601
|
Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF. Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms. Trends Neurosci 2017; 40:151-166. [PMID: 28190529 PMCID: PMC5341618 DOI: 10.1016/j.tins.2017.01.002] [Citation(s) in RCA: 585] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/24/2022]
Abstract
Neurons affected in Alzheimer's disease (AD) experience mitochondrial dysfunction and a bioenergetic deficit that occurs early and promotes the disease-defining amyloid beta peptide (Aβ) and Tau pathologies. Emerging findings suggest that the autophagy/lysosome pathway that removes damaged mitochondria (mitophagy) is also compromised in AD, resulting in the accumulation of dysfunctional mitochondria. Results in animal and cellular models of AD and in patients with sporadic late-onset AD suggest that impaired mitophagy contributes to synaptic dysfunction and cognitive deficits by triggering Aβ and Tau accumulation through increases in oxidative damage and cellular energy deficits; these, in turn, impair mitophagy. Interventions that bolster mitochondrial health and/or stimulate mitophagy may therefore forestall the neurodegenerative process in AD.
Collapse
Affiliation(s)
- Jesse S Kerr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Bryan A Adriaanse
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
602
|
Abstract
The concept of macroautophagy was established in 1963, soon after the discovery of lysosomes in rat liver. Over the 50 years since, studies of liver autophagy have produced many important findings. The liver is rich in lysosomes and possesses high levels of metabolic-stress-induced autophagy, which is precisely regulated by concentrations of hormones and amino acids. Liver autophagy provides starved cells with amino acids, glucose and free fatty acids for use in energy production and synthesis of new macromolecules, and also controls the quality and quantity of organelles such as mitochondria. Although the efforts of early investigators contributed markedly to our current knowledge of autophagy, the identification of autophagy-related genes represented a revolutionary breakthrough in our understanding of the physiological roles of autophagy in the liver. A growing body of evidence has shown that liver autophagy contributes to basic hepatic functions, including glycogenolysis, gluconeogenesis and β-oxidation, through selective turnover of specific cargos controlled by a series of transcription factors. In this Review, we outline the history of liver autophagy study, and then describe the roles of autophagy in hepatic metabolism under healthy and disease conditions, including the involvement of autophagy in α1-antitrypsin deficiency, NAFLD, hepatocellular carcinoma and viral hepatitis.
Collapse
Affiliation(s)
- Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
603
|
Evans TD, Sergin I, Zhang X, Razani B. Target acquired: Selective autophagy in cardiometabolic disease. Sci Signal 2017; 10:eaag2298. [PMID: 28246200 PMCID: PMC5451512 DOI: 10.1126/scisignal.aag2298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accumulation of damaged or excess proteins and organelles is a defining feature of metabolic disease in nearly every tissue. Thus, a central challenge in maintaining metabolic homeostasis is the identification, sequestration, and degradation of these cellular components, including protein aggregates, mitochondria, peroxisomes, inflammasomes, and lipid droplets. A primary route through which this challenge is met is selective autophagy, the targeting of specific cellular cargo for autophagic compartmentalization and lysosomal degradation. In addition to its roles in degradation, selective autophagy is emerging as an integral component of inflammatory and metabolic signaling cascades. In this Review, we focus on emerging evidence and key questions about the role of selective autophagy in the cell biology and pathophysiology of metabolic diseases such as obesity, diabetes, atherosclerosis, and steatohepatitis. Essential players in these processes are the selective autophagy receptors, defined broadly as adapter proteins that both recognize cargo and target it to the autophagosome. Additional domains within these receptors may allow integration of information about autophagic flux with critical regulators of cellular metabolism and inflammation. Details regarding the precise receptors involved, such as p62 and NBR1, and their predominant interacting partners are just beginning to be defined. Overall, we anticipate that the continued study of selective autophagy will prove to be informative in understanding the pathogenesis of metabolic diseases and to provide previously unrecognized therapeutic targets.
Collapse
Affiliation(s)
- Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiangyu Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
604
|
Altshuler-Keylin S, Kajimura S. Mitochondrial homeostasis in adipose tissue remodeling. Sci Signal 2017; 10:10/468/eaai9248. [PMID: 28246203 DOI: 10.1126/scisignal.aai9248] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial homeostasis is regulated by a balance between mitochondrial biogenesis and degradation. Emerging evidence suggests that mitophagy, a selective form of autophagy that degrades mitochondria, plays a key role in the physiology and pathophysiology of mitochondria-enriched cells, such as brown and beige adipocytes. This review discusses findings regarding the roles of autophagy and mitophagy in cellular development, maintenance, and functions of metabolic organs, including adipose tissue, liver, and pancreas. A better understanding of the molecular links between mitophagy and energy metabolism will help to identify promising targets for the treatment of obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Svetlana Altshuler-Keylin
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| | - Shingo Kajimura
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| |
Collapse
|
605
|
Andres AM, Tucker KC, Thomas A, Taylor DJ, Sengstock D, Jahania SM, Dabir R, Pourpirali S, Brown JA, Westbrook DG, Ballinger SW, Mentzer RM, Gottlieb RA. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight 2017; 2:e89303. [PMID: 28239650 DOI: 10.1172/jci.insight.89303] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.
Collapse
Affiliation(s)
- Allen M Andres
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Kyle C Tucker
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | | | | | | | | | - Reza Dabir
- Beaumont Hospital - Dearborn, Dearborn, Michigan, USA
| | | | - Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | - David G Westbrook
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, Alabama, USA
| | | | | |
Collapse
|
606
|
Menges S, Minakaki G, Schaefer PM, Meixner H, Prots I, Schlötzer-Schrehardt U, Friedland K, Winner B, Outeiro TF, Winklhofer KF, von Arnim CAF, Xiang W, Winkler J, Klucken J. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Sci Rep 2017; 7:42942. [PMID: 28224980 PMCID: PMC5320486 DOI: 10.1038/srep42942] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress (OS), mitochondrial dysfunction, and dysregulation of alpha-synuclein (aSyn) homeostasis are key pathogenic factors in Parkinson's disease. Nevertheless, the role of aSyn in mitochondrial physiology remains elusive. Thus, we addressed the impact of aSyn specifically on mitochondrial response to OS in neural cells. We characterize a distinct type of mitochondrial fragmentation, following H2O2 or 6-OHDA-induced OS, defined by spherically-shaped and hyperpolarized mitochondria, termed "mitospheres". Mitosphere formation mechanistically depended on the fission factor Drp1, and was paralleled by reduced mitochondrial fusion. Furthermore, mitospheres were linked to a decrease in mitochondrial activity, and preceded Caspase3 activation. Even though fragmentation of dysfunctional mitochondria is considered to be a prerequisite for mitochondrial degradation, mitospheres were not degraded via Parkin-mediated mitophagy. Importantly, we provide compelling evidence that aSyn prevents mitosphere formation and reduces apoptosis under OS. In contrast, aSyn did not protect against Rotenone, which led to a different, previously described donut-shaped mitochondrial morphology. Our findings reveal a dichotomic role of aSyn in mitochondrial biology, which is linked to distinct types of stress-induced mitochondrial fragmentation. Specifically, aSyn may be part of a cellular defense mechanism preserving neural mitochondrial homeostasis in the presence of increased OS levels, while not protecting against stressors directly affecting mitochondrial function.
Collapse
Affiliation(s)
- Stefanie Menges
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Holger Meixner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Iryna Prots
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, IZKF, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Stem Cell Biology, Institute of Human Genetics, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Kristina Friedland
- Molecular and Clinical Pharmacy, Department of Chemistry and Pharmacy, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, IZKF, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Stem Cell Biology, Institute of Human Genetics, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tiago F Outeiro
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, 37073 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | | | - Wei Xiang
- Institute of Biochemistry, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
607
|
Fiorese CJ, Haynes CM. Integrating the UPR mt into the mitochondrial maintenance network. Crit Rev Biochem Mol Biol 2017; 52:304-313. [PMID: 28276702 DOI: 10.1080/10409238.2017.1291577] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial function is central to many different processes in the cell, from oxidative phosphorylation to the synthesis of iron-sulfur clusters. Therefore, mitochondrial dysfunction underlies a diverse array of diseases, from neurodegenerative diseases to cancer. Stress can be communicated to the cytosol and nucleus from the mitochondria through many different signals, and in response the cell can effect everything from transcriptional to post-transcriptional responses to protect the mitochondrial network. How these responses are coordinated have only recently begun to be understood. In this review, we explore how the cell maintains mitochondrial function, focusing on the mitochondrial unfolded protein response (UPRmt), a transcriptional response that can activate a wide array of programs to repair and restore mitochondrial function.
Collapse
Affiliation(s)
- Christopher J Fiorese
- a Department of Molecular Cell and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b BCMB Allied Program , Weill Cornell Medical College , New York , NY , USA
| | - Cole M Haynes
- a Department of Molecular Cell and Cancer Biology , University of Massachusetts Medical School , Worcester , MA , USA.,b BCMB Allied Program , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|
608
|
Chakraborty J, Basso V, Ziviani E. Post translational modification of Parkin. Biol Direct 2017; 12:6. [PMID: 28222786 PMCID: PMC5319146 DOI: 10.1186/s13062-017-0176-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
Mutations in the gene encoding for the E3 ubiquitin ligase Parkin are associated to a rare form of familiar autosomal recessive Parkinsonism. Despite decades of research on the Parkin protein, whose structure has been recently solved, little is known about the specific signalling pathways that lead to Parkin activation. Parkin activity spans from mitochondria quality control to tumor suppression and stress protection; it is thus tempting to hypothesize that the broad impact of Parkin on cellular physiology might be the result of different post translational modifications that can be controlled by balanced opposing events. Sequence alignment of Parkin from different species indicates high homology between domains across Parkin orthologs and identifies highly conserved amino acid residues that, if modified, impinge on Parkin functions. In this review, we summarize findings on post translational modifications that have been shown to affect Parkin activity and stability. REVIEWERS This article was reviewed by Prof. Dr. Konstanze F. Winklhofer and by Prof. Thomas Simmen. Both reviewers have been nominated by Professor Luca Pellegrini.
Collapse
Affiliation(s)
- Joy Chakraborty
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Valentina Basso
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35131, Padova, Italy. .,Istituto IRCCS San Camillo, Lido di Venezia, Venezia,, Italy.
| |
Collapse
|
609
|
Oakes JA, Davies MC, Collins MO. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain 2017; 10:5. [PMID: 28148298 PMCID: PMC5288885 DOI: 10.1186/s13041-017-0287-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS.
Collapse
Affiliation(s)
- James A Oakes
- School of Medicine, University of Sheffield, Sheffield, UK.,Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Maria C Davies
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Mark O Collins
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
610
|
Regulation of Mitochondrial Dynamics and Autophagy by the Mitochondria-Associated Membrane. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:33-47. [DOI: 10.1007/978-981-10-4567-7_3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
611
|
Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology? JOURNAL OF PARKINSON'S DISEASE 2017; 7:13-29. [PMID: 27911343 PMCID: PMC5302033 DOI: 10.3233/jpd-160989] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/12/2022]
Abstract
The first clinical description of Parkinson's disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Dominika Truban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R. Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
612
|
Mitophagy as a stress response in mammalian cells and in respiring S. cerevisiae. Biochem Soc Trans 2016; 44:541-5. [PMID: 27068967 DOI: 10.1042/bst20150278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/17/2022]
Abstract
The degradation of malfunctioning or superfluous mitochondria in the lysosome/vacuole is an important housekeeping function in respiring eukaryotic cells. This clearance is thought to occur by a specific form of autophagic degradation called mitophagy, and plays a role in physiological homoeostasis as well as in the progression of late-onset diseases. Although the mechanism of bulk degradation by macroautophagy is relatively well established, the selective autophagic degradation of mitochondria has only recently begun to receive significant attention. In this mini-review, we introduce mitophagy as a form of mitochondrial quality control and proceed to provide specific examples from yeast and mammalian systems. We then discuss the relationship of mitophagy to mitochondrial stress, and provide a broad mechanistic overview of the process with an emphasis on evolutionarily conserved pathways.
Collapse
|
613
|
Stolz A, Putyrski M, Kutle I, Huber J, Wang C, Major V, Sidhu SS, Youle RJ, Rogov VV, Dötsch V, Ernst A, Dikic I. Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins. EMBO J 2016; 36:549-564. [PMID: 28028054 DOI: 10.15252/embj.201695063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a cellular surveillance pathway that balances metabolic and energy resources and transports specific cargos, including damaged mitochondria, other broken organelles, or pathogens for degradation to the lysosome. Central components of autophagosomal biogenesis are six members of the LC3 and GABARAP family of ubiquitin-like proteins (mATG8s). We used phage display to isolate peptides that possess bona fide LIR (LC3-interacting region) properties and are selective for individual mATG8 isoforms. Sensitivity of the developed sensors was optimized by multiplication, charge distribution, and fusion with a membrane recruitment (FYVE) or an oligomerization (PB1) domain. We demonstrate the use of the engineered peptides as intracellular sensors that recognize specifically GABARAP, GABL1, GABL2, and LC3C, as well as a bispecific sensor for LC3A and LC3B. By using an LC3C-specific sensor, we were able to monitor recruitment of endogenous LC3C to Salmonella during xenophagy, as well as to mitochondria during mitophagy. The sensors are general tools to monitor the fate of mATG8s and will be valuable in decoding the biological functions of the individual LC3/GABARAPs.
Collapse
Affiliation(s)
- Alexandra Stolz
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Mateusz Putyrski
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Ivana Kutle
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Jessica Huber
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Viktória Major
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Andreas Ernst
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany .,Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| |
Collapse
|
614
|
Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc Natl Acad Sci U S A 2016; 114:298-303. [PMID: 28007983 DOI: 10.1073/pnas.1613040114] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson's disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin's UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2-ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin's ubiquitin ligase potential.
Collapse
|
615
|
Lippai M, Szatmári Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol 2016; 33:145-168. [PMID: 27957648 DOI: 10.1007/s10565-016-9374-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Autophagy is a lysosomal degradation pathway of eukaryotic cells that is highly conserved from yeast to mammals. During this process, cooperating protein complexes are recruited in a hierarchic order to the phagophore assembly site (PAS) to mediate the elongation and closure of double-membrane vesicles called autophagosomes, which sequester cytosolic components and deliver their content to the endolysosomal system for degradation. As a major cytoprotective mechanism, autophagy plays a key role in the stress response against nutrient starvation, hypoxia, and infections. Although numerous studies reported that impaired function of core autophagy proteins also contributes to the development and progression of various human diseases such as neurodegenerative disorders, cardiovascular and muscle diseases, infections, and different types of cancer, the function of this process in human diseases remains unclear. Evidence often suggests a controversial role for autophagy in the pathomechanisms of these severe disorders. Here, we provide an overview of the molecular mechanisms of autophagy and summarize the recent advances on its function in human health and disease.
Collapse
Affiliation(s)
- Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
616
|
Li D, Zheng J, Wang M, Feng L, Ren Z, Liu Y, Yang N, Zuo P. Changes of TSPO-mediated mitophagy signaling pathway in learned helplessness mice. Psychiatry Res 2016; 245:141-147. [PMID: 27543827 DOI: 10.1016/j.psychres.2016.02.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Low response rate was witnessed with the present monoaminergic based antidepressants, urging a need for new therapeutic target identification. Accumulated evidences strongly suggest that mitochondrial deficit is implicated in major depression and 18kDa translocator protein (TSPO) plays an important role in regulating mitochondrial function. However the changes of TSPO and TSPO mediated mitophagy pathway in the depressive brain is unclear. In present study, a well validated animal model of depression, learned helplessness (LH), was employed to investigate the relevant changes. Significant behavioral changes were observed in the LH mice. Results showed that TSPO and other mitophagy related proteins, such as VDAC1, Pink1 and Beclin1 were significantly decreased by LH challenge. Moreover, KIFC2, relevant to the mitochondrial transport and Snap25, relevant to neurotransmitter vesicle release, were also obviously down-regulated in the LH mice, which further rendered supportive evidence for the existing mitochondrial dysfunction in LH mice. Present results demonstrated that LH induced depressive symptoms and affected TSPO-mediated mitophagy pathway, indicating a potential target candidate for depression treatment.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ji Zheng
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mingyang Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lu Feng
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhili Ren
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Pingping Zuo
- Department of Pharmacology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
617
|
Nguyen TN, Padman BS, Usher J, Oorschot V, Ramm G, Lazarou M. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol 2016; 215:857-874. [PMID: 27864321 PMCID: PMC5166504 DOI: 10.1083/jcb.201607039] [Citation(s) in RCA: 488] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/06/2016] [Accepted: 11/09/2016] [Indexed: 01/10/2023] Open
Abstract
Current autophagy models suggest that Atg8 family LC3/GABARAP proteins are essential mediators of autophagosome biogenesis. Nguyen et al. exploit CRISPR/Cas9-generated knockouts of the LC3 or GABARAP subfamilies, or both subfamilies, to show that Atg8s are dispensable for autophagosome biogenesis but essential for autophagosome–lysosome fusion. Members of the Atg8 family of proteins are conjugated to autophagosomal membranes, where they have been proposed to drive autophagosome formation and selective sequestration of cargo. In mammals, the Atg8 family consists of six members divided into the LC3 and GABARAP subfamilies. To define Atg8 function, we used genome editing to generate knockouts of the LC3 and GABARAP subfamilies as well as all six Atg8 family members in HeLa cells. We show that Atg8s are dispensable for autophagosome formation and selective engulfment of mitochondria, but essential for autophagosome–lysosome fusion. We find that the GABARAP subfamily promotes PLEKHM1 recruitment and governs autophagosome–lysosome fusion, whereas the LC3 subfamily plays a less prominent role in these processes. Although neither GABARAPs nor LC3s are required for autophagosome biogenesis, loss of all Atg8s yields smaller autophagosomes and a slowed initial rate of autophagosome formation. Our results clarify the essential function of the Atg8 family and identify GABARAP subfamily members as primary contributors to PINK1/Parkin mitophagy and starvation autophagy.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Joanne Usher
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria 3800, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia.,Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
618
|
Abstract
Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as LC3-interacting- region (LIR) motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy.
Collapse
Affiliation(s)
- Byeong-Won Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Do Hoon Kwon
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
619
|
Arena G, Valente EM. PINK1 in the limelight: multiple functions of an eclectic protein in human health and disease. J Pathol 2016; 241:251-263. [PMID: 27701735 DOI: 10.1002/path.4815] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/04/2016] [Accepted: 09/23/2016] [Indexed: 01/02/2023]
Abstract
The gene PINK1 [phosphatase and tensin homologue (PTEN)-induced putative kinase 1] encodes a serine/threonine kinase which was initially linked to the pathogenesis of a familial form of Parkinson's disease. Research on PINK1 has recently unravelled that its multiple functions extend well beyond neuroprotection, implicating this eclectic protein in a growing number of human pathologies, including cancer, diabetes, cardiopulmonary dysfunctions, and inflammation. Extensive studies have identified PINK1 as a crucial player in the mitochondrial quality control pathway, required to label damaged mitochondria and promote their elimination through an autophagic process (mitophagy). Mounting evidence now indicates that PINK1 activities are not restricted solely to mitophagy, and that different subcellular and even sub-mitochondrial pools of PINK1 are involved in distinct signalling cascades to regulate cell metabolism and survival. In this review, we provide a concise overview on the different functions of PINK1 and their potential role in human diseases. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giuseppe Arena
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, Montpellier, France.,Institut Régional du Cancer Montpellier, Montpellier, France
| | - Enza Maria Valente
- Section of Neurosciences, Department of Medicine and Surgery, University of Salerno, Salerno, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
620
|
Puschmann A, Fiesel FC, Caulfield TR, Hudec R, Ando M, Truban D, Hou X, Ogaki K, Heckman MG, James ED, Swanberg M, Jimenez-Ferrer I, Hansson O, Opala G, Siuda J, Boczarska-Jedynak M, Friedman A, Koziorowski D, Rudzińska-Bar M, Aasly JO, Lynch T, Mellick GD, Mohan M, Silburn PA, Sanotsky Y, Vilariño-Güell C, Farrer MJ, Chen L, Dawson VL, Dawson TM, Wszolek ZK, Ross OA, Springer W. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain 2016; 140:98-117. [PMID: 27807026 PMCID: PMC5379862 DOI: 10.1093/brain/aww261] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 01/31/2023] Open
Abstract
See Gandhi and Plun-Favreau (doi:10.1093/aww320) for a scientific commentary on this article. Heterozygous mutations in recessive Parkinson’s disease genes have been postulated to increase disease risk. Puschmann et al. report a genetic association between heterozygous PINK1 p.G411S and Parkinson’s disease. They provide structural and functional explanations for a partial dominant-negative effect of the mutant protein, which impairs wild-type PINK1 activity through hetero-dimerization. See Gandhi and Plun-Favreau (doi:10.1093/aww320) for a scientific commentary on this article. It has been postulated that heterozygous mutations in recessive Parkinson’s genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson’s disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson’s disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson’s disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a partial dominant-negative function phenotype.
Collapse
Affiliation(s)
- Andreas Puschmann
- 1 Lund University, Department of Clinical Sciences Lund, Neurology, Sweden .,2 Department of Neurology, Skåne University Hospital, Sweden.,3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fabienne C Fiesel
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Roman Hudec
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Maya Ando
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dominika Truban
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xu Hou
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kotaro Ogaki
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- 4 Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Elle D James
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Maria Swanberg
- 5 Lund University, Department of Experimental Medical Science, Lund, Sweden
| | | | - Oskar Hansson
- 6 Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden.,7 Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Grzegorz Opala
- 8 Department of Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Siuda
- 8 Department of Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | - Jan O Aasly
- 10 Department of Neurology, St. Olav's Hospital, and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Timothy Lynch
- 11 Dublin Neurological Institute at the Mater Misericordiae University Hospital, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - George D Mellick
- 12 Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Megha Mohan
- 12 Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Peter A Silburn
- 12 Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,13 University of Queensland, Asia-Pacific Centre for Neuromodulation, Centre for Clinical Research, Brisbane, Queensland, Australia
| | | | - Carles Vilariño-Güell
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,15 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Farrer
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,15 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Li Chen
- 16 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,17 Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,18 Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Valina L Dawson
- 16 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,17 Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,18 Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,19 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,20 Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- 16 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,17 Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,18 Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,19 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,21 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Owen A Ross
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,23 School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,24 Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- 3 Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA .,24 Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
621
|
Minegishi Y, Nakayama M, Iejima D, Kawase K, Iwata T. Significance of optineurin mutations in glaucoma and other diseases. Prog Retin Eye Res 2016; 55:149-181. [DOI: 10.1016/j.preteyeres.2016.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
|
622
|
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 2016; 100:210-222. [PMID: 27094585 DOI: 10.1016/j.freeradbiomed.2016.04.015] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Mitochondrial quality control is central for maintaining a healthy population of mitochondria. Two Parkinson's disease genes, mitochondrial kinase PINK1 and ubiquitin ligase Parkin, degrade damaged mitochondria though mitophagy. In this pathway, PINK1 senses mitochondrial damage and activates Parkin by phosphorylating Parkin and ubiquitin. Activated Parkin then builds ubiquitin chains on damaged mitochondria to tag them for degradation in lysosomes. USP30 deubiquitinase acts as a brake on mitophagy by opposing Parkin-mediated ubiquitination. Human genetic data point to a role for mitophagy defects in neurodegenerative diseases. This review highlights the molecular mechanisms of the mitophagy pathway and the recent advances in the understanding of mitophagy in vivo.
Collapse
Affiliation(s)
- Baris Bingol
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA.
| | - Morgan Sheng
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| |
Collapse
|
623
|
Wasilewski M, Chojnacka K, Chacinska A. Protein trafficking at the crossroads to mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:125-137. [PMID: 27810356 DOI: 10.1016/j.bbamcr.2016.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.
Collapse
Affiliation(s)
- Michal Wasilewski
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | | | |
Collapse
|
624
|
Bohovych I, Khalimonchuk O. Sending Out an SOS: Mitochondria as a Signaling Hub. Front Cell Dev Biol 2016; 4:109. [PMID: 27790613 PMCID: PMC5061732 DOI: 10.3389/fcell.2016.00109] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Normal cellular physiology is critically dependent on numerous mitochondrial activities including energy conversion, cofactor and precursor metabolite synthesis, and regulation of ion and redox homeostasis. Advances in mitochondrial research during the last two decades provide solid evidence that these organelles are deeply integrated with the rest of the cell and multiple mechanisms are in place to monitor and communicate functional states of mitochondria. In many cases, however, the exact molecular nature of various mitochondria-to-cell communication pathways is only beginning to emerge. Here, we review various signals emitted by distressed or dysfunctional mitochondria and the stress-responsive pathways activated in response to these signals in order to restore mitochondrial function and promote cellular survival.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-LincolnLincoln, NE, USA
- Nebraska Redox Biology Center, University of Nebraska-LincolnLincoln, NE, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
625
|
Nguyen TN, Padman BS, Lazarou M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends Cell Biol 2016; 26:733-744. [DOI: 10.1016/j.tcb.2016.05.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
626
|
Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proc Natl Acad Sci U S A 2016; 113:E6097-E6106. [PMID: 27679849 DOI: 10.1073/pnas.1612283113] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy.
Collapse
|
627
|
Rose CM, Isasa M, Ordureau A, Prado MA, Beausoleil SA, Jedrychowski MP, Finley DJ, Harper JW, Gygi SP. Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes. Cell Syst 2016; 3:395-403.e4. [PMID: 27667366 DOI: 10.1016/j.cels.2016.08.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
System-wide quantitative analysis of ubiquitylomes has proven to be a valuable tool for elucidating targets and mechanisms of the ubiquitin-driven signaling systems, as well as gaining insights into neurodegenerative diseases and cancer. Current mass spectrometry methods for ubiquitylome detection require large amounts of starting material and rely on stochastic data collection to increase replicate analyses. We describe a method compatible with cell line and tissue samples for large-scale quantification of 5,000-9,000 ubiquitylation forms across ten samples simultaneously. Using this method, we reveal site-specific ubiquitylation in mammalian brain and liver tissues, as well as in cancer cells undergoing proteasome inhibition. To demonstrate the power of the approach for signal-dependent ubiquitylation, we examined protein and ubiquitylation dynamics for mitochondria undergoing PARKIN- and PINK1-dependent mitophagy. This analysis revealed the largest collection of PARKIN- and PINK1-dependent ubiquitylation targets to date in a single experiment, and it also revealed a subset of proteins recruited to the mitochondria during mitophagy.
Collapse
Affiliation(s)
- Christopher M Rose
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Daniel J Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
628
|
Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins. Nat Commun 2016; 7:12708. [PMID: 27620379 PMCID: PMC5027247 DOI: 10.1038/ncomms12708] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Optineurin is an important autophagy receptor involved in several selective autophagy processes, during which its function is regulated by TBK1. Mutations of optineurin and TBK1 are both associated with neurodegenerative diseases. However, the mechanistic basis underlying the specific interaction between optineurin and TBK1 is still elusive. Here we determine the crystal structures of optineurin/TBK1 complex and the related NAP1/TBK1 complex, uncovering the detailed molecular mechanism governing the optineurin and TBK1 interaction, and revealing a general binding mode between TBK1 and its associated adaptor proteins. In addition, we demonstrate that the glaucoma-associated optineurin E50K mutation not only enhances the interaction between optineurin and TBK1 but also alters the oligomeric state of optineurin, and the ALS-related TBK1 E696K mutation specifically disrupts the optineurin/TBK1 complex formation but has little effect on the NAP1/TBK1 complex. Thus, our study provides mechanistic insights into those currently known disease-causing optineurin and TBK1 mutations found in patients.
Collapse
|
629
|
Parkin and mitophagy in cancer. Oncogene 2016; 36:1315-1327. [PMID: 27593930 DOI: 10.1038/onc.2016.302] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Mitophagy, the selective engulfment and clearance of mitochondria, is essential for the homeostasis of a healthy network of functioning mitochondria and prevents excessive production of cytotoxic reactive oxygen species from damaged mitochondria. The mitochondrially targeted PTEN-induced kinase-1 (PINK1) and the E3 ubiquitin ligase Parkin are well-established synergistic mediators of the mitophagy of dysfunctional mitochondria. This pathway relies on the ubiquitination of a number of mitochondrial outer membrane substrates and subsequent docking of autophagy receptor proteins to selectively clear mitochondria. There are also alternate Parkin-independent mitophagy pathways mediated by BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 and Nip-3 like protein X as well as other effectors. There is increasing evidence that ablation of mitophagy accelerates a number of pathologies. Familial Parkinsonism is associated with loss-of-function mutations in PINK1 and Parkin. A growing number of studies have observed a correlation between impaired Parkin activity and enhanced cancer development, leading to the emerging concept that Parkin activity, or mitophagy in general, is a tumour suppression mechanism. This review examines the molecular mechanisms of mitophagy and highlights the potential links between Parkin and the hallmarks of cancer that may influence tumour development and progression.
Collapse
|
630
|
Stoica R, Paillusson S, Gomez-Suaga P, Mitchell JC, Lau DH, Gray EH, Sancho RM, Vizcay-Barrena G, De Vos KJ, Shaw CE, Hanger DP, Noble W, Miller CC. ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations. EMBO Rep 2016; 17:1326-42. [PMID: 27418313 PMCID: PMC5007559 DOI: 10.15252/embr.201541726] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/06/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB-PTPIP51 interaction and ER-mitochondria associations. These disruptions are accompanied by perturbation of Ca(2+) uptake by mitochondria following its release from ER stores, which is a physiological read-out of ER-mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS-expressing cells; mitochondrial ATP production is linked to Ca(2+) levels. Finally, we demonstrate that the FUS-induced reductions to ER-mitochondria associations and are linked to activation of glycogen synthase kinase-3β (GSK-3β), a kinase already strongly associated with ALS/FTD.
Collapse
Affiliation(s)
- Radu Stoica
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Sébastien Paillusson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Patricia Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Jacqueline C Mitchell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Dawn Hw Lau
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Emma H Gray
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Rosa M Sancho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | | | - Kurt J De Vos
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Christopher Cj Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| |
Collapse
|
631
|
Farré JC, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 2016; 17:537-52. [PMID: 27381245 PMCID: PMC5549613 DOI: 10.1038/nrm.2016.74] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy has burgeoned rapidly as a field of study because of its evolutionary conservation, the diversity of intracellular cargoes degraded and recycled by this machinery, the mechanisms involved, as well as its physiological relevance to human health and disease. This self-eating process was initially viewed as a non-selective mechanism used by eukaryotic cells to degrade and recycle macromolecules in response to stress; we now know that various cellular constituents, as well as pathogens, can also undergo selective autophagy. In contrast to non-selective autophagy, selective autophagy pathways rely on a plethora of selective autophagy receptors (SARs) that recognize and direct intracellular protein aggregates, organelles and pathogens for specific degradation. Although SARs themselves are not highly conserved, their modes of action and the signalling cascades that activate and regulate them are. Recent yeast studies have provided novel mechanistic insights into selective autophagy pathways, revealing principles of how various cargoes can be marked and targeted for selective degradation.
Collapse
Affiliation(s)
- Jean-Claude Farré
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| | - Suresh Subramani
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| |
Collapse
|
632
|
Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends Mol Med 2016; 22:769-783. [DOI: 10.1016/j.molmed.2016.07.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
|
633
|
Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, Ishitani R, Kamei K, Takeyoshi I, Kawakami H, Iwai K, Hatada I, Sawasaki T, Ito H, Nureki O, Tokunaga F. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun 2016; 7:12547. [PMID: 27552911 PMCID: PMC4999505 DOI: 10.1038/ncomms12547] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Optineurin (OPTN) mutations cause neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and glaucoma. Although the ALS-associated E478G mutation in the UBAN domain of OPTN reportedly abolishes its NF-κB suppressive activity, the precise molecular basis in ALS pathogenesis still remains unclear. Here we report that the OPTN-UBAN domain is crucial for NF-κB suppression. Our crystal structure analysis reveals that OPTN-UBAN binds linear ubiquitin with homology to NEMO. TNF-α-mediated NF-κB activation is enhanced in OPTN-knockout cells, through increased ubiquitination and association of TNF receptor (TNFR) complex I components. Furthermore, OPTN binds caspase 8, and OPTN deficiency accelerates TNF-α-induced apoptosis by enhancing complex II formation. Immunohistochemical analyses of motor neurons from OPTN-associated ALS patients reveal that linear ubiquitin and activated NF-κB are partially co-localized with cytoplasmic inclusions, and that activation of caspases is elevated. Taken together, OPTN regulates both NF-κB activation and apoptosis via linear ubiquitin binding, and the loss of this ability may lead to ALS. Mutations in optineurin are associated with neurodegenerative diseases, including amyotrophic lateral sclerosis. Here, the authors report the structure of the ubiquitin binding domain of optineurin, which binds linear ubiquitin with homology to NEMO, and explore the function of this domain.
Collapse
Affiliation(s)
- Seshiru Nakazawa
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Daisuke Oikawa
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Ayaki
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama, Wakayama 641-8510, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Shogoin, Kyoto 606-8507, Japan
| | - Hirotaka Takahashi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kiyoko Kamei
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Izumi Takeyoshi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, 811-1, Kimiidera, Wakayama, Wakayama 641-8510, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fuminori Tokunaga
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.,Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
634
|
Pourcelot M, Zemirli N, Silva Da Costa L, Loyant R, Garcin D, Vitour D, Munitic I, Vazquez A, Arnoult D. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol 2016; 14:69. [PMID: 27538435 PMCID: PMC4991008 DOI: 10.1186/s12915-016-0292-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.
Collapse
Affiliation(s)
- Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Naima Zemirli
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Leandro Silva Da Costa
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Roxane Loyant
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Vitour
- ANSES, INRA, ENVA, UPEC, UMR_1161 Virology, LabEx IBEID, Maisons-Alfort, France
| | - Ivana Munitic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Aimé Vazquez
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France.
- Université Paris-Saclay, Paris, France.
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France.
| |
Collapse
|
635
|
Abstract
Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif ‘YxxI’, suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis.
Collapse
|
636
|
Corbier C, Sellier C. C9ORF72 is a GDP/GTP exchange factor for Rab8 and Rab39 and regulates autophagy. Small GTPases 2016; 8:181-186. [PMID: 27494456 DOI: 10.1080/21541248.2016.1212688] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (ALS-FTD) are devastating neurodegenerative disease affecting motoneurons from the spinal chord and neurons from the frontal and temporal cortex, respectively. The most common genetic cause for ALS-FTD is an expansion of GGGGCC repeats within the first intron of the C9ORF72 gene. However, little is known on the function of C9ORF72. Recently, other and we found that C9ORF72 forms a stable complex with the SMCR8 and WDR41 proteins. This complex acts as a GDP/GTP exchange factor for the small RAB GTPases Rab8a and Rab39b. Since Rab8 and Rab39 are involved in macroautophagy, we tested the role of C9ORF72 in this mechanism. Decrease expression of C9ORF72 in neuronal cultures leads to autophagy dysfunction characterized by accumulation of aggregates of p62/SQSTM1. However, loss of C9ORF72 expression does not cause major neuronal cell death, suggesting that a second stress may be required to promote cell toxicity. Intermediate size of polyglutamine repeats within Ataxin-2 (ATXN2) is an important genetic modifier of ALS-FTD. We found that decrease expression of C9ORF72 synergizes the toxicity and aggregation of ATXN2 with intermediate size of polyglutamine (30Q). Overall, our data suggest that reduce expression of C9ORF72 causes suboptimal autophagy that sensitizes neurons to a second stress. These data suggest that reduce expression of C9ORF72 may partly contribute to ALS-FTD pathogenesis.
Collapse
Affiliation(s)
- Camille Corbier
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University , Illkirch , France
| | - Chantal Sellier
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University , Illkirch , France
| |
Collapse
|
637
|
Dengjel J, Abeliovich H. Roles of mitophagy in cellular physiology and development. Cell Tissue Res 2016; 367:95-109. [PMID: 27488107 DOI: 10.1007/s00441-016-2472-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/04/2016] [Indexed: 12/19/2022]
Abstract
The autophagic degradation of mitochondria, or mitophagy, has been shown to occur in eukaryotic cells under various physiological conditions. Broadly, these fall into two categories: quality-control related mitophagy and developmentally induced mitophagy. Quality-control related mitophagy, which is the lysosomal/vacuolar degradation of malfunctioning or superfluous mitochondria, is an important housekeeping function in respiring eukaryotic cells. It plays an essential role in physiological homeostasis and its deregulation has been linked to the progression of late-onset diseases. On the other hand, developmental processes such as reticulocyte maturation have also been shown to involve mitophagy. Importantly, there are clear differences between these processes. Unlike our knowledge of the more general degradation of soluble cytosolic content during starvation-induced macroautophagy, the mechanisms involved in the selective autophagic degradation of mitochondria have only recently begun to receive significant attention. Here, we review the current literature on these topics and proceed to provide specific examples from yeast and mammalian systems. Finally, we cover experimental approaches, with a focus on proteomic methods dedicated to the study of mitophagy in different systems.
Collapse
Affiliation(s)
- Jörn Dengjel
- Department of Dermatology, Medical Center, Freiburg Institute for Advanced Studies (FRIAS), ZBSA Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104, Freiburg, Germany.,Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Hagai Abeliovich
- Department of Biochemistry and Food Science, Hebrew University of Jerusalem, Rehovot, 76100, Israel. .,FRIAS Senior Fellow and Marie Curie Fellow of the European Union Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany.
| |
Collapse
|
638
|
Fingert JH, Robin AL, Scheetz TE, Kwon YH, Liebmann JM, Ritch R, Alward WLM. Tank-Binding Kinase 1 ( TBK1) Gene and Open-Angle Glaucomas (An American Ophthalmological Society Thesis). TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2016; 114:T6. [PMID: 27881886 PMCID: PMC5113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
PURPOSE To investigate the role of TANK-binding kinase 1 (TBK1) gene copy-number variations (ie, gene duplications and triplications) in the pathophysiology of various open-angle glaucomas. METHODS In previous studies, we discovered that copy-number variations in the TBK1 gene are associated with normal-tension glaucoma. Here, we investigated the prevalence of copy-number variations in cohorts of patients with other open-angle glaucomas-juvenile-onset open-angle glaucoma (n=30), pigmentary glaucoma (n=209), exfoliation glaucoma (n=225), and steroid-induced glaucoma (n=79)-using a quantitative polymerase chain reaction assay. RESULTS No TBK1 gene copy-number variations were detected in patients with juvenile-onset open-angle glaucoma, pigmentary glaucoma, or steroid-induced glaucoma. A TBK1 gene duplication was detected in one (0.44%) of the 225 exfoliation glaucoma patients. CONCLUSIONS TBK1 gene copy-number variations (gene duplications and triplications) have been previously associated with normal-tension glaucoma. An exploration of other open-angle glaucomas detected a TBK1 copy-number variation in a patient with exfoliation glaucoma, which is the first example of a TBK1 mutation in a glaucoma patient with a diagnosis other than normal-tension glaucoma. A broader phenotypic range may be associated with TBK1 copy-number variations, although mutations in this gene are most often detected in patients with normal-tension glaucoma.
Collapse
Affiliation(s)
- John H Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Departments of Ophthalmology and International Health, School of Medicine and the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Dr Robin); the Department of Ophthalmology, University of Maryland, Baltimore, Maryland (Dr Robin); Columbia University Medical Center, New York, New York (Dr Liebmann); the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (Dr Ritch)
| | - Alan L Robin
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Departments of Ophthalmology and International Health, School of Medicine and the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Dr Robin); the Department of Ophthalmology, University of Maryland, Baltimore, Maryland (Dr Robin); Columbia University Medical Center, New York, New York (Dr Liebmann); the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (Dr Ritch)
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Departments of Ophthalmology and International Health, School of Medicine and the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Dr Robin); the Department of Ophthalmology, University of Maryland, Baltimore, Maryland (Dr Robin); Columbia University Medical Center, New York, New York (Dr Liebmann); the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (Dr Ritch)
| | - Young H Kwon
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Departments of Ophthalmology and International Health, School of Medicine and the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Dr Robin); the Department of Ophthalmology, University of Maryland, Baltimore, Maryland (Dr Robin); Columbia University Medical Center, New York, New York (Dr Liebmann); the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (Dr Ritch)
| | - Jeffrey M Liebmann
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Departments of Ophthalmology and International Health, School of Medicine and the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Dr Robin); the Department of Ophthalmology, University of Maryland, Baltimore, Maryland (Dr Robin); Columbia University Medical Center, New York, New York (Dr Liebmann); the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (Dr Ritch)
| | - Robert Ritch
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Departments of Ophthalmology and International Health, School of Medicine and the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Dr Robin); the Department of Ophthalmology, University of Maryland, Baltimore, Maryland (Dr Robin); Columbia University Medical Center, New York, New York (Dr Liebmann); the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (Dr Ritch)
| | - Wallace L M Alward
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa (Dr Fingert, Dr Scheetz, Dr Kwon, Dr Alward); the Departments of Ophthalmology and International Health, School of Medicine and the Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland (Dr Robin); the Department of Ophthalmology, University of Maryland, Baltimore, Maryland (Dr Robin); Columbia University Medical Center, New York, New York (Dr Liebmann); the Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York (Dr Ritch)
| |
Collapse
|
639
|
Slowicka K, Vereecke L, van Loo G. Cellular Functions of Optineurin in Health and Disease. Trends Immunol 2016; 37:621-633. [PMID: 27480243 DOI: 10.1016/j.it.2016.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
Optineurin (OPTN) was initially identified as a regulator of NF-κB and interferon signaling, but attracted most attention because of its association with various human disorders such as glaucoma, Paget disease of bone, and amyotrophic lateral sclerosis. Importantly, OPTN has recently been identified as an autophagy receptor important for the autophagic removal of pathogens, damaged mitochondria, and protein aggregates. This activity is most likely compromised in patients carrying OPTN mutations, and contributes to the observed phenotypes. In this review we summarize recent studies describing the molecular mechanisms by which OPTN controls immunity and autophagy, and discuss these findings in the context of several diseases that have been associated with OPTN (mal)function.
Collapse
Affiliation(s)
- Karolina Slowicka
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Lars Vereecke
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Center, Unit of Cellular and Molecular (Patho)Physiology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
640
|
Kim J, Fiesel FC, Belmonte KC, Hudec R, Wang WX, Kim C, Nelson PT, Springer W, Kim J. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol Neurodegener 2016; 11:55. [PMID: 27456084 PMCID: PMC4960690 DOI: 10.1186/s13024-016-0121-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
Background Loss-of-function mutations in PINK1 and PARKIN are the most common causes of autosomal recessive Parkinson’s disease (PD). PINK1 is a mitochondrial serine/threonine kinase that plays a critical role in mitophagy, a selective autophagic clearance of damaged mitochondria. Accumulating evidence suggests mitochondrial dysfunction is one of central mechanisms underlying PD pathogenesis. Therefore, identifying regulatory mechanisms of PINK1 expression may provide novel therapeutic opportunities for PD. Although post-translational stabilization of PINK1 upon mitochondrial damage has been extensively studied, little is known about the regulation mechanism of PINK1 at the transcriptional or translational levels. Results Here, we demonstrated that microRNA-27a (miR-27a) and miR-27b suppress PINK1 expression at the translational level through directly binding to the 3′-untranslated region (3′UTR) of its mRNA. Importantly, our data demonstrated that translation of PINK1 is critical for its accumulation upon mitochondrial damage. The accumulation of PINK1 upon mitochondrial damage was strongly regulated by expression levels of miR-27a and miR-27b. miR-27a and miR-27b prevent mitophagic influx by suppressing PINK1 expression, as evidenced by the decrease of ubiquitin phosphorylation, Parkin translocation, and LC3-II accumulation in damaged mitochondria. Consequently, miR-27a and miR-27b inhibit lysosomal degradation of the damaged mitochondria, as shown by the decrease of the delivery of damaged mitochondria to lysosome and the degradation of cytochrome c oxidase 2 (COX2), a mitochondrial marker. Furthermore, our data demonstrated that the expression of miR-27a and miR-27b is significantly induced under chronic mitophagic flux, suggesting a negative feedback regulation between PINK1-mediated mitophagy and miR-27a and miR-27b. Conclusions We demonstrated that miR-27a and miR-27b regulate PINK1 expression and autophagic clearance of damaged mitochondria. Our data further support a novel negative regulatory mechanism of PINK1-mediated mitophagy by miR-27a and miR-27b. Therefore, our results considerably advance our understanding of PINK1 expression and mitophagy regulation and suggest that miR-27a and miR-27b may represent potential therapeutic targets for PD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0121-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaekwang Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Krystal C Belmonte
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Roman Hudec
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Wang-Xia Wang
- Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA
| | - Chaeyoung Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.,Neurobiology of Disease Program, Mayo Graduate School, Jacksonville, FL, 32224, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA. .,Neurobiology of Disease Program, Mayo Graduate School, Jacksonville, FL, 32224, USA.
| |
Collapse
|
641
|
Abstract
During mitochondrial dysfunction or the accumulation of unfolded proteins within mitochondria, cells employ a transcriptional response known as the mitochondrial unfolded protein response (UPR(mt)) to promote cell survival along with the repair and recovery of defective mitochondria. Considerable progress has been made in understanding how cells monitor mitochondrial function and activate the response, as well as in identifying scenarios where the UPR(mt) plays a protective role, such as during bacterial infection, hematopoietic stem cell maintenance, or general aging. To date, much of the focus has been on the role of the UPR(mt) in maintaining or re-establishing protein homeostasis within mitochondria by transcriptionally inducing mitochondrial molecular chaperone and protease genes. In this review, we focus on the metabolic adaptations or rewiring mediated by the UPR(mt) and how this may contribute to the resolution of mitochondrial unfolded protein stress and cell-type-specific physiology.
Collapse
Affiliation(s)
- Yi-Fan Lin
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
642
|
Hu Q, Wang G. Mitochondrial dysfunction in Parkinson's disease. Transl Neurodegener 2016; 5:14. [PMID: 27453777 PMCID: PMC4957882 DOI: 10.1186/s40035-016-0060-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta and the formation of Lewy bodies and Lewy neurites in surviving DA neurons in most cases. Although the cause of PD is still unclear, the remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. Numerous studies showed that dysfunction of mitochondria may play key roles in DA neuronal loss. Both genetic and environmental factors that are associated with PD contribute to mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provides direct evidence linking mitochondrial dysfunction to PD. Decrease of mitochondrial complex I activity is present in PD brain and in neurotoxin- or genetic factor-induced PD cellular and animal models. Moreover, PINK1 and parkin, two autosomal recessive PD gene products, have important roles in mitophagy, a cellular process to clear damaged mitochondria. PINK1 activates parkin to ubiquitinate outer mitochondrial membrane proteins to induce a selective degradation of damaged mitochondria by autophagy. In this review, we summarize the factors associated with PD and recent advances in understanding mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Qingsong Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021 China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021 China ; The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215021 China
| |
Collapse
|
643
|
Roberts RF, Tang MY, Fon EA, Durcan TM. Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. Int J Biochem Cell Biol 2016; 79:427-436. [PMID: 27443527 DOI: 10.1016/j.biocel.2016.07.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria are the powerhouses for the cell, consuming oxygen to generate sufficient energy for the maintenance of normal cellular processes. However, a deleterious consequence of this process are reactive oxygen species generated as side-products of these reactions. As a means to protect mitochondria from damage, cells and mitochondria have developed a wide-range of mitochondrial quality control mechanisms that remove damaged mitochondrial cargo, enabling the mitochondria to repair the damage and ultimately restore their normal function. If the damage is extensive and mitochondria can no longer be repaired, a process termed mitophagy is initiated in which the mitochondria are directed for autophagic clearance. Canonical mitophagy is regulated by two proteins, PINK1 and Parkin, which are mutated in familial forms of Parkinson's disease. In this review, we discuss recent work elucidating the mechanism of PINK1/Parkin-mediated mitophagy, along with recently uncovered PINK1/Parkin-independent mitophagy pathways. Moreover, we describe a novel mitochondrial quality control pathway, involving mitochondrial-derived vesicles that direct distinct and damaged mitochondrial cargo for degradation in the lysosome. Finally, we discuss the association between mitochondrial quality control, cardiac, hepatic and neurodegenerative disease and discuss the possibility of targeting these pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Rosalind F Roberts
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Matthew Y Tang
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Edward A Fon
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Thomas M Durcan
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada.
| |
Collapse
|
644
|
Ibarra R, Sandoval D, Fredrickson EK, Gardner RG, Kleiger G. The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control. J Biol Chem 2016; 291:18778-90. [PMID: 27405755 DOI: 10.1074/jbc.m116.737619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
Protein quality control (PQC) is a critical process wherein misfolded or damaged proteins are cleared from the cell to maintain protein homeostasis. In eukaryotic cells, the removal of misfolded proteins is primarily accomplished by the ubiquitin-proteasome system. In the ubiquitin-proteasome system, ubiquitin-conjugating enzymes and ubiquitin ligases append polyubiquitin chains onto misfolded protein substrates signaling for their degradation. The kinetics of protein ubiquitylation are paramount as a balance must be achieved between the rapid removal of misfolded proteins versus providing sufficient time for protein chaperones to attempt refolding. To uncover the molecular basis for how PQC substrate ubiquitylation rates are controlled, the reaction catalyzed by nuclear ubiquitin ligase San1 was reconstituted in vitro Our results demonstrate that San1 can function with two ubiquitin-conjugating enzymes, Cdc34 and Ubc1. Although Cdc34 and Ubc1 are both sufficient for promoting San1 activity, San1 functions preferentially with Ubc1, including when both Ubc1 and Cdc34 are present. Notably, a homogeneous peptide that mimics a misfolded PQC substrate was developed and enabled quantification of the kinetics of San1-catalyzed ubiquitylation reactions. We discuss how these results may have broad implications for the regulation of PQC-mediated protein degradation.
Collapse
Affiliation(s)
- Rebeca Ibarra
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Daniella Sandoval
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Eric K Fredrickson
- the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Richard G Gardner
- the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Gary Kleiger
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| |
Collapse
|
645
|
Carrì MT, D'Ambrosi N, Cozzolino M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochem Biophys Res Commun 2016; 483:1187-1193. [PMID: 27416757 DOI: 10.1016/j.bbrc.2016.07.055] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/10/2016] [Indexed: 12/20/2022]
Abstract
Alterations in the structure and functions of mitochondria are a typical trait of Amyotrophic Lateral Sclerosis, a neurodegenerative disease characterized by a prominent degeneration of upper and lower motor neurons. The known gene mutations that are responsible for a small fraction of ALS cases point to a complex interplay between different mechanisms in the disease pathogenesis. Here we will briefly overview the genetic and mechanistic evidence that make dysfunction of mitochondria a candidate major player in this process.
Collapse
Affiliation(s)
- Maria Teresa Carrì
- Department of Biology, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy; Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143, Rome, Italy.
| | - Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, Via del Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
646
|
Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA, Komander D, Bycroft M, Randow F. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J 2016; 35:1779-92. [PMID: 27370208 PMCID: PMC5010046 DOI: 10.15252/embj.201694491] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti‐bacterial autophagy relies on the core autophagy machinery, cargo receptors, and “eat‐me” signals such as galectin‐8 and ubiquitin that label bacteria as autophagy cargo. Anti‐bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti‐bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella‐associated “eat‐me” signals, including host‐derived glycans and K48‐ and K63‐linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.
Collapse
Affiliation(s)
- Teresa Lm Thurston
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Keith B Boyle
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mark Allen
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Ravenhill
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Maryia Karpiyevich
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stuart Bloor
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Annie Kaul
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jessica Noad
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Agnes Foeglein
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sophie A Matthews
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mark Bycroft
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
647
|
Riley JS, Tait SW. Mechanisms of mitophagy: putting the powerhouse into the doghouse. Biol Chem 2016; 397:617-35. [DOI: 10.1515/hsz-2016-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Abstract
Since entering our cells in an endosymbiotic event one billion years ago, mitochondria have shaped roles for themselves in metabolism, inflammation, calcium storage, migration, and cell death. Given this critical role in cellular homeostasis it is essential that they function correctly. Equally critical is the ability of a cell to remove damaged or superfluous mitochondria to avoid potential deleterious effects. In this review we will discuss the various mechanisms of mitochondrial clearance, with a particular focus on Parkin/PINK1-mediated mitophagy, discuss the impact of altered mitophagy in ageing and disease, and finally consider potential therapeutic benefits of targeting mitophagy.
Collapse
|
648
|
Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C, Chemali M, Fazel A, Bergeron JJ, Trudeau LE, Burelle Y, Gagnon E, McBride HM, Desjardins M. Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell 2016; 166:314-327. [PMID: 27345367 DOI: 10.1016/j.cell.2016.05.039] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Antigen presentation is essential for establishing immune tolerance and for immune responses against infectious disease and cancer. Although antigen presentation can be mediated by autophagy, here we demonstrate a pathway for mitochondrial antigen presentation (MitAP) that relies on the generation and trafficking of mitochondrial-derived vesicles (MDVs) rather than on autophagy/mitophagy. We find that PINK1 and Parkin, two mitochondrial proteins linked to Parkinson's disease (PD), actively inhibit MDV formation and MitAP. In absence of PINK1 or Parkin, inflammatory conditions trigger MitAP in immune cells, both in vitro and in vivo. MitAP and the formation of MDVs require Rab9 and Sorting nexin 9, whose recruitment to mitochondria is inhibited by Parkin. The identification of PINK1 and Parkin as suppressors of an immune-response-eliciting pathway provoked by inflammation suggests new insights into PD pathology.
Collapse
Affiliation(s)
- Diana Matheoud
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ayumu Sugiura
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, QC H3A 2B4, Canada
| | - Angélique Bellemare-Pelletier
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Annie Laplante
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Christiane Rondeau
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Magali Chemali
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ali Fazel
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC H4A 3J1, Canada
| | - John J Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC H4A 3J1, Canada
| | - Louis-Eric Trudeau
- Departments of Pharmacology and Neurosciences, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Etienne Gagnon
- Institute for Research in Immunology and Cancer and Department of Immunology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, QC H3A 2B4, Canada.
| | - Michel Desjardins
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
649
|
Voigt A, Berlemann LA, Winklhofer KF. The mitochondrial kinase PINK1: functions beyond mitophagy. J Neurochem 2016; 139 Suppl 1:232-239. [PMID: 27251035 DOI: 10.1111/jnc.13655] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 11/29/2022]
Abstract
Mutations in the genes encoding the mitochondrial kinase PINK1 and the E3 ubiquitin ligase Parkin cause autosomal recessive Parkinson's disease (PD). Pioneering work in Drosophila melanogaster revealed that the loss of PINK1 or Parkin function causes similar phenotypes including dysfunctional mitochondria. Further research showed that PINK1 can act upstream of Parkin in a mitochondrial quality control pathway to induce removal of damaged mitochondria in a process called mitophagy. Albeit the PINK1/Parkin-induced mitophagy pathway is well established and has recently been elucidated in great detail, its pathophysiological relevance is being debated. Mounting evidence indicates that PINK1 has additional functions, for example, in regulating complex I activity and maintaining neuronal viability in response to stress. Here, we discuss mitophagy-dependent and -independent functions of PINK1 and their possible role in PD pathogenesis. Mutations in the PINK1 gene, encoding a mitochondrial kinase, are associated with autosomal recessive Parkinson's disease. In this review, we summarize and discuss the functional roles of PINK1 in maintaining mitochondrial integrity, eliminating damaged mitochondria, and promoting cell survival. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Aaron Voigt
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.
| | - Lena A Berlemann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany.
| |
Collapse
|
650
|
Kruppa AJ, Kendrick-Jones J, Buss F. Myosins, Actin and Autophagy. Traffic 2016; 17:878-90. [PMID: 27146966 PMCID: PMC4957615 DOI: 10.1111/tra.12410] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022]
Abstract
Myosin motor proteins working together with the actin cytoskeleton drive a wide range of cellular processes. In this review, we focus on their roles in autophagy – the pathway the cell uses to ensure homeostasis by targeting pathogens, misfolded proteins and damaged organelles for degradation. The actin cytoskeleton regulated by a host of nucleating, anchoring and stabilizing proteins provides the filament network for the delivery of essential membrane vesicles from different cellular compartments to the autophagosome. Actin networks have also been implicated in structurally supporting the expanding phagophore, moving autophagosomes and enabling efficient fusion with the lysosome. Only a few myosins have so far been shown to play a role in autophagy. Non‐muscle myosin IIA functions in the early stages delivering membrane for the initial formation of the autophagosome, whereas myosin IC and myosin VI are involved in the final stages providing specific membranes for autophagosome maturation and its fusion with the lysosome.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - John Kendrick-Jones
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|