIO) and insulin resistance. The aim of this study was to investigate possible genetic interactions between these two genes to determine whether combined reduction in these inhibitory activities results in synergistic, epistatic, or additive effects on energy balance control. RESEARCH DESIGN AND METHODS We generated mice with combined inactivation of the genes coding for SOCS-3 and PTP-1B in brain cells, examined their sensitivity to hormone action, and analyzed the contribution of each gene to the resulting phenotype. RESULTS Surprisingly, the Nestin-Cre mice used to mediate gene inactivation displayed a phenotype. Nonetheless, combined inactivation of SOCS-3 and PTP-1B in brain revealed additive effects on several parameters, including partial resistance to DIO and associated glucose intolerance. In addition, synergistic effects were observed for body length and weight, suggesting possible compensatory mechanisms for the absence of either inhibitor. Moreover, a SOCS-3-specific lean phenotype was revealed on the standard diet. CONCLUSIONS These results show that the biological roles of SOCS-3 and PTP-1B do not fully overlap and that targeting both factors might improve therapeutic effects of their inhibition in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Nadege Briancon
- Division of Endocrinology, Diabetes, and Metabolism, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David E. McNay
- Division of Endocrinology, Diabetes, and Metabolism, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Diabetes, and Metabolism, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Corresponding author: Eleftheria Maratos-Flier,
| | - Jeffrey S. Flier
- Division of Endocrinology, Diabetes, and Metabolism, Center for Life Sciences, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Office of the Dean, Boston, Massachusetts
| |
Collapse
|
609
|
Belgardt BF, Brüning JC. CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 2010; 1212:97-113. [PMID: 21070248 DOI: 10.1111/j.1749-6632.2010.05799.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The obesity and diabetes pandemics have made it an urgent necessity to define the central nervous system (CNS) pathways controlling body weight, energy expenditure, and fuel metabolism. The pancreatic hormone insulin and the adipose tissue-derived leptin are known to act on diverse neuronal circuits in the CNS to maintain body weight and metabolism in a variety of species, including humans. Because these homeostatic circuits are disrupted during the development of obesity, the pathomechanisms leading to CNS leptin and insulin resistance are a focal point of research. In this review, we summarize the recent findings concerning the mechanisms and novel neuronal mediators of both insulin and leptin action in the CNS.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47a, Cologne, Germany
| | | |
Collapse
|
610
|
Zhou L, Liu M, Zhang J, Chen H, Dong LQ, Liu F. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes 2010; 59:2809-16. [PMID: 20699416 PMCID: PMC2963539 DOI: 10.2337/db10-0412] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Obesity impairs adiponectin expression, assembly, and secretion, yet the underlying mechanisms remain elusive. The aims of this study were 1) to determine the molecular mechanisms by which obesity impairs adiponectin multimerization and stability, and 2) to determine the potential role of disulfide-bond-A oxidoreductase-like protein (DsbA-L), a recently identified adiponectin interactive protein that promotes adiponectin multimerization and stability in obesity-induced endoplasmic reticulum (ER) stress and adiponectin downregulation. RESEARCH DESIGN AND METHODS Tauroursodeoxycholic acid (TUDCA), a chemical chaperone that alleviates ER stress, was used to study the mechanism underlying obesity-induced adiponectin downregulation in db/db mice, high-fat diet-induced obese mice, and in ER-stressed 3T3-L1 adipocytes. The cellular levels of DsbA-L were altered by RNAi-mediated suppression or adenovirus-mediated overexpression. The protective role of DsbA-L in obesity- and ER stress-induced adiponectin downregulation was characterized. RESULTS Treating db/db mice and diet-induced obese mice with TUDCA increased the cellular and serum levels of adiponectin. In addition, inducing ER stress is sufficient to downregulate adiponectin levels in 3T3-L1 adipocytes, which could be protected by treating cells with the autophagy inhibitor 3-methyladenine or by overexpression of DsbA-L. CONCLUSIONS ER stress plays a key role in obesity-induced adiponectin downregulation. In addition, DsbA-L facilitates adiponectin folding and assembly and provides a protective effect against ER stress-mediated adiponectin downregulation in obesity.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Meilian Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jingjing Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Hongzhi Chen
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lily Q. Dong
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Feng Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Corresponding author: Feng Liu,
| |
Collapse
|
611
|
Sachithanandan N, Fam BC, Fynch S, Dzamko N, Watt MJ, Wormald S, Honeyman J, Galic S, Proietto J, Andrikopoulos S, Hevener AL, Kay TWH, Steinberg GR. Liver-specific suppressor of cytokine signaling-3 deletion in mice enhances hepatic insulin sensitivity and lipogenesis resulting in fatty liver and obesity. Hepatology 2010; 52:1632-42. [PMID: 20799351 DOI: 10.1002/hep.23861] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Obesity is associated with chronic inflammation and contributes to the development of insulin resistance and nonalcoholic fatty liver disease. The suppressor of cytokine signaling-3 (SOCS3) protein is increased in inflammation and is thought to contribute to the pathogenesis of insulin resistance by inhibiting insulin and leptin signaling. Therefore, we studied the metabolic effects of liver-specific SOCS3 deletion in vivo. We fed wild-type (WT) and liver-specific SOCS3 knockout (SOCS3 LKO) mice either a control diet or a high-fat diet (HFD) for 6 weeks and examined their metabolic phenotype. We isolated hepatocytes from WT and SOCS3 LKO mice and examined the effects of tumor necrosis factor α and insulin on Akt phosphorylation and fatty acid metabolism and lipogenic gene expression. Hepatocytes from control-fed SOCS3 LKO mice were protected from developing tumor necrosis factor α-induced insulin resistance but also had increased lipogenesis and expression of sterol response element-binding protein-1c target genes. Lean SOCS3 LKO mice fed a control diet had enhanced hepatic insulin sensitivity; however, when fed an HFD, SOCS3 LKO mice had increased liver fat, inflammation, and whole-body insulin resistance. SOCS3 LKO mice fed an HFD also had elevated hypothalamic SOCS3 and fatty acid synthase expression and developed greater obesity due to increased food intake and reduced energy expenditure. CONCLUSION Deletion of SOCS3 in the liver increases liver insulin sensitivity in mice fed a control diet but paradoxically promotes lipogenesis, leading to the development of nonalcoholic fatty liver disease, inflammation, and obesity.
Collapse
Affiliation(s)
- Nirupa Sachithanandan
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
612
|
Wu LLY, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology 2010; 151:5438-45. [PMID: 20861227 DOI: 10.1210/en.2010-0551] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In obesity, accumulation of lipid in nonadipose tissues, or lipotoxicity, is associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and ultimately apoptosis. We have previously shown that obese women have increased triglycerides in follicular fluid; thus, the present study examined whether high-fat diet-induced obesity causes lipotoxicity in granulosa cells and the cumulus-oocyte complex (COC). Oocytes of mice fed a high-fat diet had dramatically increased lipid content and reduced mitochondrial membrane potential compared to those of mice fed a control diet. COCs from mice fed a high-fat diet had increased expression of ER stress marker genes ATF4 and GRP78. Apoptosis was increased in granulosa and cumulus cells of mice fed a high-fat diet. Mice fed a high-fat diet also exhibited increased anovulation and decreased in vivo fertilization rates. Thus, lipid accumulation, ER stress, mitochondrial dysfunction, and apoptosis are markedly increased in ovarian cells of mice fed a high-fat diet. ER stress markers were also analyzed in granulosa cells and follicular fluid from women with varying body mass indices (BMI). ATF4 was increased in granulosa cells and [Ca(2+)] in follicular fluid from obese women compared to nonobese women. These results indicate that lipotoxicity may be occurring in ovarian cells of obese women and may contribute to the reduced pregnancy rates observed in response to obesity.
Collapse
Affiliation(s)
- Linda Lin-Yan Wu
- School of Pediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
613
|
Myers MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 2010; 21:643-51. [PMID: 20846876 PMCID: PMC2967652 DOI: 10.1016/j.tem.2010.08.002] [Citation(s) in RCA: 576] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/12/2010] [Accepted: 08/16/2010] [Indexed: 12/12/2022]
Abstract
Because leptin reduces food intake and body weight, the coexistence of elevated leptin levels with obesity is widely interpreted as evidence of 'leptin resistance.' Indeed, obesity promotes a number of cellular processes that attenuate leptin signaling (referred to here as 'cellular leptin resistance') and amplify the extent of weight gain induced by genetic and environmental factors. As commonly used, however, the term 'leptin resistance' embraces a range of phenomena that are distinct in underlying mechanisms and pathophysiological implications. Moreover, the induction of cellular leptin resistance by obesity complicates efforts to distinguish the mechanisms that predispose to weight gain from those that result from it. We suggest a framework for approaching these issues and important avenues for future investigation.
Collapse
Affiliation(s)
- Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
614
|
Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52:1836-46. [PMID: 21038418 DOI: 10.1002/hep.24001] [Citation(s) in RCA: 1797] [Impact Index Per Article: 119.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas in most cases a fatty liver remains free of inflammation, 10%-20% of patients who have fatty liver develop inflammation and fibrosis (nonalcoholic steatohepatitis [NASH]). Inflammation may precede steatosis in certain instances. Therefore, NASH could reflect a disease where inflammation is followed by steatosis. In contrast, NASH subsequent to simple steatosis may be the consequence of a failure of antilipotoxic protection. In both situations, many parallel hits derived from the gut and/or the adipose tissue may promote liver inflammation. Endoplasmic reticulum stress and related signaling networks, (adipo)cytokines, and innate immunity are emerging as central pathways that regulate key features of NASH.
Collapse
Affiliation(s)
- Herbert Tilg
- Christian Doppler Research Laboratory for Gut Inflammation, Medical University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
615
|
Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci U S A 2010; 107:19320-5. [PMID: 20974941 DOI: 10.1073/pnas.1012044107] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased endoplasmic reticulum (ER) stress is one of the central mechanisms that lead to dysregulated metabolic homeostasis in obesity. It is thus crucial to understand the underpinnings of the mechanisms that lead to the development of ER stress. A high level of ER Ca(2+) is imperative for maintenance of normal ER function and this high Ca(2+) concentration of ER is maintained by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Here, we show that SERCA2b protein and mRNA levels are dramatically reduced in the liver of obese mice and restoration of SERCA2b in the liver of obese and diabetic mice alleviates ER stress, increases glucose tolerance, and significantly reduces the blood glucose levels. Furthermore, overexpression of SERCA2b in the liver of obese mice significantly reduces the lipogenic gene expression and the triglyceride content in the liver. Our results document the importance of SERCA2b in dysregulated glucose and lipid homeostasis in the liver of obese mice and suggest development of drugs to increase SERCA2b activity for treatment of type 2 diabetes and nonalcoholic steatohepatitis.
Collapse
|
616
|
Ye R, Mareninova OA, Barron E, Wang M, Hinton DR, Pandol SJ, Lee AS. Grp78 heterozygosity regulates chaperone balance in exocrine pancreas with differential response to cerulein-induced acute pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2827-36. [PMID: 20971738 DOI: 10.2353/ajpath.2010.100368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) is abundant in the acinar cells of the exocrine pancreas. To test the role of ER homeostasis in acute pancreatitis, we manipulated GRP78 levels, a major ER chaperone, in mice. Grp78(+/+) and (+/-) littermates were fed either a regular diet (RD) or a high-fat diet. Acinar cells were examined for ER structure by electron microscopy, and ER chaperone levels were assessed by immunoblotting. Pancreatitis was induced by cerulein injection, and multiple pathological parameters were analyzed. Grp78(+/-) mice showed decreased GRP78 expression in acinar cells. Exocrine pancreata of RD-fed Grp78(+/-) mice in an outbred C57BL/6 × 129/sv genetic background exhibited ER lumen dilation, a reduction in chaperones calnexin (CNX) and calreticulin (CRT), and exacerbated pancreatitis associated with high CHOP induction. With the high-fat diet regimen, Grp78 heterozygosity triggered GRP94 up-regulation and restoration of GRP78, CNX, and CRT to wild-type levels, corresponding with mitigated pancreatitis on cerulein insult. Interestingly, after backcrossing into the C57BL/6 background, RD-fed Grp78(+/-) mice exhibited an increase in GRP94 and levels of CNX and CRT equivalent to wild type, associated with decreased experimental pancreatitis severity. Administration of a chemical chaperone, 4-phenolbutyrate, was protective against cerulein-induced death. Thus, in exocrine pancreata, Grp78 heterozygosity regulates ER chaperone balance, in dietary- and genetic background-dependent manners, and improved ER protein folding capacity might be protective against pancreatitis.
Collapse
Affiliation(s)
- Risheng Ye
- Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|
617
|
Engin F, Hotamisligil GS. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 2010; 12 Suppl 2:108-15. [PMID: 21029307 DOI: 10.1111/j.1463-1326.2010.01282.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The endoplasmic reticulum (ER) is a eukaryotic organelle that plays important roles in protein synthesis, folding and trafficking, calcium homoeostasis and lipid and steroid synthesis. It is the major protein synthesis compartment for secreted, plasma membrane and organelle proteins. Perturbations of ER homeostasis such as the accumulation of unfolded or misfolded proteins cause ER stress. To alleviate this stress, ER triggers an evolutionarily conserved signalling cascade called the unfolded protein response (UPR). As an initial response, the UPR aims at adapting and restoring ER function by translational attenuation, upregulation of ER chaperones and degradation of unfolded proteins. However, if the ER function is severely impaired because of excessive or prolonged exposure to stress, then the inflicted cells may undergo programmed cell death. During ER stress, unstable or partially folded mutant proteins are prevented from trafficking to their proper subcellular localizations and usually rapidly degraded. The small molecules named chemical chaperones help to stabilize these mutant proteins and facilitate their folding and proper trafficking from the ER to their final destinations. Because increasing number of studies suggest that ER stress is involved in a number of disease pathogenesis including neurodegenerative diseases, cancer, obesity, diabetes and atherosclerosis, promoting ER folding capacity through chemical chaperones emerges as a novel therapeutic approach. In this review, we provide insight into the many important functions of chemical chaperones during ER stress, their impact on the ER-stress-related pathologies and their potential as a new drug targets, especially in the context of metabolic disorders.
Collapse
Affiliation(s)
- F Engin
- Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
618
|
Jordan SD, Könner AC, Brüning JC. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 2010; 67:3255-73. [PMID: 20549539 PMCID: PMC2933848 DOI: 10.1007/s00018-010-0414-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is capable of gathering information on the body's nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sabine D. Jordan
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - A. Christine Könner
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- 2nd Department for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- 2nd Department for Internal Medicine, University Hospital Cologne, Cologne, Germany
- Max Planck Institute for the Biology of Aging, Cologne, Germany
| |
Collapse
|
619
|
Abstract
Obesity is a major problem worldwide that increases risk for a wide range of diseases, including diabetes and heart disease. As such, it is increasingly important to understand how excess adiposity can perturb normal metabolic functions. It is now clear that this disruption involves not only pathways controlling lipid and glucose homeostasis but also integration of metabolic and immune response pathways. Under conditions of nutritional excess, this integration can result in a metabolically driven, low-grade, chronic inflammatory state, referred to as "metaflammation," that targets metabolically critical organs and tissues to adversely affect systemic homeostasis. Endoplasmic reticulum dysfunction is another important feature of chronic metabolic disease that is also linked to both metabolic and immune regulation. A thorough understanding of how these pathways intersect to maintain metabolic homeostasis, as well as how this integration is altered under conditions of nutrient excess, is important to fully understand, and subsequently treat, chronic metabolic diseases.
Collapse
Affiliation(s)
- Sarah Hummasti
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
620
|
Garcia C, Feve B, Ferré P, Halimi S, Baizri H, Bordier L, Guiu G, Dupuy O, Bauduceau B, Mayaudon H. Diabetes and inflammation: fundamental aspects and clinical implications. DIABETES & METABOLISM 2010; 36:327-38. [PMID: 20851652 DOI: 10.1016/j.diabet.2010.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 02/06/2023]
Abstract
AIM The aim of this paper is to provide the fundamental background of the inflammation theory associated with type 2 diabetes, to discuss the clinical consequences of low-grade inflammation, particularly in terms of cardiovascular risk, and to infer some clinical therapeutic strategies deriving from drugs that already exist or are in development. METHODS This non-exhaustive work is the result of a Pubmed(®) research, based on requests including the following keywords: diabetes, inflammation, innate immunity, obesity, reticulum endoplasmic stress, cytokines, endothelial dysfunction. RESULTS Obesity and type 2 diabetes are linked with a low-grade inflammation state that reflects the activation of innate immunity where metabolic, environmental and genetic factors are implicated. The role of endoplasmic reticulum stress and unfold protein response is underlined. Inflammation markers are predictive for the risk to develop diabetes, and are associated with an increased cardiovascular risk. While lifestyle modifications are followed by an improvement in inflammation markers, treatments inferred from the inflammation theory are of great interest, although quite moderate effects on glycaemic control have been observed with some of them. CONCLUSION The development of molecules targeting different inflammatory mechanisms could lead in diabetic patients to improvement of both glycaemia and cardiovascular prognosis.
Collapse
Affiliation(s)
- C Garcia
- Service d'endocrinologie-diabétologie, hôpital d'instruction des armées Bégin, 69, avenue de Paris, 94160 St.-Mandé, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
621
|
Abstract
PURPOSE OF REVIEW Increasing evidence indicates that adipose tissue is an active endocrine organ involved in metabolic syndrome and regulation of inflammation. Visceral fat accumulation is a hallmark of both obesity and Crohn's disease. Here, we present recent data describing the immune properties of intra-abdominal adipose tissue that could link the innate immune response to obesity-related disorders and gut inflammation. RECENT FINDINGS Innate immune properties of adipocytes have become well characterized since recent studies described the Toll-like receptor (TLR) expression repertoire and specific TLR ligand responses of adipocytes. Adipokine secretion profiles have also been elucidated both in obese patients, when they may be involved in obesity-associated metabolic disease, and in Crohn's disease. Whereas mesenteric fat hypertrophy and fat wrapping of the bowel are characteristic of Crohn's disease, there exists a paucity of information concerning this important pathophysiological aspect. Our current classical animal models are of limited interest when investigating the role of mesenteric fat in gut inflammation. Recent new alternative disease paradigms could help to design more specific models for elucidating chronic transmural inflammation of the gut. SUMMARY Obesity and Crohn's disease share common features with the development of mesenteric fat that may be involved in gut inflammation. Further studies are required to clearly assess the origin and influence of intestinal fat deposits upon gut inflammation, notably during Crohn's disease development.
Collapse
|
622
|
Abstract
Obesity induced by high-fat (HF) feeding is associated with low-grade inflammation in peripheral tissues that predisposes to insulin resistance. Recent evidence suggests the occurrence of a similar process in the hypothalamus, which favors weight gain through impairment of leptin and insulin signaling. In addition to its implications for obesity pathogenesis, this hypothesis suggests that centrally targeted antiinflammatory therapies may prove effective in prevention and treatment of this disorder. This article highlights molecular and cellular mechanisms by which hypothalamic inflammation predisposes to diet-induced obesity.
Collapse
Affiliation(s)
- Joshua P Thaler
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
623
|
Valentino MA, Colon-Gonzalez F, Lin JE, Waldman SA. Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity. Expert Rev Endocrinol Metab 2010; 5:765-783. [PMID: 21297878 PMCID: PMC3032596 DOI: 10.1586/eem.10.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates energy balance. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term energy balance by regulating appetite and/or metabolism. These endogenous mediators of energy balance have been the focus of many anti-obesity drug-development programs aimed at either amplifying endogenous anorexigenic/lipolytic signaling or blocking endogenous orexigenic/lipogenic signaling. Here, we discuss the efficacy and safety of targeting these pathways for the pharmacologic treatment of obesity.
Collapse
Affiliation(s)
- Michael A Valentino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Francheska Colon-Gonzalez
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Jieru E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| |
Collapse
|
624
|
Abstract
A novel mechanism explains how exercise exerts its beneficial effects on energy balance through an effect at the level of the hypothalamus.
Collapse
Affiliation(s)
- Pablo Blanco Martínez de Morentin
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
625
|
Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, de Souza CT, Moraes JC, Prada PO, Guadagnini D, Marin RM, Oliveira AG, Augusto TM, Carvalho HF, Velloso LA, Saad MJA, Carvalheira JBC. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 2010; 8:e1000465. [PMID: 20808781 PMCID: PMC2927536 DOI: 10.1371/journal.pbio.1000465] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 07/15/2010] [Indexed: 02/07/2023] Open
Abstract
Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.
Collapse
Affiliation(s)
- Eduardo R. Ropelle
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo B. Flores
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José R. Pauli
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Joseane Morari
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudio T. de Souza
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliana C. Moraes
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patrícia O. Prada
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodrigo M. Marin
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre G. Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Taize M. Augusto
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Hernandes F. Carvalho
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José B. C. Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
626
|
Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm 2010; 2010:535918. [PMID: 20847813 PMCID: PMC2929614 DOI: 10.1155/2010/535918] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/10/2010] [Accepted: 06/17/2010] [Indexed: 02/08/2023] Open
Abstract
Obesity, the most common nutritional disorder in industrialized countries, is associated with an increased mortality and morbidity of cardiovascular disease (CVD). Obesity is primarily considered to be a disorder of energy balance, and it has recently been suggested that some forms of obesity are associated with chronic low-grade inflammation. The present paper focuses on the current status of our knowledge regarding chronic inflammation, a link between obesity and CVDs, including heart diseases, vascular disease and atherosclerosis. The paper discusses the methods of body fat evaluation in humans, the endocrinology and distribution of adipose tissue in the genders, the pathophysiology of obesity, the relationship among obesity, inflammation, and CVD, and the adipose tissue-derived cytokines known to affect inflammation. Due to space limitations, this paper focuses on C-reactive protein, serum amyloid A, leptin, adiponectin, resistin, visfatin, chemerin, omentin, vaspin, apelin, and retinol binding protein 4 as adipokines.
Collapse
|
627
|
Trevaskis JL, Parkes DG, Roth JD. Insights into amylin-leptin synergy. Trends Endocrinol Metab 2010; 21:473-9. [PMID: 20413324 DOI: 10.1016/j.tem.2010.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
Abstract
Although the adipokine leptin is regarded as the prototypical long-term signal of energy balance, obese individuals are largely nonresponsive to exogenous leptin administration. Restoration of leptin responsiveness in obesity has been elusive despite a detailed understanding of the molecular mechanisms of leptin signaling. Recent translational research findings point to a potential therapeutic approach that incorporates amylin (a beta-cell hormone) and leptin agonism, with amylin restoring or enhancing leptin sensitivity. Here we hypothesize various physiological, neurobiological and molecular mechanisms that could mediate the interaction of these two neurohormonal signals and discuss several methodological challenges. Understanding how amylin agonism improves leptin function could point to general therapeutic strategies for combating leptin resistance and associated obesity.
Collapse
|
628
|
Lage R, Vázquez MJ, Varela L, Saha AK, Vidal-Puig A, Nogueiras R, Diéguez C, López M. Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB J 2010; 24:2670-9. [PMID: 20335227 PMCID: PMC3230529 DOI: 10.1096/fj.09-150672] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The orexigenic effect of ghrelin is mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP) in the hypothalamic arcuate nucleus (ARC). Recent evidence also indicates that ghrelin promotes feeding through a mechanism involving activation of hypothalamic AMP-activated protein kinase (AMPK) and inactivation of acetyl-CoA carboxylase and fatty acid synthase (FAS). This results in decreased hypothalamic levels of malonyl-CoA, increased carnitine palmitoyltransferase 1 (CPT1) activity, and mitochondrial production of reactive oxygen species. We evaluated whether these molecular events are part of a unique signaling cascade or whether they represent alternative pathways mediating the orexigenic effect of ghrelin. Moreover, we examined the gender dependency of these mechanisms, because recent evidence has proposed that ghrelin orexigenic effect is reduced in female rats. We studied in both genders the effect of ghrelin on the expression of AgRP and NPY, as well as their transcription factors: cAMP response-element binding protein (CREB and its phosphorylated form, pCREB), forkhead box O1 (FoxO1 and its phosphorylated form, pFoxO1), and brain-specific homeobox transcription factor (BSX). In addition, to establish a mechanistic link between ghrelin, fatty acid metabolism, and neuropeptides, we evaluated the effect of ghrelin after blockage of hypothalamic fatty acid beta oxidation, by using the CPT1 inhibitor etomoxir. Ghrelin-induced changes in the AMPK-CPT1 pathway are associated with increased levels of AgRP and NPY mRNA expression through modulation of BSX, pCREB, and FoxO1, as well as decreased expression of endoplasmic reticulum (ER) stress markers in a gender-independent manner. In addition, blockage of hypothalamic fatty acid beta oxidation prevents the ghrelin-promoting action on AgRP and NPY mRNA expression, also in a gender-independent manner. Notably, this effect is associated with decreased BSX expression and reduced food intake. Overall, our data suggest that BSX integrates changes in neuronal metabolic status with ARC-derived neuropeptides in a gender-independent manner.
Collapse
Affiliation(s)
- Ricardo Lage
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Santiago de Compostela (A Coruña), Spain
| | - María J. Vázquez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Santiago de Compostela (A Coruña), Spain
| | - Luis Varela
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Santiago de Compostela (A Coruña), Spain
| | - Asish K. Saha
- Diabetes Research Unit, Boston Medical Center, Boston, Massachusetts, USA; and
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Rubén Nogueiras
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Santiago de Compostela (A Coruña), Spain
| | - Carlos Diéguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Santiago de Compostela (A Coruña), Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela (A Coruña), Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Santiago de Compostela (A Coruña), Spain
| |
Collapse
|
629
|
Wei H, Li Z, Hu S, Chen X, Cong X. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases, p38 and JNK. J Cell Biochem 2010; 111:967-78. [DOI: 10.1002/jcb.22785] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
630
|
Granell S, Mohammad S, Ramanagoudr-Bhojappa R, Baldini G. Obesity-linked variants of melanocortin-4 receptor are misfolded in the endoplasmic reticulum and can be rescued to the cell surface by a chemical chaperone. Mol Endocrinol 2010; 24:1805-21. [PMID: 20631012 DOI: 10.1210/me.2010-0071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain where it controls food intake. Many obesity-linked MC4R variants are poorly expressed at the plasma membrane and are retained intracellularly. We have studied the intracellular localization of four obesity-linked MC4R variants, P78L, R165W, I316S, and I317T, in immortalized neurons. We find that these variants are all retained in the endoplasmic reticulum (ER), are ubiquitinated to a greater extent than the wild-type (wt) receptor, and induce ER stress with increased levels of ER chaperones as compared with wt-MC4R and appearance of CCAAT/enhancer-binding protein homologous protein (CHOP). Expression of the X-box-binding-protein-1 (XBP-1) with selective activation of a protective branch of the unfolded protein response did not have any effect on the cell surface expression of MC4R-I316S. Conversely, the pharmacological chaperone 4-phenyl butyric acid (PBA) increased the cell surface expression of wt-MC4R, MC4R-I316S, and I317T by more than 40%. PBA decreased ubiquitination of MC4R-I316S and prevented ER stress induced by expression of the mutant, suggesting that the drug functions to promote MC4R folding. MC4R-I316S rescued to the cell surface is functional, with a 52% increase in agonist-induced cAMP production, as compared with untreated cells. Also direct inhibition of wt-MC4R and MC4R-I316S ubiquitination by a specific inhibitor of the ubiquitin-activating enzyme 1 increased by approximately 40% the expression of the receptors at the cell surface, and the effects of PBA and ubiquitin-activating enzyme 1 were additive. These data offer a cell-based rationale that drugs that improve MC4R folding or decrease ER-associated degradation of the receptor may function to treat some forms of hereditary obesity.
Collapse
Affiliation(s)
- Susana Granell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Slot 516, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
631
|
Sexton JZ, He Q, Forsberg LJ, Brenman JE. High content screening for non-classical peroxisome proliferators. INTERNATIONAL JOURNAL OF HIGH THROUGHPUT SCREENING 2010; 2010:127-140. [PMID: 21132080 PMCID: PMC2995584 DOI: 10.2147/ijhts.s10547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peroxisomes are ubiquitous cellular organelles that perform vital functions including fatty acid beta-oxidation, plasmalogen synthesis, and detoxification of harmful oxidative species. In rodents numerous compounds that increase peroxisome biogenesis also alleviate metabolic syndrome (MetS)/type 2 diabetes (T2D) symptoms. However, compounds that increase peroxisome biogenesis in rodents largely do not increase peroxisome biogenesis in humans. We designed a novel genetically encoded high throughput screening (HTS) high content assay to identify small molecule compounds that function as peroxisome proliferators in human cells. From this assay we have confirmed that 4-phenylbutyrate (PBA), a PPAR independent peroxisome proliferator and chemical chaperone, increases peroxisome proliferation in human cells and serves as a positive control for our screen. We performed a small pilot and larger 15,000 compound production screen with an overall Z' factor of 0.74 for 384-well plate format, providing a valuable screening tool for identifying peroxisome modulator compounds. From this screen we have identified 4 existing drugs and 10 novel compounds, some with common scaffolds 1000X more potent than PBA. It is hoped that these novel compounds may serve as scaffolds for testing for efficacy in alleviating MetS/T2D symptoms both in mouse models and ultimately human disease.
Collapse
Affiliation(s)
- Jonathan Z Sexton
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University
- Department of Pharmaceutical Sciences, North Carolina Central University
| | - Qingping He
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University
| | | | - Jay E Brenman
- The Neuroscience Center UNC Chapel Hill School of Medicine
- Cell and Developmental Biology Dept UNC -CH School of Medicine
| |
Collapse
|
632
|
Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm 2010; 2010:802078. [PMID: 20671929 PMCID: PMC2910551 DOI: 10.1155/2010/802078] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/13/2010] [Indexed: 12/30/2022] Open
Abstract
Obesity is an energy-rich condition associated with overnutrition, which impairs systemic metabolic homeostasis and elicits stress. It also activates an inflammatory process in metabolically active sites, such as white adipose tissue, liver, and immune cells. As consequence, increased circulating levels of proinflammatory cytokines, hormone-like molecules, and other inflammatory markers are induced. This determines a chronic active inflammatory condition, associated with the development of the obesity-related inflammatory diseases. This paper describes the role of adipose tissue and the biological effects of many adipokines in these diseases.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Immunosenescence Group, Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Calogero Caruso
- Immunosenescence Group, Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| | - Giuseppina Candore
- Immunosenescence Group, Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, 90134, Palermo, Italy
| |
Collapse
|
633
|
Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010; 31:377-93. [PMID: 20600241 PMCID: PMC2916735 DOI: 10.1016/j.yfrne.2010.06.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 12/25/2022]
Abstract
Leptin regulates energy homeostasis and reproductive, neuroendocrine, immune, and metabolic functions. In this review, we describe the role of leptin in human physiology and review evidence from recent "proof of concept" clinical trials using recombinant human leptin in subjects with congenital leptin deficiency, hypoleptinemia associated with energy-deficient states, and hyperleptinemia associated with garden-variety obesity. Since most obese individuals are largely leptin-tolerant or -resistant, therapeutic uses of leptin are currently limited to patients with complete or partial leptin deficiency, including hypothalamic amenorrhea and lipoatrophy. Leptin administration in these energy-deficient states may help restore associated neuroendocrine, metabolic, and immune function and bone metabolism. Leptin treatment is currently available for individuals with congenital leptin deficiency and congenital lipoatrophy. The long-term efficacy and safety of leptin treatment in hypothalamic amenorrhea and acquired lipoatrophy are currently under investigation. Whether combination therapy with leptin and potential leptin sensitizers will prove effective in the treatment of garden-variety obesity and whether leptin may have a role in weight loss maintenance is being greatly anticipated.
Collapse
Affiliation(s)
- Tina A Dardeno
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | | | | | | | | | | |
Collapse
|
634
|
Hyperleptinemia is required for the development of leptin resistance. PLoS One 2010; 5:e11376. [PMID: 20613882 PMCID: PMC2894068 DOI: 10.1371/journal.pone.0011376] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/07/2010] [Indexed: 12/22/2022] Open
Abstract
Leptin regulates body weight by signaling to the brain the availability of energy stored as fat. This negative feedback loop becomes disrupted in most obese individuals, resulting in a state known as leptin resistance. The physiological causes of leptin resistance remain poorly understood. Here we test the hypothesis that hyperleptinemia is required for the development of leptin resistance in diet-induced obese mice. We show that mice whose plasma leptin has been clamped to lean levels develop obesity in response to a high-fat diet, and the magnitude of this obesity is indistinguishable from wild-type controls. Yet these obese animals with constant low levels of plasma leptin remain highly sensitive to exogenous leptin even after long-term exposure to a high fat diet. This shows that dietary fats alone are insufficient to block the response to leptin. The data also suggest that hyperleptinemia itself can contribute to leptin resistance by downregulating cellular response to leptin as has been shown for other hormones.
Collapse
|
635
|
Zheng Z, Zhang C, Zhang K. Role of unfolded protein response in lipogenesis. World J Hepatol 2010; 2:203-7. [PMID: 21160998 PMCID: PMC2999286 DOI: 10.4254/wjh.v2.i6.203] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/08/2010] [Accepted: 06/15/2010] [Indexed: 02/06/2023] Open
Abstract
The signal transduction network in regulating lipid metabolism is a hot topic of biomedical research. Recent research endeavors reveal that intracellular stress signaling from a cellular organelle called endoplasmic reticulum (ER) is critically involved in lipid homeostasis and the development of metabolic disease. The ER is a site where newly-synthesized proteins are folded and assembled into their three-dimensional structures, modified and transported to their precise cellular destinations. A wide range of biochemical, physiological and pathological stimuli can interrupt the protein folding process in the ER and cause accumulation of unfolded or misfolded proteins in the ER lumen, a condition referred to as ER stress. To cope with this stress condition, the ER has evolved highly-specific signaling pathways collectively termed Unfolded Protein Response (UPR) or ER stress response. The UPR regulates transcriptional and translational programs, affecting broad aspects of cellular metabolism and cell fate. Lipogenesis, the metabolic process of de novo lipid biosynthesis, occurs primarily in the liver where metabolic signals regulate expression of key enzymes in glycolytic and lipogenic pathways. Recent studies suggest that the UPR plays crucial roles in modulating lipogenesis under metabolic conditions. Here we address some of recent representative evidence regarding the role of the UPR in lipogenesis.
Collapse
Affiliation(s)
- Ze Zheng
- Ze Zheng, Chunbin Zhang, Kezhong Zhang, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | | | | |
Collapse
|
636
|
Sangiao-Alvarellos S, Varela L, Vázquez MJ, Da Boit K, Saha AK, Cordido F, Diéguez C, López M. Influence of ghrelin and growth hormone deficiency on AMP-activated protein kinase and hypothalamic lipid metabolism. J Neuroendocrinol 2010; 22:543-56. [PMID: 20298456 DOI: 10.1111/j.1365-2826.2010.01994.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current evidence demonstrates that the stomach-derived hormone ghrelin, a potent growth hormone (GH) secretagogue, promotes feeding through a mechanism involving the short-term activation of hypothalamic AMP-activated protein kinase (AMPK), which in turn results in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. Despite this evidence, no data have been reported about the effect of chronic, central ghrelin administration on hypothalamic fatty acid metabolism. In the present study, we examined the differences in hypothalamic fatty acid metabolism in the presence and absence of GH, by using a model for the study of GH-deficiency, namely the spontaneous dwarf rat and the effect of long-term central ghrelin treatment and starvation on hypothalamic fatty acid metabolism in this animal model. Our data showed that GH-deficiency induces reductions in both de novo lipogenesis and beta-oxidation pathways in the hypothalamus. Thus, dwarf rats display reductions in fatty acid synthase (FAS) mRNA expression both in the ventromedial nucleus of the hypothalamus (VMH) and whole hypothalamus, as well as in FAS protein and activity. CPT1 activity was also reduced. In addition, in the present study, we show that chronic ghrelin treatment does not promote AMPK-induced changes in the overall fluxes of hypothalamic fatty acid metabolism in normal rats and that this effect is independent of GH status. By contrast, we demonstrated that both chronic ghrelin and fasting decreased FAS mRNA expression in the VMH of normal rats but not dwarf rats, suggesting GH status dependency. Overall, these results suggest that ghrelin plays a dual time-dependent role in modulating hypothalamic lipid metabolism. Understanding the molecular mechanism underlying the interplay between GH and ghrelin on hypothalamic lipid metabolism will allow new strategies for the design and development of suitable drugs for the treatment of GH-deficiency, obesity and its comorbidities.
Collapse
Affiliation(s)
- S Sangiao-Alvarellos
- Department of Medicine, School of Health Science, University of A Coruña, A Coruña, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
637
|
Choi SJ, Kim F, Schwartz MW, Wisse BE. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids. Am J Physiol Endocrinol Metab 2010; 298:E1122-30. [PMID: 20354158 PMCID: PMC2886534 DOI: 10.1152/ajpendo.00006.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P < 0.05). By comparison, neither mixed saturated fatty acid (100, 250, or 500 microM for <or=6 h) nor palmitate exposure alone (200 microM for <or=24 h) caused inflammatory activation or insulin resistance in cultured hypothalamic neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.
Collapse
Affiliation(s)
- Sun Ju Choi
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine and Diabetes, University of Washington, Seattle, WA 98109-4714, USA
| | | | | | | |
Collapse
|
638
|
Affiliation(s)
- Michael A Valentino
- Department of Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
639
|
Valentino MA, Lin JE, Waldman SA. Central and peripheral molecular targets for antiobesity pharmacotherapy. Clin Pharmacol Ther 2010; 87:652-62. [PMID: 20445536 PMCID: PMC3136748 DOI: 10.1038/clpt.2010.57] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity has emerged as one of the principal worldwide health concerns of the modern era, and there exists a tremendous unmet clinical need for safe and effective therapies to combat this global pandemic. The prevalence of obesity and its associated comorbidities, including cardiovascular and metabolic diseases, has focused the attention of those in drug discovery and development on generating effective modalities for the treatment and prevention of obesity. Early efforts in the field of obesity pharmacotherapy centered on the development of agents with indeterminate mechanisms of action. This led to treatment paradigms characterized by significant off-target effects. In the past two decades, new insights have been made into the physiologic regulation of energy balance and the subordinate central and peripheral circuits coordinating appetite, metabolism, and lipogenesis. These studies have revealed previously unrecognized molecular targets for controlling appetite and managing weight from which has emerged a new wave of targeted pharmacotherapies to prevent and control obesity.
Collapse
Affiliation(s)
- Michael A. Valentino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| | - Jieru E. Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| | - Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
640
|
Solinas G, Karin M. JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 2010; 24:2596-611. [PMID: 20371626 DOI: 10.1096/fj.09-151340] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is thought to underlie the pathogenesis of many chronic diseases. It is now established that obesity results in a state of chronic low-grade inflammation thought to contribute to several metabolic disorders, including insulin resistance and pancreatic islet dysfunction. The protein kinases JNK1 and IKKbeta have been found to serve as critical molecular links between obesity, metabolic inflammation, and disorders of glucose homeostasis. The precise mechanisms of these linkages are still being investigated. However, as we discuss here, JNK1 and IKKbeta are activated by almost all forms of metabolic stress that have been implicated in insulin resistance or islet dysfunction. Furthermore, both JNK1 and IKKbeta are critically involved in the promotion of diet-induced obesity, metabolic inflammation, insulin resistance, and beta-cell dysfunction. Understanding the molecular mechanisms by which JNK1 and IKKbeta mediate obesity-induced metabolic stress is likely to be of importance for the development of new treatments for a variety of obesity-associated diseases.
Collapse
Affiliation(s)
- Giovanni Solinas
- Laboratory of Metabolic Stress Biology, Department of Medicine, Physiology, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
641
|
Yao Z, Guo Z, Yang C, Tian Q, Gong CX, Liu G, Wang JZ. Phenylbutyric acid prevents rats from electroconvulsion-induced memory deficit with alterations of memory-related proteins and tau hyperphosphorylation. Neuroscience 2010; 168:405-15. [PMID: 20371270 DOI: 10.1016/j.neuroscience.2010.03.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/23/2010] [Accepted: 03/27/2010] [Indexed: 11/30/2022]
Abstract
Electroconvulsive therapy has been commonly applied in the treatment of refractory depression, but its cognitive side effects are noticed and restrict its application. The molecular mechanisms underlying the side effects remain elusive, and there is no efficient prevention. By employing a recognized electroconvulsive shock (ECS) rat model, we found in the present study that ECS induced spatial memory deficits with simultaneous decreases in synaptic proteins of N-methyl-D-aspartate receptor 2A/B (NR2A/B) and postsynaptic density 95 (PSD95), the immediate early gene c-Fos and cAMP response element binding (CREB) proteins, all of which are memory-related proteins. ECS also caused tau hyperphosphorylation at multiple Alzheimer-related phosphorylation sites with activation of glycogen synthase kinase-3beta (GSK-3beta), Akt and phospho-PKR-like endoreticulum (PERK), and inhibition of protein phosphatase-2A (PP)-2A. Intraperitoneal injection of phenylbutyric acid (PBA), an aromatic short chain fatty acid with the functions of molecule chaperon, prevented rats from the ECS-induced memory deficits, alterations of the memory-associated proteins, and tau hyperphosphorylation. Our data suggest that PBA may be potentially used for attenuating the side effects caused by electroconvulsive therapy.
Collapse
Affiliation(s)
- Z Yao
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13#, Wuhan 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
642
|
Xu TY, Chen RH, Wang P, Zhang RY, Ke SF, Miao CY. 4-Phenyl butyric acid does not generally reduce glucose levels in rodent models of diabetes. Clin Exp Pharmacol Physiol 2010; 37:441-6. [DOI: 10.1111/j.1440-1681.2009.05328.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
643
|
Reed AS, Unger EK, Olofsson LE, Piper ML, Myers MG, Xu AW. Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes 2010; 59:894-906. [PMID: 20068134 PMCID: PMC2844837 DOI: 10.2337/db09-1024] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypothalamic leptin resistance is found in most common forms of obesity, such as diet-induced obesity, and is associated with increased expression of suppressor of cytokine signaling 3 (Socs3) in the hypothalamus of diet-induced obese animals. This study aims to determine the functional consequence of Socs3 upregulation on leptin signaling and obesity, and to investigate whether Socs3 upregulation affects energy balance in a cell type-specific way. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing Socs3 in either proopiomelanocortin (POMC) or leptin receptor-expressing neurons, at levels similar to what is observed in diet-induced obesity. RESULTS Upregulation of Socs3 in POMC neurons leads to impairment of STAT3 and mammalian target of rapamycin (mTOR)-S6K-S6 signaling, with subsequent leptin resistance, obesity, and glucose intolerance. Unexpectedly, Socs3 upregulation in leptin receptor neurons results in increased expression of STAT3 protein in mutant hypothalami, but does not lead to obesity. CONCLUSIONS Our study establishes that Socs3 upregulation alone in POMC neurons is sufficient to cause leptin resistance and obesity. Socs3 upregulation impairs both STAT3 and mTOR signaling before the onset of obesity. The lack of obesity in mice with upregulated Socs3 in leptin receptor neurons suggests that Socs3's effect on energy balance could be cell type specific. Our study indicates that POMC neurons are important mediators of Socs3's effect on leptin resistance and obesity, but that other cell types or alteration of other signaling regulators could contribute to the development of obesity.
Collapse
Affiliation(s)
- Alison S. Reed
- Diabetes Center and the Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Elizabeth K. Unger
- Diabetes Center and the Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Louise E. Olofsson
- Diabetes Center and the Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Merisa L. Piper
- Diabetes Center and the Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Martin G. Myers
- Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Allison W. Xu
- Diabetes Center and the Department of Pediatrics, University of California San Francisco, San Francisco, California
- Corresponding author: Allison W. Xu,
| |
Collapse
|
644
|
Park SW, Zhou Y, Lee J, Lu A, Sun C, Chung J, Ueki K, Ozcan U. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med 2010; 16:429-37. [PMID: 20348926 PMCID: PMC3071012 DOI: 10.1038/nm.2099] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/04/2010] [Indexed: 12/12/2022]
Abstract
Despite the fact that X-box binding protein-1 (XBP-1) is one of the main regulators of the unfolded protein response (UPR), the modulators of XBP-1 are poorly understood. Here, we show that the regulatory subunits of phosphotidyl inositol 3-kinase (PI3K), p85alpha (encoded by Pik3r1) and p85beta (encoded by Pik3r2) form heterodimers that are disrupted by insulin treatment. This disruption of heterodimerization allows the resulting monomers of p85 to interact with, and increase the nuclear translocation of, the spliced form of XBP-1 (XBP-1s). The interaction between p85 and XBP-1s is lost in ob/ob mice, resulting in a severe defect in XBP-1s translocation to the nucleus and thus in the resolution of endoplasmic reticulum (ER) stress. These defects are ameliorated when p85alpha and p85beta are overexpressed in the liver of ob/ob mice. Our results define a previously unknown insulin receptor signaling pathway and provide new mechanistic insight into the development of ER stress during obesity.
Collapse
Affiliation(s)
- Sang Won Park
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
645
|
Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 2010; 316:129-39. [PMID: 19723556 DOI: 10.1016/j.mce.2009.08.018] [Citation(s) in RCA: 1143] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 08/05/2009] [Accepted: 08/25/2009] [Indexed: 02/06/2023]
Abstract
Obesity is characterized by increased storage of fatty acids in an expanded adipose tissue mass and is closely associated with the development of insulin resistance in peripheral tissues such as skeletal muscle and the liver. In addition to being the largest source of fuel in the body, adipose tissue and resident macrophages are also the source of a number of secreted proteins. Cloning of the obese gene and the identification of its product, leptin, was one of the first discoveries of an adipocyte-derived signaling molecule and established an important role for adipose tissue as an endocrine organ. Since then, leptin has been found to have a profound role in the regulation of whole-body metabolism by stimulating energy expenditure, inhibiting food intake and restoring euglycemia, however, in most cases of obesity leptin resistance limits its biological efficacy. In contrast to leptin, adiponectin secretion is often diminished in obesity. Adiponectin acts to increase insulin sensitivity, fatty acid oxidation, as well as energy expenditure and reduces the production of glucose by the liver. Resistin and retinol binding protein-4 are less well described. Their expression levels are positively correlated with adiposity and they are both implicated in the development of insulin resistance. More recently it has been acknowledged that macrophages are an important part of the secretory function of adipose tissue and the main source of inflammatory cyokines, such as TNFalpha and IL-6. An increase in circulating levels of these macrophage-derived factors in obesity leads to a chronic low-grade inflammatory state that has been linked to the development of insulin resistance and diabetes. These proteins commonly known as adipokines are central to the dynamic control of energy metabolism, communicating the nutrient status of the organism with the tissues responsible for controlling both energy intake and expenditure as well as insulin sensitivity.
Collapse
Affiliation(s)
- Sandra Galic
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
646
|
Basseri S, Lhoták S, Sharma AM, Austin RC. The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response. J Lipid Res 2010; 50:2486-501. [PMID: 19461119 DOI: 10.1194/jlr.m900216-jlr200] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown a link between obesity and endoplasmic reticulum (ER) stress. Perturbations in ER homeostasis cause ER stress and activation of the unfolded protein response (UPR). Adipocyte differentiation contributes to weight gain, and we have shown that markers of ER stress/UPR activation, including GRP78, phospho-eIF2, and spliced XBP1, are upregulated during adipogenesis. Given these findings, the objective of this study was to determine whether attenuation of UPR activation by the chemical chaperone 4-phenylbutyrate (4-PBA) inhibits adipogenesis. Exposure of 3T3-L1 preadipocytes to 4-PBA in the presence of differentiation media decreased expression of ER stress markers. Concomitant with the suppression of UPR activation, 4-PBA resulted in attenuation of adipogenesis as measured by lipid accumulation and adiponectin secretion. Consistent with these in vitro findings, female C57BL/6 mice fed a high-fat diet supplemented with 4-PBA showed a significant reduction in weight gain and had reduced fat pad mass, as compared with the high-fat diet alone group. Furthermore, 4-PBA supplementation decreased GRP78 expression in the adipose tissue and lowered plasma triglyceride, glucose, leptin, and adiponectin levels without altering food intake. Taken together, these results suggest that UPR activation contributes to adipogenesis and that blocking its activation with 4-PBA prevents adipocyte differentiation and weight gain in mice.
Collapse
Affiliation(s)
- Sana Basseri
- Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton and the Henderson Research Centre, Hamilton, Ontario, L8N 4A6, Canada
| | | | | | | |
Collapse
|
647
|
Abstract
The endoplasmic reticulum (ER) is the major site in the cell for protein folding and trafficking and is central to many cellular functions. Failure of the ER's adaptive capacity results in activation of the unfolded protein response (UPR), which intersects with many different inflammatory and stress signaling pathways. These pathways are also critical in chronic metabolic diseases such as obesity, insulin resistance, and type 2 diabetes. The ER and related signaling networks are emerging as a potential site for the intersection of inflammation and metabolic disease.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Broad Institute of Harvard and MIT, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
648
|
Sonnett TE, Levien TL, Gates BJ, Robinson JD, Campbell RK. Diabetes mellitus, inflammation, obesity: proposed treatment pathways for current and future therapies. Ann Pharmacother 2010; 44:701-11. [PMID: 20233909 DOI: 10.1345/aph.1m640] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To review the pathophysiology, pharmacology, and current or future therapies under study for use in treating diabetes mellitus, inflammation associated with diabetes mellitus, and/or obesity related to diabetes mellitus, through 1 of 4 investigational pathways: adiponectin, ghrelin, resveratrol, or leptin. DATA SOURCES A literature search using MEDLINE (1966-December 12, 2009), PubMed (1950-December 12, 2009), Science Direct (1994-December 12, 2009), and International Pharmaceutical Abstracts (1970-December 12, 2009) was performed using the terms adiponectin, ghrelin, resveratrol, leptin, inflammation, obesity, and diabetes mellitus. English-language, original research, and review articles were examined, and citations from these articles were assessed as well. STUDY SELECTION AND DATA EXTRACTION Clinical studies and in vitro studies were included in addition to any Phase 1, 2, or 3 clinical trials. DATA SYNTHESIS Mechanistic pathways regarding adiponectin, ghrelin, resveratrol, and leptin are of interest as future treatment options for diabetes mellitus. Each of these pathways has produced significant in vitro and in vivo clinical data warranting further research as a possible treatment pathway for diabetes-related inflammation and/or obesity reduction. While research is still underway to determine the exact effects these pathways have on metabolic function, current data suggest that each of these compounds may be of interest for future therapies. CONCLUSIONS While several pathways under investigation may offer additional benefits in the treatment of diabetes mellitus and associated impairments, further investigation is necessary for both investigational and approved therapies to ensure that the impact in new pathways does not increase risks to patient safety and outcomes.
Collapse
Affiliation(s)
- Travis E Sonnett
- Department of Pharmacotherapy, Washington State University, Pullman, 99164, USA.
| | | | | | | | | |
Collapse
|
649
|
Hypothalamic and pituitary c-Jun N-terminal kinase 1 signaling coordinately regulates glucose metabolism. Proc Natl Acad Sci U S A 2010; 107:6028-33. [PMID: 20231445 DOI: 10.1073/pnas.1001796107] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
c-Jun N-terminal kinase (JNK) 1-dependent signaling plays a crucial role in the development of obesity-associated insulin resistance. Here we demonstrate that JNK activation not only occurs in peripheral tissues, but also in the hypothalamus and pituitary of obese mice. To resolve the importance of JNK1 signaling in the hypothalamic/pituitary circuitry, we have generated mice with a conditional inactivation of JNK1 in nestin-expressing cells (JNK1(DeltaNES) mice). JNK1(DeltaNES) mice exhibit improved insulin sensitivity both in the CNS and in peripheral tissues, improved glucose metabolism, as well as protection from hepatic steatosis and adipose tissue dysfunction upon high-fat feeding. Moreover, JNK1(DeltaNES) mice also show reduced somatic growth in the presence of reduced circulating growth hormone (GH) and insulin-like growth factor 1 (IGF1) concentrations, as well as increased thyroid axis activity. Collectively, these experiments reveal an unexpected, critical role for hypothalamic/pituitary JNK1 signaling in the coordination of metabolic/endocrine homeostasis.
Collapse
|
650
|
Kim Y, Park M, Boghossian S, York DA. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res 2010; 1317:13-23. [DOI: 10.1016/j.brainres.2009.12.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 12/27/2022]
|