601
|
Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2915-24. [PMID: 21307387 DOI: 10.1093/jxb/erq464] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) or derivatives thereof have been identified as phytohormones, and shown to act as long-distance shoot-branching inhibitors. In Arabidopsis roots, SLs have been suggested to have a positive effect on root-hair (RH) elongation, mediated via the MAX2 F-box. Two other phytohormones, auxin and ethylene, have been shown to have positive effects on RH elongation. Hence, in the present work, Arabidopsis RH elongation was used as a bioassay to determine epistatic relations between SLs, auxin, and ethylene. Analysis of the effect of hormonal treatments on RH elongation in the wild type and hormone-signalling mutants suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs, whereas the effect of SLs on RH elongation requires ethylene synthesis. SL signalling was not needed for the auxin response, whereas auxin signalling was not necessary, but enhanced RH response to SLs, suggesting that the SL and auxin hormonal pathways converge for regulation of RH elongation. The ethylene pathway requirement for the RH response to SLs suggests that ethylene forms a cross-talk junction between the SL and auxin pathways.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | |
Collapse
|
602
|
Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 2011; 12:178. [PMID: 21473768 PMCID: PMC3082248 DOI: 10.1186/1471-2164-12-178] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/07/2011] [Indexed: 02/06/2023] Open
Abstract
Background Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes) has not been characterized in detail. Results In this study, 31 maize (Zea mays L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30). The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development. Conclusions Maize ARF gene family is expanded (31 genes) as compared to Arabidopsis (23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may be involved in seed development and germination.
Collapse
Affiliation(s)
- Hongyan Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
603
|
Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B. A framework integrating plant growth with hormones and nutrients. TRENDS IN PLANT SCIENCE 2011; 16:178-82. [PMID: 21393048 DOI: 10.1016/j.tplants.2011.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Accepted: 02/07/2011] [Indexed: 05/03/2023]
Abstract
It is well known that nutrient availability controls plant development. Moreover, plant development is finely tuned by a myriad of hormonal signals. Thus, it is not surprising to see increasing evidence of coordination between nutritional and hormonal signaling. In this opinion article, we discuss how nitrogen signals control the hormonal status of plants and how hormonal signals interplay with nitrogen nutrition. We further expand the discussion to include other nutrient-hormone pairs. We propose that nutrition and growth are linked by a multi-level, feed-forward cycle that regulates plant growth, development and metabolism via dedicated signaling pathways that mediate nutrient and hormonal regulation. We believe this model will provide a useful concept for past and future research in this field.
Collapse
Affiliation(s)
- Gabriel Krouk
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | | | | | | | | | | | | |
Collapse
|
604
|
Gleason C, Foley RC, Singh KB. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba. PLoS One 2011; 6:e17245. [PMID: 21408147 PMCID: PMC3050828 DOI: 10.1371/journal.pone.0017245] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/23/2011] [Indexed: 11/19/2022] Open
Abstract
Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5), only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA), with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.
Collapse
Affiliation(s)
- Cynthia Gleason
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Rhonda C. Foley
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
| | - Karam B. Singh
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Wembley, Western Australia, Australia
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
605
|
Lang Q, Jin C, Lai L, Feng J, Chen S, Chen J. Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol Biol Rep 2011; 38:1523-31. [PMID: 20853150 DOI: 10.1007/s11033-010-0260-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 09/02/2010] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are a newly identified class of non-coding small RNAs of about 21-24 nucleotides. They play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. To date, a total of 2,043 plant miRNAs are present in the miRNA Registry database (miRBase Release 14.0), and none for tobacco (Nicotiana tabacum). In this research, we used known plant miRNAs against both genomic survey sequence (GSS) and expressed sequence tags (EST) databases to search for potential miRNAs in tobacco. A total of 25 potential miRNAs were identified following a range of strict filtering criteria, and 33 potential targets of miRNAs were predicted by searching the tobacco Unigene database. Most of these miRNA targeting genes were predicted to encode transcription factors which play important roles in tobacco development. Additionally, real-time PCR assays were performed to profile the expression levels of 10 miRNAs after the infection of Cucumber mosaic virus (CMV) and Potato virus X (PVX). The results showed that symptom severity is correlated to the miRNA accumulation, and increased miR168 expression during virus infection is a common, plant- and virus-independent response.
Collapse
Affiliation(s)
- Qiulei Lang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
606
|
Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 2011. [PMID: 21290147 DOI: 10.1007/s00438‐011‐0602‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Auxin response transcription factors have been widely implicated in auxin-mediated responses during various developmental processes ranging from root and shoot development to flower and fruit development in plants. In order to use them for improvement of agronomic traits related to fruit, we need to have better understanding of their role during fruit development. In this study, 17 SlARF genes have been identified from tomato (Solanum lycopersicum), using various publically available tomato EST databases. Phylogenetic analysis of the 23 AtARF and 17 SlARF proteins results in formation of three major classes and a total of 14 sister pairs, including seven SlARF-AtARF, four SlARF-SlARF and three AtARF-AtARF sister pairs, providing insights into various orthologous relationships between AtARFs and SlARFs. Further, search for orthologs of these SlARFs resulted in identification of nine, ten, four and three ARF genes from potato, tobacco, N. benthemiana and pepper, respectively. A phylogenetic analysis of these genes, along with their orthologs from Solanaceae species, suggests the presence of a common set of the ARF genes in this family. Comparison of the expression of these SlARF genes in wild type and rin mutant provides an insight into their role during different stages of flower and fruit development. This study suggests that ARF genes may play diverse role during flower and fruit development. Comprehensive data generated here will provide a platform for identification of ARF genes and elucidation of their function during reproductive development stages in Solanaceae in general and fruit development in tomato, in particular.
Collapse
|
607
|
Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 2011; 285:245-60. [PMID: 21290147 DOI: 10.1007/s00438-011-0602-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 01/19/2011] [Indexed: 11/25/2022]
Abstract
Auxin response transcription factors have been widely implicated in auxin-mediated responses during various developmental processes ranging from root and shoot development to flower and fruit development in plants. In order to use them for improvement of agronomic traits related to fruit, we need to have better understanding of their role during fruit development. In this study, 17 SlARF genes have been identified from tomato (Solanum lycopersicum), using various publically available tomato EST databases. Phylogenetic analysis of the 23 AtARF and 17 SlARF proteins results in formation of three major classes and a total of 14 sister pairs, including seven SlARF-AtARF, four SlARF-SlARF and three AtARF-AtARF sister pairs, providing insights into various orthologous relationships between AtARFs and SlARFs. Further, search for orthologs of these SlARFs resulted in identification of nine, ten, four and three ARF genes from potato, tobacco, N. benthemiana and pepper, respectively. A phylogenetic analysis of these genes, along with their orthologs from Solanaceae species, suggests the presence of a common set of the ARF genes in this family. Comparison of the expression of these SlARF genes in wild type and rin mutant provides an insight into their role during different stages of flower and fruit development. This study suggests that ARF genes may play diverse role during flower and fruit development. Comprehensive data generated here will provide a platform for identification of ARF genes and elucidation of their function during reproductive development stages in Solanaceae in general and fruit development in tomato, in particular.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
608
|
Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. PLANT PHYSIOLOGY 2011; 155:1000-12. [PMID: 21156857 PMCID: PMC3032448 DOI: 10.1104/pp.110.165191] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/26/2010] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
609
|
Li Y, Dai X, Cheng Y, Zhao Y. NPY genes play an essential role in root gravitropic responses in Arabidopsis. MOLECULAR PLANT 2011; 4:171-9. [PMID: 20833732 PMCID: PMC3026118 DOI: 10.1093/mp/ssq052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants can sense the direction of gravity and orient their growth to ensure that roots are anchored in soil and that shoots grow upward. Gravitropism has been studied extensively using Arabidopsis genetics, but the exact mechanisms for gravitropism are not fully understood. Here, we demonstrate that five NPY genes play a key role in Arabidopsis root gravitropism. NPY genes were previously identified as regulators of auxin-mediated organogenesis in a genetic pathway with the AGC kinases PID, PID2, WAG1, and WAG2. We show that all five NPY genes are highly expressed in primary root tips. The single npy mutants do not display obvious gravitropism defects, but the npy1 npy2 npy3 npy4 npy5 quintuple mutants show dramatic gravitropic phenotypes. Systematic analysis of all the npy double, triple, and quadruple combinations demonstrates that the five NPY genes all contribute to gravitropism. Our work indicates that gravitropism, phototropism, and organogenesis use analogous mechanisms in which at least one AGC kinase, one NPH3/NPY gene, and one ARF are required.
Collapse
Affiliation(s)
- Yuanting Li
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA92093-0116, USA
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA92093-0116, USA
| | - Youfa Cheng
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA92093-0116, USA
- Present address: Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA92093-0116, USA
- To whom correspondence should be addressed. E-mail
| |
Collapse
|
610
|
Mangeon A, Bell EM, Lin WC, Jablonska B, Springer PS. Misregulation of the LOB domain gene DDA1 suggests possible functions in auxin signalling and photomorphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:221-33. [PMID: 20797997 PMCID: PMC2993911 DOI: 10.1093/jxb/erq259] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family encodes plant-specific transcription factors. In this report, the LBD gene DOWN IN DARK AND AUXIN1 (DDA1), which is closely related to LATERAL ORGAN BOUNDARIES (LOB) and ASYMMETRIC LEAVES2 (AS2), was characterized. DDA1 is expressed primarily in vascular tissues and its transcript levels were reduced by exposure to exogenous indole-3-acetic acid (IAA or auxin) and in response to dark exposure. Analysis of a T-DNA insertion line, dda1-1, in which the insertion resulted in misregulation of DDA1 transcripts in the presence of IAA and in the dark revealed possible functions in auxin response and photomorphogenesis. dda1-1 plants exhibited reduced sensitivity to auxin, produced fewer lateral roots, and displayed aberrant hypocotyl elongation in the dark. Phenotypes resulting from fusion of a transcriptional repression domain to DDA1 suggest that DDA1 may act as both a transcriptional activator and a transcriptional repressor depending on the context. These results indicate that DDA1 may function in both the auxin signalling and photomorphogenesis pathways.
Collapse
|
611
|
Del Bianco M, Kepinski S. Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol 2011; 3:a001578. [PMID: 21047914 DOI: 10.1101/cshperspect.a001578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Auxin is a simple molecule with a remarkable ability to control plant growth, differentiation, and morphogenesis. The mechanistic basis for this versatility appears to stem from the highly complex nature of the networks regulating auxin metabolism, transport and response. These heavily feedback-regulated and inter-dependent mechanisms are complicated in structure and complex in operation giving rise to a system with self-organizing properties capable of generating highly context-specific responses to auxin as a single, generic signal.
Collapse
Affiliation(s)
- Marta Del Bianco
- University of Leeds, Faculty of Biological Sciences, Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
612
|
Ariel FD, Diet A, Crespi M, Chan RL. The LOB-like transcription factor Mt LBD1 controls Medicago truncatula root architecture under salt stress. PLANT SIGNALING & BEHAVIOR 2010; 5:1666-8. [PMID: 21150260 PMCID: PMC3115130 DOI: 10.4161/psb.5.12.14020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lateral root (LR) formation and emergence are influenced by the environment and determines the architecture of the root system in the soil. Whereas auxins appear as the main hormone controlling LR initiation, patterning and emergence, abscisic acid (ABA) is the key hormone mediating the effect of the environment on root architecture. Hormone signaling act through transcription factors (TFs) and the Medicago truncatula LOB-like TF LBD1 was shown to be auxin-inducible but repressed by the HD-Zip I TF MtHB1 in response to salt stress and ABA during LR formation. Here, we demonstrate that the constitutive expression of Mt LBD1 in Medicago roots alters their global architecture when the plant is subjected to salt stress. Hence, LBD1 may control the final form of the root system in the soil environment.
Collapse
Affiliation(s)
- Federico D Ariel
- Instituto de Agrobiotecnología del Litoral; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional del Litoral; Santa Fe, Argentina
| | - Anouck Diet
- Institut des Sciences du Végétal; Centre National de la Recherche Scientifique; Gif sur Yvette, Paris, France
- Université Paris Diderot Paris 7; Les Grands Moulins; Paris, France
| | - Martin Crespi
- Institut des Sciences du Végétal; Centre National de la Recherche Scientifique; Gif sur Yvette, Paris, France
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional del Litoral; Santa Fe, Argentina
| |
Collapse
|
613
|
Benková E, Bielach A. Lateral root organogenesis - from cell to organ. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:677-83. [PMID: 20934368 DOI: 10.1016/j.pbi.2010.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Eva Benková
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.
| | | |
Collapse
|
614
|
Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KSV, Burd S, Ophir R, Kochanek B, Reid MS, Jiang CZ, Lers A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. PLANT PHYSIOLOGY 2010; 154:1929-56. [PMID: 20947671 PMCID: PMC2996037 DOI: 10.1104/pp.110.160697] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/10/2010] [Indexed: 05/18/2023]
Abstract
The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum 'Shiran 1335') flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal. Microarray analysis using the Affymetrix Tomato GeneChip revealed changes in expression, occurring prior to and during pedicel abscission, of many genes with possible regulatory functions. They included a range of auxin- and ethylene-related transcription factors, other transcription factors and regulatory genes that are transiently induced early, 2 h after flower removal, and a set of novel AZ-specific genes. All gene expressions initiated by flower removal and leading to pedicel abscission were inhibited by indole-3-acetic acid application, while 1-methylcyclopropene pretreatment inhibited only the ethylene-induced expressions, including those induced by wound-associated ethylene signals. These results confirm our hypothesis that acquisition of ethylene sensitivity in the AZ is associated with altered expression of auxin-regulated genes resulting from auxin depletion. Our results shed light on the regulatory control of abscission at the molecular level and further expand our knowledge of auxin-ethylene cross talk during the initial controlling stages of the process.
Collapse
Affiliation(s)
- Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
615
|
Abstract
The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz-Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | | |
Collapse
|
616
|
A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity. Curr Biol 2010; 20:1697-706. [DOI: 10.1016/j.cub.2010.09.007] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/03/2010] [Accepted: 08/27/2010] [Indexed: 11/22/2022]
|
617
|
Shen C, Wang S, Bai Y, Wu Y, Zhang S, Chen M, Guilfoyle TJ, Wu P, Qi Y. Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3971-81. [PMID: 20693412 PMCID: PMC2935870 DOI: 10.1093/jxb/erq208] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Auxin response factors (ARFs) are key regulators of plant growth and development. Through interaction with auxin/indole acetic acid (Aux/IAA) proteins, they influence the expression of auxin response genes. An ARF gene family has been predicted in rice, but the functions of the individual structural domains of the OsARFs remain obscure. Bioinformatics was used to analyse the position of the DNA-binding domain (DBD), middle region (MR), and C-terminal dimerization domain (CTD) of OsARFs, and experimentally confirmed the presence of a classical monopartite nuclear localization signal (NLS) in the DBD. The DBD was shown to contribute to nuclear localization of OsARF proteins in addition to its known DNA-binding function. Interactions between 14 integrated OsARFs and 15 OsIAA proteins were tested using yeast two-hybrid assays. It was found that eight OsARF activators interacted with the 15 OsIAA proteins, while six OsARF repressors did not. The interactions between the MR+CTD or CTD of 10 OsARFs and 15 OsIAA proteins were also tested and the results were consistent with those of each intact OsARF, although some slight differences in interaction intensity were observed by α-galactosidase quantitative assays. The truncated CTD of OsARF11 did not interact with any OsIAA, implying that the CTD is required for ARF-IAA dimerization, and that the MR influences the interaction intensity in yeast. A subset of the interactions in yeast were also observed in tobacco plants using firefly luciferase complementation imaging assays, indicating that these interactions are specific in plants, and might have a special role in the auxin signalling response. This study provides new insight into the structure of OsARF proteins and ARF-Aux/IAA interactions.
Collapse
Affiliation(s)
- ChenJia Shen
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - SuiKang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - YouHuang Bai
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - YunRong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - SaiNa Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tom J. Guilfoyle
- University of Missouri, Department of Biochemistry, 117 Schweitzer Hall, Columbia, MI 65211, USA
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - YanHua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
618
|
Mironova VV, Omelyanchuk NA, Ponomarenko PM, Ponomarenko MP, Kolchanov NA. Specific/nonspecific binding of TBP to promoter DNA of the auxin response factor genes in plants correlated with ARFs function on gene transcription (activator/repressor). DOKL BIOCHEM BIOPHYS 2010; 433:191-6. [PMID: 20714854 DOI: 10.1134/s1607672910040125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Indexed: 12/20/2022]
Affiliation(s)
- V V Mironova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
619
|
Fortunati A, Tassone P, Damasso M, Migliaccio F. Neutron irradiation affects the expression of genes involved in the response to auxin, senescence and oxidative stress in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:959-67. [PMID: 20505355 PMCID: PMC3115171 DOI: 10.4161/psb.5.8.11768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/09/2010] [Indexed: 05/24/2023]
Abstract
We report, in Arabidopsis thaliana plants, the effect of neutron irradiation on the transcription of a set of genes belonging to different physiological groups: auxin action, senescence, oxidative stress, and some aspects of photosynthesis. The results indicated that, in the wild-types, the effect on the ARF1, ARF2, and 19 genes was of down-regulation, whereas of the tested AUX/IAA only AUX/IAA7 showed up-regulation. Different results were obtained as regards the irradiation of the auxin transport mutants aux1 and eir1, because in these cases the ARF genes were up-regulated, whereas AUX/IAA7 was down-regulated in eir1. On the other hand, the senescence activated genes SAG12 and SAG13, and those connected to oxidative stress were up-regulated in the wild-type, but down-regulated in aux1. The gene CAB1, connected to photosynthesis, was also down-regulated in the wild-type, but up-regulated in aux1. Gene expression recovered in many cases almost to the initial condition in a time lapse of 24 hours, even though some effect persisted for a longer time. In particular, the state of juvenility of arf2 was extended by irradiation, whereas, in all the other cases, senescence was accelerated. The research indicates that through mutant selection or genetic engineering a true possibility exists of producing organism more suitable for life in space.
Collapse
Affiliation(s)
- Alessio Fortunati
- Institute of Agro-environmental and Forest Biology (IBAF), Consiglio Nazionale delle Ricerche, Monterotondo, Rome, Italy
| | | | | | | |
Collapse
|
620
|
Hwang I, Kim SY, Kim CS, Park Y, Tripathi GR, Kim SK, Cheong H. Over-expression of the IGI1 leading to altered shoot-branching development related to MAX pathway in Arabidopsis. PLANT MOLECULAR BIOLOGY 2010; 73:629-41. [PMID: 20473553 PMCID: PMC2898107 DOI: 10.1007/s11103-010-9645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 04/28/2010] [Indexed: 05/07/2023]
Abstract
Shoot branching and growth are controlled by phytohormones such as auxin and other components in Arabidopsis. We identified a mutant (igi1) showing decreased height and bunchy branching patterns. The phenotypes reverted to the wild type in response to RNA interference with the IGI1 gene. Histochemical analysis by GUS assay revealed tissue-specific gene expression in the anther and showed that the expression levels of the IGI1 gene in apical parts, including flowers, were higher than in other parts of the plants. The auxin biosynthesis component gene, CYP79B2, was up-regulated in igi1 mutants and the IGI1 gene was down-regulated by IAA treatment. These results indicated that there is an interplay regulation between IGI1 and phytohormone auxin. Moreover, the expression of the auxin-related shoot branching regulation genes, MAX3 and MAX4, was down-regulated in igi1 mutants. Taken together, these results indicate that the overexpression of the IGI1 influenced MAX pathway in the shoot branching regulation.
Collapse
Affiliation(s)
- Indeok Hwang
- Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University, Gwangju, 501-759 Korea
| | - Soo Young Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, Chonnam National University, Gwangju, 500-757 Korea
| | - Yoonkyung Park
- Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University, Gwangju, 501-759 Korea
| | - Giri Raj Tripathi
- Central Department of Biotechnology, Tribhuvan University, Katgmandu, Nepal
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, 156-756 Korea
| | - Hyeonsook Cheong
- Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University, Gwangju, 501-759 Korea
| |
Collapse
|
621
|
Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. THE PLANT CELL 2010; 22:2171-83. [PMID: 20675575 PMCID: PMC2929095 DOI: 10.1105/tpc.110.074823] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/31/2010] [Accepted: 07/15/2010] [Indexed: 05/18/2023]
Abstract
The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.
Collapse
Affiliation(s)
- Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, CP 3000 Santa Fe, Argentina
| | - Anouck Diet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
- Université Paris Diderot Paris 7, Les Grands Moulins, F-75205 Paris Cedex 13, France
| | - Marion Verdenaud
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, 31326 Castanet-Tolosan, France
| | - Véronique Gruber
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
- Université Paris Diderot Paris 7, Les Grands Moulins, F-75205 Paris Cedex 13, France
| | - Florian Frugier
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
| | - Raquel Chan
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, CP 3000 Santa Fe, Argentina
| | - Martin Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F91198 Gif sur Yvette, France
- Address correspondence to
| |
Collapse
|
622
|
Delker C, Pöschl Y, Raschke A, Ullrich K, Ettingshausen S, Hauptmann V, Grosse I, Quint M. Natural variation of transcriptional auxin response networks in Arabidopsis thaliana. THE PLANT CELL 2010; 22:2184-200. [PMID: 20622145 PMCID: PMC2929100 DOI: 10.1105/tpc.110.073957] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/19/2010] [Accepted: 06/18/2010] [Indexed: 05/19/2023]
Abstract
Natural variation has been observed for various traits in Arabidopsis thaliana. Here, we investigated natural variation in the context of physiological and transcriptional responses to the phytohormone auxin, a key regulator of plant development. A survey of the general extent of natural variation to auxin stimuli revealed significant physiological variation among 20 genetically diverse natural accessions. Moreover, we observed dramatic variation on the global transcriptome level after induction of auxin responses in seven accessions. Although we detect isolated cases of major-effect polymorphisms, sequencing of signaling genes revealed sequence conservation, making selective pressures that favor functionally different protein variants among accessions unlikely. However, coexpression analyses of a priori defined auxin signaling networks identified variations in the transcriptional equilibrium of signaling components. In agreement with this, cluster analyses of genome-wide expression profiles followed by analyses of a posteriori defined gene networks revealed accession-specific auxin responses. We hypothesize that quantitative distortions in the ratios of interacting signaling components contribute to the detected transcriptional variation, resulting in physiological variation of auxin responses among accessions.
Collapse
Affiliation(s)
- Carolin Delker
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Yvonne Pöschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anja Raschke
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Kristian Ullrich
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Stefan Ettingshausen
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Valeska Hauptmann
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Quint
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, 06120 Halle (Saale), Germany
- Address correspondence to
| |
Collapse
|
623
|
Ferro N, Bredow T, Jacobsen HJ, Reinard T. Route to Novel Auxin: Auxin Chemical Space toward Biological Correlation Carriers. Chem Rev 2010; 110:4690-708. [DOI: 10.1021/cr800229s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Noel Ferro
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Bredow
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Hans-Jorg Jacobsen
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Reinard
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| |
Collapse
|
624
|
Ikeyama Y, Tasaka M, Fukaki H. RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:865-75. [PMID: 20230485 DOI: 10.1111/j.1365-313x.2010.04199.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Lateral root (LR) formation is important for the establishment of root architecture in higher plants. Recent studies have revealed that LR formation is regulated by an auxin signaling pathway that depends on auxin response factors ARF7 and ARF19, and auxin/indole-3-acetic acid (Aux/IAA) proteins including SOLITARY-ROOT (SLR)/IAA14. To understand the molecular mechanisms of LR formation, we isolated a recessive mutant rlf (reduced lateral root formation) in Arabidopsis thaliana. The rlf-1 mutant showed reduction of not only emerged LRs but also LR primordia. Analyses using cell-cycle markers indicated that the rlf-1 mutation inhibits the first pericycle cell divisions involved in LR initiation. The rlf-1 mutation did not affect auxin-induced root growth inhibition but did affect LR formation over a wide range of auxin concentrations. However, the rlf-1 mutation had almost no effect on auxin-inducible expression of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16/ASL18) and LBD29/ASL16 genes, which are downstream targets of ARF7/19 for LR formation. These results indicate that ARF7/19-mediated auxin signaling is not blocked by the rlf-1 mutation. We found that the RLF gene encodes At5g09680, a protein with a cytochrome b(5)-like heme/steroid binding domain. RLF is ubiquitously expressed in almost all organs, and the protein localizes in the cytosol. These results, together with analysis of the genetic interaction between the rlf-1 and arf7/19 mutations, indicate that RLF is a cytosolic protein that positively controls the early cell divisions involved in LR initiation, independent of ARF7/19-mediated auxin signaling.
Collapse
Affiliation(s)
- Yoshifumi Ikeyama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | |
Collapse
|
625
|
Abstract
A plant's roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.
Collapse
Affiliation(s)
- Paul Overvoorde
- Department of Biology, Macalester College, St. Paul, MN 55105, USA
| | | | | |
Collapse
|
626
|
Calderon-Villalobos LI, Tan X, Zheng N, Estelle M. Auxin perception--structural insights. Cold Spring Harb Perspect Biol 2010; 2:a005546. [PMID: 20504967 DOI: 10.1101/cshperspect.a005546] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identity of the auxin receptor(s) and the mechanism of auxin perception has been a subject of intense interest since the discovery of auxin almost a century ago. The development of genetic approaches to the study of plant hormone signaling led to the discovery that auxin acts by promoting degradation of transcriptional repressors called Aux/IAA proteins. This process requires a ubiquitin protein ligase (E3) called SCF(TIR1) and related SCF complexes. Surprisingly, auxin works by directly binding to TIR1, the F-box protein subunit of this SCF. Structural studies demonstrate that auxin acts like a "molecular glue," to stabilize the interaction between TIR1 and the Aux/IAA substrate. These exciting results solve an old problem in plant biology and reveal new mechanisms for E3 regulation and hormone perception.
Collapse
|
627
|
Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 2010; 10:533-46. [PMID: 20499123 DOI: 10.1007/s10142-010-0174-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense responses in Arabidopsis and rice, but they have not been studied in sorghum. In the present paper, the chromosome distribution, gene duplication, promoters, intron/exon, and phylogenic relationships of Aux/IAA, ARF, GH3, and LBD genes in sorghum are presented. Furthermore, real-time PCR analysis demonstrated these genes are differently expressed in leaf/root of sorghum and indicated the expression profile of these gene families under IAA, brassinosteroid (BR), salt, and drought treatments. The SbGH3 and SbLBD genes, expressed in low level under natural condition, were highly induced by salt and drought stress consistent with their products being involved in both abiotic stresses. Three genes, SbIAA1, SbGH3-13, and SbLBD32, were highly induced under all the four treatments, IAA, BR, salt, and drought. The analysis provided new evidence for role of auxin in stress response, implied there are cross talk between auxin, BR and abiotic stress signaling pathways.
Collapse
Affiliation(s)
- SuiKang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
628
|
Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:416-28. [PMID: 20136729 DOI: 10.1111/j.1365-313x.2010.04164.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) have emerged as key regulators of gene expression at the post-transcriptional level in both plants and animals. However, the specific functions of MIRNAs (MIRs) and the mechanisms regulating their expression are not fully understood. Previous studies showed that miR160 negatively regulates three genes that encode AUXIN RESPONSE FACTORs (ARF10, -16, and -17). Here, we characterized floral organs in carpels (foc), an Arabidopsis mutant with a Ds transposon insertion in the 3' regulatory region of MIR160a. foc plants exhibit a variety of intriguing phenotypes, including serrated rosette leaves, irregular flowers, floral organs inside siliques, reduced fertility, aberrant seeds, and viviparous seedlings. Detailed phenotypic analysis showed that abnormal cell divisions in the basal embryo domain and suspensor led to diverse defects during embryogenesis in foc plants. Further analysis showed that the 3' region was required for the expression of MIR160a. The accumulation of mature miR160 was greatly reduced in foc inflorescences. In addition, the expression pattern of ARF16 and -17 was altered during embryo development in foc plants. foc plants were also deficient in auxin responses. Moreover, auxin was involved in regulating the expression of MIR160a through its 3' regulatory region. Our study not only provides insight into the molecular mechanism of embryo development via MIR160a-regulated ARFs, but also reveals the mechanism regulating MIR160a expression.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | |
Collapse
|
629
|
Parizot B, De Rybel B, Beeckman T. VisuaLRTC: a new view on lateral root initiation by combining specific transcriptome data sets. PLANT PHYSIOLOGY 2010; 153:34-40. [PMID: 20219832 PMCID: PMC2862419 DOI: 10.1104/pp.109.148676] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 03/03/2010] [Indexed: 05/21/2023]
Abstract
Lateral root initiation and development has been increasingly studied over the last two decades. This postembryonic organogenic process guarantees the spatial development and plasticity of the root system in response to environmental cues and is crucial for the plant's growth and development. Several independent large-scale transcriptome studies in different species resulted in a wealth of data that can be instructive to understand this process at the molecular level. Here, we present an easy and flexible spreadsheet tool, called Visual Lateral Root Transcriptome Compendium, that combines publicly available data sets involved in Arabidopsis (Arabidopsis thaliana) lateral root development and links them with additional information on tissue-specific expression and cell cycle involvement, thus allowing the extraction of novel information from existing data sets in a visual and user-friendly manner. We believe that this tool will be valuable not only for root biologists but also for a broader range of scientists as it enables a fast indication of the potential involvement of a given gene during de novo organogenesis.
Collapse
|
630
|
Abstract
With global warming, plant high temperature injury is becoming an increasingly serious problem. In wheat, barley, and various other commercially important crops, the early phase of anther development is especially susceptible to high temperatures. Activation of auxin biosynthesis with increased temperatures has been reported in certain plant tissues. In contrast, we here found that under high temperature conditions, endogenous auxin levels specifically decreased in the developing anthers of barley and Arabidopsis. In addition, expression of the YUCCA auxin biosynthesis genes was repressed by increasing temperatures. Application of auxin completely reversed male sterility in both plant species. These findings suggest that tissue-specific auxin reduction is the primary cause of high temperature injury, which leads to the abortion of pollen development. Thus, the application of auxin may help sustain steady yields of crops despite future climate change.
Collapse
|
631
|
Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. THE PLANT CELL 2010; 22:1104-17. [PMID: 20363771 PMCID: PMC2879756 DOI: 10.1105/tpc.109.072553] [Citation(s) in RCA: 392] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/16/2010] [Accepted: 03/22/2010] [Indexed: 05/18/2023]
Abstract
Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown. Here, we demonstrate that miR390, TAS3-derived trans-acting short-interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORS (ARFs) form an auxin-responsive regulatory network controlling lateral root growth. Spatial expression analysis using reporter gene fusions, tasi/miRNA sensors, and mutant analysis showed that miR390 is specifically expressed at the sites of lateral root initiation where it triggers the biogenesis of tasiRNAs. These tasiRNAs inhibit ARF2, ARF3, and ARF4, thus releasing repression of lateral root growth. In addition, ARF2, ARF3, and ARF4 affect auxin-induced miR390 accumulation. Positive and negative feedback regulation of miR390 by ARF2, ARF3, and ARF4 thus ensures the proper definition of the miR390 expression pattern. This regulatory network maintains ARF expression in a concentration range optimal for specifying the timing of lateral root growth, a function similar to its activity during leaf development. These results also show how small regulatory RNAs integrate with auxin signaling to quantitatively regulate organ growth during development.
Collapse
Affiliation(s)
- Elena Marin
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Energie Atomique Cadarache, Centre National de la Recherche Scientifique, Université Aix Marseille, 13108 St. Paul-lez-Durance, France
| | - Virginie Jouannet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | - Aurélie Herz
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Energie Atomique Cadarache, Centre National de la Recherche Scientifique, Université Aix Marseille, 13108 St. Paul-lez-Durance, France
| | - Annemarie S. Lokerse
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Herve Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | - Laurent Nussaume
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Energie Atomique Cadarache, Centre National de la Recherche Scientifique, Université Aix Marseille, 13108 St. Paul-lez-Durance, France
| | - Martin D. Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | - Alexis Maizel
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
- Address correspondence to
| |
Collapse
|
632
|
Abstract
Plants continuously generate new tissues and organs through the activity of populations of undifferentiated stem cells, called meristems. Here, we discuss the so-called shoot apical meristem (SAM), which generates all the aerial parts of the plant. It has been known for many years that auxin plays a central role in the functioning of this meristem. Auxin is not homogeneously distributed at the SAM and it is thought that this distribution is interpreted in terms of differential gene expression and patterned growth. In this context, auxin transporters of the PIN and AUX families, creating auxin maxima and minima, are crucial regulators. However, auxin transport is not the only factor involved. Auxin biosynthesis genes also show specific, patterned activities, and local auxin synthesis appears to be essential for meristem function as well. In addition, auxin perception and signal transduction defining the competence of cells to react to auxin, add further complexity to the issue. To unravel this intricate signaling network at the SAM, systems biology approaches, involving not only molecular genetics but also live imaging and computational modeling, have become increasingly important.
Collapse
|
633
|
Abstract
Like animals, plants have evolved into complex organisms. Developmental cohesion between tissues and cells is possible due to signaling molecules (messengers) like hormones. The first hormone discovered in plants was auxin. This phytohormone was first noticed because of its involvement in the response to directional light. Nowadays, auxin has been established as a central key player in the regulation of plant growth and development and in responses to environmental changes. At the cellular level, auxin controls division, elongation, and differentiation as well as the polarity of the cell. Auxin, to integrate so many different signals, needs to be regulated at many different levels. A tight regulation of auxin synthesis, activity, degradation as well as transport has been demonstrated. Another possibility to modulate auxin signaling is to modify the capacity of response of the cells by expressing differentially the signaling components. In this review, we provide an overview of the present knowledge in auxin biology, with emphasis on root development.
Collapse
Affiliation(s)
- Alexandre Tromas
- Centre National de la Recherche Scientifique, UPR 2355, institut des sciences du végétal, 1 avenue de la Terrasse, Gif-sur-Yvette cedex, France
| | | |
Collapse
|
634
|
Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 2010; 464:913-6. [DOI: 10.1038/nature08836] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/20/2010] [Indexed: 12/30/2022]
|
635
|
Zádníková P, Petrásek J, Marhavy P, Raz V, Vandenbussche F, Ding Z, Schwarzerová K, Morita MT, Tasaka M, Hejátko J, Van Der Straeten D, Friml J, Benková E. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 2010; 137:607-17. [PMID: 20110326 DOI: 10.1242/dev.041277] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.
Collapse
Affiliation(s)
- Petra Zádníková
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
636
|
Abstract
Monocots are known to respond differently to auxinic herbicides; hence, certain herbicides kill broadleaf (i.e., dicot) weeds while leaving lawns (i.e., monocot grasses) intact. In addition, the characters that distinguish monocots from dicots involve structures whose development is controlled by auxin. However, the molecular mechanisms controlling auxin biosynthesis, homeostasis, transport, and signal transduction appear, so far, to be conserved between monocots and dicots, although there are differences in gene copy number and expression leading to diversification in function. This article provides an update on the conservation and diversification of the roles of genes controlling auxin biosynthesis, transport, and signal transduction in root, shoot, and reproductive development in rice and maize.
Collapse
Affiliation(s)
- Paula McSteen
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
637
|
Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S, Fukaki H, Ohta H. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. PLANT MOLECULAR BIOLOGY 2010; 72:533-44. [PMID: 20043234 DOI: 10.1007/s11103-009-9589-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/09/2009] [Indexed: 05/02/2023]
Abstract
In higher plants, phosphate (Pi) deficiency induces the replacement of phospholipids with the nonphosphorous glycolipids digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG). Genes involved in membrane lipid remodeling are coactivated in response to Pi starvation, but the mechanisms that guide this response are largely unknown. Previously, we reported the importance of auxin transport for DGDG accumulation during Pi starvation. To understand the role of auxin signaling in Arabidopsis membrane lipid remodeling, we analyzed slr-1, a gain-of-function mutant of IAA14 (a repressor of auxin signaling), and arf7arf19, a loss-of-function mutant of auxin response factors ARF7 and ARF19. In slr-1 and arf7arf19, Pi stress-induced accumulation of DGDG and SQDG was suppressed. Reduced upregulation of glycolipid synthase and phospholipase genes in these mutants under Pi-deficient conditions indicates that IAA14 and ARF7/19 affect membrane lipid remodeling at the level of transcription. Pi stress-dependent induction of a non-protein-coding gene, IPS1, was also lower in slr-1 and arf7arf19, whereas expression of At4 (another Pi stress-inducible non-protein-coding gene), anthocyanin accumulation, and phosphodiesterase induction were not reduced in the shoot. High free Pi content was observed in slr-1 and arf7arf19 even under Pi-deficient conditions, suggesting that Pi homeostasis during Pi starvation is altered in these mutants. These results demonstrate a requirement of auxin signaling mediated by IAA14 and ARF7/19 for low-Pi adaptation in Arabidopsis.
Collapse
Affiliation(s)
- Takafumi Narise
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
638
|
Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1419-30. [PMID: 20164142 PMCID: PMC2837260 DOI: 10.1093/jxb/erq010] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/27/2009] [Accepted: 01/13/2010] [Indexed: 05/18/2023]
Abstract
Auxin regulates a variety of physiological and developmental processes in plants. Although auxin acts as a suppressor of leaf senescence, its exact role in this respect has not been clearly defined, aside from circumstantial evidence. It was found here that ARF2 functions in the auxin-mediated control of Arabidopsis leaf longevity, as discovered by screening EMS mutant pools for a delayed leaf senescence phenotype. Two allelic mutations, ore14-1 and 14-2, caused a highly significant delay in all senescence parameters examined, including chlorophyll content, the photochemical efficiency of photosystem II, membrane ion leakage, and the expression of senescence-associated genes. A delay of senescence symptoms was also observed under various senescence-accelerating conditions, where detached leaves were treated with darkness, phytohormones, or oxidative stress. These results indicate that the gene defined by these mutations might be a key regulatory genetic component controlling functional leaf senescence. Map-based cloning of ORE14 revealed that it encodes ARF2, a member of the auxin response factor (ARF) protein family, which modulates early auxin-induced gene expression in plants. The ore14/arf2 mutation also conferred an increased sensitivity to exogenous auxin in hypocotyl growth inhibition, thereby demonstrating that ARF2 is a repressor of auxin signalling. Therefore, the ore14/arf2 lesion appears to cause reduced repression of auxin signalling with increased auxin sensitivity, leading to delayed senescence. Altogether, our data suggest that ARF2 positively regulates leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Pyung Ok Lim
- Department of Science Education, Jeju National University, 66 Jejudaehakno, Jeju, 690-756, Korea
| | - In Chul Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Junyoung Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Hyo Jung Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Jong Sang Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| | - Hye Ryun Woo
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
- Department of Biology, Chungnam National University, Daejeon, 305-764, Korea
| | - Hong Gil Nam
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
- National Core Research Center for Systems Bio-Dynamics, Pohang University of Science and Technology, Hyojadong, Pohang, Kyungbuk, 790-784, Korea
| |
Collapse
|
639
|
Armengaud P, Breitling R, Amtmann A. Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. MOLECULAR PLANT 2010; 3:390-405. [PMID: 20339157 PMCID: PMC2845782 DOI: 10.1093/mp/ssq012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/27/2009] [Indexed: 05/18/2023]
Abstract
The ability to adjust growth and development to the availability of mineral nutrients in the soil is an essential life skill of plants but the underlying signaling pathways are poorly understood. In Arabidopsis thaliana, shortage of potassium (K) induces a number of genes related to the phytohormone jasmonic acid (JA). Using comparative microarray analysis of wild-type and coi1-16 mutant plants, we classified transcriptional responses to K with respect to their dependence on COI1, a central component of oxylipin signaling. Expression profiles obtained in a short-term experiment clearly distinguished between COI1-dependent and COI1-independent K-responsive genes, and identified both known and novel targets of JA-COI1-signaling. During long-term K-deficiency, coi-16 mutants displayed de novo responses covering similar functions as COI1-targets except for defense. A putative role of JA for enhancing the defense potential of K-deficient plants was further supported by the observation that plants grown on low K were less damaged by thrips than plants grown with sufficient K.
Collapse
Affiliation(s)
- Patrick Armengaud
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Present address: Institut National de la Recherche Agronomique, Unité de nutrition azotée des plantes, RD10, 78026 Versailles Cedex, France
| | - Rainer Breitling
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Groningen Bioinformatics Centre, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Anna Amtmann
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- To whom correspondence should be addressed at Plant Science Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. E-mail , fax +44.141.3304447, tel. +44.141.3305393
| |
Collapse
|
640
|
O'Malley RC, Ecker JR. Linking genotype to phenotype using the Arabidopsis unimutant collection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:928-40. [PMID: 20409268 DOI: 10.1111/j.1365-313x.2010.04119.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The large collections of Arabidopsis thaliana sequence-indexed T-DNA insertion mutants are among the most important resources to emerge from the sequencing of the genome. Several laboratories around the world have used the Arabidopsis reference genome sequence to map T-DNA flanking sequence tags (FST) for over 325,000 T-DNA insertion lines. Over the past decade, phenotypes identified with T-DNA-induced mutants have played a critical role in advancing both basic and applied plant research. These widely used mutants are an invaluable tool for direct interrogation of gene function. However, most lines are hemizygous for the insertion, necessitating a genotyping step to identify homozygous plants for the quantification of phenotypes. This situation has limited the application of these collections for genome-wide screens. Isolating multiple homozygous insert lines for every gene in the genome would make it possible to systematically test the phenotypic consequence of gene loss under a wide variety of conditions. One major obstacle to achieving this goal is that 12% of genes have no insertion and 8% are only represented by a single allele. Generation of additional mutations to achieve full genome coverage has been slow and expensive since each insertion is sequenced one at a time. Recent advances in high-throughput sequencing technology open up a potentially faster and cost-effective means to create new, very large insertion mutant populations for plants or animals. With the combination of new tools for genome-wide studies and emerging phenotyping platforms, these sequence-indexed mutant collections are poised to have a larger impact on our understanding of gene function.
Collapse
Affiliation(s)
- Ronan C O'Malley
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92307, USA
| | | |
Collapse
|
641
|
Abstract
Like animals, the mature plant body develops via successive sets of instructions that determine cell fate, patterning, and organogenesis. In the coordination of various developmental programs, several plant hormones play decisive roles, among which auxin is the best-documented hormonal signal. Despite the broad range of processes influenced by auxin, how such a single signaling molecule can be translated into a multitude of distinct responses remains unclear. In Arabidopsis thaliana, lateral root development is a classic example of a developmental process that is controlled by auxin at multiple stages. Therefore, we used lateral root formation as a model system to gain insight into the multifunctionality of auxin. We were able to demonstrate the complementary and sequential action of two discrete auxin response modules, the previously described Solitary Root/indole-3-Acetic Acid (IAA)14-Auxin Response Factor (ARF)7-ARF19-dependent lateral root initiation module and the successive Bodenlos/IAA12-Monopteros/ARF5-dependent module, both of which are required for proper organogenesis. The genetic framework in which two successive auxin response modules control early steps of a developmental process adds an extra dimension to the complexity of auxin's action.
Collapse
|
642
|
Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S. Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. PLANT & CELL PHYSIOLOGY 2010; 51:164-75. [PMID: 20007966 DOI: 10.1093/pcp/pcp176] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two mutations in Arabidopsis thaliana, auxin response factor6 (arf6) and arf8, concomitantly delayed the elongation of floral organs and subsequently delayed the opening of flower buds. This phenotype is shared with the jasmonic acid (JA)-deficient mutant dad1, and, indeed, the JA level of arf6 arf8 flower buds was decreased. Among JA biosynthetic genes, the expression level of DAD1 (DEFECTIVE IN ANTHER DEHISCENCE1) was markedly decreased in the double mutant, suggesting that ARF6 and ARF8 are required for activation of DAD1 expression. The double mutant arf6 arf8 also showed other developmental defects in flowers, such as aberrant vascular patterning and lack of epidermal cell differentiation in petals. We found that class 1 KNOX genes were expressed ectopically in the developing floral organs of arf6 arf8, and mutations in any of the class 1 KNOX genes (knat2, knat6, bp and hemizygous stm) partially suppressed the defects in the double mutant. Furthermore, ectopic expression of the STM gene caused a phenotype similar to that of arf6 arf8, including the down-regulation of DAD1 expression. These results suggested that most defects in arf6 arf8 are attributable to abnormal expression of class 1 KNOX genes. The expression of AS1 and AS2 was not affected in arf6 arf8 flowers, and as1 and arf6 arf8 additively increased the expression of class 1 KNOX genes. We concluded that ARF6 and ARF8, in parallel with AS1 and AS2, repress the class 1 KNOX genes in developing floral organs to allow progression of the development of these organs.
Collapse
Affiliation(s)
- Ryo Tabata
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
643
|
De Rybel B, Audenaert D, Beeckman T, Kepinski S. The past, present, and future of chemical biology in auxin research. ACS Chem Biol 2009; 4:987-98. [PMID: 19736989 DOI: 10.1021/cb9001624] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Research into the plant hormone auxin has always been tightly linked with the use of small molecules. In fact, most of the known players in auxin signaling and transport in the model plant Arabidopsis thaliana were identified by screening for resistance to auxin analogues. The use of high-throughput screening technologies has since yielded many novel molecules, opening the way for the identification of new target proteins to further elucidate known pathways. Here, we give an overview of well-established and novel molecules used in auxin research and highlight the current status and future perspectives of chemical biology approaches to auxin biology.
Collapse
Affiliation(s)
- Bert De Rybel
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Stefan Kepinski
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
644
|
Abstract
Auxin regulates most aspects of plant growth and development. The hormone is perceived by the TIR1/AFB family of F-box proteins acting in concert with the Aux/IAA transcriptional repressors. Arabidopsis plants that lack members of the TIR1/AFB family are auxin resistant and display a variety of growth defects. However, little is known about the functional differences between individual members of the family. Phylogenetic studies reveal that the TIR1/AFB proteins are conserved across land plant lineages and fall into four clades. Three of these subgroups emerged before separation of angiosperms and gymnosperms whereas the last emerged before the monocot-eudicot split. This evolutionary history suggests that the members of each clade have distinct functions. To explore this possibility in Arabidopsis, we have analyzed a range of mutant genotypes, generated promoter swap transgenic lines, and performed in vitro binding assays between individual TIR1/AFB and Aux/IAA proteins. Our results indicate that the TIR1/AFB proteins have distinct biochemical activities and that TIR1 and AFB2 are the dominant auxin receptors in the seedling root. Further, we demonstrate that TIR1, AFB2, and AFB3, but not AFB1 exhibit significant posttranscriptional regulation. The microRNA miR393 is expressed in a pattern complementary to that of the auxin receptors and appears to regulate TIR1/AFB expression. However our data suggest that this regulation is complex. Our results suggest that differences between members of the auxin receptor family may contribute to the complexity of auxin response.
Collapse
|
645
|
Abstract
Plant hormones control most aspects of the plant life cycle by regulating genome expression. Expression of auxin-responsive genes involves interactions among auxin-responsive DNA sequence elements, transcription factors and trans-acting transcriptional repressors. Transcriptional output from these auxin signaling complexes is regulated by proteasome-mediated degradation that is triggered by interaction with auxin receptor-E3 ubiquitin ligases such SCF(TIR1). Auxin signaling components are conserved throughout land plant evolution and have proliferated and specialized to control specific developmental processes.
Collapse
Affiliation(s)
- Elisabeth J Chapman
- Division of Biology, University of California, San Diego, La Jolla, California 92093-0116, USA.
| | | |
Collapse
|
646
|
Lee HW, Kim NY, Lee DJ, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1377-89. [PMID: 19717544 PMCID: PMC2773067 DOI: 10.1104/pp.109.143685] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes encode proteins harboring a conserved amino acid domain, referred to as the LOB (for lateral organ boundaries) domain. While recent studies have revealed developmental functions of some LBD genes in Arabidopsis (Arabidopsis thaliana) and in crop plants, the biological functions of many other LBD genes remain to be determined. In this study, we have demonstrated that the lbd18 mutant evidenced a reduced number of lateral roots and that lbd16 lbd18 double mutants exhibited a dramatic reduction in the number of lateral roots compared with lbd16 or lbd18. Consistent with this observation, significant beta-glucuronidase (GUS) expression in Pro(LBD18):GUS seedlings was detected in lateral root primordia as well as in the emerged lateral roots. Whereas the numbers of primordia of lbd16, lbd18, and lbd16 lbd18 mutants were similar to those observed in the wild type, the numbers of emerged lateral roots of lbd16 and lbd18 single mutants were reduced significantly. lbd16 lbd18 double mutants exhibited additively reduced numbers of emerged lateral roots compared with single mutants. This finding indicates that LBD16 and LBD18 may function in the initiation and emergence of lateral root formation via a different pathway. LBD18 was shown to be localized into the nucleus. We determined whether LBD18 functions in the nucleus using a steroid regulator-inducible system in which the nuclear translocation of LBD18 can be regulated by dexamethasone in the wild-type, lbd18, and lbd16 lbd18 backgrounds. Whereas LBD18 overexpression in the wild-type background induced lateral root formation to some degree, other lines manifested the growth-inhibition phenotype. However, LBD18 overexpression rescued lateral root formation in lbd18 and lbd16 lbd18 mutants without inducing any other phenotypes. Furthermore, we demonstrated that LBD18 overexpression can stimulate lateral root formation in auxin response factor7/19 (arf7 arf19) mutants with blocked lateral root formation. Taken together, our results suggest that LBD18 functions in the initiation and emergence of lateral roots, in conjunction with LBD16, downstream of ARF7 and ARF19.
Collapse
|
647
|
Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. THE PLANT CELL 2009; 21:3119-32. [PMID: 19820192 PMCID: PMC2782293 DOI: 10.1105/tpc.108.064758] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 09/03/2009] [Accepted: 09/14/2009] [Indexed: 05/18/2023]
Abstract
The development of shoot-borne roots, or adventitious roots, is indispensable for mass propagation of elite genotypes. It is a complex genetic trait with a high phenotypic plasticity due to multiple endogenous and environmental regulatory factors. We demonstrate here that a subtle balance of activator and repressor AUXIN RESPONSE FACTOR (ARF) transcripts controls adventitious root initiation. Moreover, microRNA activity appears to be required for fine-tuning of this process. Thus, ARF17, a target of miR160, is a negative regulator, and ARF6 and ARF8, targets of miR167, are positive regulators of adventitious rooting. The three ARFs display overlapping expression domains, interact genetically, and regulate each other's expression at both transcriptional and posttranscriptional levels by modulating miR160 and miR167 availability. This complex regulatory network includes an unexpected feedback regulation of microRNA homeostasis by direct and nondirect target transcription factors. These results provide evidence of microRNA control of phenotypic variability and are a significant step forward in understanding the molecular mechanisms regulating adventitious rooting.
Collapse
Affiliation(s)
- Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - John D. Bussell
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - Daniel I. Păcurar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Josèli Schwambach
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Monica Păcurar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
- Institut Jean-Pierre Bourgin, Unité de Recherche 501, Institut National de la Recherche Agronomique Centre de Versailles, 78026 Versailles Cedex, France
- Address correspondence to
| |
Collapse
|
648
|
Lokerse AS, Weijers D. Auxin enters the matrix--assembly of response machineries for specific outputs. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:520-6. [PMID: 19695945 DOI: 10.1016/j.pbi.2009.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/26/2009] [Accepted: 07/20/2009] [Indexed: 05/24/2023]
Abstract
The basic mechanism of auxin as a modulator of gene expression is now well understood. Interactions among three components are required for this process. Auxin is first perceived by its receptor, which then promotes degradation of inhibitors of auxin response transcription factors. These in turn are released from inhibition and modify expression of target genes. How this simple signaling pathway is able to regulate a diverse range of auxin responses is not as well understood, however a clue lies in the existence of large gene families for all components. Recent data indicates that diversification of gene expression patterns, protein activity, and protein-protein interactions among components establishes a matrix of response machineries that generates specific outputs from the generic auxin signal.
Collapse
Affiliation(s)
- Annemarie S Lokerse
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
649
|
Tashiro S, Tian CE, Watahiki MK, Yamamoto KT. Changes in growth kinetics of stamen filaments cause inefficient pollination in massugu2, an auxin insensitive, dominant mutant of Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2009; 137:175-187. [PMID: 19719484 DOI: 10.1111/j.1399-3054.2009.01271.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigated the physiological and molecular basis of lower fecundity of massugu2 (msg2), which is a dominant mutant of an auxin primary response gene, IAA19, in Arabidopsis thaliana. By measuring the length of all stamens and pistils in inflorescences and the reference growth rate of pistils, we constructed growth curves of pistils and stamens between stages 12 and 15 of flower development. Pistil growth was found to consist of a single exponential growth, while stamen growth consisted of three exponential phases. During the second exponential phase, the growth rate of stamen filaments was approximately 10 times greater than the growth rates in the other two phases. Consequently, stamens whose growth was initially retarded grew longer than the pistil, putting pollen grains on the stigma. msg2-1 stamens, on the other hand, exhibited a less obvious growth increase, resulting in less frequent contact between anthers and stigma. MSG2 was expressed in the stamen filaments and its expression almost coincided with the second growth phase. Stamen filaments appeared to elongate by cell elongation rather than cell division in the epidermal cell file. Considering that MSG2 is likely to be a direct target of the auxin F-box receptors, MSG2 may be one of the master genes that control the transient growth increase of stamen filaments.
Collapse
Affiliation(s)
- Satoko Tashiro
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
650
|
Donner TJ, Sherr I, Scarpella E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 2009; 136:3235-46. [DOI: 10.1242/dev.037028] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The principles underlying the formation of veins in the leaf have long intrigued developmental biologists. In Arabidopsis leaves, files of anatomically inconspicuous subepidermal cells that will elongate into vein-forming procambial cells selectively activate ATHB8 gene expression. The biological role of ATHB8 in vein formation and the molecular events that culminate in acquisition of the ATHB8preprocambial cell state are unknown, but intertwined pathways of auxin transport and signal transduction have been implicated in defining paths of vascular strand differentiation. Here we show that ATHB8 is required to stabilize preprocambial cell specification against auxin transport perturbations, to restrict preprocambial cell state acquisition to narrow fields and to coordinate procambium formation within and between veins. We further show that ATHB8 expression at preprocambial stages is directly and positively controlled by the auxin-response transcription factor MONOPTEROS (MP) through an auxin-response element in the ATHB8promoter. We finally show that the consequences of loss of ATHB8function for vein formation are masked by MP activity. Our observations define, at the molecular level, patterning inputs of auxin signaling in vein formation.
Collapse
Affiliation(s)
- Tyler J. Donner
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| | - Ira Sherr
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| |
Collapse
|