601
|
Kong F, Sun K, Zhu J, Li F, Lin F, Sun X, Luo X, Ren C, Lu L, Zhao S, Sun J, Wang Y, Shi J. PD-L1 Improves Motor Function and Alleviates Neuropathic Pain in Male Mice After Spinal Cord Injury by Inhibiting MAPK Pathway. Front Immunol 2021; 12:670646. [PMID: 33936116 PMCID: PMC8081847 DOI: 10.3389/fimmu.2021.670646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) causes severe motor dysfunction and persistent central neuropathic pain (Nep), which has not yet been effectively cured. Programmed cell death ligand-1 (PD-L1) is typically produced by cancer cells and contributes to the immune-suppressive in tumor microenvironment. However, the role of PD-L1 in regulating inflammatory response and Nep after SCI remains unclear. A growing amount of researches have begun to investigate the effect of PD-L1 on macrophages and microglia in recent years. Considering the pivotal role of macrophages/microglia in the inflammatory response after SCI, we proposed the hypothesis that PD-L1 improved the recovery of locomotor and sensory functions after SCI through regulating macrophages and microglia. Methods The mice SCI model was established to determine the changes in expression patterns of PD-L1. Meanwhile, we constructed PD-L1 knockout mice to observe differences in functional recovery and phenotypes of macrophages/microglia post-SCI. Results In present study, PD-L1 was significantly upregulated after SCI and highly expressed on macrophages/microglia at the injury epicenter. PD-L1 knockout (KO) mice showed worse locomotor recovery and more serious pathological pain compared with wild-type (WT) mice. Furthermore, deletion of PD-L1 significantly increased the polarization of M1-like macrophages/microglia. Mechanistic analysis revealed that PD-L1 may improve functional outcomes following SCI by inhibiting phosphorylation of p38 and ERK1/2. Conclusions Our observations implicate the involvement of PD-L1 in recovery of SCI and provide a new treatment strategy for the prevention and treatment of this traumatic condition.
Collapse
Affiliation(s)
- Fanqi Kong
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fudong Li
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Feng Lin
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Luo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changzhen Ren
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lantao Lu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - ShuJie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
602
|
Wang JY, Xiu J, Baca Y, Arai H, Battaglin F, Kawanishi N, Soni S, Zhang W, Millstein J, Shields AF, Grothey A, Weinberg BA, Marshall JL, Lou E, Khushman M, Sohal DPS, Hall MJ, Oberley M, Spetzler D, Shen L, Korn WM, Lenz HJ. Distinct genomic landscapes of gastroesophageal adenocarcinoma depending on PD-L1 expression identify mutations in RAS-MAPK pathway and TP53 as potential predictors of immunotherapy efficacy. Ann Oncol 2021; 32:906-916. [PMID: 33798656 DOI: 10.1016/j.annonc.2021.03.203] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The impact of molecular alterations on programmed death-ligand 1 (PD-L1) combined positive score (CPS) is not well studied in gastroesophageal adenocarcinomas (GEAs). We aimed to characterize genomic features of tumors with different CPSs in GEAs. PATIENTS AND METHODS Genomic alterations of 2518 GEAs were compared in three groups (PD-L1 CPS ≥ 10, high; CPS = 1-9, intermediate; CPS < 1, low) using next-generation sequencing. We assessed the impact of gene mutations on the efficacy of immune checkpoint inhibitors (ICIs) and tumor immune environment based on the Memorial Sloan Kettering Cancer Center and The Cancer Genome Atlas databases. RESULTS High, intermediate, and low CPSs were seen in 18%, 54% and 28% of GEAs, respectively. PD-L1 positivity was less prevalent in women and in tissues derived from metastatic sites. PD-L1 CPS was positively associated with mismatch repair deficiency/microsatellite instability-high, but independent of tumor mutation burden distribution. Tumors with mutations in KRAS, TP53, and RAS-mitogen-activated protein kinase (MAPK) pathway were associated with higher PD-L1 CPSs in the mismatch repair proficiency and microsatellite stability (pMMR&MSS) subgroup. Patients with RAS-MAPK pathway alterations had longer overall survival (OS) from ICIs compared to wildtype (WT) patients [27 versus 13 months, hazard ratio (HR) = 0.36, 95% confidence interval (CI): 0.19-0.7, P = 0.016] and a similar trend was observed in the MSS subgroup (P = 0.11). In contrast, patients with TP53 mutations had worse OS from ICIs compared to TP53-WT patients in the MSS subgroup (5 versus 21 months, HR = 2.39, 95% CI: 1.24-4.61, P = 0.016). CONCLUSIONS This is the largest study to investigate the distinct genomic landscapes of GEAs with different PD-L1 CPSs. Our data may provide novel insights for patient selection using mutations in TP53 and RAS-MAPK pathway and for the development of rational combination immunotherapies in GEAs.
Collapse
Affiliation(s)
- J Y Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China; Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - J Xiu
- Caris Life Sciences, Phoenix, USA
| | - Y Baca
- Caris Life Sciences, Phoenix, USA
| | - H Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - F Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - N Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - W Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - J Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - A F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, USA
| | - A Grothey
- GI Cancer Research, West Cancer Center and Research Institute, Germantown, USA
| | - B A Weinberg
- Division of Hematology and Oncology, Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - J L Marshall
- Division of Hematology and Oncology, Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, USA
| | - E Lou
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, USA
| | - M Khushman
- Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, USA
| | - D P S Sohal
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati, USA
| | - M J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, USA
| | | | | | - L Shen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - W M Korn
- Caris Life Sciences, Phoenix, USA
| | - H J Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
603
|
Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control 2021; 27:1073274820945975. [PMID: 32799550 PMCID: PMC7791453 DOI: 10.1177/1073274820945975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common lethal diseases in the world, has a 5-year survival rate of only 7%. Hepatocellular carcinoma has no symptoms in the early stage but obvious symptoms in the late stage, leading to delayed diagnosis and reduced treatment efficacy. In recent years, as the scope of HCC research has increased in depth, the clinical development and application of molecular targeted drugs and immunotherapy drugs have brought new breakthroughs in HCC treatment. Targeted therapy drugs for HCC have high specificity, allowing them to selectively kill tumor cells and minimize damage to normal tissues. At present, these targeted drugs are mainly classified into 3 categories: small molecule targeted drugs, HCC antigen-specific targeted drugs, and immune checkpoint targeted drugs. This article reviews the latest research progress on the targeted drugs for HCC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da Fu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
604
|
Extracellular Vesicles and Their Role in the Spatial and Temporal Expansion of Tumor-Immune Interactions. Int J Mol Sci 2021; 22:ijms22073374. [PMID: 33806053 PMCID: PMC8036938 DOI: 10.3390/ijms22073374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor–immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor–immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor–immune interactions and their potential use for cancer diagnostics.
Collapse
|
605
|
Jimbu L, Mesaros O, Popescu C, Neaga A, Berceanu I, Dima D, Gaman M, Zdrenghea M. Is There a Place for PD-1-PD-L Blockade in Acute Myeloid Leukemia? Pharmaceuticals (Basel) 2021; 14:288. [PMID: 33804850 PMCID: PMC8063836 DOI: 10.3390/ph14040288] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitors were a major breakthrough in the field of oncology. In September 2014, based on the KEYNOTE-001 study, the Food and Drug Administration (FDA) approved pembrolizumab, a programmed cell death protein 1 (PD-1) inhibitor, for advanced or unresectable melanoma. Up until now, seven PD-1/PD-ligand(L)-1 inhibitors are approved in various solid cancers and hundreds of clinical studies are currently ongoing. In hematology, PD-1 inhibitors nivolumab and pembrolizumab were approved for the treatment of relapsed/refractory (R/R) classic Hodgkin lymphoma, and later pembrolizumab was approved for R/R primary mediastinal large B-cell lymphoma. In acute myeloid leukemia (AML), the combination of hypomethylating agents and PD-1/PD-L1 inhibitors has shown promising results, worth of further investigation, while other combinations or single agent therapy have disappointing results. On the other hand, rather than in first line, these therapies could be useful in the consolidation or maintenance setting, for achieving minimal residual disease negativity. Furthermore, an interesting application could be the use of PD-1/PD-L1 inhibitors in the post allogeneic hematopoietic stem cell transplantation relapse. There are several reasons why checkpoint inhibitors are not very effective in treating AML, including the characteristics of the disease (systemic, rapidly progressive, and high tumor burden disease), low mutational burden, and dysregulation of the immune system. We here review the results of PD-1/PD-L1 inhibition in AML and discuss their potential future in the management of this disease.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.P.); (A.N.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania; (I.B.); (D.D.)
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.P.); (A.N.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania; (I.B.); (D.D.)
| | - Cristian Popescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.P.); (A.N.); (M.Z.)
- Department of Infectious Diseases, County Emergency Hospital Alba Iulia, 20 Decebal Str., 510093 Alba-Iulia, Romania
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.P.); (A.N.); (M.Z.)
| | - Iulia Berceanu
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania; (I.B.); (D.D.)
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania; (I.B.); (D.D.)
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.P.); (A.N.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania; (I.B.); (D.D.)
| |
Collapse
|
606
|
Lei Y, Li X, Huang Q, Zheng X, Liu M. Progress and Challenges of Predictive Biomarkers for Immune Checkpoint Blockade. Front Oncol 2021; 11:617335. [PMID: 33777757 PMCID: PMC7992906 DOI: 10.3389/fonc.2021.617335] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, immune checkpoint blockade (ICB) therapy has revolutionized the outlook for oncology with significant and sustained improvement in the overall patient survival. Unlike traditional cancer therapies, which target the cancer cells directly, ICB acts on the immune system to enhance anti-tumoral immunity. However, the response rate is still far from satisfactory and most patients are refractory to such treatment. Unfortunately, the mechanisms underlying such heterogeneous responses between patients to ICB therapy remain unclear. In addition, escalating costs of cancer care and unnecessary immune-related adverse events also are pertinent considerations with applications of ICB. Given these issues, identifying explicit predictive biomarkers for patient selection is an urgent unmet need to increase the efficacy of ICB therapy. The markers can be classified as tumor related and non-tumor-related biomarkers. Although substantial efforts have been put into investigating various biomarkers, none of them has been found to be sufficient for effectively stratifying patients who may benefit from immunotherapy. The present write up is an attempt to review the various emerging clinically relevant biomarkers affecting the efficacy of immune checkpoint inhibitors, as well as the limitations associated with their clinical application.
Collapse
Affiliation(s)
- Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoying Li
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Huang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
607
|
Cao Z, Kon N, Liu Y, Xu W, Wen J, Yao H, Zhang M, Wu Z, Yan X, Zhu WG, Gu W, Wang D. An unexpected role for p53 in regulating cancer cell-intrinsic PD-1 by acetylation. SCIENCE ADVANCES 2021; 7:7/14/eabf4148. [PMID: 33789902 PMCID: PMC8011965 DOI: 10.1126/sciadv.abf4148] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/10/2021] [Indexed: 05/30/2023]
Abstract
Cancer cell-intrinsic programmed cell death protein-1 (PD-1) has emerged as a tumor regulator in an immunity-independent manner, but its precise role in modulating tumor behaviors is complex, and how PD-1 is regulated in cancer cells is largely unknown. Here, we identified PD-1 as a direct target of tumor suppressor p53. Notably, p53 acetylation at K120/164 played a critical role in p53-mediated PD-1 transcription. Acetylated p53 preferentially recruited acetyltransferase cofactors onto PD-1 promoter, selectively facilitating PD-1 transcription by enhancing local chromatin acetylation. Reexpression of PD-1 in cancer cells inhibited tumor growth, whereas depletion of cancer cell-intrinsic PD-1 compromised p53-dependent tumor suppression. Moreover, histone deacetylase inhibitor (HDACi) activated PD-1 in an acetylated p53-dependent manner, supporting a synergistic effect by HDACi and p53 on tumor suppression via stimulating cancer cell-intrinsic PD-1. Our study reveals a mechanism for activating cancer cell-intrinsic PD-1 and indicates that p53-mediated PD-1 activation is critically involved in tumor suppression in an immunity-independent manner.
Collapse
Affiliation(s)
- Zhijie Cao
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ning Kon
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yajing Liu
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wenbin Xu
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia Wen
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Zhen Wu
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
608
|
Tang H, Xu X, Chen Y, Xin H, Wan T, Li B, Pan H, Li D, Ping Y. Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006003. [PMID: 33538047 DOI: 10.1002/adma.202006003] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Indexed: 05/18/2023]
Abstract
A photothermal genome-editing strategy is described to improve immune checkpoint blockade (ICB) therapy by CRISPR/Cas9-mediated disruption of PD-L1 and mild-hyperthermia-induced activation of immunogenic cell death (ICD). This strategy relies on a supramolecular cationic gold nanorod that not only serves as a carrier to deliver CRISPR/Cas9 targeting PD-L1, but also harvests the second near-infrared-window (NIR-II) light and converts into mild hyperthermia to induce both ICD and gene expression of Cas9. The genomic disruption of PD-L1 significantly augments ICB therapy by improving the conversion of dendritic cells to T cells, followed by promoting the infiltration of cytotoxic T lymphocytes into tumors, thereby reprogramming immunosuppressive tumor microenvironment into immunoactive one. Such a therapeutic modality greatly inhibits the activity of primary and metastatic tumors and exhibits long-term immune memory effects against both rechallenged and recurrent tumors. The current therapeutic strategy for synergistic PD-L1 disruption and ICD activation represents an appealing way for cancer immunotherapy.
Collapse
Affiliation(s)
- Honglin Tang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huhu Xin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
609
|
Wang Z, Kang W, Li O, Qi F, Wang J, You Y, He P, Suo Z, Zheng Y, Liu HM. Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing. Acta Pharm Sin B 2021; 11:694-707. [PMID: 33777676 PMCID: PMC7982505 DOI: 10.1016/j.apsb.2020.11.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.
Collapse
Key Words
- BCA, bicinchoninic acid
- CHX, cycloheximide
- CSN5, COP9 signalosome 5
- Cancer biology
- DUB, deubiquitinating enzymes
- EBNA1, Epstein–Barr nuclear antigen 1
- Epigenetics
- FDA, U.S. Food and Drug Administration
- FOXO4, forkhead box O4
- GC, gastric cancer
- GEPIA, Gene-Expression Profiling Interactive Analysis
- Gastric cancer
- H2O2, hydrogen peroxidase
- HAUSP, herpes virus-associated ubiquitin-specific protease
- HDN, well differentiated matched adjacent normal tissues
- HDT, well differentiated tumor tissues
- ICP0, infected cell protein 0
- IL-2, interleukin 2
- Immunosuppression
- Immunotherapy
- MDM2, murine double minute-2
- PBMC, peripheral blood mononuclear cells
- PBS, phosphate buffer saline
- PD-1, programmed cell death protein 1
- PD-L1
- PD-L1, programmed death ligand-1
- PDN, poor differentiated matched adjacent normal tissues
- PDT, poor differentiated tumor tissues
- PTMs, post-translational modifications
- RIPA, radioimmunoprecipitation
- TCGA, the Cancer Genome Atlas
- TCR, T cell receptor
- TILs, tumor-infiltrating T cells
- USP18, ubiquitin specific peptidase 18
- USP22, ubiquitin specific peptidase 22
- USP38, ubiquitin specific peptidase 38
- USP7
- USP7, ubiquitin-specific processing protease 7
- USP9X, ubiquitin specific peptidase 9 X-linked
- Ubiquitination
- WB, Western blotting
- irAEs, immune-related adverse effects
- qRT-PCR, quantitative real time polymerase chain reaction
Collapse
|
610
|
Development and validation of a PD-L1/PD-1/CD8 axis-based classifier to predict cancer survival of upper tract urothelial carcinoma after radical nephroureterectomy. Cancer Immunol Immunother 2021; 70:2657-2668. [PMID: 33606065 DOI: 10.1007/s00262-020-02827-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
The expression status of programmed cell death-ligand 1/programmed cell death 1 (PD-L1/PD-1) and the infiltration of CD8+ T cells in tumor tissues are considered to be related to immunotherapy efficacy and patient prognosis. The purpose of this study is to clarify the prognostic value of the PD-L1/PD-1/CD8 axis, and to develop and validate a comprehensive scoring system based on multiple immune variables to predict cancer survival of upper tract urothelial carcinoma (UTUC) after radical nephroureterectomy (RNU). The immunohistochemical method was used to detect the expression of PD-L1, PD-1, and CD8 in cancer tissues of UTUC patients after RNU. Then, an immunoscore was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression model in the training cohort (n = 120), and it was verified in the validation cohort (n = 54). We found that infiltration of PD-L1+ immune cells (ICs), stromal PD-1+ tumor-infiltrating lymphocytes (TILs), and intratumoral CD8+ TILs was associated with poor overall survival (OS). The immunoscore based on the three immune variables further divided the patients into low- and high-risk groups, and there was a significant difference in the survival rate. A nomogram was constructed by combining tumor-node-metastasis (TNM) stage and immunoscore, and the area under the curve of the receiver-operating characteristic (ROC) (0.78) for predicting 5-year mortality was better than that of the TNM stage (0.70) and immunoscore (0.76). Our results show that the PD-L1/PD-1/CD8 axis-based classifier have potential clinical application to predict cancer survival of UTUC patients after RNU.
Collapse
|
611
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
612
|
Zhang C, Zhao S, Wang X. Co-expression of CMTM6 and PD-L1: a novel prognostic indicator of gastric cancer. Cancer Cell Int 2021; 21:78. [PMID: 33509216 PMCID: PMC7842018 DOI: 10.1186/s12935-020-01734-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND CKLF Like MARVEL Transmembrane Domain Containing 6 (CMTM6) is involved in the epigenetic regulation of genes and tumorigenesis. Programmed cell death ligand 1 (PD-L1) is closely related to the prognosis of some human cancers. CMTM6 is a key regulator of PD-L1 in many cancers. The purpose of this study was to investigate the expressions of these proteins in gastric cancer and the correlations with clinicopathological features and survival. METHODS The expression levels of CMTM6 and PD-L1 were examined in 185 gastric cancer specimens using immunohistochemistry, quantitative real-time PCR and Western blot. Immunofluorescence was used to examine the localizations of CMTM6 and PD-L1. Chi-square test was used to analyze the relationship between CMTM6 and PD-L1 expressions and clinicopathological characteristics. Kaplan-Meier method and log-rank test were used to analyze the survival data of patients. RESULTS The positive expression rates of CMTM6 and PD-L1 in gastric cancers were 78.38% (145/185) and 75.68% (140/185), respectively. CMTM6 and PD-L1 were both mainly expressed in the cell membrane and nucleus of gastric cancer tumor cells. High expression of CMTM6 and PD-L1 was correlated with Borrmann type (P < 0.001), N stage (P = 0.002), peritoneal metastasis (P = 0.007) and TNM stage (P = 0.038). CMTM6 and PD-L1 expression in gastric cancer tissues showed a positive correlation (Pearson's coefficient test, r = 0.260; P < 0.001). CMTM6 may positively regulate PD-L1 expression. High expression of CMTM6 was correlated with poor prognosis of gastric cancer patients (HR = 1.668; 95% CI = 1.032-2.695; P = 0.037). High expression of both CMTM6 and PD-L1 may be an independent factor for overall survival (HR = 1.554; 95% CI = 1.011-2.389; P = 0.044). CONCLUSION The combined detection of CMTM6 and PD-L1 may be used as an indicator for judging the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Shutao Zhao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
613
|
Chen YC, Huang MY, Zhang LL, Feng ZL, Jiang XM, Yuan LW, Huang RY, Liu B, Yu H, Wang YT, Chen XP, Lin LG, Lu JJ. Nagilactone E increases PD-L1 expression through activation of c-Jun in lung cancer cells. Chin J Nat Med 2021; 18:517-525. [PMID: 32616192 DOI: 10.1016/s1875-5364(20)30062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Indexed: 01/03/2023]
Abstract
Nagilactone E (NLE), a natural product with anticancer activities, is isolated from Podocarpus nagi. In this study, we reported that NLE increased programmed death ligand 1 (PD-L1) expressions at both protein and mRNA levels in human lung cancer cells, and enhanced its localization on the cell membrane. Mechanistically, NLE increased the phosphorylation and expression of c-Jun, and promoted the localization of c-Jun in the nucleus, while silencing of c-Jun by small interfering RNA (siRNA) reduced NLE-induced PD-L1. Further study showed that NLE activated the c-Jun N-terminal kinases (JNK), the upstream of c-Jun, and its inhibitor SP600125 reversed the NLE-increased PD-L1. Moreover, NLE-induced PD-L1 increased the binding intensity of PD-1 on the cell surface. In summary, NLE upregulates the expression of PD-L1 in lung cancer cells through the activation of JNK-c-Jun axis, which has the potential to combine with the PD-1/PD-L1 antibody therapies in lung cancer.
Collapse
Affiliation(s)
- Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; School of Medicine, Chengdu University, Chengdu 610106, China
| | - Zhe-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Luo-Wei Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Run-Yue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
614
|
Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22020791. [PMID: 33466790 PMCID: PMC7830467 DOI: 10.3390/ijms22020791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor microenvironments are composed of a myriad of elements, both cellular (immune cells, cancer-associated fibroblasts, mesenchymal stem cells, etc.) and non-cellular (extracellular matrix, cytokines, growth factors, etc.), which collectively provide a permissive environment enabling tumor progression. In this review, we focused on the regulation of tumor microenvironment through ubiquitination. Ubiquitination is a reversible protein post-translational modification that regulates various key biological processes, whereby ubiquitin is attached to substrates through a catalytic cascade coordinated by multiple enzymes, including E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. In contrast, ubiquitin can be removed by deubiquitinases in the process of deubiquitination. Here, we discuss the roles of E3 ligases and deubiquitinases as modulators of both cellular and non-cellular components in tumor microenvironment, providing potential therapeutic targets for cancer therapy. Finally, we introduced several emerging technologies that can be utilized to develop effective therapeutic agents for targeting tumor microenvironment.
Collapse
|
615
|
Recent advance of peptide-based molecules and nonpeptidic small-molecules modulating PD-1/PD-L1 protein-protein interaction or targeting PD-L1 protein degradation. Eur J Med Chem 2021; 213:113170. [PMID: 33454550 DOI: 10.1016/j.ejmech.2021.113170] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Tumor immunotherapy has made great progress in recent years. In the tumor microenvironment, the binding of PD-1 and its ligand PD-L1 can promote tumor immune escape and tumor survival. Clinical studies have indicated that antibodies blocking PD-1 and PD-L1 have reliable effects on many advanced malignant tumors. However, no small-molecule inhibitors have been approved so far, indicating that the development of marketable small-molecules PD-1/PD-L1 targeted therapy drugs is a challenging process. Small-molecule inhibitors can overcome the limitations of monoclonal antibodies, including poor oral bioavailability, high cost, poor tissue and tumor penetration and long half-life, which prompt researchers to turn their attention to the development of peptide molecules and small-molecule inhibitors modulating PD-1/PD-L1 to overcome some disadvantages of monoclonal antibodies or targeting PD-L1 protein degradation as potential alternatives or supplements. In this review, we will focus on the peptide-based and nonpeptidic molecules against PD-1/PD-L1 base on the structural classification. More importantly, we also focus on the latest research progress of small-molecules mediated PD-L1 degradation mechanism.
Collapse
|
616
|
Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. J Immunol Res 2021; 2021:6668573. [PMID: 33506060 PMCID: PMC7808819 DOI: 10.1155/2021/6668573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.
Collapse
|
617
|
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021; 14:10. [PMID: 33413496 PMCID: PMC7792099 DOI: 10.1186/s13045-020-01027-5] [Citation(s) in RCA: 402] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) on cancer cells engages with programmed cell death-1 (PD-1) on immune cells, contributing to cancer immune escape. For multiple cancer types, the PD-1/PD-L1 axis is the major speed-limiting step of the anti-cancer immune response. In this context, blocking PD-1/PD-L1 could restore T cells from exhausted status and eradicate cancer cells. However, only a subset of PD-L1 positive patients benefits from α-PD-1/PD-L1 therapies. Actually, PD-L1 expression is regulated by various factors, leading to the diverse significances of PD-L1 positivity. Understanding the mechanisms of PD-L1 regulation is helpful to select patients and enhance the treatment effect. In this review, we focused on PD-L1 regulators at the levels of transcription, post-transcription, post-translation. Besides, we discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
618
|
Wang S, Zhang X, Leng S, Xu Q, Sheng Z, Zhang Y, Yu J, Feng Q, Hou M, Peng J, Hu X. Immune Checkpoint-Related Gene Polymorphisms Are Associated With Primary Immune Thrombocytopenia. Front Immunol 2021; 11:615941. [PMID: 33584705 PMCID: PMC7874092 DOI: 10.3389/fimmu.2020.615941] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy by immune checkpoint blockade has been effective in the treatment of certain tumors. However, the association between immune checkpoints and autoimmune diseases remains elusive and requires urgent investigation. Primary immune thrombocytopenia (ITP), characterized by reduced platelet count and a consequent increased risk of bleeding, is an autoimmune disorder with a hyper-activated T cell response. Here, we investigated the contribution of immune checkpoint-related single-nucleotide polymorphisms (SNPs), including CD28, ICOS, PD1, TNFSF4, DNAM1, TIM3, CTLA4, and LAG3 to the susceptibility and therapeutic effects of ITP. In this case-control study, 307 ITP patients and 295 age-matched healthy participants were recruited. We used the MassARRAY system for genotyping immune checkpoint-related SNPs. Our results revealed that rs1980422 in CD28 was associated with an increased risk of ITP after false discovery rate correction (codominant, CT vs. TT, OR = 1.788, 95% CI = 1.178-2.713, p = 0.006). In addition, CD28 expression at both the mRNA and protein levels was significantly higher in patients with CT than in those with the TT genotype (p = 0.028 and p = 0.001, respectively). Furthermore, the T allele of PD1 rs36084323 was a risk factor for ITP severity and the T allele of DNAM1 rs763361 for corticosteroid-resistance. In contrast, the T allele of LAG3 rs870849 was a protective factor for ITP severity, and the T allele of ICOS rs6726035 was protective against corticosteroid-resistance. The TT/CT genotypes of PD1 rs36084323 also showed an 8.889-fold increase in the risk of developing refractory ITP. This study indicates that immune checkpoint-related SNPs, especially CD28 rs1980422, may be genetic factors associated with the development and treatment of ITP patients. Our results shed new light on prognosis prediction, disease severity, and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qirui Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanqi Zhang
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Yu
- Department of Hematology, Weihai Municipal Hospital, Weihai, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
619
|
Xi Z, Jones PS, Mikamoto M, Jiang X, Faje AT, Nie C, Labelle KE, Zhou Y, Miller KK, Soberman RJ, Zhang X. The Upregulation of Molecules Related to Tumor Immune Escape in Human Pituitary Adenomas. Front Endocrinol (Lausanne) 2021; 12:726448. [PMID: 34745002 PMCID: PMC8566912 DOI: 10.3389/fendo.2021.726448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Human pituitary adenomas are one of the most common intracranial neoplasms. Although most of these tumors are benign and can be treated medically or by transsphenoidal surgery, a subset of these tumors are fast-growing, aggressive, recur, and remain a therapeutic dilemma. Because antibodies against immune checkpoint receptors PD-1 and CLTA-4 are now routinely used for cancer treatment, we quantified the expression of mRNA coding for PD-1, CLTA-4, and their ligands, PD-L1, PD-L2, CD80, and CD86 in human pituitary adenomas and normal pituitary glands, with the ultimate goal of exploiting immune checkpoint therapy in aggressive pituitary adenomas. Aggressive pituitary adenomas demonstrated an increased expression of PD-L2, CD80, and CD86 in compared to that of normal human pituitary glands. Furthermore, aggressive pituitary tumors demonstrated significantly higher levels of CD80 and CD86 compared to non-aggressive tumors. Our results establish a rationale for studying a potential role for immune checkpoint inhibition therapy in the treatment of pituitary adenomas.
Collapse
Affiliation(s)
- Zhiyu Xi
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Masaaki Mikamoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaobin Jiang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander T. Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Chuansheng Nie
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kathryn E. Labelle
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Xun Zhang,
| |
Collapse
|
620
|
Hu H, Zhang W, Zhi T, Li J, Wen Y, Li F, Mei Y, Huang D. Genotypic Characteristics of Hepatoblastoma as Detected by Next Generation Sequencing and Their Correlation With Clinical Efficacy. Front Oncol 2021; 11:628531. [PMID: 34426785 PMCID: PMC8379014 DOI: 10.3389/fonc.2021.628531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/20/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is the most common malignant embryonic liver tumor type in children under 3 years of age. In the present study, the next generation sequencing (NGS) method was used to detect the genotype characteristics of HB and summarize the correlation between the common mutation genotypes noted in this disease and the clinical treatment and prognosis. The results may aid clinical prognosis and the successful application of targeted drugs. METHODS Initially, DNA was extracted from tumor tissue specimens and peripheral blood derived from 19 pediatric patients with HB. Subsequently, DNA panel and NGS methods were used to detect tumor diagnosis and the expression levels of treatment-associated genes, followed by the summary of genotype characteristics. In addition, in order to further assess the application of immunotherapy in HB, immunohistochemical detection of programmed cell death 1 ligand 1 (PDL1) was performed in combination with tumor mutation burden (TMB) and DNA mismatch repair status analysis. Furthermore, the clinical treatment effect and prognosis of the pediatric patients were statistically analyzed according to the characteristics of the genotype. Overall prognosis and prognostic analyses in different groups were performed by Kaplan-Meier and log-rank tests, respectively. Finally, expression validation and diagnostic analysis of commonly reported genes were performed in the GSE75271 dataset, which was obtained from the Gene Expression Omnibus (GEO) database. RESULTS In the present study, certain mutated genes, including nuclear factor erythroid 2-related factor 2 (NFE2L2), catenin β1 (CTNNB1), MYCN, tumor protein p53, axis inhibition protein 1 (AXIN1) and adenomatous polyposis coli (APC) were associated with the pathogenesis of HB. During TMB and DNA mismatch repair status analyses, pediatric patients had a low TMB. All of them did not present with microsatellite instability. The immunohistochemical results indicated lower expression levels of PDL1 in HB. The complete remission (CR) rate of pediatric patients in the gene abnormality group was lower than that of the non-reported disease-associated gene abnormality group. The 2-year overall survival rate and disease-free survival rate of 19 pediatric patients with HB were 72.1% and 42.4%, respectively. Receiver operating characteristic (ROC) analysis demonstrated that CTNNB1, NFE2L2, AXIN1, APC, MYCN and insulin growth factor 2 (IGF2) may be potential biomarkers that could be used for the diagnosis of HB. CONCLUSION The genotype changes in HB were more common and the CR rate of the pediatric patients with an altered genotype was lower than that of pediatric patients without an altered genotype. In addition, pediatric patients with HB exhibited lower TMB compared with adult patients. Moreover, the data indicated that CTNNB1, NFE2L2, AXIN1, APC, MYCN and IGF2 may be potential biomarkers that can be used for the diagnosis of HB.
Collapse
|
621
|
Schubert A, Boutros M. Extracellular vesicles and oncogenic signaling. Mol Oncol 2021; 15:3-26. [PMID: 33207034 PMCID: PMC7782092 DOI: 10.1002/1878-0261.12855] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/17/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) emerged as potential diagnostic and prognostic markers for cancer therapy. While the field of EV research is rapidly developing and their application as vehicles for therapeutic cargo is being tested, little is still known about the exact mechanisms of signaling specificity and cargo transfer by EVs, especially in vivo. Several signaling cascades have been found to use EVs for signaling in the tumor-stroma interaction. These include potentially oncogenic, verbatim transforming, signaling cascades such as Wnt and TGF-β signaling, and other signaling cascades that have been tightly associated with tumor progression and metastasis, such as PD-L1 and VEGF signaling. Multiple mechanisms of how these signaling cascades and EVs interplay to mediate these complex processes have been described, such as direct signal activation through pathway components on or in EVs or indirectly by influencing vesicle biogenesis, cargo sorting, or uptake dynamics. In this review, we summarize the current knowledge of EVs, their biogenesis, and our understanding of EV interactions with recipient cells with a focus on selected oncogenic and cancer-associated signaling pathways. After an in-depth look at how EVs mediate and influence signaling, we discuss potentially translatable EV functions and existing knowledge gaps.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional GenomicsGerman Cancer Research Center (DKFZ) and Heidelberg UniversityGermany
- Clinic for Hematology and Medical OncologyUniversity Medical Center GöttingenGermany
| | - Michael Boutros
- Division Signaling and Functional GenomicsGerman Cancer Research Center (DKFZ) and Heidelberg UniversityGermany
| |
Collapse
|
622
|
Abstract
In recent years, extracellular vesicles (EVs) emerged as potential diagnostic and prognostic markers for cancer therapy. While the field of EV research is rapidly developing and their application as vehicles for therapeutic cargo is being tested, little is still known about the exact mechanisms of signaling specificity and cargo transfer by EVs, especially in vivo. Several signaling cascades have been found to use EVs for signaling in the tumor-stroma interaction. These include potentially oncogenic, verbatim transforming, signaling cascades such as Wnt and TGF-β signaling, and other signaling cascades that have been tightly associated with tumor progression and metastasis, such as PD-L1 and VEGF signaling. Multiple mechanisms of how these signaling cascades and EVs interplay to mediate these complex processes have been described, such as direct signal activation through pathway components on or in EVs or indirectly by influencing vesicle biogenesis, cargo sorting, or uptake dynamics. In this review, we summarize the current knowledge of EVs, their biogenesis, and our understanding of EV interactions with recipient cells with a focus on selected oncogenic and cancer-associated signaling pathways. After an in-depth look at how EVs mediate and influence signaling, we discuss potentially translatable EV functions and existing knowledge gaps.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Germany.,Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Germany
| |
Collapse
|
623
|
Fanciulli G, Di Molfetta S, Dotto A, Florio T, Feola T, Rubino M, de Cicco F, Colao A, Faggiano A, NIKE Group. Emerging Therapies in Pheochromocytoma and Paraganglioma: Immune Checkpoint Inhibitors in the Starting Blocks. J Clin Med 2020; 10:E88. [PMID: 33383673 PMCID: PMC7795591 DOI: 10.3390/jcm10010088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Pheochromocytoma and paraganglioma are neuroendocrine neoplasms, originating in the adrenal medulla and in parasympathetic and sympathetic autonomic nervous system ganglia, respectively. They usually present as localized tumours curable with surgery. However, these tumours may exhibit heterogeneous clinical course, ranging from no/minimal progression to aggressive (progressive/metastatic) behavior. For this setting of patients, current therapies are unsatisfactory. Immune checkpoint inhibitors have shown outstanding results for several types of solid cancers. We therefore aimed to summarize and discuss available data on efficacy and safety of current FDA-approved immune checkpoint inhibitors in patients with pheochromocytoma and paraganglioma. After an extensive search, we found 15 useful data sources (four full-published articles, four supplements of scientific journals, seven ongoing registered clinical trials). The data we detected, even with the limit of the small number of patients treated, make a great expectation on the therapeutic use of immune checkpoint inhibitors. Besides, the newly detected predictors of response will (hopefully) be of great helps in selecting the subset of patients that might benefit the most from this class of drugs. Finally, new trials are in the starting blocks, and they are expected to shed in the next future new light on a therapy, which is considered a milestone in oncology.
Collapse
Affiliation(s)
- Giuseppe Fanciulli
- NET Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari—Endocrine Unit, AOU Sassari, 07100 Sassari, Italy
| | - Sergio Di Molfetta
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Andrea Dotto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
| | - Tullio Florio
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Tiziana Feola
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (T.F.); (A.F.)
- Neuroendocrinology, Neuromed Institute, IRCCS, 86077 Pozzilli (IS), Italy
| | - Manila Rubino
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, IRCCS, 20141 Milan, Italy;
| | - Federica de Cicco
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, 80131 Naples, Italy; (F.d.C.); (A.C.)
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, 80131 Naples, Italy; (F.d.C.); (A.C.)
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (T.F.); (A.F.)
| | | |
Collapse
|
624
|
Teng CF, Li TC, Wang T, Wu TH, Wang J, Wu HC, Shyu WC, Su IJ, Jeng LB. Increased Expression of Programmed Death Ligand 1 in Hepatocellular Carcinoma of Patients with Hepatitis B Virus Pre-S2 Mutant. J Hepatocell Carcinoma 2020; 7:385-401. [PMID: 33365286 PMCID: PMC7751729 DOI: 10.2147/jhc.s282818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC), a leading cause of cancer-related death worldwide. The HCC patients who harbor HBV pre-S2 mutant, an oncoprotein that plays key roles in HCC development, have been closely associated with a worse prognosis after curative surgical resection, suggesting an urgent need for alternative therapeutic options to improve their survival. In this study, we aimed to evaluate the expression profiles of programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), two of the most well-studied immune checkpoint molecules that promote tumor immune evasion, in tumor of the pre-S2 mutant-positive/high HCC patients. Methods We classified 40 HBV-related HCC patients into the pre-S2-positive/high and -negative/low groups by a next-generation sequencing-based approach. The fluorescent immunohistochemistry staining was performed to detect the expression of PD-1 and PD-L1 in HCC tissues of patients. Results We showed that patients with either deletion spanning pre-S2 gene segment or high percentage of pre-S2 plus pre-S1+pre-S2 deletion (the pre-S2 mutant-positive/high group) exhibited a significantly higher density of PD-L1-positive cells in HCC tissues than those without. Moreover, the percentage of pre-S2 plus pre-S1+pre-S2 deletion displayed a high positive correlation with the density of PD-L1-positive cells in HCC tissues. Conclusion The increased expression of PD-L1 in tumor tissues of the pre-S2 mutant-positive HCC patients suggest that pre-S2 mutant may play a potential role in dysregulation of tumor immune microenvironment in the progression of HBV-related HCC, implicating for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Chiao-Fang Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.,Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Tsai-Chung Li
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Ting Wang
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Hua Wu
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - John Wang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Occupational Therapy, Asia University, Taichung, Taiwan.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ih-Jen Su
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
625
|
Guo W, Ma J, Guo S, Wang H, Wang S, Shi Q, Liu L, Zhao T, Yang F, Chen S, Chen J, Zhao J, Yu C, Yi X, Yang Y, Ma J, Ni Q, Zhu G, Gao T, Li C. A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. J Immunother Cancer 2020; 8:jitc-2020-001866. [PMID: 33298620 PMCID: PMC7733187 DOI: 10.1136/jitc-2020-001866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background The therapeutic effect of immune checkpoint blockers, especially the neutralizing antibodies of programmed cell death (PD-1) and its ligand programmed death ligand 1 (PD-L1), has been well verified in melanoma. Nevertheless, the dissatisfactory response rate and the occurrence of resistance significantly hinder the treatment effect. Inflammation-related molecules like A20 are greatly implicated in cancer immune response, but the role of tumorous A20 in antitumor immunity and immunotherapy efficacy remains elusive. Methods The association between tumorous A20 expression and the effect of anti-PD-1 immunotherapy was determined by immunoblotting, immunofluorescence staining and flow cytometry analysis of primary tumor specimens from melanoma patients. Preclinical mouse model, in vitro coculture system, immunohistochemical staining and flow cytometry analysis were employed to investigate the role of A20 in regulating the effect of anti-PD-1 immunotherapy. Bioinformatics, mass spectrum analysis and a set of biochemical analyzes were used to figure out the underlying mechanism. Results We first discovered that upregulated A20 was associated with impaired antitumor capacity of CD8+T cells and poor response to anti-PD-1 immunotherapy in melanoma patients. Subsequent functional studies in preclinical mouse model and in vitro coculture system proved that targeting tumorous A20 prominently improved the effect of immunotherapy through the invigoration of infiltrating CD8+T cells via the regulation of PD-L1. Mechanistically, A20 facilitated the ubiquitination and degradation of prohibitin to potentiate STAT3 activation and PD-L1 expression. Moreover, tumorous A20 expression was highly associated with the ratio of Ki-67 percentage in circulating PD-1+CD8+T cells to tumor burden. Conclusions Together, our findings uncover a novel crosstalk between inflammatory molecules and antitumor immunity in melanoma, and highlight that A20 can be exploited as a promising target to bring clinical benefit to melanomas refractory to immune checkpoint blockade.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinyuan Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fengfan Yang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuyang Chen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianhong Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingrong Ni
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
626
|
Regulation of PD-L1 expression is a novel facet of cyclic-AMP-mediated immunosuppression. Leukemia 2020; 35:1990-2001. [PMID: 33299141 PMCID: PMC8187478 DOI: 10.1038/s41375-020-01105-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
Cyclic-AMP (cAMP) exerts suppressive effects in the innate and adaptive immune system. The PD-1/PD-L1 immune checkpoint down-regulates T-cell activity. Here, we examined if these two immunosuppressive nodes intersect. Using normal and malignant lymphocytes from humans, and the phosphodiesterase 4b (Pde4b) knockout mouse, we found that cAMP induces PD-L1 transcription and protein expression. Mechanistically, we discovered that the cAMP effectors PKA and CREB induce the transcription/secretion of IL-10, IL-8 and IL-6, which initiate an autocrine loop that activates the JAK/STAT pathway and ultimately increase PD-L1 expression in the cell surface. This signaling axis is disarmed at two specific nodes in subsets of diffuse large B cell lymphoma, which may help explain the variable PD-L1 expression in these tumors. In vivo, we found that despite its immunosuppressive attributes, the PDE4 inhibitor roflumilast did not decrease the clinical activity of checkpoint inhibitors, an important clinical observation given the approved use of these agents in multiple diseases. In summary, we discovered that PD-L1 induction is a part of the repertoire of immunosuppressive actions mediated by cAMP, defined a cytokine-mediated autocrine loop that executes this action and, reassuringly, showed that PDE4 inhibition does not antagonize immune checkpoint blockade in an in vivo syngeneic lymphoma model.
Collapse
|
627
|
Bastaki S, Aravindhan S, Ahmadpour Saheb N, Afsari Kashani M, Evgenievich Dorofeev A, Karoon Kiani F, Jahandideh H, Beigi Dargani F, Aksoun M, Nikkhoo A, Masjedi A, Mahmoodpoor A, Ahmadi M, Dolati S, Namvar Aghdash S, Jadidi-Niaragh F. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice. Life Sci 2020; 266:118847. [PMID: 33309720 DOI: 10.1016/j.lfs.2020.118847] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy methods using potential tumor microenvironment modulators have elicited durable therapeutic responses in cancer treatment. Immune checkpoint molecule programmed cell death-ligand 1 (PD-L1) and oncogenic transcription factor STAT3 (signal transducer and activator of transcription-3) assigned as inhibitory targets of our study and particular delivery system designed to deliver small interfering RNAs (siRNAs) to silence the targeted genes. Generated trimethyl chitosan (TMC) and thiolated chitosan (TC) nanoparticles (NPs) conjugated with HIV-1-derived TAT peptide and HA (hyaluronic acid) exhibited eligible physicochemical characteristics, notable siRNA encapsulation, serum stability, non-toxicity, controlled siRNA release, and extensive cellular uptake by cancer cells. Dual inhibition with STAT3/PD-L1 siRNA-loaded HA-TAT-TMC-TC NPs led to promising results, including significant downregulation of PD-L1 and STAT3 genes, striking suppressive effects on proliferation, migration, and angiogenesis of breast and melanoma cancer cell lines, and restrained tumor growth in vivo. These findings infer the capability of HA-TAT-TMC-TC NPs containing STAT3/PD-L1 siRNAs as a novel tumor-suppressive candidate in cancer treatment.
Collapse
Affiliation(s)
- Shima Bastaki
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Surendar Aravindhan
- Department of Electronics and Communication Engineering, AL-AMEEN ENGINEERING COLLEGE (Autonomous), Erode, Tamilnadu 638104, India.
| | | | | | | | - Fariba Karoon Kiani
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hediyeh Jahandideh
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Aksoun
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Nikkhoo
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Masjedi
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Namvar Aghdash
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
628
|
Ma W, Zhao F, Yu X, Guan S, Suo H, Tao Z, Qiu Y, Wu Y, Cao Y, Jin F. Immune-related lncRNAs as predictors of survival in breast cancer: a prognostic signature. J Transl Med 2020; 18:442. [PMID: 33225954 PMCID: PMC7681988 DOI: 10.1186/s12967-020-02522-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Background Breast cancer is a highly heterogeneous disease, this poses challenges for classification and management. Long non-coding RNAs play acrucial role in the breast cancersdevelopment and progression, especially in tumor-related immune processes which have become the most rapidly investigated area. Therefore, we aimed at developing an immune-related lncRNA signature to improve the prognosis prediction of breast cancer. Methods We obtained breast cancer patient samples and corresponding clinical data from The Cancer Genome Atlas (TCGA) database. Immune-related lncRNAs were screened by co-expression analysis of immune-related genes which were downloaded from the Immunology Database and Analysis Portal (ImmPort). Clinical patient samples were randomly separated into training and testing sets. In the training set, univariate Cox regression analysis and LASSO regression were utilized to build a prognostic immune-related lncRNA signature. The signature was validated in the training set, testing set, and whole cohorts by the Kaplan–Meier log-rank test, time-dependent ROC curve analysis, principal component analysis, univariate andmultivariate Cox regression analyses. Results A total of 937 immune- related lncRNAs were identified, 15 candidate immune-related lncRNAs were significantly associated with overall survival (OS). Eight of these lncRNAs (OTUD6B-AS1, AL122010.1, AC136475.2, AL161646.1, AC245297.3, LINC00578, LINC01871, AP000442.2) were selected for establishment of the risk prediction model. The OS of patients in the low-risk group was higher than that of patients in the high-risk group (p = 1.215e − 06 in the training set; p = 0.0069 in the validation set; p = 1.233e − 07 in whole cohort). The time-dependent ROC curve analysis revealed that the AUCs for OS in the first, eighth, and tenth year were 0.812, 0.81, and 0.857, respectively, in the training set, 0.615, 0.68, 0.655 in the validation set, and 0.725, 0.742, 0.741 in the total cohort. Multivariate Cox regression analysis indicated the model was a reliable and independent indicator for the prognosis of breast cancer in the training set (HR = 1.432; 95% CI 1.204–1.702, p < 0.001), validation set (HR = 1.162; 95% CI 1.004–1.345, p = 0.044), and whole set (HR = 1.240; 95% CI 1.128–1.362, p < 0.001). GSEA analysis revealed a strong connection between the signature and immune-related biological processes and pathways. Conclusions We constructed and verified a robust signature of 8 immune-related lncRNAs for the prediction of breast cancer patient survival.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu Guan
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huandan Suo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zuo Tao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Qiu
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yunfei Wu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Cao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
629
|
Huang W, Yan YG, Wang WJ, Ouyang ZH, Li XL, Zhang TL, Wang XB, Wang B, Lv GH, Li J, Zou MX. Development and Validation of a 6-miRNA Prognostic Signature in Spinal Chordoma. Front Oncol 2020; 10:556902. [PMID: 33194623 PMCID: PMC7656123 DOI: 10.3389/fonc.2020.556902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Published data have suggested a critical role for microRNA (miRNA) expression in chordoma progression. However, most of these studies focus on single miRNA and no multi-miRNA prognostic signature has been currently established for chordoma. In this study, we sought to develop and validate a 6-miRNA risk score (miRscore) model for survival prediction. METHODS Medline, Embase, and Google scholar searches (from inception to July 20, 2018) were conducted to identify candidate miRNAs with prognostic value as per predefined criteria. Quantitative RT-PCR was used to measure miRNA levels in 114 spinal chordoma (54 in the training and 60 in the validation cohort) and 20 control specimens. Subsequently, the miRscore was built based on miRNAs data. RESULTS Literature searches identified six prognostic miRNAs (miR-574-3p, miR-1237-3p, miR-140-3p, miR-1, miR-155, and miR-1290) with differential expression in tumor tissues. Bioinformatical analysis revealed an important regulatory role for miR-574-3p/EGFR signaling in chordoma and showed that the target genes of these prognostic miRNAs were mainly enriched in transcription regulation, protein binding and cancer-related pathways. In both cohorts, the miRscore was associated with surrounding muscle invasion by tumor and/or other aggressive features. The miRscore model well predicted local recurrence-free survival and overall survival, which remained after adjusting for other relevant covariates. Further time-dependent receiver operating characteristics analysis in the two cohorts found that the miRscore classifier had stronger prognostic power than known clinical predictors and improved the ability of Enneking staging to predict outcomes. Importantly, recursive-partitioning analysis of both samples combined separated patients into four prognostically distinct risk subgroups for recurrence and survival (both P < 0.001). CONCLUSIONS These data suggest the miRscore as a useful prognostic stratification tool in spinal chordoma and may represent an important step toward future personalized treatment of patients.
Collapse
Affiliation(s)
- Wei Huang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Health Management Center, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xue-Lin Li
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Tao-Lan Zhang
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
630
|
Lu F, Zhao Y, Pang Y, Ji M, Sun Y, Wang H, Zou J, Wang Y, Li G, Sun T, Li J, Ma D, Ye J, Ji C. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett 2020; 497:178-189. [PMID: 33091534 DOI: 10.1016/j.canlet.2020.10.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
The NLRP3 inflammasome plays a pro-tumorigenic role in various malignancies. However, its potential role in lymphomagenesis remains unclear. In this study, we identified an immunosuppressive state in patients with diffuse large B cell lymphoma (DLBCL), which was characterized by markedly elevated interleukin (IL)-18 levels in lymphoma tissues and positive correlation with programmed death ligand 1 (PD-L1) expression. Furthermore, NLRP3 inflammasome activation in DLBCL cell lines upregulated PD-L1 and reduced the proportion of cytotoxic T cells. NLRP3 inflammasome blockade in vivo suppressed lymphoma growth and ameliorated anti-tumor immunity by downregulating PD-L1 in the tumor microenvironment and decreasing the proportion of PD-1/TIM-3-expressing T cells, myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Further in vivo studies revealed IL-18 as the main effector cytokine involved in the negative regulation of anti-lymphoma immunity. Interestingly, NLRP3 blockers combined with anti-PD-L1 treatment exerted antagonistic effects during lymphoma therapy. Altogether, our findings indicate that NLRP3 inflammasome promotes immunosuppression by modulating PD-L1 and immune cells. Accordingly, this study highlights the prognostic and therapeutic values of the NLRP3 inflammasome in lymphoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Apoptosis
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Inflammasomes/immunology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yihua Pang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yanping Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongchun Wang
- Department of Laboratory Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jie Zou
- Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yan Wang
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, 271000, PR China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
631
|
Wang L, Ruan M, Lei B, Yan H, Sun X, Chang C, Liu L, Xie W. The potential of 18F-FDG PET/CT in predicting PDL1 expression status in pulmonary lesions of untreated stage IIIB-IV non-small-cell lung cancer. Lung Cancer 2020; 150:44-52. [PMID: 33065462 DOI: 10.1016/j.lungcan.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To investigate the potential of 2-deoxy-2(18F)fluoro-d-glucose (18F-FDG) combined positron emission tomography and computed tomography (PET/CT) in predicting programmed cell death ligand-1 (PDL1) expression status in pulmonary lesions of advanced non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS This retrospective study includes 133 untreated stage IIIB-IV NSCLC patients who underwent pulmonary lesion biopsy for PDL1 immunochemistry 1-4 weeks after 18F-FDG PET/CT scanning, randomly assigned to cohorts for modelling and validation of PDL1 expression predictors. Mean and maximum standard uptake values (pSUVmean and pSUVmax), metabolic tumour volume (pMTV), and total lesion glycolysis (pTLG) of primary lesions were determined. PDL1 expression in pulmonary lesions (pPDL1) was determined using tumour proportion score (TPS), and pPDL1 TPS < 1%, 1-49 %, and ≥ 50 % were considered as pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively. RESULTS pSUVmean and pSUVmax values were increased with the increase of pPDL1 levels, whereas pMTV and pTLG values were not associated with pPDL1 levels. In the modelling cohort, we found that pSUVmax rather than pSUVmean was an independent predictor for pPDL1-negative, pPDL1-moderate, and pPDL1-strong, whereas pSUVmax < 14.4, 14.4-17.5, and > 17.5 were suggested as predictors for pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively (odds ratio: 4.82, 3.92, and 4.45, respectively; P = 0.002, 0.021, and 0.020, respectively). In the validation cohort, pSUVmax < 14.4, 14.4-17.5, and > 17.5 showed significantly high probabilities of being pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively (P = 0.006). The accuracies of pSUVmax < 14.4, 14.4-17.5, and > 17.5 predicting pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively, in validation cohort, were 66.7 %, 75.8 %, and 84.8 %, respectively. CONCLUSION pSUVmax on 18F-FDG PET/CT is a potential biomarker for pPDL1 TPS < 1%, 1-49 %, and ≥ 50 % in untreated stage IIIB-IV NSCLC, and therefore may be helpful for determining immunotherapeutic strategy for advanced NSCLC.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China.
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China.
| |
Collapse
|
632
|
Targeted degradation of immune checkpoint proteins: emerging strategies for cancer immunotherapy. Oncogene 2020; 39:7106-7113. [PMID: 33024277 DOI: 10.1038/s41388-020-01491-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy using immune-checkpoint blockade has displayed promising clinical effects, but prevalent antibody-based inhibitors face multiple challenges such as low response rate, acquired resistance, and adverse effects. The intracellular expression of PD-1/PD-L1 in recycling endosomes and their active trafficking to membrane highlight the importance of depleting rather than interfering with checkpoint proteins. Preclinical investigations on the therapeutic effects of lead compounds that function by degrading immune checkpoint ligands and receptors have reported highly promising results. By harnessing the degradation capabilities of the lysosome, proteasome and autophagosomes, different small molecules and peptides potently induced degradation of checkpoint proteins and enhanced anti-tumor immunity. Both in vitro and in vivo experiments support the therapeutic efficacy of these molecules. Thus, targeted degradation through endo-lysosomal, autophagic, proteasomal, or endoplasmic reticulum-related pathways may provide promising strategies for tackling the challenges in cancer immunotherapy.
Collapse
|
633
|
Upregulation of programmed death ligand 1 by liver kinase B1 and its implication in programmed death 1 blockade therapy in non-small cell lung cancer. Life Sci 2020; 256:117923. [DOI: 10.1016/j.lfs.2020.117923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
|
634
|
Wang L, Hu Y, Wang S, Shen J, Wang X. Biomarkers of immunotherapy in non-small cell lung cancer. Oncol Lett 2020; 20:139. [PMID: 32934707 PMCID: PMC7471728 DOI: 10.3892/ol.2020.11999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has markedly improved the survival rate of patients with non-small cell lung cancer (NSCLC) and has introduced a new era in lung cancer treatment. However, not all patients with lung cancer benefit from checkpoint blockade, and some suffer from notable immunotoxicities. Thus, it is crucial to identify potential biomarkers suitable for screening the population that may benefit from immunotherapy. Based on the current clinical trials, the aim of the present study was to review the biomarkers for immune checkpoint inhibition, as well as other effective, invalid and hyperprogression markers that may have the potential to better predict responders to immunotherapy among patients with NSCLC. All these biomarkers may be incorporated into the predictive utility of bio-score systems and decision-making algorithms, to better guide the application of immunotherapy in the clinical setting.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yue Hu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Shengchao Wang
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiali Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
635
|
Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, Mercatelli D, Rouaen JRC, Shen S, Murray JE, Ahmed-Cox A, Cirillo G, Mayoh C, Beavis PA, Haber M, Trapani JA, Kavallaris M, Vittorio O. Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Res 2020; 80:4129-4144. [PMID: 32816860 DOI: 10.1158/0008-5472.can-20-0471] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022]
Abstract
Therapeutic checkpoint antibodies blocking programmed death receptor 1/programmed death ligand 1 (PD-L1) signaling have radically improved clinical outcomes in cancer. However, the regulation of PD-L1 expression on tumor cells is still poorly understood. Here we show that intratumoral copper levels influence PD-L1 expression in cancer cells. Deep analysis of the The Cancer Genome Atlas database and tissue microarrays showed strong correlation between the major copper influx transporter copper transporter 1 (CTR-1) and PD-L1 expression across many cancers but not in corresponding normal tissues. Copper supplementation enhanced PD-L1 expression at mRNA and protein levels in cancer cells and RNA sequencing revealed that copper regulates key signaling pathways mediating PD-L1-driven cancer immune evasion. Conversely, copper chelators inhibited phosphorylation of STAT3 and EGFR and promoted ubiquitin-mediated degradation of PD-L1. Copper-chelating drugs also significantly increased the number of tumor-infiltrating CD8+ T and natural killer cells, slowed tumor growth, and improved mouse survival. Overall, this study reveals an important role for copper in regulating PD-L1 and suggests that anticancer immunotherapy might be enhanced by pharmacologically reducing intratumor copper levels. SIGNIFICANCE: These findings characterize the role of copper in modulating PD-L1 expression and contributing to cancer immune evasion, highlighting the potential for repurposing copper chelators as enhancers of antitumor immunity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4129/F1.large.jpg.
Collapse
Affiliation(s)
- Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Luigi Lerra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Kathleen Kimpton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, New South Wales, Sydney, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia.,Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Sylvie Shen
- Cord & Marrow Transplant Facility, Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Jayne E Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, New South Wales, Sydney, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Paul A Beavis
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia
| | - Joseph A Trapani
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia. .,School of Women's and Children's Health, UNSW Sydney, Sydney, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, New South Wales, Sydney, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia. .,School of Women's and Children's Health, UNSW Sydney, Sydney, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, New South Wales, Sydney, Australia
| |
Collapse
|
636
|
Liu C, Miao X, Wang Y, Wen L, Cheng X, Kong D, Zhao P, Song D, Wang X, Ding X, Xia H, Wang W, Sun Q, Gong W. Bromo- and extraterminal domain protein inhibition improves immunotherapy efficacy in hepatocellular carcinoma. Cancer Sci 2020; 111:3503-3515. [PMID: 32726482 PMCID: PMC7540980 DOI: 10.1111/cas.14588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the majority of liver cancer and is the fourth most common cause of cancer-related death. Although advances in molecular targeted therapy have shown promise, none of these agents has yet demonstrated significant clinical benefit. Bromo- and extraterminal domain (BET) protein inhibitors have been considered potential therapeutic drugs for HCC but the biological activity remains unclear. This study found that BET protein inhibition did not effectively suppress the progression of HCC, using a transgenic HCC mouse model. Mechanistically, the BET protein inhibitor JQ1 upregulated the expression of programmed cell death-ligand 1 (PD-L1) on the plasma membrane in vivo and in vitro. Moreover, JQ1 enhanced the expression of Rab8A, which upregulated the expression of PD-L1 on the plasma membrane. This study also showed that JQ1 combined with anti-PD-L1 Ab effectively suppressed HCC progression, and this benefit was obtained by enhancing the activation and cytotoxic capabilities of CD8 T cells. These results revealed the crucial role and regulation of BET protein inhibition on the expression of PD-L1 in HCC. Thus, combining BET protein inhibition with immune checkpoint blockade offers an efficient therapeutic approach for HCC.
Collapse
Affiliation(s)
- Chen Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiawei Cheng
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Deqiang Kong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Dandan Song
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Biology of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
637
|
Grel H, Ratajczak K, Jakiela S, Stobiecka M. Gated Resonance Energy Transfer (gRET) Controlled by Programmed Death Protein Ligand 1. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1592. [PMID: 32823551 PMCID: PMC7466588 DOI: 10.3390/nano10081592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/14/2023]
Abstract
The resonance energy transfer (RET) between an excited fluorescent probe molecule and a plasmonic nanoparticle (AuNP) has been investigated to evaluate the effect of protein molecules on the RET efficiency. We have found that the energy transfer to a functionalized AuNP can be modulated by a sub-monolayer film of programmed death-ligand 1 (PD-L1) protein. The interactions of PD-L1 with AuNP@Cit involve incorporation of the protein in AuNP shell and formation of a submonolayer adsorption film with voids enabling gated surface plasmon resonance energy transfer (SPRET). A model of the gated-RET system based on the protein size, estimated using Fisher-Polikarpov-Craievich density approximation, has been developed and can be utilized for other proteins, with minimum data requirement, as well. The value of the equilibrium constant KL determined for the Langmuir isotherm is high: KL = 1.27 × 108 M-1, enabling highly sensitive control of the gated-RET by PD-L1. Thus, with the gated-RET technique, one can determine PD-L1 within the dynamic range, extending from 1.2 to 50 nM. Moreover, we have found that the Gibbs free energy for PD-L1 binding to AuNP@Cit is -46.26 kJ/mol (-11.05 kcal/mol), indicating a strong adsorption with supramolecular interactions. The proposed gated-RET system, with the fluorescence intensity of the fluorophore probe molecule modulated by plasmonic quenching with AuNP and shielding of energy transfer by the adsorbed PD-L1 can be further developed for determination of PD-L1 in pharmaceutical formulations for immune checkpoint control in cancer therapy.
Collapse
Affiliation(s)
- Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| | - Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776 Warsaw, Poland; (H.G.); (K.R.)
| |
Collapse
|
638
|
Wu B, Chiang HC, Sun X, Yuan B, Mitra P, Hu Y, Curiel TJ, Li R. Genetic ablation of adipocyte PD-L1 reduces tumor growth but accentuates obesity-associated inflammation. J Immunother Cancer 2020; 8:e000964. [PMID: 32817394 PMCID: PMC7437875 DOI: 10.1136/jitc-2020-000964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
The programmed death-ligand 1 (PD-L1)-dependent immune checkpoint attenuates host immunity and maintains self-tolerance. Imbalance between protective immunity and immunopathology due to altered PD-L1 signaling can lead to autoimmunity or tumor immunosuppression. The role of the PD-L1-dependent checkpoint in non-immune system is less reported. We previously found that white adipocytes highly express PD-L1. Here we show that adipocyte-specific PD-L1 knockout mice exhibit enhanced host anti-tumor immunity against mammary tumors and melanoma with low or no tumor PD-L1. However, adipocyte PD-L1 ablation in tumor-free mice also exacerbates diet-induced body weight gain, pro-inflammatory macrophage infiltration into adipose tissue, and insulin resistance. Low PD-L1 mRNA levels in human adipose tissue correlate with high body mass index and presence of type 2 diabetes. Therefore, our mouse genetic approach unequivocally demonstrates a cell-autonomous function of adipocyte PD-L1 in promoting tumor growth and inhibiting antitumor immunity. In addition, our work uncovers a previously unrecognized role of adipocyte PD-L1 in mitigating obesity-related inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Xiujie Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Payal Mitra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Yanfen Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Tyler J Curiel
- Department of Medicine, Long School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
639
|
Chou CW, Yang RY, Chan LC, Li CF, Sun L, Lee HH, Lee PC, Sher YP, Ying H, Hung MC. The stabilization of PD-L1 by the endoplasmic reticulum stress protein GRP78 in triple-negative breast cancer. Am J Cancer Res 2020; 10:2621-2634. [PMID: 32905506 PMCID: PMC7471351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023] Open
Abstract
The immune checkpoint blockade therapy has emerged as encouraging treatment strategies in various cancer types. Anti-PD-L1 (programmed death-ligand 1) antibodies have been approved for triple-negative breast cancer, however the response rate yet to be optimized. It would be imperative to further understand and investigate the molecular mechanisms of PD-L1 regulation. Here, we identified glucose regulatory protein 78 (GRP78), a major endoplasmic reticulum (ER) stress responding protein, as a novel binding partner of PD-L1. GRP78 interacts with PD-L1 at the ER region and increases PD-L1 levels via regulating its stability. ER stress, triggered by different stimuli such as conventional chemotherapy, leads to the induction of PD-L1 in a GRP78-dependent manner. We showed that GRP78 modulates the response to chemotherapy, and dual-high levels of GRP78 and PD-L1 correlates with poor relapse-free survival in triple-negative breast cancer. Altogether, our study provides novel molecular insights into the regulatory mechanism of PD-L1 by revealing its interaction with GRP78, and offers a rationale to target GRP78 as a potential therapeutic strategy to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Cheng-Wei Chou
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General HospitalTaichung 407, Taiwan
| | - Ri-Yao Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Linlin Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General HospitalTianjin 30052, P. R. China
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Pei-Chih Lee
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 404, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| |
Collapse
|
640
|
Zhu H, Du C, Yuan M, Fu P, He Q, Yang B, Cao J. PD-1/PD-L1 counterattack alliance: multiple strategies for treating triple-negative breast cancer. Drug Discov Today 2020; 25:1762-1771. [PMID: 32663441 DOI: 10.1016/j.drudis.2020.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
Despite extensive research into adjuvant and neoadjuvant chemotherapy, triple-negative breast cancer (TNBC) remains a common breast cancer (BC) subtype with poor prognosis. Given that it has higher immune cell infiltration, theoretically, it should be a protagonist of potential BC immunotherapies. However, only mild responses have been observed in monotherapy with anti-programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) antibodies. In this review, we reappraise PD-1/PD-L1 inhibitor combination immunotherapy and effective experimental compounds, focusing the level of PD-L1 expression, neoantigens, abnormal signaling pathways, and tumor microenvironment signatures, to provide guidance for future clinical trials based on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Haiying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
641
|
Shen M, Chen G, Xie Q, Li X, Xu H, Wang H, Zhao S. Association between PD-L1 Expression and the Prognosis and Clinicopathologic Features of Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Urol Int 2020; 104:533-541. [PMID: 32623437 DOI: 10.1159/000506296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022]
Abstract
The expression of programmed cell death-ligand 1 (PD-L1) and its correlation with the prognosis and clinicopathologic features of renal cell carcinoma (RCC) remain controversial to date. Concerning this issue, we had conducted a meta-analysis of relevant studies searched in the Web of Science, PubMed, EMBASE, and Cochrane Library databases. The Newcastle-Ottawa quality assessment scale was applied to assess the quality of the included studies. The hazard ratio (HR) and its corresponding 95% confidence intervals (CIs) were collected by Stata 12.0 and used for the results of overall survival (OS) and disease-free survival (DFS). A total of 1,644 patients in 8 studies were included in this meta-analysis. Results showed that PD-L1 expression significantly correlated with OS (HR = 1.98, 95% CI: 1.22-3.22, Z = 2.77, p = 0.006) and DFS (HR = 3.70, 95% CI: 2.07-6.62, Z = 4.40, p = 0.0001) in ccRCC. Subgroup analysis indicated that PD-L1 expression significantly correlated with the lymph-gland transfer ratio (HR = 2.45, 95% CI: 1.02-5.92, Z = 1.99, p = 0.05) and tumor necrosis (HR = 6.05, 95% CI: 3.78-9.67, Z = 7.51, p < 0.00001). This meta-analysis suggests that PD-L1 expression is a valuable prognostic tool for patients with ccRCC. Subgroup analyses demonstrated that it was helpful for screening patients with RCC who need anti-PD-1/PD-L1 treatment and support them to benefit from such immune-targeted therapy.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Guang Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, China
| | - Qiang Xie
- Department of Reproduction, Southern Medical University Affiliate Dongguan People's Hospital, Dongguan, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Hao Xu
- Health Co., 69235 Army of PLA, Jiang Xin, China
| | - Hui Wang
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China,
| |
Collapse
|
642
|
Wang YN, Lee HH, Hsu JL, Yu D, Hung MC. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci 2020; 27:77. [PMID: 32620165 PMCID: PMC7333976 DOI: 10.1186/s12929-020-00670-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
N-linked glycosylation is one of the most abundant posttranslational modifications of membrane-bound proteins in eukaryotes and affects a number of biological activities, including protein biosynthesis, protein stability, intracellular trafficking, subcellular localization, and ligand-receptor interaction. Accumulating evidence indicates that cell membrane immune checkpoint proteins, such as programmed death-ligand 1 (PD-L1), are glycosylated with heavy N-linked glycan moieties in human cancers. N-linked glycosylation of PD-L1 maintains its protein stability and interaction with its cognate receptor, programmed cell death protein 1 (PD-1), and this in turn promotes evasion of T-cell immunity. Studies have suggested targeting PD-L1 glycosylation as a therapeutic option by rational combination of cancer immunotherapies. Interestingly, structural hindrance by N-glycan on PD-L1 in fixed samples impedes its recognition by PD-L1 diagnostic antibodies. Notably, the removal of N-linked glycosylation enhances PD-L1 detection in a variety of bioassays and more accurately predicts the therapeutic efficacy of PD-1/PD-L1 inhibitors, suggesting an important clinical implication of PD-L1 N-linked glycosylation. A detailed understanding of the regulatory mechanisms, cellular functions, and diagnostic limits underlying PD-L1 N-linked glycosylation could shed new light on the clinical development of immune checkpoint inhibitors for cancer treatment and deepen our knowledge of biomarkers to identify patients who would benefit the most from immunotherapy. In this review, we highlight the effects of protein glycosylation on cancer immunotherapy using N-linked glycosylation of PD-L1 as an example. In addition, we consider the potential impacts of PD-L1 N-linked glycosylation on clinical diagnosis. The notion of utilizing the deglycosylated form of PD-L1 as a predictive biomarker to guide anti-PD-1/PD-L1 immunotherapy is also discussed.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
643
|
Increased both PD-L1 and PD-L2 expressions on monocytes of patients with hepatocellular carcinoma was associated with a poor prognosis. Sci Rep 2020; 10:10377. [PMID: 32587357 PMCID: PMC7316832 DOI: 10.1038/s41598-020-67497-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
Anti-programmed cell death-1 (PD-1) antibodies has been approved to treat HCC. Some PD-1 ligands (PD–L1 and PD–L2) negative tumors respond to treatment of anti-PD-1 antibodies, and this fact may be caused by the expression of PD-1 ligands on non-tumor cells. PD–L1 was recently found to be expressed on CD14+ cells from cancer patients. We investigate PD-1 ligands expression on CD14+ cells of patients with HCC and the role of CD14+ cells in an antitumor response. In this study, 87 patients diagnosed with HCC were enrolled. CD14+ cells from patients with HCC expressed PD–L1 (4.5–95.5%) and PD–L2 (0.2–95.0%). According to cut-off values, we classified patients as those either with PD–L1+PD–L2+CD14+ cells or other types of CD14+ cells. The overall survival of patients with PD–L1+PD–L2+CD14+ cells was shorter than that of patients with other types of CD14+ cells (p = 0.0023). PD–L1+PD–L2+CD14+ cells produced IL-10 and CCL1, and showed little tumoricidal activity against HepG2 cells. The tumoricidal activity of CD8+ cells from patients with PD–L1+PD–L2+CD14+ cells were suppressed by co-cultivation with CD14+ cells from the syngeneic patient. Furthermore, anti-PD-1 antibody restored their tumoricidal activity of CD8+ cells. In conclusion, some patients with HCC have PD–L1+PD–L2+CD14+ cells that suppress their antitumor response. These inhibitory functions of CD14+ cells may be associated with a poor prognosis in these patients.
Collapse
|
644
|
Imai Y, Chiba T, Kondo T, Kanzaki H, Kanayama K, Ao J, Kojima R, Kusakabe Y, Nakamura M, Saito T, Nakagawa R, Suzuki E, Nakamoto S, Muroyama R, Tawada A, Matsumura T, Nakagawa T, Kato J, Kotani A, Matsubara H, Kato N. Interferon-γ induced PD-L1 expression and soluble PD-L1 production in gastric cancer. Oncol Lett 2020; 20:2161-2168. [PMID: 32782533 PMCID: PMC7400993 DOI: 10.3892/ol.2020.11757] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) plays an essential role in tumor cell escape from anti-tumor immunity in various types of cancer, including gastric cancer (GC). The present study investigated the intracellular and membrane-bound expression of PD-L1 in the GC cell lines MKN1, MKN74, KATO III and OCUM-1. Furthermore, soluble PD-L1 (sPD-L1) level in the supernatant of GC cells and the serum of patients with GC and healthy controls was determined by ELISA. Interferon (IFN)-γ treatment of cells resulted in increased cytoplasmic expression of PD-L1 in GC cells in a dose-dependent manner, except for MKN74 cells; however, there was no association between tumor necrosis factor-α treatment and enhanced PD-L1 expression. Concordant with these findings, results from flow cytometry analysis demonstrated that membrane-bound PD-L1 expression was also increased following GC cell treatment with IFN-γ in a dose-dependent manner. In addition, significant sPD-L1 overproduction was observed only in the culture supernatant of OCUM-1 cells. Serum level of sPD-L1 was significantly increased in patients with GC, in particular in stage IV patients, compared with healthy controls. In conclusion, the present study demonstrated that IFN-γ treatment increased the intracellular and membrane-bound PD-L1 expression in GC cells. In addition, sPD-L1 was detected not only in the supernatant of GC cells but also in the serum of patients with GC. Further investigation on the underlying mechanism of regulation of PD-L1 expression and sPD-L1 production is required.
Collapse
Affiliation(s)
- Yushi Imai
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Eiichiro Suzuki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ryosuke Muroyama
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Akinobu Tawada
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
645
|
Hasegawa M, Hasegawa G, Ikeda Y, Hara N, Nishiyama T. Emergence of undifferentiated urothelial carcinoma after pembrolizumab treatment for patient with invasive urothelial bladder cancer: A case report. SAGE Open Med Case Rep 2020; 8:2050313X20932694. [PMID: 32587697 PMCID: PMC7294485 DOI: 10.1177/2050313x20932694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/17/2020] [Indexed: 11/17/2022] Open
Abstract
An 83-year-old man received pembrolizumab treatment after anticancer chemotherapy with gemcitabine and cisplatin for advanced bladder cancer. Pathological findings revealed invasive urothelial carcinoma with squamous differentiation before treatment. After seven courses of pembrolizumab treatment, the tumor disappeared. After 15 courses of the treatment, the tumor regrew. Pathological findings revealed invasive undifferentiated urothelial carcinoma consisting of relatively small tumor cells of the same size as lymphocytes, negative for neuroendocrine markers. Programmed death-ligand 1 expressions in tumor tissue changed from positive before treatment to negative after pembrolizumab treatment.
Collapse
Affiliation(s)
- Moto Hasegawa
- Department of Urology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Go Hasegawa
- Department of Pathology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yohei Ikeda
- Department of Diagnostic Radiology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Noboru Hara
- Department of Urology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tsutomu Nishiyama
- Department of Urology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| |
Collapse
|
646
|
Gao X, Yang J, Chen Y. Identification of a four immune-related genes signature based on an immunogenomic landscape analysis of clear cell renal cell carcinoma. J Cell Physiol 2020; 235:9834-9850. [PMID: 32452055 DOI: 10.1002/jcp.29796] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Renal clear cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, which has strong immunogenicity. A comprehensive study of the role of immune-related genes (IRGs) in ccRCC is of great significance in finding ccRCC treatment targets and improving patient prognosis. In this study, we comprehensively analyzed the expression of IRGs in ccRCC based on The Cancer Genome Atlas datasets. The mechanism of differentially expressed IRGs in ccRCC was analyzed by bioinformatics. In addition, Cox regression analysis was used to screen prognostic related IRGs from differentially expressed IRGs. We also identified a four IRGs signature consisting of four IRGs (CXCL2, SEMA3G, PDGFD, and UCN) through lasso regression and multivariate Cox regression analysis. Further analysis results showed that the four IRGs signature could effectively predict the prognosis of patients with ccRCC, and its predictive power is independent of other clinical factors. In addition, the correlation analysis of immune cell infiltration showed that this four IRGs signature could effectively reflect the level of immune cell infiltration of ccRCC. We also found that the expression of immune checkpoint genes CTLA-4, LAG3, and PD-1 in the high-risk group was higher than that in the low-risk group. Our research revealed the role of IRGs in ccRCC, and developed a four IRGs signature that could be used to evaluate the prognosis of patients with ccRCC, which will help to develop personalized treatment strategies for patients with ccRCC and improve their prognosis. In addition, these four IRGs may be effective therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Xin Gao
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China
| | - Jinlian Yang
- Clinical Laboratory, The First People's Hospital of Huaihua, Huaihua, Hunan, China
| | - Yinyi Chen
- Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
647
|
Kim B, Sun R, Oh W, Kim AMJ, Schwarz JR, Lim S. Saccharide analog, 2‐deoxy‐
d
‐glucose enhances 4‐1BB‐mediated antitumor immunity via PD‐L1 deglycosylation. Mol Carcinog 2020; 59:691-700. [DOI: 10.1002/mc.23170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Bareun Kim
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest Lafayette Indiana
| | - Ruoxuan Sun
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest Lafayette Indiana
| | - Wonkyung Oh
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest Lafayette Indiana
| | - Alyssa Min Jung Kim
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest Lafayette Indiana
| | - Johann Richard Schwarz
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest Lafayette Indiana
| | - Seung‐Oe Lim
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest Lafayette Indiana
- Purdue Institute of Drug DiscoveryPurdue UniversityWest Lafayette Indiana
- Purdue Center for Cancer ResearchPurdue UniversityWest Lafayette Indiana
| |
Collapse
|
648
|
Bastaki S, Irandoust M, Ahmadi A, Hojjat-Farsangi M, Ambrose P, Hallaj S, Edalati M, Ghalamfarsa G, Azizi G, Yousefi M, Chalajour H, Jadidi-Niaragh F. PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sci 2020; 247:117437. [PMID: 32070710 DOI: 10.1016/j.lfs.2020.117437] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
Although both the incidence and the mortality rate of breast cancer is rising, there is no potent and practical option for the treatment of these patients, particularly in advanced stages. One of the most critical challenges for treatment is the presence of complicated and extensive tumor escape mechanisms in the tumor microenvironment. Immune checkpoint molecules are of the main immunosuppressive mechanisms used by cancerous cells to block anti-cancer immune responses. Among these molecules, PD-1 (Programmed cell death) and PD-L1 (programmed cell death-ligand 1) have been considered as worthy therapeutic targets for breast cancer therapy. In this review, we intend to discuss the immunobiology and signaling of the PD-1/PD-L1 axis and highlight its importance as a worthy therapeutic target in breast cancer. We believe that the prognostic value of PD-L1 depends on the breast cancer subtype. Moreover, the combination of PD-1/PD-L1 targeting with immune-stimulating vaccines can be considered as an effective therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Shima Bastaki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, East Azarbaijan, Iran
| | - Mahzad Irandoust
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Ahmadi
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Alabama 35899, USA
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Shahin Hallaj
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj. Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hengameh Chalajour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
649
|
Verdura S, Cuyàs E, Cortada E, Brunet J, Lopez-Bonet E, Martin-Castillo B, Bosch-Barrera J, Encinar JA, Menendez JA. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY) 2020; 12:8-34. [PMID: 31901900 PMCID: PMC6977679 DOI: 10.18632/aging.102646] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
New strategies to block the immune evasion activity of programmed death ligand-1 (PD-L1) are urgently needed. When exploring the PD-L1-targeted effects of mechanistically diverse metabolism-targeting drugs, exposure to the dietary polyphenol resveratrol (RSV) revealed its differential capacity to generate a distinct PD-L1 electrophoretic migration pattern. Using biochemical assays, computer-aided docking/molecular dynamics simulations, and fluorescence microscopy, we found that RSV can operate as a direct inhibitor of glyco-PD-L1-processing enzymes (α-glucosidase/α-mannosidase) that modulate N-linked glycan decoration of PD-L1, thereby promoting the endoplasmic reticulum retention of a mannose-rich, abnormally glycosylated form of PD-L1. RSV was also predicted to interact with the inner surface of PD-L1 involved in the interaction with PD-1, almost perfectly occupying the target space of the small compound BMS-202 that binds to and induces dimerization of PD-L1. The ability of RSV to directly target PD-L1 interferes with its stability and trafficking, ultimately impeding its targeting to the cancer cell plasma membrane. Impedance-based real-time cell analysis (xCELLigence) showed that cytotoxic T-lymphocyte activity was notably exacerbated when cancer cells were previously exposed to RSV. This unforeseen immunomodulating mechanism of RSV might illuminate new approaches to restore T-cell function by targeting the PD-1/PD-L1 immunologic checkpoint with natural polyphenols.
Collapse
Affiliation(s)
- Sara Verdura
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Elisabet Cuyàs
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Eric Cortada
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology, Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Spain
| | | | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Medical Oncology, Catalan Institute of Oncology, Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | - Javier A Menendez
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
650
|
Min Y, Wang X, Chen H, Yin G. The exploration of Hashimoto's Thyroiditis related miscarriage for better treatment modalities. Int J Med Sci 2020; 17:2402-2415. [PMID: 33029083 PMCID: PMC7532476 DOI: 10.7150/ijms.48128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is the most prevalent autoimmune thyroid disease (ATD) worldwide and is strongly associated with miscarriage and even recurrent miscarriage (RM). Moreover, with a deepening understanding, emerging evidence has shown that immune dysfunctions caused by HT conditions, including imbalanced subsets of CD4+ T-helper cells, B regulatory (Breg) cells, high expression levels of CD56dim natural killer (NK) cells, and cytokines, possibly play an important role in impairing maternal tolerance to the fetus. In recent years, unprecedented progress has been made in recognizing the specific changes in immune cells and molecules in patients with HT, which will be helpful in exploring the mechanism of HT-related miscarriage. Based on these findings, research investigating some potentially more effective treatments, such as selenium (Se), vitamin D3, and intravenous immunoglobulin (IVIG), has been well developed over the past few years. In this review, we highlight some of the latest advances in the possible immunological pathogenesis of HT-related miscarriage and focus on the efficacies of treatments that have been widely introduced to clinical trials or practice described in the most recent literature.
Collapse
Affiliation(s)
- Yu Min
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Rd, Yuzhong Dist, Chongqing 404100, China
| | - Xing Wang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Rd, Yuzhong Dist, Chongqing 404100, China
| | - Hang Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Rd, Yuzhong Dist, Chongqing 404100, China
| | - Guobing Yin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Rd, Yuzhong Dist, Chongqing 404100, China
| |
Collapse
|