601
|
Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer's disease patients and control subjects. Eur J Nucl Med Mol Imaging 2014; 42:438-46. [PMID: 25412766 DOI: 10.1007/s00259-014-2955-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/29/2014] [Indexed: 01/30/2023]
Abstract
PURPOSE Imaging of the 18-kDa translocator protein (TSPO) is a potential tool for examining microglial activation and neuroinflammation in early Alzheimer's disease (AD). [(18)F]FEMPA is a novel high-affinity second-generation TSPO radioligand that has displayed suitable pharmacokinetic properties in preclinical studies. The aims of this study were to quantify the binding of [(18)F]FEMPA to TSPO in AD patients and controls and to investigate whether higher [(18)F]FEMPA binding in AD patients than in controls could be detected in vivo. METHODS Ten AD patients (five men, five women; age 66.9 ± 7.3 years; MMSE score 25.5 ± 2.5) and seven controls (three men, four women; age 63.7 ± 7.2 years, MMSE score 29.3 ± 1.0) were studied using [(18)F]FEMPA at Turku (13 subjects) and at Karolinska Institutet (4 subjects). The in vitro binding affinity for TSPO was assessed using PBR28 in a competition assay with [(3)H]PK11195 in seven controls and eight AD patients. Cortical and subcortical regions of interest were examined. Quantification was performed using a two-tissue compartment model (2TCM) and Logan graphical analysis (GA). The outcome measure was the total distribution volume (V T). Repeated measures analysis of variance was used to assess the effect of group and TSPO binding status on V T. RESULTS Five AD patients and four controls were high-affinity binders (HABs). Three AD patients and three controls were mixed-affinity binders. V T estimated with Logan GA was significantly correlated with V T estimated with the 2TCM in both controls (r = 0.97) and AD patients (r = 0.98) and was selected for the final analysis. Significantly higher V T was found in the medial temporal cortex in AD patients than in controls (p = 0.044) if the TSPO binding status was entered as a covariate. If only HABs were included, significantly higher V T was found in the medial and lateral temporal cortex, posterior cingulate, caudate, putamen, thalamus and cerebellum in AD patients than in controls (p < 0.05). CONCLUSION [(18)F]FEMPA seems to be a suitable radioligand for detecting increased TSPO binding in AD patients if their binding status is taken into account.
Collapse
|
602
|
Chua SW, Kassiou M, Ittner LM. The translocator protein as a drug target in Alzheimer's disease. Expert Rev Neurother 2014; 14:439-48. [PMID: 24625007 DOI: 10.1586/14737175.2014.896201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO) recently emerged as a potential drug target in Alzheimer's disease (AD). This has been fuelled mainly by positron emission topography studies that show the upregulation of TSPO in AD, especially in relation to microgliosis and astrogliosis in amyloid-β and tau pathology. Although data as to the exact role of TSPO in AD is still inconclusive, TSPO appears to be involved in neuroinflammatory processes and AD has been shown to involve substantial inflammation. Therefore, further development and investigation of the pharmacological effect of TSPO ligands in AD pathology are warranted.
Collapse
Affiliation(s)
- Sook W Chua
- Dementia Research Unit, School of Medical Sciences, Wallace Wurth Building, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
603
|
Erb L, Cao C, Ajit D, Weisman GA. P2Y receptors in Alzheimer's disease. Biol Cell 2014; 107:1-21. [PMID: 25179475 DOI: 10.1111/boc.201400043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 10% of people over the age of 65. Age is the greatest risk factor for AD, although a combination of genetic, lifestyle and environmental factors also contribute to disease development. Common features of AD are the formation of plaques composed of beta-amyloid peptides (Aβ) and neuronal death in brain regions involved in learning and memory. Although Aβ is neurotoxic, the primary mechanisms by which Aβ affects AD development remain uncertain and controversial. Mouse models overexpressing amyloid precursor protein and Aβ have revealed that Aβ has potent effects on neuroinflammation and cerebral blood flow that contribute to AD progression. Therefore, it is important to consider how endogenous signalling in the brain responds to Aβ and contributes to AD pathology. In recent years, Aβ has been shown to affect ATP release from brain and blood cells and alter the expression of G protein-coupled P2Y receptors that respond to ATP and other nucleotides. Accumulating evidence reveals a prominent role for P2Y receptors in AD pathology, including Aβ production and elimination, neuroinflammation, neuronal function and cerebral blood flow.
Collapse
Affiliation(s)
- Laurie Erb
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO, 65211, U.S.A
| | | | | | | |
Collapse
|
604
|
Bachstetter AD, Xing B, Van Eldik LJ. The p38alpha mitogen-activated protein kinase limits the CNS proinflammatory cytokine response to systemic lipopolysaccharide, potentially through an IL-10 dependent mechanism. J Neuroinflammation 2014; 11:175. [PMID: 25297465 PMCID: PMC4193976 DOI: 10.1186/s12974-014-0175-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The p38α mitogen-activated protein kinase (MAPK) is a well-characterized intracellular kinase involved in the overproduction of proinflammatory cytokines from glia. As such, p38α appears to be a promising therapeutic target for neurodegenerative diseases associated with neuroinflammation. However, the in vivo role of p38α in cytokine production in the CNS is poorly defined, and prior work suggests that p38α may be affecting a yet to be identified negative feedback mechanism that limits the acute, injury-induced proinflammatory cytokine surge in the CNS. METHODS To attempt to define this negative feedback mechanism, we used two in vitro and two in vivo models of neuroinflammation in a mouse where p38α is deficient in cells of the myeloid lineage. RESULTS We found that p38α in myeloid cells has an important role in limiting amplitude of the acute proinflammatory cytokine response to a systemic inflammatory challenge. Moreover, we identified IL-10 as a potential negative feedback mechanism regulated by p38α. CONCLUSIONS Our data suggest that p38α regulates a proper balance between the pro- and anti-inflammatory cytokine responses to systemic inflammation, and that if circulating IL-10 levels are not elevated to counter-balance the increased systemic proinflammatory responses, the spread of the inflammatory response from the periphery to the CNS is exaggerated.
Collapse
Affiliation(s)
| | | | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 800 S, Limestone Street, Lexington 40536, KY, USA.
| |
Collapse
|
605
|
Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement 2014; 10:S76-83. [PMID: 24529528 DOI: 10.1016/j.jalz.2013.12.010] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
Abstract
A link between Alzheimer's disease (AD) and metabolic disorders has been established, with patients with type 2 diabetes at increased risk of developing AD and vice versa. The incidence of metabolic disorders, including insulin resistance and type 2 diabetes is increasing at alarming rates worldwide, primarily as a result of poor lifestyle habits. In parallel, as the world population ages, the prevalence of AD, the most common form of dementia in the elderly, also increases. In addition to their epidemiologic and clinical association, mounting recent evidence indicates shared mechanisms of pathogenesis between metabolic disorders and AD. We discuss the concept that peripheral and central nervous system inflammation link the pathogenesis of AD and metabolic diseases. We also explore the contribution of brain inflammation to defective insulin signaling and neuronal dysfunction. Last, we review recent evidence indicating that targeting neuroinflammation may provide novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Julia R Clarke
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Theresa R Bomfim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
606
|
Berger M, Burke J, Eckenhoff R, Mathew J. Alzheimer's disease, anesthesia, and surgery: a clinically focused review. J Cardiothorac Vasc Anesth 2014; 28:1609-23. [PMID: 25267693 DOI: 10.1053/j.jvca.2014.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Indexed: 02/08/2023]
Affiliation(s)
| | - James Burke
- Neurology, Duke University Medical Center, Durham, NC
| | - Roderick Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
607
|
Gold M, Dolga AM, Koepke J, Mengel D, Culmsee C, Dodel R, Koczulla AR, Bach JP. α1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-β-induced toxicity. J Neuroinflammation 2014; 11:165. [PMID: 25245568 PMCID: PMC4177587 DOI: 10.1186/s12974-014-0165-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background One hallmark of Alzheimer disease is microglial activation. Therapeutic approaches for this neurodegenerative disease include the modulation of microglial cells. α1-antitrypsin (A1AT) has been shown to exert anti-inflammatory effects on macrophages and lung epithelial cells and an inhibition of calpain activity in neutrophil granulocytes. Nothing is known about the effect of A1AT on microglial-mediated neuroinflammation. Our aim was to investigate the effect of A1AT on amyloid-β (Aβ)- and LPS-treated microglial cells in vitro with respect to cytokine production, stress pathways, cell viability, phagocytotic abilities and the underlying mechanisms. Methods Primary microglial cells were isolated from Swiss Webster mouse embryos on embryonic day 13.5. Cytokines in the supernatants of treated primary microglial cells were analyzed with ELISAs, and accumulated nitrite was detected with Griess reagents. Intracellular stress pathways were investigated in cell lysates using western blotting. Intracellular calcium levels were detected in BV-2 microglial cells loaded with the Ca2+-sensitive (fluorescent) dye Fluo-4. Calpain activity in primary microglial cells was assessed by using a calpain activity assay. Cell viability of Aβ-treated microglial cells was analyzed using MTT assay. Phagocytosis of Aβ was evaluated with western blot analysis. Results Upon co-administration, A1AT reduced pro-inflammatory mediators induced by LPS or Aβ. Interestingly, we detected a reduction in calpain activity and in the concentration of intracellular calcium that might mediate the anti-inflammatory effects of A1AT. Inhibition of the classic activation pathways, such as phosphorylation of mitogen-activated protein kinases or activation of protein kinase A were excluded as a mechanism of A1AT-mediated effects. In addition, A1AT increased the viability of Aβ-treated microglial cells and reduced Aβ phagocytosis. Conclusions We provide evidence on the mechanism of action of A1AT on microglial-mediated neuroinflammation in vitro. Our in vitro data indicate that A1AT treatment modulates microglial cells in inflammatory conditions and that this modulation is due to an inhibition of calpain activity and intracellular calcium levels. The underlying mechanisms of the effects observed here are promising for future therapeutic strategies and should thus be further pursued in transgenic mouse models of Alzheimer disease.
Collapse
|
608
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 2014; 15:19-40. [DOI: 10.1586/14737175.2015.955853] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
609
|
Marchese M, Cowan D, Head E, Ma D, Karimi K, Ashthorpe V, Kapadia M, Zhao H, Davis P, Sakic B. Autoimmune manifestations in the 3xTg-AD model of Alzheimer's disease. J Alzheimers Dis 2014; 39:191-210. [PMID: 24150111 DOI: 10.3233/jad-131490] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. OBJECTIVE The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. METHODS A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. RESULTS Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory dise6ase, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired "cognitive" flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. CONCLUSION The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD.
Collapse
Affiliation(s)
- Monica Marchese
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | - David Cowan
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth Head
- Department of Molecular & Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donglai Ma
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Khalil Karimi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Minesh Kapadia
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Hui Zhao
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Paulina Davis
- Department of Molecular & Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Boris Sakic
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
610
|
Abstract
Supplemental digital content is available in the text. Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease–like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI+/+/mNos2−/− (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI+/−/HuNOS2tg+/+/mNos2−/−) mimicked the pathologic phenotypes found in the CVN-AD strain.
Collapse
|
611
|
Astafurov K, Elhawy E, Ren L, Dong CQ, Igboin C, Hyman L, Griffen A, Mittag T, Danias J. Oral microbiome link to neurodegeneration in glaucoma. PLoS One 2014; 9:e104416. [PMID: 25180891 PMCID: PMC4152129 DOI: 10.1371/journal.pone.0104416] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glaucoma is a progressive optic nerve degenerative disease that often leads to blindness. Local inflammatory responses are implicated in the pathology of glaucoma. Although inflammatory episodes outside the CNS, such as those due to acute systemic infections, have been linked to central neurodegeneration, they do not appear to be relevant to glaucoma. Based on clinical observations, we hypothesized that chronic subclinical peripheral inflammation contributes to neurodegeneration in glaucoma. METHODS Mouthwash specimens from patients with glaucoma and control subjects were analyzed for the amount of bacteria. To determine a possible pathogenic mechanism, low-dose subcutaneous lipopolysaccharide (LPS) was administered in two separate animal models of glaucoma. Glaucomatous neurodegeneration was assessed in the retina and optic nerve two months later. Changes in gene expression of toll-like receptor 4 (TLR4) signaling pathway and complement as well as changes in microglial numbers and morphology were analyzed in the retina and optic nerve. The effect of pharmacologic blockade of TLR4 with naloxone was determined. FINDINGS Patients with glaucoma had higher bacterial oral counts compared to control subjects (p<0.017). Low-dose LPS administration in glaucoma animal models resulted in enhancement of axonal degeneration and neuronal loss. Microglial activation in the optic nerve and retina as well as upregulation of TLR4 signaling and complement system were observed. Pharmacologic blockade of TLR4 partially ameliorated the enhanced damage. CONCLUSIONS The above findings suggest that the oral microbiome contributes to glaucoma pathophysiology. A plausible mechanism by which increased bacterial loads can lead to neurodegeneration is provided by experiments in animal models of the disease and involves activation of microglia in the retina and optic nerve, mediated through TLR4 signaling and complement upregulation. The finding that commensal bacteria may play a role in the development and/or progression of glaucomatous pathology may also be relevant to other chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Konstantin Astafurov
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| | - Eman Elhawy
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| | - Lizhen Ren
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| | - Cecilia Q. Dong
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| | - Christina Igboin
- Division of Pediatric Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Leslie Hyman
- Department of Preventive Medicine, Stony Brook University Medical Center, Stony Brook, New York, United States of America
- State University of New York (SUNY) Eye Institute, Brooklyn, New York, United States of America
| | - Ann Griffen
- Division of Pediatric Dentistry, Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Mittag
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - John Danias
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- State University of New York (SUNY) Eye Institute, Brooklyn, New York, United States of America
| |
Collapse
|
612
|
Kulmala J, Solomon A, Kåreholt I, Ngandu T, Rantanen T, Laatikainen T, Soininen H, Tuomilehto J, Kivipelto M. Association between mid- to late life physical fitness and dementia: evidence from the CAIDE study. J Intern Med 2014; 276:296-307. [PMID: 24444031 DOI: 10.1111/joim.12202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES This study investigated the association between perceived physical fitness at midlife, changes in perceived fitness during the three decades from mid- to late life and dementia risk. DESIGN Prospective cohort study. SETTING Cardiovascular risk factors, ageing and incidence of dementia (CAIDE) study. SUBJECTS Subjects were selected from four independent, random samples of population-based cardiovascular surveys and were first examined in 1972, 1977, 1982 or 1987, when they were on average 50 years old. The CAIDE target population included 3559 individuals. A random sample of 2000 individuals still alive in 1997 was drawn for re-examinations (performed in 1998 and 2005-2008) that consisted of cognitive assessments, with 1511 subjects participating in at least one re-examination. Dementia diagnoses were also confirmed from national registers for the entire target population. MAIN OUTCOME MEASURE All-cause dementia. RESULTS Poor physical fitness at midlife was associated with increased dementia risk in the entire target population [hazard ratio (HR), 1.5; 95% confidence interval (CI), 1.1-2.0]. In participants, odds ratio (OR) was 2.0 (95% CI, 0.9-4.0). This association was significant in apolipoprotein E ε4 allele (APOEε4) noncarriers (OR, 4.3; 95% CI, 1.4-13.3), men (HR, 1.8; 95% CI, 1.1-3.0) and people with chronic conditions (HR, 2.9; 95% CI, 1.3-6.6). A decline in fitness after midlife was also associated with dementia (OR, 3.0; 95% CI, 1.7-5.1), which was significant amongst both men and women and more pronounced in APOEε4 carriers (OR, 4.4; 95% CI, 2.1-9.1). CONCLUSIONS Perceived poor physical fitness reflects a combination of biological and lifestyle-related factors that can increase dementia risk. A simple question about perceived physical fitness may reveal at-risk individuals who could benefit from preventive interventions.
Collapse
Affiliation(s)
- J Kulmala
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
613
|
Holmgren S, Hjorth E, Schultzberg M, Lärksäter M, Frenkel D, Tysen-Bäckström AC, Aarsland D, Freund-Levi Y. Neuropsychiatric symptoms in dementia—A role for neuroinflammation? Brain Res Bull 2014; 108:88-93. [DOI: 10.1016/j.brainresbull.2014.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
614
|
François A, Rioux Bilan A, Quellard N, Fernandez B, Janet T, Chassaing D, Paccalin M, Terro F, Page G. Longitudinal follow-up of autophagy and inflammation in brain of APPswePS1dE9 transgenic mice. J Neuroinflammation 2014; 11:139. [PMID: 25158693 PMCID: PMC4154524 DOI: 10.1186/s12974-014-0139-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023] Open
Abstract
Background In recent years, studies have sought to understand the mechanisms involved in the alteration of autophagic flux in Alzheimer's disease (AD). Alongside the recent description of the impairment of lysosomal acidification, we wanted to study the relationships between inflammation and autophagy, two physiological components deregulated in AD. Therefore, a longitudinal study was performed in APPswePS1dE9 transgenic mice at three, six and twelve months of age. Methods Autophagic markers (Beclin-1, p62 and LC3) and the activation of mammalian Target of Rapamycin (mTOR) signaling pathway were quantified by western blot. Cytokine levels (IL-1β, TNF-α and IL-6) were measured by ELISA. Transmission electron microscopy was performed to detect autophagic vacuoles. Mann-Whitney tests were used to compare wild-type (WT) versus APPswePS1dE9 mice. Longitudinal changes in parameters were analyzed with a Kruskal-Wallis test followed by a post-hoc Dunn’s test. Correlation between two parameters was assessed using a Spearman test. Results Compared to 12-month old WT mice, 12-month old APPswePS1dE9 mice had higher levels of IL-1β and TNF-α, a greater inhibition of the mTOR signaling pathway and lower levels of Beclin-1 expression both in cortex and hippocampus. Regarding the relationship of the various parameters in 12-month old APPswePS1dE9 mice, Beclin-1 rates were positively correlated with IL-1β and TNF-α levels. And, on the contrary, TNF-α levels were inversely correlated with the levels of mTOR activation. Altogether, these results suggest that inflammation could induce autophagy in APPswePS1dE9 mice. However, these transgenic mice displayed a large accumulation of autophagic vesicles within dystrophic neurons in cortex and hippocampus, indicating a terminal failure in the autophagic process. Conclusions This first demonstration of relationships between inflammation and autophagy in in vivo models of AD should be taken into account in new therapeutic strategies to prevent inflammation and/or stimulate autophagy in advanced neurodegenerative process such as AD.
Collapse
Affiliation(s)
- Arnaud François
- EA3808 molecular Targets and Therapeutic of Alzheimer's disease, University of Poitiers, 1 Rue Georges Bonnet, 86073 Poitiers, TSA 51106, Cedex 9, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
615
|
Yu Y, Li X, Blanchard J, Li Y, Iqbal K, Liu F, Gong CX. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J Neural Transm (Vienna) 2014; 122:593-606. [PMID: 25113171 DOI: 10.1007/s00702-014-1294-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/06/2014] [Indexed: 12/13/2022]
Abstract
Sporadic Alzheimer's disease (AD) is a multifactorial metabolic brain disorder characterized by progressive neurodegeneration. Decreased brain energy and glucose metabolism occurs before the appearance of AD symptoms and worsens while the disease progresses. Deregulated brain insulin signaling has also been found in AD recently. To restore brain insulin sensitivity and glucose metabolism, pioglitazone and rosiglitazone, two insulin sensitizers commonly used for treating type 2 diabetes, have been studied and shown to have some beneficial effects in AD mouse models. However, the molecular mechanisms of the beneficial effects remain elusive. In the present study, we treated the 3xTg-AD mice, a widely used mouse model of AD, with pioglitazone and rosiglitazone for 4 months and studied the effects of the treatments on cognitive performance and AD-related brain alterations. We found that the chronic treatment improved spatial learning, enhanced AKT signaling, and attenuated tau hyperphosphorylation and neuroinflammation. These findings shed new light on the possible mechanisms by which these two insulin sensitizers might be useful for treating AD and support further clinical trials evaluating the efficacy of these drugs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314-6399, USA
| | | | | | | | | | | | | |
Collapse
|
616
|
Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cognition in neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:22-36. [PMID: 25131449 DOI: 10.1016/j.nbd.2014.07.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
High-density lipoproteins (HDLs) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhe Wang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
617
|
Abstract
Systemic inflammatory reactions have been postulated to exacerbate neurodegenerative diseases via microglial activation. We now demonstrate in vivo that repeated systemic challenge of mice over four consecutive days with bacterial LPS maintained an elevated microglial inflammatory phenotype and induced loss of dopaminergic neurons in the substantia nigra. The same total cumulative LPS dose given within a single application did not induce neurodegeneration. Whole-genome transcriptome analysis of the brain demonstrated that repeated systemic LPS application induced an activation pattern involving the classical complement system and its associated phagosome pathway. Loss of dopaminergic neurons induced by repeated systemic LPS application was rescued in complement C3-deficient mice, confirming the involvement of the complement system in neurodegeneration. Our data demonstrate that a phagosomal inflammatory response of microglia is leading to complement-mediated loss of dopaminergic neurons.
Collapse
|
618
|
Currais A, Chiruta C, Goujon-Svrzic M, Costa G, Santos T, Batista MT, Paiva J, do Céu Madureira M, Maher P. Screening and identification of neuroprotective compounds relevant to Alzheimer׳s disease from medicinal plants of S. Tomé e Príncipe. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:830-840. [PMID: 24971794 DOI: 10.1016/j.jep.2014.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/05/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer׳s disease (AD) neuropathology is strongly associated with the activation of inflammatory pathways, and long-term use of anti-inflammatory drugs reduces the risk of developing the disease. In S. Tomé e Príncipe (STP), several medicinal plants are used both for their positive effects in the nervous system (treatment of mental disorders, analgesics) and their anti-inflammatory properties. The goal of this study was to determine whether a phenotypic, cell-based screening approach can be applied to selected plants from STP (Voacanga africana, Tarenna nitiduloides, Sacosperma paniculatum, Psychotria principensis, Psychotria subobliqua) in order to identify natural compounds with multiple biological activities of interest for AD therapeutics. MATERIALS AND METHODS Plant hydroethanolic extracts were prepared and tested in a panel of phenotypic screening assays that reflect multiple neurotoxicity pathways relevant to AD-oxytosis in hippocampal nerve cells, in vitro ischemia, intracellular amyloid toxicity, inhibition of microglial inflammation and nerve cell differentiation. HPLC fractions from the extract that performed the best in all of the assays were tested in the oxytosis assay, our primary screen, and the most protective fraction was analyzed by mass spectrometry. The predominant compound was purified, its identity confirmed by ESI mass spectrometry and NMR, and then tested in all of the screening assays to determine its efficacy. RESULTS An extract from the bark of Voacanga africana was more protective than any other plant extract in all of the assays (EC50s≤2.4 µg/mL). The HPLC fraction from the extract that was most protective against oxytosis contained the alkaloid voacamine (MW=704.90) as the predominant compound. Purified voacamine was very protective at low doses in all of the assays (EC50s≤3.4 µM). CONCLUSION These findings validate the use of our phenotypic screening, cell-based assays to identify potential compounds to treat AD from plant extracts with ethnopharmacological relevance. Our study identifies the alkaloid voacamine as a major compound in Voacanga africana with potent neuroprotective activities in these assays.
Collapse
Affiliation(s)
- Antonio Currais
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Chandramouli Chiruta
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marie Goujon-Svrzic
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gustavo Costa
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Tânia Santos
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Jorge Paiva
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Maria do Céu Madureira
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
619
|
Chaalal A, Poirier R, Blum D, Gillet B, Le Blanc P, Basquin M, Buée L, Laroche S, Enderlin V. PTU-induced hypothyroidism in rats leads to several early neuropathological signs of Alzheimer's disease in the hippocampus and spatial memory impairments. Hippocampus 2014; 24:1381-93. [DOI: 10.1002/hipo.22319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Amina Chaalal
- Centre de Neurosciences Paris-Sud; CNRS; UMR 8195 F-91405 Orsay France
- Université Paris-Sud; UMR 8195 F-91405 Orsay France
| | - Roseline Poirier
- Centre de Neurosciences Paris-Sud; CNRS; UMR 8195 F-91405 Orsay France
- Université Paris-Sud; UMR 8195 F-91405 Orsay France
| | - David Blum
- Université Lille-Nord de France; UDSL; F-59000 Lille France
- Inserm U837, Centre de recherche Jean-Pierre Aubert; IMPRT; F-59000 Lille France
- CHRU-Lille; F-59000 Lille France
| | - Brigitte Gillet
- Université Paris-Sud; UMR 8195 F-91405 Orsay France
- Imagerie par Résonance Magnétique Médicale et MultiModalité; CNRS-UMR8081 F-91405 Orsay France
| | - Pascale Le Blanc
- Centre de Neurosciences Paris-Sud; CNRS; UMR 8195 F-91405 Orsay France
- Université Paris-Sud; UMR 8195 F-91405 Orsay France
| | - Marie Basquin
- Université Lille-Nord de France; UDSL; F-59000 Lille France
- Inserm U837, Centre de recherche Jean-Pierre Aubert; IMPRT; F-59000 Lille France
| | - Luc Buée
- Université Lille-Nord de France; UDSL; F-59000 Lille France
- Inserm U837, Centre de recherche Jean-Pierre Aubert; IMPRT; F-59000 Lille France
- CHRU-Lille; F-59000 Lille France
| | - Serge Laroche
- Centre de Neurosciences Paris-Sud; CNRS; UMR 8195 F-91405 Orsay France
- Université Paris-Sud; UMR 8195 F-91405 Orsay France
| | - Valérie Enderlin
- Centre de Neurosciences Paris-Sud; CNRS; UMR 8195 F-91405 Orsay France
- Université Paris-Sud; UMR 8195 F-91405 Orsay France
| |
Collapse
|
620
|
Disease modifying effect of chronic oral treatment with a neurotrophic peptidergic compound in a triple transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2014; 71:110-30. [PMID: 25046994 DOI: 10.1016/j.nbd.2014.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/28/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022] Open
Abstract
Besides the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles, neurogenesis and synaptic plasticity are markedly impaired in Alzheimer's disease (AD) possibly contributing to cognitive impairment. In this context, neurotrophic factors serve as a promising therapeutic approach via utilization of regenerative capacity of brain to shift the balance from neurodegeneration to neural regeneration. However, besides more conventional "bystander" effect, to what extent can neurotrophic compounds affect underlying AD pathology remains questionable. Here we investigated the effect of chronic oral treatment with a ciliary neurotrophic factor (CNTF) derived peptidergic compound, P021 (Ac-DGGL(A)G-NH2), on disease pathology both at moderate and severe stages in a transgenic mouse model of AD. 3xTg-AD and wild type female mice were treated for 12months with P021 or vehicle diet starting at 9-10months of age. A significant reduction in abnormal hyperphosphorylation and accumulation of tau at known major AD neurofibrillary pathology associated sites was observed. The effect of P021 on Aβ pathology was limited to a significant decrease in soluble Aβ levels and a trend towards reduction in Aβ plaque load in CA1 region of hippocampus, consistent with reduction in Aβ generation and not clearance. This disease modifying effect was probably via increased brain derived neurotrophic factor (BDNF) expression mediated decrease in glycogen synthase kinase-3-β (GSK3β) activity we found in P021 treated 3xTg-AD mice. P021 treatment also rescued deficits in cognition, neurogenesis, and synaptic plasticity in 3xTg-AD mice. These findings demonstrate the potential of the neurotrophic peptide mimetic as a disease modifying therapy for AD.
Collapse
|
621
|
Eyre HA, Baune BT. Assessing for unique immunomodulatory and neuroplastic profiles of physical activity subtypes: a focus on psychiatric disorders. Brain Behav Immun 2014; 39:42-55. [PMID: 24269526 DOI: 10.1016/j.bbi.2013.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/09/2013] [Accepted: 10/25/2013] [Indexed: 12/13/2022] Open
Abstract
Physical activity (PA) is emerging as a safe and effective tool in the prevention and treatment of psychiatric disorders. PA subtypes include aerobic, resistance, flexibility, neuromotor (involving balance, agility and co-ordination), mind-body (e.g. tai chi, qi gong and yoga) and mixed type trainings. Evidence from clinical trials suggests that PA subtypes can have positive clinical effects, however the effects on the symptomatology may vary according to the PA subtype. It therefore stands to reason that various PA subtypes may modulate the immune system and neuroplastic processes differently. This systematic review aims to assess the immunomodulatory and neuroplastic profiles of various PA subtypes, particularly in unipolar depression and age-related cognitive decline (ARCD). The literature suggests several unique immunomodulatory and neuroplastic profiles for PA subtypes (i.e. resistance, aerobic and mind-body) in depression and ARCD. In depression, levels of various cytokines at baseline may predict treatment response to subtypes of PA and pharmacological agents. The pro-neuroplastic effects of resistance and aerobic PA in ARCD may differ due to variances in neurotrophin profiles. At this stage of literature in the field, it is difficult to draw firm conclusions on the specific immunomodulatory and neuroplastic pathways involved in these PA subtypes given of the small number of comparative studies and methodological heterogeneity between studies (e.g. study population age and illness severity, as well as duration and intensity of PA intervention). This important field requires well-designed, high-quality comparative studies to better describe unique immunomodulatory and neuroplastic profiles.
Collapse
Affiliation(s)
- Harris A Eyre
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia; School of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
622
|
Shen L, Thompson PM, Potkin SG, Bertram L, Farrer LA, Foroud TM, Green RC, Hu X, Huentelman MJ, Kim S, Kauwe JSK, Li Q, Liu E, Macciardi F, Moore JH, Munsie L, Nho K, Ramanan VK, Risacher SL, Stone DJ, Swaminathan S, Toga AW, Weiner MW, Saykin AJ. Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav 2014; 8:183-207. [PMID: 24092460 PMCID: PMC3976843 DOI: 10.1007/s11682-013-9262-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Genetics Core of the Alzheimer's Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer's disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development.
Collapse
Affiliation(s)
- Li Shen
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Paul M. Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617 USA
| | - Lars Bertram
- Neuropsychiatric Genetics Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lindsay A. Farrer
- Biomedical Genetics L320, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Robert C. Green
- Division of Genetics and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Xiaolan Hu
- Clinical Genetics, Exploratory Clinical & Translational Research, Bristol-Myers Squibbs, Pennington, NJ 08534 USA
| | - Matthew J. Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Sungeun Kim
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - John S. K. Kauwe
- Departments of Biology, Neuroscience, Brigham Young University, 675 WIDB, Provo, UT 84602 USA
| | - Qingqin Li
- Department of Neuroscience Biomarkers, Janssen Research and Development, LLC, Raritan, NJ 08869 USA
| | - Enchi Liu
- Biomarker Discovery, Janssen Alzheimer Immunotherapy Research and Development, LLC, South San Francisco, CA 94080 USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617 USA
- Department of Sciences and Biomedical Technologies, University of Milan, Segrate, MI Italy
| | - Jason H. Moore
- Department of Genetics, Computational Genetics Laboratory, Dartmouth Medical School, Lebanon, NH 03756 USA
| | - Leanne Munsie
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Kwangsik Nho
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Vijay K. Ramanan
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Shannon L. Risacher
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - David J. Stone
- Merck Research Laboratories, 770 Sumneytown Pike, WP53B-120, West Point, PA 19486 USA
| | - Shanker Swaminathan
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
| | - Michael W. Weiner
- Departments of Radiology, Medicine and Psychiatry, UC San Francisco, San Francisco, CA 94143 USA
| | - Andrew J. Saykin
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617 USA
- Neuropsychiatric Genetics Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany
- Biomedical Genetics L320, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Division of Genetics and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
- Clinical Genetics, Exploratory Clinical & Translational Research, Bristol-Myers Squibbs, Pennington, NJ 08534 USA
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- Departments of Biology, Neuroscience, Brigham Young University, 675 WIDB, Provo, UT 84602 USA
- Department of Neuroscience Biomarkers, Janssen Research and Development, LLC, Raritan, NJ 08869 USA
- Biomarker Discovery, Janssen Alzheimer Immunotherapy Research and Development, LLC, South San Francisco, CA 94080 USA
- Department of Sciences and Biomedical Technologies, University of Milan, Segrate, MI Italy
- Department of Genetics, Computational Genetics Laboratory, Dartmouth Medical School, Lebanon, NH 03756 USA
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN 46285 USA
- Merck Research Laboratories, 770 Sumneytown Pike, WP53B-120, West Point, PA 19486 USA
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
- Departments of Radiology, Medicine and Psychiatry, UC San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
623
|
Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, Makrelouf M, Belarbi S, Masmoudi AN, Tazir M, Touil-Boukoffa C. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res 2014; 34:839-47. [PMID: 24831467 DOI: 10.1089/jir.2013.0085] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease leading to a progressive and irreversible loss of mental functions. It is characterized by 3 stages according to the evolution and the severity of the symptoms. This disease is associated with an immune disorder, which appears with significant rise in the inflammatory cytokines and increased production of free radicals such as nitric oxide (NO). Our study aims to investigate interferon (IFN)-γ and tumor necrosis factor-α (TNF-α) involvement in NO production, in vivo and ex vivo, in peripheral blood mononuclear cells from Algerian patients (n=25), according to the different stages of the disease (mild Alzheimer's, moderate Alzheimer's, and severe Alzheimer's) in comparison to mild cognitive impairment (MCI) patients. Interestingly, we observed that in vivo IFN-γ and TNF-α levels assessed in patients with AD in mild and severe stages, respectively, are higher than those observed in patients with moderate stage and MCI. Our in vivo and ex vivo results show that NO production is related to the increased levels of IFN-γ and TNF-α, in mild and severe stages of AD. Remarkably, significant IFN-γ level is only detected in mild stage of AD. Our study suggests that NO production is IFN-γ dependent both in MCI and mild Alzheimer's patients. Further, high levels of NO are associated with an elevation of TNF-α levels in severe stage of AD. Collectively, our data indicate that the proinflammatory cytokine production seems, in part, to be involved in neurological deleterious effects observed during the development of AD through NO pathway.
Collapse
Affiliation(s)
- Mourad Belkhelfa
- 1 Team: Cytokines and NO-Synthases, Laboratory of Cellular and Molecular Biology, Faculty of Biological Science , USTHB, Algiers, Algeria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
624
|
Scuderi C, Stecca C, Bronzuoli MR, Rotili D, Valente S, Mai A, Steardo L. Sirtuin modulators control reactive gliosis in an in vitro model of Alzheimer's disease. Front Pharmacol 2014; 5:89. [PMID: 24860504 PMCID: PMC4027795 DOI: 10.3389/fphar.2014.00089] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/11/2014] [Indexed: 12/17/2022] Open
Abstract
Among neurodegenerative disorders, Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. Several genetic and environmental factors have been identified; however, aging represents the most important risk factor in the development of AD. To date, no effective treatments to prevent or slow this dementia are available. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes, implicated in the control of a variety of biological processes that have the potential to modulate neurodegeneration. Here we tested the hypothesis that activation of SIRT1 or inhibition of SIRT2 would prevent reactive gliosis which is considered one of the most important hallmark of AD. Primary rat astrocytes were activated with beta amyloid 1-42 (Aβ 1-42) and treated with resveratrol (RSV) or AGK-2, a SIRT1 activator and a SIRT2-selective inhibitor, respectively. Results showed that both RSV and AGK-2 were able to reduce astrocyte activation as well as the production of pro-inflammatory mediators. These data disclose novel findings about the therapeutic potential of SIRT modulators, and suggest novel strategies for AD treatment.
Collapse
Affiliation(s)
- Caterina Scuderi
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Claudia Stecca
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Maria R Bronzuoli
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, SAPIENZA University of Rome Rome, Italy ; Institute Pasteur - Cenci Bolognetti Foundation, SAPIENZA University of Rome Rome, Italy
| | - Luca Steardo
- Vittorio Erspamer School of Physiology and Pharmacology, SAPIENZA University of Rome Rome, Italy
| |
Collapse
|
625
|
Abstract
Microglia, the brain's professional phagocytes, can remove dead and dying neurons as well as synapses and the processes of live neurons. However, we and others have recently shown that microglia can also execute neuronal death by phagocytosing stressed-but-viable neurons - a process that we have termed phagoptosis. In this Progress article, we discuss evidence suggesting that phagoptosis may contribute to neuronal loss during brain development, inflammation, ischaemia and neurodegeneration.
Collapse
|
626
|
Lim WLF, Martins IJ, Martins RN. The involvement of lipids in Alzheimer's disease. J Genet Genomics 2014; 41:261-74. [PMID: 24894353 DOI: 10.1016/j.jgg.2014.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
It has been estimated that Alzheimer's disease (AD), the most common form of dementia, will affect approximately 81 million individuals by 2040. To date, the actual cause and cascade of events in the progression of this disease have not been fully determined. Furthermore, there is currently no definitive blood test or simple diagnostic method for AD. Considerable efforts have been put into proteomic approaches to develop a diagnostic blood test, but to date these efforts have not been successful. More recently, there has been a stronger focus on lipidomic studies in the hope of increasing our understanding of the underlying mechanisms leading to AD and developing an AD blood test. It is well known that the strongest genetic risk factor for AD is the ε4 variant of apolipoprotein E (APOE). Evidence suggests that the ApoE protein, a major lipid transporter, plays a key role in the pathogenesis of AD, and its role in both normal and aberrant lipid metabolism warrants further extensive investigation. Here, we review ApoE-lipid interactions, as well as the roles that lipids may play in the pathogenesis of AD.
Collapse
Affiliation(s)
- Wei Ling Florence Lim
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ian James Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ralph Nigel Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia; McCusker Foundation for Alzheimer's Disease Research Inc., Suite 22, Hollywood Medical Centre, Nedlands 6009, Australia; School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
| |
Collapse
|
627
|
Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer's disease a systemic disease? Biochim Biophys Acta Mol Basis Dis 2014; 1842:1340-9. [PMID: 24747741 DOI: 10.1016/j.bbadis.2014.04.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Although Alzheimer's disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease-modifying therapies.
Collapse
Affiliation(s)
- Jill K Morris
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Robyn A Honea
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Eric D Vidoni
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Russell H Swerdlow
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Jeffrey M Burns
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| |
Collapse
|
628
|
Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014; 88:594-604. [PMID: 24445162 PMCID: PMC3972294 DOI: 10.1016/j.bcp.2014.01.008] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/23/2022]
Abstract
Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer's disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial "activation" and "neuroinflammation" are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms.
Collapse
Affiliation(s)
- Kira Irving Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Neuroscience IDP Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Administration Palo Alto Health Care System, Palo Alto, California 94304, USA.
| |
Collapse
|
629
|
Bennett DA, Yu L, De Jager PL. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer's disease. Biochem Pharmacol 2014; 88:617-30. [PMID: 24508835 PMCID: PMC4054869 DOI: 10.1016/j.bcp.2014.01.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/18/2014] [Accepted: 01/24/2014] [Indexed: 01/11/2023]
Abstract
Cognitive decline, Alzheimer's disease (AD) and other causes are major public health problems worldwide. With changing demographics, the number of persons with dementia will increase rapidly. The treatment and prevention of AD and other dementias, therefore, is an urgent unmet need. There have been considerable advances in understanding the biology of many age-related disorders that cause dementia. Gains in understanding AD have led to the development of ante-mortem biomarkers of traditional neuropathology and the conduct of several phase III interventions in the amyloid-β cascade early in the disease process. Many other intervention strategies are in various stages of development. However, efforts to date have met with limited success. A recent National Institute on Aging Research Summit led to a number of requests for applications. One was to establish multi-disciplinary teams of investigators who use systems biology approaches and stem cell technology to identify a new generation of AD targets. We were recently awarded one of three such grants to build a pipeline that integrates epidemiology, systems biology, and stem cell technology to discover and validate novel therapeutic targets and lead compounds for AD treatment and prevention. Here we describe the two cohorts that provide the data and biospecimens being exploited for our pipeline and describe the available unique datasets. Second, we present evidence in support of a chronic disease model of AD that informs our choice of phenotypes as the target outcome. Third, we provide an overview of our approach. Finally, we present the details of our planned drug discovery pipeline.
Collapse
Affiliation(s)
- David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States.
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States.
| |
Collapse
|
630
|
Brawek B, Schwendele B, Riester K, Kohsaka S, Lerdkrai C, Liang Y, Garaschuk O. Impairment of in vivo calcium signaling in amyloid plaque-associated microglia. Acta Neuropathol 2014; 127:495-505. [PMID: 24407428 DOI: 10.1007/s00401-013-1242-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 11/26/2022]
Abstract
Neuroinflammation is a hallmark of Alzheimer's disease (AD) both in man and in multiple mouse models, and epidemiological studies link the use of anti-inflammatory drugs with a reduced risk of developing the disease. AD-related neuroinflammation is largely mediated by microglia, the main immune cells of the central nervous system. In vitro, executive functions of microglia are regulated by intracellular Ca(2+) signals, but little is known about microglial Ca(2+) signaling in vivo. Here we analyze in vivo properties of these cells in two mouse models of AD. In both strains plaque-associated microglia had hypertrophic/amoeboid morphology and were strongly positive for markers of activation such as CD11b and CD68. Activated microglia failed to respond reliably to extracellular release of adenosine triphosphate (ATP, mimicking tissue damage) and showed an increased incidence of spontaneous intracellular Ca(2+) transients. These Ca(2+) transients required activation of ATP receptors and Ca(2+) release from the intracellular Ca(2+) stores, and were not induced by neuronal or astrocytic hyperactivity. Neuronal silencing, however, selectively increased the frequency of Ca(2+) transients in plaque-associated microglia. Thus, our in vivo data reveal substantial dysfunction of plaque-associated microglia and identify a novel Ca(2+) signal possibly triggering a Ca(2+)-dependent release of toxic species in the plaque vicinity.
Collapse
Affiliation(s)
- Bianca Brawek
- Institute of Physiology II, Eberhard Karls University of Tuebingen, Keplerstr. 15, 72074, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
631
|
Zhang ZH, Yu LJ, Hui XC, Wu ZZ, Yin KL, Yang H, Xu Y. Hydroxy-safflor yellow A attenuates Aβ₁₋₄₂-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res 2014; 1563:72-80. [PMID: 24690200 DOI: 10.1016/j.brainres.2014.03.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/25/2022]
Abstract
Beta-amyloid (Aβ)-mediated inflammation plays a critical role in the initiation and progression of Alzheimer׳s disease (AD). Anti-inflammatory treatment may provide therapeutic benefits. In this study, the effect of hydroxy-safflor yellow A (HSYA) on Aβ1-42-induced inflammation in AD mice was investigated and the underlying mechanisms were explored. Aβ1-42 was injected into bilateral hippocampi of mice to induce AD models in vivo. Spatial learning and memory of mice were investigated by the Morris water maze test. Activated microglia and astrocytes were examined by immunofluorescence staining for ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP). The mRNA of inflammatory cytokines were measured using real-time PCR. NF-κB p65 translocation was analyzed by western blotting and immunostaining. IκB and phosphorylation of JAK2 and STAT3 were tested by western blotting. The results showed that HSYA ameliorated the memory deficits in Aβ1-42-induced AD mice. HSYA suppressed Aβ1-42-induced activation of microglia and astrocytes and reduced the mRNA expression of pro-inflammatory mediators. HSYA up-regulated the JAK2/STAT3 pathway and inhibits the activation of NF-κB signaling pathways. Pharmacological inhibition of STAT3 by AG490 reversed the inactivation of p65 and anti-inflammatory effects of HSYA. In conclusion, these results suggest that HSYA protects Aβ1-42-induced AD model through inhibiting inflammatory response, which may involve the JAK2/STAT3/NF-κB pathway.
Collapse
Affiliation(s)
- Zuo-Hui Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221006, PR China
| | - Lin-Jie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China
| | - Xin-Chen Hui
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; School of Clinical Medicine, South East University, Nanjing, Jiangsu 210008, PR China
| | - Zheng-Zheng Wu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China
| | - Kai-Lin Yin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China
| | - Hui Yang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, PR China; School of Clinical Medicine, South East University, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
632
|
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:352371. [PMID: 24771982 PMCID: PMC3977509 DOI: 10.1155/2014/352371] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.
Collapse
|
633
|
Abstract
Paroxonase 1 displays multiple physiological activities that position it as a putative player in the pathogenesis of neurological disorders. Here we reviewed the literature focusing on the role of paraoxonase 1 (PON1) as a factor in the risk of stroke and the major neurodegenerative diseases. PON1 activity is reduced in stroke patients, which significantly correlates inversely with carotid and cerebral atherosclerosis. The presence of the R allele of the Q192R PON1 polymorphism seems to potentiate this risk for stroke. PON1 exerts peroxidase activities that may be important in neurodegenerative disorders associated with oxidative stress. PON1 is also a key detoxifier of organophosphates and organophosphate exposure has been linked to the development of neurological disorders in which acetylcholine plays a significant role. In Parkinson's disease most of the studies suggest no participation of either L55M or the Q192R polymorphisms in its pathogenesis. However, many studies suggest that the MM55 PON1 genotype is associated with a higher risk for Parkinson's disease in individuals exposed to organophosphates. In Alzheimer's disease most studies have failed to find any association between PON1 polymorphisms and the development of the disease. Some studies show that PON1 activity is decreased in patients with Alzheimer's disease or other dementias, suggesting a possible protective role of PON1. No links between PON1 polymorphisms or activity have been found in other neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis. PON1 is a potential player in the pathogenesis of several neurological disorders. More research is warranted to ascertain the precise pathogenic links and the prognostic value of its measurement in neurological patients.
Collapse
Affiliation(s)
- Teresita Menini
- Department of Basic SciencesTouro University-California College of Osteopathic Medicine, Vallejo, CA, USA
| | - Alejandro Gugliucci
- GlycationOxidation and Disease Laboratory, Department of Research, Touro University-California College of Osteopathic Medicine, Vallejo, CA, USA
| |
Collapse
|
634
|
Network-wide dysregulation of calcium homeostasis in Alzheimer’s disease. Cell Tissue Res 2014; 357:427-38. [DOI: 10.1007/s00441-014-1798-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022]
|
635
|
Stack C, Jainuddin S, Elipenahli C, Gerges M, Starkova N, Starkov AA, Jové M, Portero-Otin M, Launay N, Pujol A, Kaidery NA, Thomas B, Tampellini D, Beal MF, Dumont M. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum Mol Genet 2014; 23:3716-32. [PMID: 24556215 DOI: 10.1093/hmg/ddu080] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology.
Collapse
Affiliation(s)
- Cliona Stack
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shari Jainuddin
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ceyhan Elipenahli
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Meri Gerges
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Natalia Starkova
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Anatoly A Starkov
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mariona Jové
- Department de Medicina Experimental, Universitat de Lleida-IRBLLEIDA, Spain
| | | | - Nathalie Launay
- Neurometabolic Diseases Laboratory-IDIBELL, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, CIBERER, Spanish Network for Rare Diseases, ISCIII, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory-IDIBELL, Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, CIBERER, Spanish Network for Rare Diseases, ISCIII, Spain, ICREA, Catalan Institution for Research and Advanced Studies, Spain
| | - Navneet Ammal Kaidery
- Department of Pharmacology and Toxicology and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Bobby Thomas
- Department of Pharmacology and Toxicology and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Davide Tampellini
- Hospital Kremlin Bicêtre, UMR 788, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Sud, Le Kremlin Bicêtre, France and
| | - M Flint Beal
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Magali Dumont
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA, IHU-A-ICM, Hospital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
636
|
Knight EM, Martins IVA, Gümüsgöz S, Allan SM, Lawrence CB. High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging 2014; 35:1821-32. [PMID: 24630364 PMCID: PMC4024197 DOI: 10.1016/j.neurobiolaging.2014.02.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/05/2023]
Abstract
Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer's disease (AD). Diets high in fat also increase disease neuropathology and/or cognitive deficits in AD mouse models. However, the effect of a high-fat diet on both the neuropathology and memory impairments in the triple-transgenic mouse model of AD (3xTgAD) is unknown. Therefore, groups of 2-month-old male 3xTgAD and control (non-Tg) mice were maintained on a high-fat or control diet and memory was assessed at the age of 3-4, 7-8, 11-12, and 15-16 months using a series of behavioral tests. A comparable increase in body weight was observed in non-Tg and 3xTgAD mice after high-fat feeding at all ages tested but a significantly greater increase in epididymal adipose tissue was observed in 3xTgAD mice at the age of 7-8, 11-12, and 15-16 months. A high-fat diet caused memory impairments in non-Tg control mice as early as the age of 3-4 months. In 3xTgAD mice, high-fat consumption led to a reduction in the age of onset and an increase in the extent of memory impairments. Some of these effects of high-fat diet on cognition in non-Tg and 3xTgAD mice were transient, and the age at which cognitive impairment was detected depended on the behavioral test. The effect of high-fat diet on memory in the 3xTgAD mice was independent of changes in AD neuropathology as no significant differences in (plaques, oligomers) or tau neuropathology were observed. An acute increase in microglial activation was seen in high-fat fed 3xTgAD mice at the age of 3-4 months but in non-Tg control mice microglial activation was not observed until the age of 15-16 months. These data indicate therefore that a high-fat diet has rapid and long-lasting negative effects on memory in both control and AD mice that are associated with neuroinflammation, but independent of changes in beta amyloid and tau neuropathology in the AD mice.
Collapse
Affiliation(s)
- Elysse M Knight
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | - Sarah Gümüsgöz
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
637
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
638
|
Cudaback E, Jorstad NL, Yang Y, Montine TJ, Keene CD. Therapeutic implications of the prostaglandin pathway in Alzheimer's disease. Biochem Pharmacol 2014; 88:565-72. [PMID: 24434190 DOI: 10.1016/j.bcp.2013.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022]
Abstract
An important pathologic hallmark of Alzheimer's disease (AD) is neuroinflammation, a process characterized in AD by disproportionate activation of cells (microglia and astrocytes, primarily) of the non-specific innate immune system within the CNS. While inflammation itself is not intrinsically detrimental, a delicate balance of pro- and anti-inflammatory signals must be maintained to ensure that long-term exaggerated responses do not damage the brain over time. Non-steroidal anti-inflammatory drugs (NSAIDs) represent a broad class of powerful therapeutics that temper inflammation by inhibiting cyclooxygenase-mediated signaling pathways including prostaglandins, which are the principal mediators of CNS neuroinflammation. While historically used to treat discrete or systemic inflammatory conditions, epidemiologic evidence suggests that protracted NSAID use may delay AD onset, as well as decrease disease severity and rate of progression. Unfortunately, clinical trials with NSAIDs have thus far yielded disappointing results, including premature discontinuation of a large-scale prevention trial due to unexpected cardiovascular side effects. Here we review the literature and make the argument that more targeted exploitation of downstream prostaglandin signaling pathways may offer significant therapeutic benefits for AD while minimizing adverse side effects. Directed strategies such as these may ultimately help to delay the deleterious consequences of brain aging and might someday lead to new therapies for AD and other chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Eiron Cudaback
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - Nikolas L Jorstad
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - Yue Yang
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - Thomas J Montine
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA
| | - C Dirk Keene
- University of Washington Harborview Medical Center, Department of Pathology, Box 359791, 325 Ninth Ave, Seattle, WA 98104, USA.
| |
Collapse
|
639
|
Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation. PLoS One 2014; 9:e84294. [PMID: 24392123 PMCID: PMC3879304 DOI: 10.1371/journal.pone.0084294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
Hypoxia ischemia (HI)-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na+/H+ exchanger isoform 1 (NHE1) protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX). 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1–5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na+ and Ca2+ overload. The latter was mediated by reversal of Na+/Ca2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα) during 1–24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na+ and Ca2+ homeostasis, which reduces Na+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.
Collapse
|
640
|
Wang B, Tanaka K, Ji B, Ono M, Fang Y, Ninomiya Y, Maruyama K, Izumi-Nakajima N, Begum N, Higuchi M, Fujimori A, Uehara Y, Nakajima T, Suhara T, Ono T, Nenoi M. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:84-96. [PMID: 23908553 PMCID: PMC3885129 DOI: 10.1093/jrr/rrt096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with (11)C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice.
Collapse
Affiliation(s)
- Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
- Corresponding author. Tel: +81-43-206-3093; Fax: +81-43-251-4582;
| | - Kaoru Tanaka
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bin Ji
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Maiko Ono
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yaqun Fang
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yasuharu Ninomiya
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kouichi Maruyama
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nakako Izumi-Nakajima
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nasrin Begum
- Center for Nuclear Medicine and Ultrasound, Rajshahi H-18, Rajshahi Medical College Hospital Campus, Medical College Road, Rajshahi 6000, People's Republic of Bangladesh
| | - Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshihiko Uehara
- Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
641
|
Giannoni P, Gaven F, de Bundel D, Baranger K, Marchetti-Gauthier E, Roman FS, Valjent E, Marin P, Bockaert J, Rivera S, Claeysen S. Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer's disease. Front Aging Neurosci 2013; 5:96. [PMID: 24399967 PMCID: PMC3871961 DOI: 10.3389/fnagi.2013.00096] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/06/2013] [Indexed: 01/14/2023] Open
Abstract
Amyloid β (Aβ) accumulation is considered the main culprit in the pathogenesis of Alzheimer’s disease (AD). Recent studies suggest that decreasing Aβ production at very early stages of AD could be a promising strategy to slow down disease progression. Serotonin 5-HT4 receptor activation stimulates α-cleavage of the amyloid precursor protein (APP), leading to the release of the soluble and neurotrophic sAPPα fragment and thus precluding Aβ formation. Using the 5XFAD mouse model of AD that shows accelerated Aβ deposition, we investigated the effect of chronic treatments (treatment onset at different ages and different durations) with the 5-HT4 receptor agonist RS 67333 during the asymptomatic phase of the disease. Chronic administration of RS 67333 decreased concomitantly the number of amyloid plaques and the level of Aβ species. Reduction of Aβ levels was accompanied by a striking decrease in hippocampal astrogliosis and microgliosis. RS 67333 also transiently increased sAPPα concentration in the cerebrospinal fluid and brain. Moreover, a specific 5-HT4 receptor antagonist (RS 39604) prevented the RS 67333-mediated reduction of the amyloid pathology. Finally, the novel object recognition test deficits of 5XFAD mice were reversed by chronic treatment with RS 67333. Collectively, these results strongly highlight this 5-HT4 receptor agonist as a promising disease modifying-agent for AD.
Collapse
Affiliation(s)
- Patrizia Giannoni
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| | - Florence Gaven
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| | - Dimitri de Bundel
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| | - Kevin Baranger
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France ; CNRS, NICN, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France ; Service de Neurologie et de Neuropsychologie, CHU La Timone, AP-HM Marseille, France
| | - Evelyne Marchetti-Gauthier
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France ; CNRS, NICN, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France
| | - François S Roman
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France ; CNRS, NICN, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| | - Philippe Marin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| | - Joël Bockaert
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| | - Santiago Rivera
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France ; CNRS, NICN, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 7259 Marseille, France
| | - Sylvie Claeysen
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; Inserm, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| |
Collapse
|
642
|
Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2013; 33:7-22. [PMID: 24357543 DOI: 10.1002/embj.201386609] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an integral part of the body's physiological repair mechanism, unless it remains unresolved and becomes pathological, as evident in the progressive nature of neurodegeneration. Based on studies from outside the central nervous system (CNS), it is now understood that the resolution of inflammation is an active process, which is dependent on well-orchestrated innate and adaptive immune responses. Due to the immunologically privileged status of the CNS, such resolution mechanism has been mostly ignored. Here, we discuss resolution of neuroinflammation as a process that depends on a network of immune cells operating in a tightly regulated sequence, involving the brain's choroid plexus (CP), a unique neuro-immunological interface, positioned to integrate signals it receives from the CNS parenchyma with signals coming from circulating immune cells, and to function as an on-alert gate for selective recruitment of inflammation-resolving leukocytes to the inflamed CNS parenchyma. Finally, we propose that functional dysregulation of the CP reflects a common underlying mechanism in the pathophysiology of neurodegenerative diseases, and can thus serve as a potential novel target for therapy.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
643
|
Bester J, Buys AV, Lipinski B, Kell DB, Pretorius E. High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer's disease. Front Aging Neurosci 2013; 5:88. [PMID: 24367334 PMCID: PMC3853801 DOI: 10.3389/fnagi.2013.00088] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction: Unliganded iron both contributes to the pathology of Alzheimer's disease (AD) and also changes the morphology of erythrocytes (RBCs). We tested the hypothesis that these two facts might be linked, i.e., that the RBCs of AD individuals have a variant morphology, that might have diagnostic or prognostic value. Methods: We included a literature survey of AD and its relationships to the vascular system, followed by a laboratory study. Four different microscopy techniques were used and results statistically compared to analyze trends between high and normal serum ferritin (SF) AD individuals. Results: Light and scanning electron microscopies showed little difference between the morphologies of RBCs taken from healthy individuals and from normal SF AD individuals. By contrast, there were substantial changes in the morphology of RBCs taken from high SF AD individuals. These differences were also observed using confocal microscopy and as a significantly greater membrane stiffness (measured using force-distance curves). Conclusion: We argue that high ferritin levels may contribute to an accelerated pathology in AD. Our findings reinforce the importance of (unliganded) iron in AD, and suggest the possibility both of an early diagnosis and some means of treating or slowing down the progress of this disease.
Collapse
Affiliation(s)
- Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria Arcadia, South Africa
| | - Antoinette V Buys
- Microscopy and Microanalysis Unit, University of Pretoria Arcadia, South Africa
| | | | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester Lancs, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria Arcadia, South Africa
| |
Collapse
|
644
|
Jackson HM, Soto I, Graham LC, Carter GW, Howell GR. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer's disease. BMC Genomics 2013; 14:831. [PMID: 24274089 PMCID: PMC3907022 DOI: 10.1186/1471-2164-14-831] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/14/2013] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer’s disease affects more than 35 million people worldwide but there is no known cure. Age is the strongest risk factor for Alzheimer’s disease but it is not clear how age-related changes impact the disease. Here, we used a mouse model of Alzheimer’s disease to identify age-specific changes that occur prior to and at the onset of traditional Alzheimer-related phenotypes including amyloid plaque formation. To identify these early events we used transcriptional profiling of mouse brains combined with computational approaches including singular value decomposition and hierarchical clustering. Results Our study identifies three key events in early stages of Alzheimer’s disease. First, the most important drivers of Alzheimer’s disease onset in these mice are age-specific changes. These include perturbations of the ribosome and oxidative phosphorylation pathways. Second, the earliest detectable disease-specific changes occur to genes commonly associated with the hypothalamic-adrenal-pituitary (HPA) axis. These include the down-regulation of genes relating to metabolism, depression and appetite. Finally, insulin signaling, in particular the down-regulation of the insulin receptor substrate 4 (Irs4) gene, may be an important event in the transition from age-related changes to Alzheimer’s disease specific-changes. Conclusion A combination of transcriptional profiling combined with computational analyses has uncovered novel features relevant to Alzheimer’s disease in a widely used mouse model and offers avenues for further exploration into early stages of AD.
Collapse
Affiliation(s)
- Harriet M Jackson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | |
Collapse
|
645
|
Hampel H, Lista S, Teipel SJ, Garaci F, Nisticò R, Blennow K, Zetterberg H, Bertram L, Duyckaerts C, Bakardjian H, Drzezga A, Colliot O, Epelbaum S, Broich K, Lehéricy S, Brice A, Khachaturian ZS, Aisen PS, Dubois B. Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: a long-range point of view beyond 2020. Biochem Pharmacol 2013; 88:426-49. [PMID: 24275164 DOI: 10.1016/j.bcp.2013.11.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Recent advances in understanding the molecular mechanisms underlying various paths toward the pathogenesis of Alzheimer's disease (AD) has begun to provide new insight for interventions to modify disease progression. The evolving knowledge gained from multidisciplinary basic research has begun to identify new concepts for treatments and distinct classes of therapeutic targets; as well as putative disease-modifying compounds that are now being tested in clinical trials. There is a mounting consensus that such disease modifying compounds and/or interventions are more likely to be effectively administered as early as possible in the cascade of pathogenic processes preceding and underlying the clinical expression of AD. The budding sentiment is that "treatments" need to be applied before various molecular mechanisms converge into an irreversible pathway leading to morphological, metabolic and functional alterations that characterize the pathophysiology of AD. In light of this, biological indicators of pathophysiological mechanisms are desired to chart and detect AD throughout the asymptomatic early molecular stages into the prodromal and early dementia phase. A major conceptual development in the clinical AD research field was the recent proposal of new diagnostic criteria, which specifically incorporate the use of biomarkers as defining criteria for preclinical stages of AD. This paradigm shift in AD definition, conceptualization, operationalization, detection and diagnosis represents novel fundamental opportunities for the modification of interventional trial designs. This perspective summarizes not only present knowledge regarding biological markers but also unresolved questions on the status of surrogate indicators for detection of the disease in asymptomatic people and diagnosis of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Université Pierre et Marie Curie, Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Pavillon François Lhermitte, Hôpital de la Salpêtrière, Paris, France.
| | - Simone Lista
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany.
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Francesco Garaci
- Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology, and Radiotherapy, University of Rome "Tor Vergata", Rome, Italy; IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Cassino, Italy
| | - Robert Nisticò
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; IRCSS Santa Lucia Foundation, Rome, Italy
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; University College London Institute of Neurology, Queen Square, London, UK
| | - Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Raymond-Escourolle, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Hovagim Bakardjian
- IM2A - Institute of Memory and Alzheimer's Disease, Paris, France; IHU-A-ICM - Paris Institute of Translational Neurosciences Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | - Olivier Colliot
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UMR-S975 Paris, France; Inserm, U975, Paris, France; CNRS, UMR 7225, Paris, France; ICM - Institut du Cerveau et de la Moelle Épinière, Paris, France; INRIA, Aramis Team, Centre de Recherche Paris-Rocquencourt, France
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié Salpêtrière, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Karl Broich
- Federal Institute of Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Stéphane Lehéricy
- IHU-A-ICM - Paris Institute of Translational Neurosciences Pitié-Salpêtrière University Hospital, Paris, France; Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UMR-S975 Paris, France; Inserm, U975, Paris, France; CNRS, UMR 7225, Paris, France; ICM - Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Alexis Brice
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UMR-S975 Paris, France; Inserm, U975, Paris, France; CNRS, UMR 7225, Paris, France; ICM - Institut du Cerveau et de la Moelle Épinière, Paris, France; AP-HP, Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | | | - Paul S Aisen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié Salpêtrière, Paris, France; Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
646
|
Pamphlett R. Uptake of environmental toxicants by the locus ceruleus: a potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Med Hypotheses 2013; 82:97-104. [PMID: 24315447 DOI: 10.1016/j.mehy.2013.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Damage to the locus ceruleus, with a subsequent decrease of CNS noradrenaline, occurs in a wide range of neurodegenerative, demyelinating and psychiatric disorders. The cause of the initial locus ceruleus damage remains unknown. Recently, inorganic mercury was found to enter human locus ceruleus neurons selectively. This has led to the formulation of a new hypothesis as to the cause of these disorders. HYPOTHESIS Toxicants enter locus ceruleus neurons selectively, aided by the extensive exposure these neurons have to CNS capillaries, as well as by stressors that upregulate locus ceruleus activity. The resulting noradrenaline dysfunction affects a wide range of CNS cells and can trigger a number of neurodegenerative (Alzheimer's, Parkinson's and motor neuron disease), demyelinating (multiple sclerosis), and psychiatric (major depression and bipolar disorder) conditions. CONCLUSIONS This hypothesis proposes that environmental toxicants entering the locus ceruleus can give rise to a variety of CNS disorders. Proposals are made for experiments to gain further evidence for this hypothesis. If it is shown that toxicants in the locus ceruleus are responsible for these conditions, attempts can be made to prevent the toxicant exposures or to remove the toxicants from the nervous system.
Collapse
Affiliation(s)
- Roger Pamphlett
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|
647
|
Trujillo-Estrada L, Jimenez S, De Castro V, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, Navarro V, Sanchez-Varo R, Sanchez-Mejias E, Davila JC, Vizuete M, Gutierrez A, Vitorica J. In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer's disease pathology. Acta Neuropathol Commun 2013; 1:73. [PMID: 24252759 PMCID: PMC3833287 DOI: 10.1186/2051-5960-1-73] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by the abnormal accumulation of extracellular beta-amyloid (Abeta) plaques, intracellular hyperphosphorylated tau, progressive synaptic alterations, axonal dystrophies, neuronal loss and the deterioration of cognitive capabilities of patients. However, no effective disease-modifying treatment has been yet developed. In this work we have evaluated whether chronic lithium treatment could ameliorate the neuropathology evolution of our well characterized PS1M146LxAPPSwe-London mice model. Results Though beneficial effects of lithium have been previously described in different AD models, here we report a novel in vivo action of this compound that efficiently ameliorated AD-like pathology progression and rescued memory impairments by reducing the toxicity of Abeta plaques. Transgenic PS1M146LxAPPSwe-London mice, treated before the pathology onset, developed smaller plaques characterized by higher Abeta compaction, reduced oligomeric-positive halo and therefore with attenuated capacity to induce neuronal damage. Importantly, neuronal loss in hippocampus and entorhinal cortex was fully prevented. Our data also demonstrated that the axonal dystrophic area associated with lithium-modified plaques was highly reduced. Moreover, a significant lower accumulation of phospho-tau, LC3-II and ubiquitinated proteins was detected in treated mice. Our study highlights that this switch of plaque quality by lithium could be mediated by astrocyte activation and the release of heat shock proteins, which concentrate in the core of the plaques. Conclusions Our data demonstrate that the pharmacological in vivo modulation of the extracellular Abeta plaque compaction/toxicity is indeed possible and, in addition, might constitute a novel promising and innovative approach to develop a disease-modifying therapeutic intervention against AD.
Collapse
|
648
|
Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, Erb L, Petris MJ, Miller DC, Sun GY, Weisman GA. Loss of P2Y₂ nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer's disease. Mol Neurobiol 2013; 49:1031-42. [PMID: 24193664 DOI: 10.1007/s12035-013-8577-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
Abstract
Neuroinflammation is a prominent feature in Alzheimer's disease (AD) and activation of the brain's innate immune system, particularly microglia, has been postulated to both retard and accelerate AD progression. Recent studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is an important regulator of innate immunity by assisting in the recruitment of monocytes to injured tissue, neutrophils to bacterial infections and eosinophils to allergen-infected lungs. In this study, we investigated the role of the P2Y2R in progression of an AD-like phenotype in the TgCRND8 mouse model that expresses Swedish and Indiana mutations in amyloid precursor protein (APP). Our results indicate that P2Y 2 R expression is upregulated in TgCRND8 mouse brain within 10 weeks of age and then decreases after 25 weeks of age, as compared to littermate controls expressing low levels of the P2Y 2 R. TgCRND8 mice with homozygous P2Y 2 R deletion survive less than 5 weeks, whereas mice with heterozygous P2Y 2 R deletion survive for 12 weeks, a time point when TgCRND8 mice are fully viable. Heterozygous P2Y 2 R deletion in TgCRND8 mice increased β-amyloid (Aβ) plaque load and soluble Aβ1-42 levels in the cerebral cortex and hippocampus, decreased the expression of the microglial marker CD11b in these brain regions and caused neurological deficits within 10 weeks of age, as compared to age-matched TgCRND8 mice. These findings suggest that the P2Y2R is important for the recruitment and activation of microglial cells in the TgCRND8 mouse brain and that the P2Y2R may regulate neuroprotective mechanisms through microglia-mediated clearance of Aβ that when lost can accelerate the onset of an AD-like phenotype in the TgCRND8 mouse.
Collapse
Affiliation(s)
- Deepa Ajit
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO, 65211-7310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
649
|
Liu S, Breitbart A, Sun Y, Mehta PD, Boutajangout A, Scholtzova H, Wisniewski T. Blocking the apolipoprotein E/amyloid β interaction in triple transgenic mice ameliorates Alzheimer's disease related amyloid β and tau pathology. J Neurochem 2013; 128:577-91. [PMID: 24117759 DOI: 10.1111/jnc.12484] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022]
Abstract
Inheritance of the apolipoprotein E4 (apoE4) genotype has been identified as the major genetic risk factor for late-onset Alzheimer's disease (AD). Studies have shown that the binding between apoE and amyloid-β (Aβ) peptides occurs at residues 244-272 of apoE and residues 12-28 of Aβ. ApoE4 has been implicated in promoting Aβ deposition and impairing clearance of Aβ. We hypothesized that blocking the apoE/Aβ interaction would serve as an effective new approach to AD therapy. We have previously shown that treatment with Aβ12-28P can reduce amyloid plaques in APP/PS1 transgenic (Tg) mice and vascular amyloid in TgSwDI mice with congophilic amyloid angiopathy. In the present study, we investigated whether the Aβ12-28P elicits a therapeutic effect on tau-related pathology in addition to amyloid pathology using old triple transgenic AD mice (3xTg, with PS1M146V , APPSwe and tauP30IL transgenes) with established pathology from the ages of 21 to 26 months. We show that treatment with Aβ12-28P substantially reduces tau pathology both immunohistochemically and biochemically, as well as reducing the amyloid burden and suppressing the activation of astrocytes and microglia. These affects correlate with a behavioral amelioration in the treated Tg mice.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, New York University School of Medicine, ERSP, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
650
|
Lipinski B, Pretorius E. The role of iron-induced fibrin in the pathogenesis of Alzheimer's disease and the protective role of magnesium. Front Hum Neurosci 2013; 7:735. [PMID: 24194714 PMCID: PMC3810650 DOI: 10.3389/fnhum.2013.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022] Open
Abstract
Amyloid hypothesis of Alzheimer's disease (AD) has recently been challenged by the increasing evidence for the role of vascular and hemostatic components that impair oxygen delivery to the brain. One such component is fibrin clots, which, when they become resistant to thrombolysis, can cause chronic inflammation. It is not known, however, why some cerebral thrombi are resistant to the fibrinolytic degradation, whereas fibrin clots formed at the site of vessel wall injuries are completely, although gradually, removed to ensure proper wound healing. This phenomenon can now be explained in terms of the iron-induced free radicals that generate fibrin-like polymers remarkably resistant to the proteolytic degradation. It should be noted that similar insoluble deposits are present in AD brains in the form of aggregates with Abeta peptides that are resistant to fibrinolytic degradation. In addition, iron-induced fibrin fibers can irreversibly trap red blood cells (RBCs) and in this way obstruct oxygen delivery to the brain and induce chronic hypoxia that may contribute to AD. The RBC-fibrin aggregates can be disaggregated by magnesium ions and can also be prevented by certain polyphenols that are known to have beneficial effects in AD. In conclusion, we argue that AD can be prevented by: (1) limiting the dietary supply of trivalent iron contained in red and processed meat; (2) increasing the intake of chlorophyll-derived magnesium; and (3) consumption of foods rich in polyphenolic substances and certain aliphatic and aromatic unsaturated compounds. These dietary components are present in the Mediterranean diet known to be associated with the lower incidence of AD and other degenerative diseases.
Collapse
|