601
|
Chang S, Fang K, Zhang K, Wang J. Network-Based Analysis of Schizophrenia Genome-Wide Association Data to Detect the Joint Functional Association Signals. PLoS One 2015; 10:e0133404. [PMID: 26193471 PMCID: PMC4508050 DOI: 10.1371/journal.pone.0133404] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/26/2015] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia is a common psychiatric disorder with high heritability and complex genetic architecture. Genome-wide association studies (GWAS) have identified several significant loci associated with schizophrenia. However, the explained heritability is still low. Growing evidence has shown schizophrenia is attributable to multiple genes with moderate effects. In-depth mining and integration of GWAS data is urgently expected to uncover disease-related gene combination patterns. Network-based analysis is a promising strategy to better interpret GWAS to identify disease-related network modules. We performed a network-based analysis on three independent schizophrenia GWASs by using a refined analysis framework, which included a more accurate gene P-value calculation, dynamic network module searching algorithm and detailed functional analysis for the obtained modules genes. The result generated 79 modules including 238 genes, which form a highly connected subnetwork with more statistical significance than expected by chance. The result validated several reported disease genes, such as MAD1L1, MCC, SDCCAG8, VAT1L, MAPK14, MYH9 and FXYD6, and also obtained several novel candidate genes and gene-gene interactions. Pathway enrichment analysis of the module genes suggested they were enriched in several neural and immune system related pathways/GO terms, such as neurotrophin signaling pathway, synaptosome, regulation of protein ubiquitination, and antigen processing and presentation. Further crosstalk analysis revealed these pathways/GO terms were cooperated with each other, and identified several important genes, which might play vital roles to connect these functions. Our network-based analysis of schizophrenia GWASs will facilitate the understanding of genetic mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Suhua Chang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Kunlin Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
602
|
Abstract
SIGNIFICANCE A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. RECENT ADVANCES The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. CRITICAL ISSUES It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. FUTURE DIRECTIONS An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs.
Collapse
Affiliation(s)
- Sandra Reeg
- German Institute of Human Nutrition , Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition , Nuthetal, Germany
| |
Collapse
|
603
|
Dong C, Eldawud R, Sargent LM, Kashon ML, Lowry D, Rojanasakul Y, Dinu CZ. Carbon Nanotube Uptake Changes the Biomechanical Properties of Human Lung Epithelial Cells in a Time-dependent Manner. J Mater Chem B 2015; 3:3983-3992. [PMID: 26146559 PMCID: PMC4486612 DOI: 10.1039/c5tb00179j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The toxicity of engineered nanomaterials in biological systems depends on both the nanomaterial properties and the exposure duration. Herein we used a multi-tier strategy to investigate the relationship between user-characterized multi-walled carbon nanotubes (MWCNTs) exposure duration and their induced biochemical and biomechanical effects on model human lung epithelial cells (BEAS-2B). Our results showed that exposure to MWCNTs leads to time-dependent intracellular uptake and generation of reactive oxygen species (ROS), along with time-dependent gradual changes in cellular biomechanical properties. In particular, the amount of internalized MWCNTs followed a sigmoidal curve with the majority of the MWCNTs being internalized within 6h of exposure; further, the sigmoidal uptake correlated with the changes in the oxidative levels and cellular biomechanical properties respectively. Our study provides new insights into the time-dependent induced toxicity caused by exposure to occupationally relevant doses of MWCNTs and could potentially help establish bases for early risk assessments of other nanomaterials toxicological profiles.
Collapse
Affiliation(s)
- Chenbo Dong
- Department of Chemical Engineering, West Virginia University, Morgantown WV, 26506, USA
| | - Reem Eldawud
- Department of Chemical Engineering, West Virginia University, Morgantown WV, 26506, USA
| | - Linda M. Sargent
- National Institute for Occupational Safety and Health, Morgantown WV, 26505, USA
| | - Michael L. Kashon
- National Institute for Occupational Safety and Health, Morgantown WV, 26505, USA
| | - David Lowry
- National Institute for Occupational Safety and Health, Morgantown WV, 26505, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506, USA
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown WV, 26506, USA
| |
Collapse
|
604
|
Abstract
SIGNIFICANCE Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. RECENT ADVANCES Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. CRITICAL ISSUES (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. FUTURE DIRECTIONS Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment.
Collapse
Affiliation(s)
- Rosaria Benedetti
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Mariarosaria Conte
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Lucia Altucci
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy .,2 Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso," Napoli, Italy
| |
Collapse
|
605
|
Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 2015; 35:1517-28. [PMID: 26119938 DOI: 10.1038/onc.2015.214] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/09/2015] [Accepted: 04/26/2015] [Indexed: 12/21/2022]
Abstract
Heat-shock protein 5 (HSPA5) is a marker for poor prognosis in breast cancer patients and has an important role in cancer progression, including promoting drug resistance and metastasis. In this study, we identify that the specific lysine residue 447 (K447) of HSPA5 could be modified with polyubiquitin for subsequent degradation through the ubiquitin proteasomal system, leading to the suppression of cell migration and invasion of breast cancer. We further found that GP78, an E3 ubiquitin ligase, interacted with the C-terminal region of HSPA5 and mediated HSPA5 ubiquitination and degradation. Knock down of GP78 significantly increased the expression of HSPA5 and enhanced migration/invasive ability of breast cancer cells. Knock down of histone deacetylase-6 (HDAC6) increased the acetylation of HSPA5 at lysine residues 353 (K353) and reduced GP78-mediated ubiquitination of HSPA5 at K447 and then increased cell migration/invasion. In addition, we demonstrate that E3 ubiquitin ligase GP78 preferentially binds to deacetylated HSPA5. Notably, the expression levels of GP78 inversely correlated with HSPA5 levels in breast cancer patients. Patients with low GP78 expression significantly correlated with invasiveness of breast cancer, advanced tumor stages and poor clinical outcome. Taken together, our results provide new mechanistic insights into the understanding that deacetylation of HSPA5 by HDAC6 facilitates GP78-mediated HSPA5 ubiquitination and suggest that post-translational regulation of HSPA5 protein is critical for HSPA5-mediated metastatic properties of breast cancer.
Collapse
|
606
|
Abstract
Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have evolved. These systems monitor mitochondrial integrity through antioxidants, DNA repair systems, and chaperones and proteases involved in the mitochondrial unfolded protein response. Additional regulation of mitochondrial function involves dynamic exchange of components through mitochondrial fusion and fission. Sustained stress induces a selective autophagy - termed mitophagy - and ultimately leads to apoptosis. Together, these systems form a network that acts on the molecular, organellar, and cellular level. In this review, we highlight how these systems are regulated in an integrated context- and time-dependent network of mitochondrial quality control that is implicated in healthy aging.
Collapse
Affiliation(s)
- Ntsiki M Held
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
607
|
Krüger K, Dischereit G, Seimetz M, Wilhelm J, Weissmann N, Mooren FC. Time course of cigarette smoke-induced changes of systemic inflammation and muscle structure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L119-28. [PMID: 26001775 DOI: 10.1152/ajplung.00074.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022] Open
Abstract
It has become more evident that long-term cigarette smoking (LTCS) has an important extrapulmonary toxicity. The aim of the study was to investigate the time-dependent effects of cigarette smoke exposure on exercise capacity, markers of systemic inflammation, and skeletal muscle structure. c57bl/6j-mice were either exposed to mainstream cigarette smoke for 6 h/day, 5 days/wk [smoke-exposed (SE) group] or assigned to the control, unexposed group (Con group). SE group mice were exposed for 8, 16, 24, and 32 wk to smoke and unexposed Con mice were used as age-matched controls. Exercise capacity was investigated by spiroergometry. Systemic inflammatory status was analyzed by flow cytometry and multiplexed fluorescent immunoassay. For analysis of muscle tissue, histological techniques and microarray analysis were used. Mice of the SE group exhibited a lower increase of body mass and a decrease of V̇o2 max (P < 0.05). An increase of lymphocyte CD62, ICAM, and VCAM expression was found in SE mice (P < 0.05). A biphasic trend of protein up- and downregulation was observed in markers of systemic inflammation, tissue deterioration, and allergic reactions such as C-reactive protein (CRP), eotaxin, haptoglobin, macrophage colony-stimulating factor-1 (M-CSF-1), and macrophage inflammatory protein-1γ (MIP-1γ). Thereby, the expression of several chemotactic proteins in plasma correlated with their expression in muscle. A time-dependent decrease of muscle mass, oxidative type-I fibers, and muscle cross-sectional area was found (P < 0.05). Microarray analysis revealed a SE-induced upregulation of several pathways of metabolic processes and tissue degradation. Taken together it was found that the loss of exercise capacity and systemic inflammation are early events of SE, which might induce muscular atrophy and loss of oxidative muscle capacity.
Collapse
Affiliation(s)
- K Krüger
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany; and
| | - G Dischereit
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany; and
| | - M Seimetz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - J Wilhelm
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - N Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - F C Mooren
- Department of Sports Medicine, Justus Liebig-University Giessen, Giessen, Germany; and
| |
Collapse
|
608
|
Mueller S, Wahlander A, Selevsek N, Otto C, Ngwa EM, Poljak K, Frey AD, Aebi M, Gauss R. Protein degradation corrects for imbalanced subunit stoichiometry in OST complex assembly. Mol Biol Cell 2015; 26:2596-608. [PMID: 25995378 PMCID: PMC4501358 DOI: 10.1091/mbc.e15-03-0168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 01/06/2023] Open
Abstract
A combination of SILAC and targeted mass spectrometry provides a sensitive method to measure protein half-lives in yeast. Degradation rates are generally low in wild-type cells; however, ERAD is important to correct for imbalanced subunit stoichiometry. This approach is used to establish an assembly model for the OST complex. Protein degradation is essential for cellular homeostasis. We developed a sensitive approach to examining protein degradation rates in Saccharomyces cerevisiae by coupling a SILAC approach to selected reaction monitoring (SRM) mass spectrometry. Combined with genetic tools, this analysis made it possible to study the assembly of the oligosaccharyl transferase complex. The ER-associated degradation machinery compensated for disturbed homeostasis of complex components by degradation of subunits in excess. On a larger scale, protein degradation in the ER was found to be a minor factor in the regulation of protein homeostasis in exponentially growing cells, but ERAD became relevant when the gene dosage was affected, as demonstrated in heterozygous diploid cells. Hence the alleviation of fitness defects due to abnormal gene copy numbers might be an important function of protein degradation.
Collapse
Affiliation(s)
- Susanne Mueller
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Asa Wahlander
- Functional Genomics Center Zurich, UZH/ETH Zurich, CH-8057 Zurich, Switzerland
| | - Nathalie Selevsek
- Functional Genomics Center Zurich, UZH/ETH Zurich, CH-8057 Zurich, Switzerland
| | - Claudia Otto
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, CH-8092 Zurich, Switzerland
| | - Elsy Mankah Ngwa
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Kristina Poljak
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, FI-00076 Aalto, Finland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Robert Gauss
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
609
|
Ay A, Wilner N, Yildirim N. Mathematical modeling deciphers the benefits of alternatively-designed conserved activatory and inhibitory gene circuits. MOLECULAR BIOSYSTEMS 2015; 11:2017-30. [PMID: 25966646 DOI: 10.1039/c5mb00269a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cells employ a variety of mechanisms as a response to external signals to maintain cellular homeostasis. In this study, we examine four activatory and four inhibitory protein synthesis mechanisms at both population and single cell level that can be triggered by a transient external signal. Activation mechanisms result from the assumption that cells can employ four different modes to temporarily increase the levels of a protein: decreased mRNA degradation, increased mRNA synthesis, decreased protein degradation and increased protein synthesis. For the inhibition mechanisms it is assumed that a cell can reduce a protein's level through four ways: increased mRNA degradation, reduced mRNA synthesis, increased protein degradation and reduced protein synthesis. Deterministic and stochastic models were developed to analyze the dynamic responses of these eight mechanisms to a transient signal. Three different response metrics were used to measure different aspects of the response. These metrics are (i) mid-protein abundance (mP), (ii) time required for the protein to reach the mid-protein level (mT), and (iii) duration of response (D), which is defined as the total time for which the protein (P) abundance are above or below of mid-protein level. Our simulations show that of the activation mechanisms, the signal-dependent increase in mRNA synthesis and protein synthesis are more effective and faster, than the signal dependent decrease in mRNA and protein degradation. On the other hand, the mechanism involving signal dependent increase in protein synthesis is noisier than the signal dependent increase in mRNA synthesis in regard to all metrics used. Of the four inhibition mechanisms, the signal-dependent increase in the protein degradation is the most effective and fastest of the four inhibition mechanisms. It is also noisiest of the four inhibition mechanisms before the protein levels reach a steady state around 100 minutes.
Collapse
Affiliation(s)
- Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| | | | | |
Collapse
|
610
|
Oxidative Stress and Protein Quality Control Systems in the Aged Canine Brain as a Model for Human Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:940131. [PMID: 26078824 PMCID: PMC4442305 DOI: 10.1155/2015/940131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Aged dogs are considered the most suitable spontaneous animal model for studying normal aging and neurodegenerative diseases. Elderly canines naturally develop cognitive dysfunction and neuropathological hallmarks similar to those seen in humans, especially Alzheimer's disease-like pathology. Pet dogs also share similar living conditions and diets to humans. Oxidative damage accumulates in the canine brain during aging, making dogs a valid model for translational antioxidant treatment/prevention studies. Evidence suggests the presence of detective protein quality control systems, involving ubiquitin-proteasome system (UPS) and Heat Shock Proteins (HSPs), in the aged canine brain. Further studies on the canine model are needed to clarify the role of age-related changes in UPS activity and HSP expression in neurodegeneration in order to design novel treatment strategies, such as HSP-based therapies, aimed at improving chaperone defences against proteotoxic stress affecting brain during aging.
Collapse
|
611
|
Jędrzejowska M, Jakubowska-Pietkiewicz E, Kostera-Pruszczyk A. X-linked spinal muscular atrophy (SMAX2) caused by de novo c.1731C>T substitution in the UBA1 gene. Neuromuscul Disord 2015; 25:661-6. [PMID: 26028276 DOI: 10.1016/j.nmd.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/16/2022]
Abstract
Infantile X-linked spinal muscular atrophy (SMAX2) is a rare form of spinal muscular atrophy manifesting as severe hypotonia, areflexia, arthrogryposis, facial weakness and cryptorchidism, and frequently accompanied by bone fractures. We present a male patient with SMAX2 who presented with typical symptoms at birth, preceded by reduced fetal movements in the second and third trimesters of pregnancy. Clinical examination revealed a myopathic face with a characteristic tent-shaped open mouth, tongue fibrillations, profound muscle weakness, areflexia, multiple contractures, mild skeletal abnormalities and cryptorchidism. In the first days of the patient's life, fractures of the right femur and right humerus were found; however, calcium-phosphate metabolism and densitometric examination were normal. Molecular analysis revealed a de novo c.1731C>T substitution in the UBA1 gene, which was localized in exon 15, the specific hot spot for mutation.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
612
|
Comparative study of the biochemical properties of proteasomes in domestic animals. Vet Immunol Immunopathol 2015; 166:43-9. [PMID: 25998106 DOI: 10.1016/j.vetimm.2015.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/18/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Information on the biochemical properties of proteasomes is lacking or, at best, only fragmentary for most species of veterinary interest. Moreover, direct comparison of the limited data available on the enzymatic features of proteasomes in domestic animals is rendered difficult due to the heterogeneity of the experimental settings used. This represents a clear drawback in veterinary research, given the crucial involvement of proteasomes in control of several physiological and pathological processes. We performed the first comparative analysis of key biochemical properties of proteasomes obtained from 8 different domestic mammals. Specifically, we investigated the three main peptidase activities of constitutive and immunoproteasomes in parallel and systematically checked the sensitivity of the chymotryptic site to three of the most potent and selective inhibitors available. Overall, there was substantial similarity in the enzymatic features of proteasomes among the species examined, although some interesting species-specific features were observed.
Collapse
|
613
|
Rivera-Pagán AF, Rivera-Aponte DE, Melnik-Martínez KV, Zayas-Santiago A, Kucheryavykh LY, Martins AH, Cubano LA, Skatchkov SN, Eaton MJ. Up-regulation of TREK-2 potassium channels in cultured astrocytes requires de novo protein synthesis: relevance to localization of TREK-2 channels in astrocytes after transient cerebral ischemia. PLoS One 2015; 10:e0125195. [PMID: 25886567 PMCID: PMC4401746 DOI: 10.1371/journal.pone.0125195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/12/2015] [Indexed: 11/19/2022] Open
Abstract
Excitotoxicity due to glutamate receptor over-activation is one of the key mediators of neuronal death after an ischemic insult. Therefore, a major function of astrocytes is to maintain low extracellular levels of glutamate. The ability of astrocytic glutamate transporters to regulate the extracellular glutamate concentration depends upon the hyperpolarized membrane potential of astrocytes conferred by the presence of K+ channels in their membranes. We have previously shown that TREK-2 potassium channels in cultured astrocytes are up-regulated by ischemia and may support glutamate clearance by astrocytes during ischemia. Thus, herein we determine the mechanism leading to this up-regulation and assess the localization of TREK-2 channels in astrocytes after transient middle cerebral artery occlusion. By using a cell surface biotinylation assay we confirmed that functional TREK-2 protein is up-regulated in the astrocytic membrane after ischemic conditions. Using real time RT-PCR, we determined that the levels of TREK-2 mRNA were not increased in response to ischemic conditions. By using Western blot and a variety of protein synthesis inhibitors, we demonstrated that the increase of TREK-2 protein expression requires De novo protein synthesis, while protein degradation pathways do not contribute to TREK-2 up-regulation after ischemic conditions. Immunohistochemical studies revealed TREK-2 localization in astrocytes together with increased expression of the selective glial marker, glial fibrillary acidic protein, in brain 24 hours after transient middle cerebral occlusion. Our data indicate that functional TREK-2 channels are up-regulated in the astrocytic membrane during ischemia through a mechanism requiring De novo protein synthesis. This study provides important information about the mechanisms underlying TREK-2 regulation, which has profound implications in neurological diseases such as ischemia where astrocytes play an important role.
Collapse
Affiliation(s)
- Aixa F. Rivera-Pagán
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
- * E-mail: (AFRP); (SNS)
| | - David E. Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
| | - Katya V. Melnik-Martínez
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
| | - Astrid Zayas-Santiago
- Department of Physiology, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
| | - Lilia Y. Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
| | - Antonio H. Martins
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Departments of Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
- Department of Physiology, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
- * E-mail: (AFRP); (SNS)
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, Puerto Rico, United States of America
| |
Collapse
|
614
|
Košík I, Práznovská M, Košíková M, Bobišová Z, Hollý J, Varečková E, Kostolanský F, Russ G. The ubiquitination of the influenza A virus PB1-F2 protein is crucial for its biological function. PLoS One 2015; 10:e0118477. [PMID: 25866881 PMCID: PMC4395099 DOI: 10.1371/journal.pone.0118477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/18/2015] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to identify what influences the short half-life of the influenza A virus PB1-F2 protein and whether a prolonged half-life affects the properties of this molecule. We hypothesized that the short half-life of PB1-F2 could conceal the phenotype of the protein. Because proteasome degradation might be involved in PB1-F2 degradation, we focused on ubiquitination, a common label for proteasome targeting. A cluster of lysine residues was demonstrated as an ubiquitination acceptor site in evolutionary and functionally distinct proteins. The PB1-F2 sequence alignment revealed a cluster of lysines on the carboxy terminal end of PB1-F2 in almost all of the GenBank sequences available to date. Using a proximity ligation assay, we identified ubiquitination as a novel posttranslational modification of PB1-F2. Changing the lysines at positions 73, 78, and 85 to arginines suppressed the ubiquitination of A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. The mutation of the C-terminal lysine residue cluster positively affected the overall expression levels of avian A/Honk Kong/156/1997 (H5N1)- and mammalian A/Puerto Rico/8/1934 (H1N1)-derived PB1-F2. Moreover, increased PB1-F2 copy numbers strengthened the functions of this virus in the infected cells. The results of a minigenome luciferase reporter assay revealed an enhancement of viral RNA-dependent RNA polymerase activity in the presence of stabilized PB1-F2, regardless of viral origin. IFNβ antagonism was enhanced in 293T cells transfected with a plasmid expressing stabilized K→R mutant variants of PB1-F2. Compared with PB1-F2 wt, the loss of ubiquitination enhanced the antibody response after DNA vaccination. In summary, we revealed that PB1-F2 is an ubiquitinated IAV protein, and this posttranslational modification plays a central role in the regulation of the biological functions of this protein.
Collapse
Affiliation(s)
- Ivan Košík
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
- * E-mail:
| | - Margaréta Práznovská
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Martina Košíková
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Zuzana Bobišová
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Jaroslav Hollý
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Eva Varečková
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - František Kostolanský
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Gustáv Russ
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| |
Collapse
|
615
|
Kovács KB, Pataki I, Bárdos H, Fekete A, Pfliegler G, Haramura G, Gindele R, Komáromi I, Balla G, Ádány R, Muszbek L, Bereczky Z. Molecular characterization of p.Asp77Gly and the novel p.Ala163Val and p.Ala163Glu mutations causing protein C deficiency. Thromb Res 2015; 135:718-26. [DOI: 10.1016/j.thromres.2015.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/17/2014] [Accepted: 01/11/2015] [Indexed: 11/29/2022]
|
616
|
Milioli M, Ibáñez-Vea M, Sidoli S, Palmisano G, Careri M, Larsen MR. Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J Proteomics 2015; 121:56-66. [PMID: 25835965 DOI: 10.1016/j.jprot.2015.03.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 12/23/2022]
Abstract
UNLABELLED Platelet-derived MPs (PMPs) are a heterogeneous population of microvesicles released from platelets upon activation and apoptosis. Different platelet activations may affect PMP protein profiles and roles in intercellular communication. Here, we performed a quantitative proteomics study to characterize the protein content of PMPs generated by four differentially activated platelet samples. We selected known physiological agonists for platelet activation such as ADP, thrombin and collagen. Thrombin, which is mostly used to generate PMPs in vitro, was set as control. Platelets were activated by following a known agonist strength scale in which ADP was the weakest activation and thrombin and collagen stimulations were the strongest ones. Our proteomic analysis allowed the quantification of 3383 proteins, of which 428 membrane and 131 soluble proteins were found as significantly different in at least one of the analyzed conditions. Activation with stronger agonists led to the enrichment of proteins related to platelet activation in PMPs. In addition, proteins involved in platelet degranulation and proteins from the electron transport chain were less abundant in PMPs when stronger activation was used. Collectively, our data describe the most detailed characterization of PMPs after platelet physiological activation. Furthermore, we show that PMP protein content is highly dependent on the type of physiological agonist involved in platelet stimulation. BIOLOGICAL SIGNIFICANCE Platelet-derived MPs (PMPs) are a population of vesicles generated upon platelet activation by various stimuli known to be involved in several physiological and pathological processes. This manuscript investigates the protein profile of PMPs obtained by performing four different activation protocols using mass spectrometry-based quantitative proteomics. By following a known physiological agonist strength scale our findings suggest a biological link between agonist strength and proteins associated to platelet mediated processes such as activation and degranulation. These data may provide new insights for understanding PMP biological role and formation.
Collapse
Affiliation(s)
- Marco Milioli
- Department of Chemistry, University of Parma, 43124 Parma, Italy
| | - Maria Ibáñez-Vea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Institute of Biomedical Sciences, Department of Parasitology, USP, São Paulo, Brazil
| | - Maria Careri
- Department of Chemistry, University of Parma, 43124 Parma, Italy
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
617
|
Abstract
Atrophy occurs in specific muscles with inactivity (for example, during plaster cast immobilization) or denervation (for example, in patients with spinal cord injuries). Muscle wasting occurs systemically in older people (a condition known as sarcopenia); as a physiological response to fasting or malnutrition; and in many diseases, including chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal failure, cardiac failure, Cushing syndrome, sepsis, burns and trauma. The rapid loss of muscle mass and strength primarily results from excessive protein breakdown, which is often accompanied by reduced protein synthesis. This loss of muscle function can lead to reduced quality of life, increased morbidity and mortality. Exercise is the only accepted approach to prevent or slow atrophy. However, several promising therapeutic agents are in development, and major advances in our understanding of the cellular mechanisms that regulate the protein balance in muscle include the identification of several cytokines, particularly myostatin, and a common transcriptional programme that promotes muscle wasting. Here, we discuss these new insights and the rationally designed therapies that are emerging to combat muscle wasting.
Collapse
|
618
|
Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia. J Neurosci 2015; 35:422-37. [PMID: 25568133 DOI: 10.1523/jneurosci.1509-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies on the pathogenic mechanisms of recessive hyperekplexia indicate disturbances in glycine receptor (GlyR) α1 biogenesis. Here, we examine the properties of a range of novel glycine receptor mutants identified in human hyperekplexia patients using expression in transfected cell lines and primary neurons. All of the novel mutants localized in the large extracellular domain of the GlyR α1 have reduced cell surface expression with a high proportion of receptors being retained in the ER, although there is forward trafficking of glycosylated subpopulations into the ER-Golgi intermediate compartment and cis-Golgi compartment. CD spectroscopy revealed that the mutant receptors have proportions of secondary structural elements similar to wild-type receptors. Two mutants in loop B (G160R, T162M) were functional, but none of those in loop D/β2-3 were. One nonfunctional truncated mutant (R316X) could be rescued by coexpression with the lacking C-terminal domain. We conclude that a proportion of GlyR α1 mutants can be transported to the plasma membrane but do not necessarily form functional ion channels. We suggest that loop D/β2-3 is an important determinant for GlyR trafficking and functionality, whereas alterations to loop B alter agonist potencies, indicating that residues here are critical elements in ligand binding.
Collapse
|
619
|
Mareco EA, Garcia de la Serrana D, Johnston IA, Dal-Pai-Silva M. Characterization of the transcriptome of fast and slow muscle myotomal fibres in the pacu (Piaractus mesopotamicus). BMC Genomics 2015; 16:182. [PMID: 25886905 PMCID: PMC4372171 DOI: 10.1186/s12864-015-1423-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/28/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Pacu (Piaractus mesopotamicus) is a member of the Characiform family native to the Prata Basin (South America) and a target for the aquaculture industry. A limitation for the development of a selective breeding program for this species is a lack of available genetic information. The primary objectives of the present study were 1) to increase the genetic resources available for the species, 2) to exploit the anatomical separation of myotomal fibres types to compare the transcriptomes of slow and fast muscle phenotypes and 3) to systematically investigate the expression of Ubiquitin Specific Protease (USP) family members in fast and slow muscle in response to fasting and refeeding. RESULTS We generated 0.6 Tb of pair-end reads from slow and fast skeletal muscle libraries. Over 665 million reads were assembled into 504,065 contigs with an average length of 1,334 bp and N50 = 2,772 bp. We successfully annotated nearly 47% of the transcriptome and identified around 15,000 unique genes and over 8000 complete coding sequences. 319 KEGG metabolic pathways were also annotated and 380 putative microsatellites were identified. 956 and 604 genes were differentially expressed between slow and fast skeletal muscle, respectively. 442 paralogues pairs arising from the teleost-specific whole genome duplication were identified, with the majority showing different expression patterns between fibres types (301 in slow and 245 in fast skeletal muscle). 45 members of the USP family were identified in the transcriptome. Transcript levels were quantified by qPCR in a separate fasting and refeeding experiment. USP genes in fast muscle showed a similar transient increase in expression with fasting as the better characterized E3 ubiquitin ligases. CONCLUSION We have generated a 53-fold coverage transcriptome for fast and slow myotomal muscle in the pacu (Piaractus mesopotamicus) significantly increasing the genetic resources available for this important aquaculture species. We describe significant differences in gene expression between muscle fibre types for fundamental components of general metabolism, the Pi3k/Akt/mTor network and myogenesis, including detailed analysis of paralogue expression. We also provide a comprehensive description of USP family member expression between muscle fibre types and with changing nutritional status.
Collapse
Affiliation(s)
- Edson A Mareco
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil. .,School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | | | - Ian A Johnston
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, Scotland, UK.
| | - Maeli Dal-Pai-Silva
- Institute of Biosciences of Botucatu, São Paulo State University - UNESP, Botucatu, 18618-970, São Paulo, Brazil.
| |
Collapse
|
620
|
Del Vesco AP, Gasparino E, Grieser DO, Zancanela V, Voltolini DM, Khatlab AS, Guimarães SEF, Soares MAM, Neto ARO. Effects of methionine supplementation on the expression of protein deposition-related genes in acute heat stress-exposed broilers. PLoS One 2015; 10:e0115821. [PMID: 25714089 PMCID: PMC4340924 DOI: 10.1371/journal.pone.0115821] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/02/2014] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the effect of heat stress and methionine supplementation on the gene expression of insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase, and regulatory 1 (PI3KR1) in the liver, as well as the expression of the atrogin 1 and cathepsin L2 (CTSL2) genes in the breast muscle of broilers. Broilers from 1–21 and 22–42 days of age were divided into three treatments related to methionine supplementation as follows: without methionine supplementation (MD), recommended level of methionine (DL1), and excess supplementation of methionine (DL2). The animals were either maintained at a thermal comfort temperature or exposed to heat stress (HS) (38°C for 24 hours, starting on day 20 or day 41 for experiments 1 and 2, respectively). The heat stress increased the body temperature at both ages. Starter period: The HS animals presented increased plasma creatinine content (P<0.0001) and the highest CTSL2 gene expression (P<0.0001). The methionine supplementation increased the IGF-I (P = 0.0144) and GHR (P = 0.0011) gene expression and decreased the CTSL2 (P = 0.0004) and atrogin 1 (P = 0.0012) gene expression. Grower period: Significant effects for the interaction between supplementation and environment were observed for GHR (P = 0.0252) and CTSL2 (P = 0.0011) gene expression. The highest GHR expression was observed in animals that remained in thermal comfort on the DL2 diet, and the lowest expression occurred in the HS animals fed the MD diet. For CTSL2, the HS animals fed the MD diet presented the highest CTSL2 gene expression, and the lowest expression was observed in the animals maintained at thermal comfort on DL1 and DL2 diets. Only methionine supplementation had effect on atrogin-1 gene expression (P<0.0001), with higher methionine content in the diet lower atrogin-1 gene expression was observed. Our results suggest that heat stress induces greater protein degradation and that methionine supplementation could induce protein deposition because methionine increased the expression of genes related to protein synthesis and decreased the expression of genes related to protein breakdown.
Collapse
Affiliation(s)
- Ana Paula Del Vesco
- Department of Animal Science, Universidade Estadual de Maringá—UEM—Maringá, Paraná, Brazil
- * E-mail: (EG); (APDV)
| | - Eliane Gasparino
- Department of Animal Science, Universidade Estadual de Maringá—UEM—Maringá, Paraná, Brazil
- * E-mail: (EG); (APDV)
| | | | - Vittor Zancanela
- Department of Animal Science, Universidade Estadual de Maringá—UEM—Maringá, Paraná, Brazil
| | | | - Angélica Souza Khatlab
- Department of Animal Science, Universidade Estadual de Maringá—UEM—Maringá, Paraná, Brazil
| | | | - Maria Amélia Menck Soares
- Department of Genetics, Universidade Federal Rural do Rio de Janeiro—UFRRJ—Seropédica, Rio de Janeiro, Brazil
| | | |
Collapse
|
621
|
Carbajosa NAL, Corradi G, Verrilli MAL, Guil MJ, Vatta MS, Gironacci MM. Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: possible implications in hypertension. PLoS One 2015; 10:e0116597. [PMID: 25710381 PMCID: PMC4339701 DOI: 10.1371/journal.pone.0116597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/11/2014] [Indexed: 12/01/2022] Open
Abstract
Aberrations in the ubiquitin-proteasome system (UPS) are implicated in the pathogenesis of various diseases. Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamines biosynthesis, is involved in hypertension development. In this study we investigated whether UPS regulated TH turnover in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats (SHR) and whether this system was impaired in hypertension. PC12 cells were exposed to proteasome or lysosome inhibitors and TH protein level evaluated by Western blot. Lactacystin, a proteasome inhibitor, induced an increase of 86±15% in TH levels after 30 min of incubation, then it started to decrease up to 6 h to reach control levels and finally it rose up to 35.2±8.5% after 24 h. Bafilomycin, a lysosome inhibitor, did not alter TH protein levels during short times, but it increased TH by 92±22% above basal after 6 h treatment. Before degradation proteasome substrates are labeled by conjugation with ubiquitin. Efficacy of proteasome inhibition on TH turnover was evidenced by accumulation of ubiquitinylated TH after 30 min. Further, the inhibition of proteasome increased the quantity of TH phosphorylated at Ser40, which is essential for TH activity, by 2.7±0.3 fold above basal. TH protein level was upregulated in neurons from hypothalami and brainstem of SHR when the proteasome was inhibited during 30 min, supporting that neuronal TH is also short-term regulated by the proteasome. Since the increased TH levels reported in hypertension may result from proteasome dysfunction, we evaluate proteasme activity. Proteasome activity was significantly reduced by 67±4% in hypothalamic and brainstem neurons from SHR while its protein levels did not change. Present findings show that TH is regulated by the UPS. The impairment in proteasome activity observed in SHR neurons may be one of the causes of the increased TH protein levels reported in hypertension.
Collapse
Affiliation(s)
- Nadia A. Longo Carbajosa
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo Corradi
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María A. Lopez Verrilli
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María J. Guil
- Cátedra de Fisiología, IQUIMEFA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo S. Vatta
- Cátedra de Fisiología, IQUIMEFA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
622
|
Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI. High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J Biol Chem 2015; 290:9183-94. [PMID: 25691571 DOI: 10.1074/jbc.m114.625715] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 12/20/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease, acute lung injury, and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratios, and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, whereas MuRF1(-/-) mice exposed to high CO2 did not develop muscle atrophy. AMP-activated kinase (AMPK), a metabolic sensor, was activated in myotubes exposed to high CO2, and loss-of-function studies showed that the AMPKα2 isoform is necessary for muscle-specific ring finger protein 1 (MuRF1) up-regulation and myofiber size reduction. High CO2 induced AMPKα2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia.
Collapse
Affiliation(s)
- Ariel Jaitovich
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Martín Angulo
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, Departamento de Fisiopatología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Emilia Lecuona
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Laura A Dada
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Lynn C Welch
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yuan Cheng
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Galina Gusarova
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Ermelinda Ceco
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Chang Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Masahiko Shigemura
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611
| | - Esther Barreiro
- Pulmonology Department-Muscle and Respiratory System Research Unit, Molecular Mechanisms of Lung Cancer Predisposition Research Group (IMIM)-Hospital del Mar-IMIM, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, The Barcelona Biomedical Research Park, Barcelona, Spain, and Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain, and
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Gustavo A Nader
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jacob I Sznajder
- From the Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611,
| |
Collapse
|
623
|
Orekhova AS, Rubtsov PM. DAX1, an unusual member of the nuclear receptor superfamily with diverse functions. Mol Biol 2015. [DOI: 10.1134/s0026893315010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
624
|
Chu J, Li JG, Hoffman NE, Madesh M, Praticò D. Degradation of gamma secretase activating protein by the ubiquitin-proteasome pathway. J Neurochem 2015; 133:432-9. [PMID: 25533523 DOI: 10.1111/jnc.13011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/25/2014] [Accepted: 12/04/2014] [Indexed: 01/08/2023]
Abstract
A major hallmark feature of Alzheimer's disease is the accumulation of amyloid β (Aβ), whose formation is regulated by the γ-secretase complex and its activating protein (also known as γ-secretase activating protein, or GSAP). Because GSAP interacts with the γ-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aβ therapy. GSAP derives from a C-terminal fragment of a larger precursor protein of 98 kDa via a caspase 3-mediated cleavage. However, the mechanism(s) involved in its degradation remain unknown. In this study, we show that GSAP has a short half-life of approximately 5 h. Neuronal cells treated with proteasome inhibitors markedly prevented GSAP protein degradation, which was associated with a significant increment in Aβ levels and γ-secretase cleavage products. In contrast, treatment with calpain blocker and lysosome inhibitors had no effect. In addition, we provide experimental evidence that GSAP is ubiquitinated. Taken together, our findings reveal that GSAP is degraded through the ubiquitin-proteasome system. Modulation of the GSAP degradation pathway may be implemented as a viable target for a safer anti-Aβ therapeutic approach in Alzheimer's disease. The GSAP derives from a precursor via a caspase 3-mediated cleavage, is up-regulated in Alzheimer's disease brains and facilitates Aβ production by interacting directly with the γ-secretase complex. Here, we demonstrate that GSAP is ubiquitinated and then selectively degraded via the proteasome system but not the calpains or lysosome pathways. These findings provide further evidence for the involvement of the proteasome system in the regulation of amyloid beta (Aβ) precursor protein metabolism and Aβ formation. AICD, APP intracellular domain; APP, amyloid precursor protein; ATP, adenosine triphosphate; CTF-α, alpha-C-terminal fragment; CTF-β, beta-C-terminal fragment; GSAP, γ-secretase activating protein; Ub, ubiquitin.
Collapse
Affiliation(s)
- Jin Chu
- Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
625
|
Zhang C, Zhang F. The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression. J Genomics 2015; 3:40-50. [PMID: 25653723 PMCID: PMC4316180 DOI: 10.7150/jgen.11015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic genome encodes numerous WD40 repeat proteins, which generally function as platforms of protein-protein interactions and are involved in numerous biological process, such as signal transduction, gene transcriptional regulation, protein modifications, cytoskeleton assembly, vesicular trafficking, DNA damage and repair, cell death and cell cycle progression. Among these diverse functions, genome integrity maintenance and cell cycle progression are extremely important as deregulation of them is clinically linked to uncontrolled proliferative diseases such as cancer. Thus, we mainly summarize and discuss the recent understanding of WD40 proteins and their molecular mechanisms linked to genome stability and cell cycle progression in this review, thereby demonstrating their pervasiveness and importance in cellular networks.
Collapse
Affiliation(s)
- Caiguo Zhang
- 1. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Fan Zhang
- 2. Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
626
|
Elliott ML, Thomas K, Kennedy S, Koduri ND, Hussaini RS, Sheaff RJ. Identification of Novel Proteasome Inhibitors from an Enaminone Library. Chem Biol Drug Des 2015; 86:322-32. [DOI: 10.1111/cbdd.12496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 11/30/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Megan L. Elliott
- Department of Chemistry and Biochemistry; The University of Tulsa; Keplinger Hall, 800 South Tucker Drive, Tulsa OK, 74104 USA
- College of Osteopathic Medicine; Oklahoma State University; 1111 W. 17th St. Tulsa OK, 74107 USA
| | - Kevin Thomas
- Department of Chemistry and Biochemistry; The University of Tulsa; Keplinger Hall, 800 South Tucker Drive, Tulsa OK, 74104 USA
| | - Steven Kennedy
- Department of Chemistry and Biochemistry; The University of Tulsa; Keplinger Hall, 800 South Tucker Drive, Tulsa OK, 74104 USA
- The University of Toronto Structural Genomics Consortium; 101 College St. MaRS South Tower, Suite 700 Toronto ON, M5G 1L7 Canada
| | - Naga D. Koduri
- Department of Chemistry and Biochemistry; The University of Tulsa; Keplinger Hall, 800 South Tucker Drive, Tulsa OK, 74104 USA
| | - R. Syed Hussaini
- Department of Chemistry and Biochemistry; The University of Tulsa; Keplinger Hall, 800 South Tucker Drive, Tulsa OK, 74104 USA
| | - Robert J. Sheaff
- Department of Chemistry and Biochemistry; The University of Tulsa; Keplinger Hall, 800 South Tucker Drive, Tulsa OK, 74104 USA
| |
Collapse
|
627
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Adrienne L Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, 6140, Grahamstown, South Africa,
| |
Collapse
|
628
|
Kang J, Chung KC. The F-box protein FBXO7 positively regulates bone morphogenetic protein-mediated signaling through Lys-63-specific ubiquitination of neurotrophin receptor-interacting MAGE (NRAGE). Cell Mol Life Sci 2015; 72:181-95. [PMID: 24947323 PMCID: PMC11113242 DOI: 10.1007/s00018-014-1665-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive midbrain dopaminergic neuron degeneration and the formation of intracellular protein aggregates, referred to as Lewy bodies. F-box only protein 7 (FBXO7) gene mutations are closely associated with progression of the autosomal recessive form of familial PD. FBXO7 encodes a component of Skp1, cullin, F-box ubiquitin ligase complexes; however, its cellular targets, including substrates and regulators, are not yet clarified. To identify potential substrates of FBXO7, we performed a yeast two-hybrid screen of a human fetal brain library and identified neurotrophin receptor-interacting MAGE protein (NRAGE) as a novel FBXO7-binding partner. We found that FBXO7 interacts with NRAGE and mediates Lys-63-linked poly-ubiquitination of NRAGE in mammalian cells. FBXO7 overexpression accelerates formation of NRAGE-TAK1-TAB1 complexes, whereas FBXO7 knockdown correspondingly decreases complex formation. In addition, BMP4 stimulation enhances NRAGE ubiquitination through FBXO7 and facilitates endogenous NRAGE-TAK1-TAB1 complex formation. Furthermore, FBXO7 positively regulates formation of the BMP receptor-NRAGE-TAK1-TAB1 complex, and up-regulates NF-κB activity. Taken together, our results suggest that FBXO7 affects BMP4-mediated signaling through proteasome-independent ubiquitination of NRAGE and augments formation of downstream signaling components.
Collapse
Affiliation(s)
- Jengmin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 120-749 Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 120-749 Korea
| |
Collapse
|
629
|
Baranello RJ, Bharani KL, Padmaraju V, Chopra N, Lahiri DK, Greig NH, Pappolla MA, Sambamurti K. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr Alzheimer Res 2015; 12:32-46. [PMID: 25523424 PMCID: PMC4820400 DOI: 10.2174/1567205012666141218140953] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/16/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022]
Abstract
Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for Aβ turnover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA.
| |
Collapse
|
630
|
A treadmill exercise reactivates the signaling of the mammalian target of rapamycin (mTor) in the skeletal muscles of starved mice. Biochem Biophys Res Commun 2015; 456:519-26. [DOI: 10.1016/j.bbrc.2014.11.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 11/21/2022]
|
631
|
Mondello P, Mian M, Aloisi C, Famà F, Mondello S, Pitini V. Cancer Cachexia Syndrome: Pathogenesis, Diagnosis, and New Therapeutic Options. Nutr Cancer 2014; 67:12-26. [DOI: 10.1080/01635581.2015.976318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
632
|
Teta D. Insulin resistance as a therapeutic target for chronic kidney disease. J Ren Nutr 2014; 25:226-9. [PMID: 25511524 DOI: 10.1053/j.jrn.2014.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance (IR) is a prevalent metabolic feature in chronic kidney disease (CKD). Postreceptor insulin-signaling defects have been observed in uremia. A decrease in the activity of phosphatidylinositol 3-kinase appears critical in the pathophysiology of CKD-associated IR. Lipotoxicity due to ectopic accumulation of lipid moieties has recently emerged as another mechanism by which CKD and/or associated metabolic disorders may lead to IR through impairment of various insulin-signaling molecules. Metabolic acidosis, anemia, excess of fat mass, inflammation, vitamin D deficiency, adipokine imbalance, physical inactivity, and the accumulation of nitrogenous compounds of uremia all contribute to CKD-associated IR. The clinical impacts of IR in this setting are numerous, including endothelial dysfunction, increased cardiovascular mortality, muscle wasting, and possibly initiation and progression of CKD. This is why IR may be a therapeutic target in the attempt to improve outcomes in CKD. General measures to improve IR are directed to counteract causal factors. The use of pharmaceutical agents such as inhibitors of the renin-angiotensin system may improve IR in hypertensive and CKD patients. Pioglitazone appears a safe and promising therapeutic agent to reduce IR and uremic-associated abnormalities. However, interventional studies are needed to test if the reduction and/or normalization of IR may actually improve outcomes in these patients.
Collapse
Affiliation(s)
- Daniel Teta
- Service of Nephrology, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
633
|
Fernández DA, Louzao MC, Vilariño N, Fraga M, Espiña B, Vieytes MR, Botana LM. Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin. Toxicon 2014; 91:23-34. [DOI: 10.1016/j.toxicon.2014.08.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
634
|
Dong C, EIdawud R, Sargent LM, Kashon ML, Lowry D, Rojanasakul Y, Dinu CZ. Towards Elucidating the Effects of Purified MWCNTs on Human Lung Epithelial cells. ENVIRONMENTAL SCIENCE. NANO 2014; 1:95-603. [PMID: 25485116 PMCID: PMC4254708 DOI: 10.1039/c4en00102h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Toxicity of engineered nanomaterials is associated with their inherent properties, both physical and chemical. Recent studies have shown that exposure to multi-walled carbon nanotubes (MWCNTs) promotes tumors and tumor-associated pathologies and lead to carcinogenesis in model in vivo systems. Here in we examined the potential of purified MWCNTs used at occupationally relevant exposure doses for particles not otherwise regulated to affect human lung epithelial cells. The uptake of the purified MWCNTs was evaluated using fluorescence activated cell sorting (FACS), while the effects on cell fate were assessed using 2- (4-iodophenyl) - 3- (4-nitrophenyl) - 5-(2, 4-disulfophenyl) -2H-tetrazolium salt colorimetric assay, cell cycle and nanoindentation. Our results showed that exposure to MWCNTs reduced cell metabolic activity and induced cell cycle arrest. Our analysis further emphasized that MWCNTs-induced cellular fate results from multiple types of interactions that could be analyzed by means of intracellular biomechanical changes and are pivotal in understanding the underlying MWCNTs-induced cell transformation.
Collapse
Affiliation(s)
- Chenbo Dong
- Department of Chemical Engineering, West Virginia University, Morgantown WV, 26506, USA
| | - Reem EIdawud
- Department of Chemical Engineering, West Virginia University, Morgantown WV, 26506, USA
| | - Linda M. Sargent
- National Institute for Occupational Safety and Health, Morgantown WV, 26505, USA
| | - Michael L. Kashon
- National Institute for Occupational Safety and Health, Morgantown WV, 26505, USA
| | - David Lowry
- National Institute for Occupational Safety and Health, Morgantown WV, 26505, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506, USA
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown WV, 26506, USA
| |
Collapse
|
635
|
Choi ES, Nam JS, Jung JY, Cho NP, Cho SD. Modulation of specificity protein 1 by mithramycin A as a novel therapeutic strategy for cervical cancer. Sci Rep 2014; 4:7162. [PMID: 25418289 PMCID: PMC4241519 DOI: 10.1038/srep07162] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/03/2014] [Indexed: 11/09/2022] Open
Abstract
Cervical cancer is the third most common cancer and the third leading cause of death among women. However, the standard treatment for cervical cancer includes cisplatin, which can cause side effects such as hematological damage or renal toxicity. New innovations in cervical cancer treatment focus on developing more effective and better-tolerated therapies such as Sp1-targeting drugs. Previous studies suggested that mithramycin A (Mith) inhibits the growth of various cancers by decreasing Sp1 protein. However, how Sp1 protein is decreased by Mith is not clear. Few studies have investigated the regulation of Sp1 protein by proteasome-dependent degradation as a possible control mechanism for the regulation of Sp1 in cancer cells. Here, we show that Mith decreased Sp1 protein by inducing proteasome-dependent degradation, thereby suppressing cervical cancer growth through a DR5/caspase-8/Bid signaling pathway. We found that prolonged Mith treatment was well tolerated after systemic administration to mice carrying cervical cancer cells. Reduction of body weight was minimal, indicating that Mith was a good therapeutic candidate for treatment of cancers in which Sp1 is involved in promoting and developing disease.
Collapse
Affiliation(s)
- Eun-Sun Choi
- Division of High-risk Pathogen Research, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Jeong-Seok Nam
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Graduate School of Medicine, Incheon 406-840, Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 314-701, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju 561-756, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju 561-756, Republic of Korea
| |
Collapse
|
636
|
Chan T, Zheng J, Zhu L, Grewal T, Murray M, Zhou F. Putative Transmembrane Domain 6 of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Influences Transporter Substrate Binding, Protein Trafficking, and Quality Control. Mol Pharm 2014; 12:111-9. [DOI: 10.1021/mp500459b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ting Chan
- Faculty
of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jian Zheng
- Faculty
of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
- Alkali
Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Ling Zhu
- Retinal
Therapeutics Research Group, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Thomas Grewal
- Faculty
of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Murray
- Discipline
of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Fanfan Zhou
- Faculty
of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
637
|
Yu X, Long YC. Autophagy modulates amino acid signaling network in myotubes: differential effects on mTORC1 pathway and the integrated stress response. FASEB J 2014; 29:394-407. [PMID: 25376834 DOI: 10.1096/fj.14-252841] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Induction of autophagy and the integrated stress response is important for amino acid homeostasis. It remains unknown whether the autophagy coregulates both mechanistic target of rapamycin complex 1 (mTORC1) signaling and the integrated stress response. In mouse C2C12 myotubes, we found that amino acid limitation induced autophagy and that the subsequent release of amino acid is required to sustain mTORC1 signaling. Inhibition of autophagy by bafilomycin A1 or chloroquine treatment during amino acid scarcity abolished mTORC1 signaling, an effect that could be rescued by inhibiting protein synthesis or amino acid supplementation, respectively. Autophagy is required to sustain the balance of both essential and nonessential amino acids during amino acid starvation, and it has a predominant role over the ubiquitin-proteasome system in the regulation of mTORC1. Inhibition of autophagy was found to activate the integrated stress response, as well as eukaryotic initiation factor 2α (eIF2α) and its target genes independent of amino acid availability. Conversely, autophagy induction via mTOR inhibition is sufficient to reduce eIF2α phosphorylation. Thus, autophagy protects the eIF2α-mediated stress response independent of amino acid supply in cultured myotubes. Our results showed that autophagy uniquely modulates mTORC1 and the integrated stress response in an amino acid-dependent and -independent manner, respectively.
Collapse
Affiliation(s)
- Xinlei Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
638
|
Dodd T, Simon L, LeCapitaine NJ, Zabaleta J, Mussell J, Berner P, Ford S, Dufour J, Bagby GJ, Nelson S, Molina PE. Chronic binge alcohol administration accentuates expression of pro-fibrotic and inflammatory genes in the skeletal muscle of simian immunodeficiency virus-infected macaques. Alcohol Clin Exp Res 2014; 38:2697-706. [PMID: 25421506 PMCID: PMC4244658 DOI: 10.1111/acer.12545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic binge alcohol (CBA) administration exacerbates skeletal muscle (SKM) wasting at the terminal stage of simian immunodeficiency virus (SIV) infection in rhesus macaques. This is associated with a pro-inflammatory and oxidative milieu which we have previously shown to be associated with a disrupted balance between anabolic and catabolic mechanisms. In this study, we attempted to characterize the SKM gene expression signature in CBA-administered SIV-infected macaques, using the same animals from the previous study. METHODS Administration of intragastric alcohol or sucrose to male rhesus macaques began 3 months prior to SIV infection and continued throughout the duration of study. Gene transcriptomes of SKM excised at necropsy (~10 months post-SIV) from healthy na\xEFve control (Control), sucrose-administered, SIV-infected (SUC-SIV), and CBA-administered, SIV-infected (CBA-SIV) macaques were evaluated in microarray data sets. The Protein Analysis Through Evolutionary Relationships classification tool was used to filter differentially regulated genes based on their predicted function into select biological processes relevant to SKM wasting which were inflammation, extracellular matrix (ECM) remodeling, and metabolism. RESULTS In total, 1,124 genes were differentially regulated between SUC-SIV and Controls, 2,022 genes were differentially expressed between the CBA-SIV and Controls, and 836 genes were differentially expressed between CBA-SIV and SUC-SIV animals. The relevance of altered gene expression was reflected in the up-regulation of pro-inflammatory CCL-2, CCL-8, CX3CL1, SELE, HP, and TNFRS10A mRNA expression. In addition, ECM remodeling was reflected in the up-regulation of TIMP-1, MMP 2, and MMP 9 mRNA expression and transforming growth factor-beta 1 protein expression. In addition, hydroxyproline content and picrosirius staining reflected increased collagen deposition in the CBA-SIV muscle tissue. CONCLUSIONS The results of the study demonstrate SKM inflammation as an important underlying mechanism for muscle wasting. In addition, the study provides evidence of SKM fibrotic transformation as a factor in CBA-induced accentuation of SIV-associated muscle wasting.
Collapse
Affiliation(s)
- Tracy Dodd
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
639
|
Park MS, Bitto E, Kim KR, Bingman CA, Miller MD, Kim HJ, Han BW, Phillips GN. Crystal structure of human protein N-terminal glutamine amidohydrolase, an initial component of the N-end rule pathway. PLoS One 2014; 9:e111142. [PMID: 25356641 PMCID: PMC4214742 DOI: 10.1371/journal.pone.0111142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/28/2014] [Indexed: 11/22/2022] Open
Abstract
The N-end rule states that half-life of protein is determined by their N-terminal amino acid residue. N-terminal glutamine amidohydrolase (Ntaq) converts N-terminal glutamine to glutamate by eliminating the amine group and plays an essential role in the N-end rule pathway for protein degradation. Here, we report the crystal structure of human Ntaq1 bound with the N-terminus of a symmetry-related Ntaq1 molecule at 1.5 Å resolution. The structure reveals a monomeric globular protein with alpha-beta-alpha three-layer sandwich architecture. The catalytic triad located in the active site, Cys-His-Asp, is highly conserved among Ntaq family and transglutaminases from diverse organisms. The N-terminus of a symmetry-related Ntaq1 molecule bound in the substrate binding cleft and the active site suggest possible substrate binding mode of hNtaq1. Based on our crystal structure of hNtaq1 and docking study with all the tripeptides with N-terminal glutamine, we propose how the peptide backbone recognition patch of hNtaq1 forms nonspecific interactions with N-terminal peptides of substrate proteins. Upon binding of a substrate with N-terminal glutamine, active site catalytic triad mediates the deamination of the N-terminal residue to glutamate by a mechanism analogous to that of cysteine proteases.
Collapse
Affiliation(s)
- Mi Seul Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood, New Jersey, United States of America
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Craig A. Bingman
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Mitchell D. Miller
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- * E-mail: (BWH); (GNP)
| | - George N. Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- * E-mail: (BWH); (GNP)
| |
Collapse
|
640
|
Sood S, Chen Y, McIntire K, Rabkin R. Acute acidosis attenuates leucine stimulated signal transduction and protein synthesis in rat skeletal muscle. Am J Nephrol 2014; 40:362-70. [PMID: 25358492 DOI: 10.1159/000366524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/05/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Critical illnesses are often complicated by acute metabolic acidosis, which if persistent, adversely affects outcome. Among the harmful effects that it might cause are impaired utilization of nutrients, increased proteolysis and depressed protein synthesis, leading to muscle wasting. As the amino acid leucine stimulates protein synthesis by activating mTOR signaling, we explored whether in acidosis, impaired leucine-stimulated signaling might be a contributor to the depressed protein synthesis. METHODS Male pair-fed rats were gavaged with NH4Cl (acidosis) or NaCl (control) for 2 days and then gavaged once with leucine and sacrificed 45 min later. Extensor digitorum longus muscles were isolated, incubated with or without leucine and protein synthesis measured. The anterior tibial muscle signaling was analysed by Western immunobloting. RESULTS Despite pair-feeding, acidotic rats lost body and muscle weight vs. controls. Moreover, leucine-induced protein synthesis in isolated muscle from acidotic rats was impaired. In-vivo, 45 min after an oral leucine load, anterior tibial muscle mTOR and 4E-BP1 phosphorylation increased significantly and comparably in control and acidotic rats. In contrast, leucine-stimulated phosphorylation of S6K1, a regulator of translation initiation and protein synthesis, was attenuated to approximately 56% of the control value (p < 0.05). CONCLUSION This study reveals that an acute metabolic acidosis impairs leucine-stimulated protein synthesis and activation of signaling downstream of mTOR at the level of S6K1. We propose that this S6K1 abnormality may account in part, for the resistance to leucine-stimulated muscle protein synthesis, and may thereby contribute to the impaired nutrient utilization and ultimately the muscle wasting that develops in acidosis.
Collapse
Affiliation(s)
- Sumita Sood
- Research Service, Veterans Affairs Health Care Palo Alto, Palo Alto, Calif., USA
| | | | | | | |
Collapse
|
641
|
Albu RF, Chan GT, Zhu M, Wong ETC, Taghizadeh F, Hu X, Mehran AE, Johnson JD, Gsponer J, Mayor T. A feature analysis of lower solubility proteins in three eukaryotic systems. J Proteomics 2014; 118:21-38. [PMID: 25451012 DOI: 10.1016/j.jprot.2014.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/11/2014] [Accepted: 10/18/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Because misfolded and damaged proteins can form potentially harmful aggregates, all living organisms have evolved a wide variety of quality control mechanisms. However, the timely clearance of aggregation-prone species may not always be achieved, potentially leading to the accumulation of low solubility proteins. At the same time, promiscuity, which can be a driving force for aggregation, is also important to the functionality of certain proteins which have a large number of interaction partners. Considerable efforts have been made towards characterizing why some proteins appear to be more aggregation-prone than others. In this study, we analyze the features of proteins which precipitate following centrifugation in unstressed yeast cells, human SH-SY5Y cells and mouse brain tissue. By normalizing for protein abundance, we devised an approach whereby lower solubility proteins are reliably identified. Our findings indicate that these tend to be longer, low abundance proteins, which contain fewer hydrophobic amino acids. Furthermore, low solubility proteins also contain more low complexity and disordered regions. Overall, we observed an increase in features that link low solubility proteins to functional aggregates. Our results indicate that lower solubility proteins from three biologically distinct model systems share several common traits, shedding light on potentially universal solubility determinants. BIOLOGICAL SIGNIFICANCE We set up a novel approach to identify lower solubility proteins in unstressed cells by comparing precipitated proteins with those that remain soluble after centrifugation. By analyzing three eukaryotic model systems in parallel, we were able to identify traits which cross the species barrier, as well as species-specific characteristics. Notably, our analyses revealed a number of primary and secondary structural features that set apart lower solubility proteins, a number of which connected them to a greater potential for promiscuity. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
Affiliation(s)
- Razvan F Albu
- Department of Biochemistry and Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Gerard T Chan
- Department of Biochemistry and Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Mang Zhu
- Department of Biochemistry and Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Eric T C Wong
- Department of Biochemistry and Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
| | - Arya E Mehran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology and Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada.
| |
Collapse
|
642
|
Sultan MM, Kiss G, Shukla D, Pande VS. Automatic Selection of Order Parameters in the Analysis of Large Scale Molecular Dynamics Simulations. J Chem Theory Comput 2014; 10:5217-5223. [PMID: 25516725 PMCID: PMC4263461 DOI: 10.1021/ct500353m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 01/08/2023]
Abstract
![]()
Given the large number of crystal
structures and NMR ensembles
that have been solved to date, classical molecular dynamics (MD) simulations
have become powerful tools in the atomistic study of the kinetics
and thermodynamics of biomolecular systems on ever increasing time
scales. By virtue of the high-dimensional conformational state space
that is explored, the interpretation of large-scale simulations faces
difficulties not unlike those in the big data community. We address
this challenge by introducing a method called clustering based feature
selection (CB-FS) that employs a posterior analysis approach. It combines
supervised machine learning (SML) and feature selection with Markov
state models to automatically identify the relevant degrees of freedom
that separate conformational states. We highlight the utility of the
method in the evaluation of large-scale simulations and show that
it can be used for the rapid and automated identification of relevant
order parameters involved in the functional transitions of two exemplary
cell-signaling proteins central to human disease states.
Collapse
Affiliation(s)
- Mohammad M Sultan
- Department of Chemistry, Stanford University , 318 Campus Drive, Stanford, California 94305, United States
| | - Gert Kiss
- Department of Chemistry, Stanford University , 318 Campus Drive, Stanford, California 94305, United States ; SIMBIOS NIH Center for Biomedical Computation and Center for Molecular Analysis and Design, Stanford University , Stanford, California 94305, United States ; SIMBIOS NIH Center for Biomedical Computation and Center for Molecular Analysis and Design, Stanford University , Stanford, California 94305, United States
| | - Diwakar Shukla
- Department of Chemistry, Stanford University , 318 Campus Drive, Stanford, California 94305, United States ; SIMBIOS NIH Center for Biomedical Computation and Center for Molecular Analysis and Design, Stanford University , Stanford, California 94305, United States
| | - Vijay S Pande
- Department of Chemistry, Stanford University , 318 Campus Drive, Stanford, California 94305, United States ; SIMBIOS NIH Center for Biomedical Computation and Center for Molecular Analysis and Design, Stanford University , Stanford, California 94305, United States ; SIMBIOS NIH Center for Biomedical Computation and Center for Molecular Analysis and Design, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
643
|
Sui L, An L, Tan K, Wang Z, Wang S, Miao K, Ren L, Tao L, He S, Yu Y, Nie J, Liu Q, Xing L, Wu Z, Hou Z, Tian J. Dynamic proteomic profiles of in vivo- and in vitro-produced mouse postimplantation extraembryonic tissues and placentas. Biol Reprod 2014; 91:155. [PMID: 25320150 DOI: 10.1095/biolreprod.114.124248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As the interface between the mother and the developing fetus, the placenta is believed to play an important role in assisted reproductive technology (ART)-induced aberrant intrauterine and postnatal development. However, the mechanisms underlying aberrant placentation remain unclear, especially during extraembryonic tissue development and early stages of placental formation. Using a mouse model, this investigation provides the first comparative proteomic analysis of in vivo (IVO) and in vitro-produced (IVP) extraembryonic tissues and placentas after IVO fertilization and development, or in vitro fertilization and culture, respectively. We identified 165 and 178 differentially expressed proteins (DEPs) between IVO and IVP extraembryonic tissues and placentas on Embryonic Day 7.5 (E7.5) and E10.5, respectively. Many DEPs were functionally associated with genetic information processing, such as impaired de novo DNA methylation, as well as posttranscriptional, translational and posttranslational dysregulation. These novel findings were further confirmed by global hypomethylation, and a lower level of correlation was found between the transcriptome and proteome in the IVP groups. In addition, numerous DEPs were involved in energy and amino acid metabolism, cytoskeleton organization and transport, and vasculogenesis and angiogenesis. These disturbed processes and pathways are likely to be associated with embryonic intrauterine growth restriction, an enlarged placenta, and impaired labyrinth morphogenesis. This study provides a direct and comprehensive reference for the further exploration of the placental mechanisms that underlie ART-induced developmental aberrations.
Collapse
Affiliation(s)
- Linlin Sui
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kun Tan
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuqing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shumin Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Likun Ren
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Li Tao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Shuzhi He
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Yong Yu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jinzhou Nie
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Qian Liu
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Lei Xing
- BGI Tech Solutions Co., Ltd., Beishan Industrial Zone, Shenzhen, China
| | - Zhonghong Wu
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Zhuocheng Hou
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
644
|
Montrose K, Krissansen GW. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem Biophys Res Commun 2014; 453:735-40. [PMID: 25305486 DOI: 10.1016/j.bbrc.2014.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022]
Abstract
The X-protein of the hepatitis B virus (HBV) is essential for virus infection and contributes to the development of HBV-induced hepatocellular carcinoma (HCC), a disease which causes more than one million deaths each year. Here we describe the design of a novel PROTAC (proteolysis targeting chimeric molecule) capable of simultaneously inducing the degradation of the X-protein, and antagonizing its function. The PROTAC was constructed by fusing the N-terminal oligomerization and C-terminal instability domains of the X-protein to each other, and rendering them cell-permeable by the inclusion of a polyarginine cell-penetrating peptide (CPP). It was predicted that the oligomerization domain would bind the X-protein, and that the instability domain would cause the X-protein to be targeted for proteasomal degradation. Addition of the PROTAC to HepG2 liver cancer cells, engineered to express full-length and C-terminally truncated forms of the X-protein, resulted in the degradation of both forms of the X-protein. A cell-permeable stand-alone form of the oligomerization domain was taken up by HepG2 cells, and acted as a dominant-negative inhibitor, causing inhibition of X-protein-induced apoptosis. In summary, the PROTAC described here induces the degradation of the X-protein, and antagonizes its function, and warrants investigation in a preclinical study for its ability to prevent or treat HBV infection and/or the development of HCC.
Collapse
Affiliation(s)
- Kristopher Montrose
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Geoffrey W Krissansen
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
645
|
Yerlikaya A, Okur E, Baykal AT, Acılan C, Boyacı I, Ulukaya E. A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line. J Proteomics 2014; 113:315-25. [PMID: 25305590 DOI: 10.1016/j.jprot.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED The 26S proteasome is a proteolytic enzyme found in both cytoplasm and nucleus. In this study, we examined the differential expression of proteasome inhibitor bortezomib-induced proteins in p53-deficient 4T1 cells. It was found that GRP78 and TCEB2 were over-expressed in response to treatment with bortezomib for 24h. Next, we analyzed the expression of intracellular proteins in response to treatment with 100nM bortezomib for 24h by label-free LC-MS/MS. These analyses showed that Hsp70, the 26S proteasome non-ATPase regulatory subunit 14 and sequestosome 1 were increased at least 2 fold in p53-deficient 4T1 cells. The proteins identified by label-free LC-MS/MS were then analyzed by Ingenuity Pathway Analysis (IPA) Tool to determine biological networks affected by inhibition of the 26S proteasome. The analysis results showed that post-translational modifications, protein folding, DNA replication, energy production and nucleic acid metabolism were found to be among the top functions affected by the 26S proteasome inhibition. The biological network analysis indicated that ubiquitin may be the central regulator of the pathways modulated after bortezomib-treatment. Further investigation of the mechanism of the proteins modulated in response to the proteasomal inhibition may lead to the design of more effective and novel therapeutic strategies for cancer. BIOLOGICAL SIGNIFICANCE Although the proteasome inhibitor bortezomib is approved and used for the treatment of human cancer (multiple myeloma), the mechanism of action is not entirely understood. A number of studies showed that proteasome inhibitors induced apoptosis through upregulation of tumor suppressor protein p53. However, the role of tumor suppressor protein p53 in bortezomib-induced apoptosis is controversial and not well-understood. The tumor suppressor p53 is mutated in at least 50% of human cancers and is strongly induced by proteasomal inhibition. Some also reported that the proteasome inhibitor can induce apoptosis in a p53-independent manner. Also, it is reported that Noxa, a target of p53, is induced in response to proteasomal inhibition in a p53-independent manner. However, we have also previously reported that neither Puma nor Noxa are induced by proteasomal inhibition in p53-null 4T1 breast cancer cells, which is commonly used for in vivo breast cancer tumor models. The current results provided additional targets of proteasome inhibitor bortezomib and may therefore help in understanding the p53-independent mechanism of apoptosis induction by proteasome inhibitors. In addition, the results presented in this current study report for the first time that proteasomal subunit Psmd14, anti-apoptotic GRP78, anti apoptotic protein Card10, Dffb, Traf3 and Trp53bp2 are regulated and overexpressed in response to proteasome inhibitor bortezomib in p53-deficient 4T1 cells. Therefore, novel therapeutic strategies targeting these anti-apoptotic or pro-apoptotic proteins as well as inhibiting the proteasome simultaneously may be more effective against cancer cells. The proteins identified here present new avenues for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Dumlupınar University, Faculty of Medicine, Department of Medical Biology, Kütahya, Turkey.
| | - Emrah Okur
- Dumlupınar University, Art and Science Faculty, Department of Biology, Kütahya, Turkey
| | - Ahmet Tarık Baykal
- İstanbul Medipol University, Medical School, Department of Medical Biochemistry, İstanbul, Turkey
| | - Ceyda Acılan
- TÜBİTAK, MAM, Genetic Engineering and Biotechnology Department, Gebze, Kocaeli, Turkey
| | - Ihsan Boyacı
- İstanbul Medipol University, Vatan Clinic, İstanbul, 34214, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Uludağ University, Bursa, Turkey
| |
Collapse
|
646
|
Bianchini E, Testoni S, Gentile A, Calì T, Ottolini D, Villa A, Brini M, Betto R, Mascarello F, Nissen P, Sandonà D, Sacchetto R. Inhibition of ubiquitin proteasome system rescues the defective sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1) protein causing Chianina cattle pseudomyotonia. J Biol Chem 2014; 289:33073-82. [PMID: 25288803 DOI: 10.1074/jbc.m114.576157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A missense mutation in ATP2A1 gene, encoding sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) protein, causes Chianina cattle congenital pseudomyotonia, an exercise-induced impairment of muscle relaxation. Skeletal muscles of affected cattle are characterized by a selective reduction of SERCA1 in sarcoplasmic reticulum membranes. In this study, we provide evidence that the ubiquitin proteasome system is involved in the reduced density of mutated SERCA1. The treatment with MG132, an inhibitor of ubiquitin proteasome system, rescues the expression level and membrane localization of the SERCA1 mutant in a heterologous cellular model. Cells co-transfected with the Ca(2+)-sensitive probe aequorin show that the rescued SERCA1 mutant exhibits the same ability of wild type to maintain Ca(2+) homeostasis within cells. These data have been confirmed by those obtained ex vivo on adult skeletal muscle fibers from a biopsy from a pseudomyotonia-affected subject. Our data show that the mutation generates a protein most likely corrupted in proper folding but not in catalytic activity. Rescue of mutated SERCA1 to sarcoplasmic reticulum membrane can re-establish resting cytosolic Ca(2+) concentration and prevent the appearance of pathological signs of cattle pseudomyotonia.
Collapse
Affiliation(s)
| | | | - Arcangelo Gentile
- the Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Tito Calì
- Biology, University of Padova, 35131 Padova, Italy
| | | | - Antonello Villa
- the Consorzio M.I.A., University of Milano Bicocca, 20900 Monza, Italy
| | - Marisa Brini
- Biology, University of Padova, 35131 Padova, Italy
| | - Romeo Betto
- the Neuroscience Institute, Consiglio Nazionale delle Ricerche Padova, 35131 Padova, Italy, and
| | - Francesco Mascarello
- Comparative Biomedicine and Food Science, University of Padova,35020 Legnaro (Padova), Italy
| | - Poul Nissen
- the Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease, Aarhus University, 8000 Aarhus, Denmark
| | | | - Roberta Sacchetto
- Comparative Biomedicine and Food Science, University of Padova,35020 Legnaro (Padova), Italy,
| |
Collapse
|
647
|
Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2014; 2:819-29. [PMID: 24731660 PMCID: PMC4156923 DOI: 10.1016/s2213-8587(14)70034-8] [Citation(s) in RCA: 730] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The term sarcopenia refers to the loss of muscle mass that occurs with ageing. On the basis of study results showing that muscle mass is only moderately related to functional outcomes, international working groups have proposed that loss of muscle strength or physical function should also be included in the definition. Irrespective of how sarcopenia is defined, both low muscle mass and poor muscle strength are clearly highly prevalent and important risk factors for disability and potentially mortality in individuals as they age. Many chronic diseases, in addition to ageing, could also accelerate decrease of muscle mass and strength, and this effect could be a main underlying mechanism by which chronic diseases cause physical disability. In this Review, we address both age-related and disease-related muscle loss, with a focus on diabetes and obesity but including other disease states, and potential common mechanisms and treatments. Development of treatments for age-related and disease-related muscle loss might improve active life expectancy in older people, and lead to substantial health-care savings and improved quality of life.
Collapse
Affiliation(s)
- Rita Rastogi Kalyani
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Mark Corriere
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
648
|
Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal 2014; 8:293-310. [PMID: 25208934 DOI: 10.1007/s12079-014-0243-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Many members of the heat shock protein family act in unison to refold or degrade misfolded proteins. Some heat shock proteins also directly interfere with apoptosis. These homeostatic functions are especially important in proteinopathic neurodegenerative diseases, in which specific proteins misfold, aggregate, and kill cells through proteotoxic stress. Heat shock protein levels may be increased or decreased in these disorders, with the direction of the response depending on the individual heat shock protein, the disease, cell type, and brain region. Aging is also associated with an accrual of proteotoxic stress and modulates expression of several heat shock proteins. We speculate that the increase in some heat shock proteins in neurodegenerative conditions may be partly responsible for the slow progression of these disorders, whereas the increase in some heat shock proteins with aging may help delay senescence. The protective nature of many heat shock proteins in experimental models of neurodegeneration supports these hypotheses. Furthermore, some heat shock proteins appear to be expressed at higher levels in longer-lived species. However, increases in heat shock proteins may be insufficient to override overwhelming proteotoxic stress or reverse the course of these conditions, because the expression of several other heat shock proteins and endogenous defense systems is lowered. In this review we describe a number of stress-induced changes in heat shock proteins as a function of age and neurodegenerative pathology, with an emphasis on the heat shock protein 70 (Hsp70) family and the two most common proteinopathic disorders of the brain, Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 600 Forbes Ave, Pittsburgh, PA, 15282, USA,
| |
Collapse
|
649
|
Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration. Int J Biochem Cell Biol 2014; 54:208-16. [DOI: 10.1016/j.biocel.2014.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
|
650
|
Kim JE, Lee YH, Huh JH, Kang DR, Rhee Y, Lim SK. Early-stage chronic kidney disease, insulin resistance, and osteoporosis as risk factors of sarcopenia in aged population: the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008-2009. Osteoporos Int 2014; 25:2189-98. [PMID: 24846317 DOI: 10.1007/s00198-014-2745-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/07/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Sarcopenia means the progressive loss of skeletal muscle mass and strength with aging. In this study, we found that insulin resistance, chronic kidney disease stage 3, and osteoporosis at the femur neck were closely associated with sarcopenia in elderly men. These conditions modified to slow down the progression of sarcopenia. INTRODUCTION Sarcopenia is known to have multiple contributing factors; however, its modifiable risk factors have not yet been determined. The aim of this study was to identify the most influential and modifiable risk factors for sarcopenia in elderly. METHODS This was a population-based, cross-sectional study using data from the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008-2009. This study included 940 men and 1,324 women aged 65 years and older who completed a body composition analysis using dual-energy X-ray absorptiometry. Sarcopenia was defined as an appendicular skeletal muscle mass divided by height(2) of less than 1 standard deviation below the sex-specific mean for a younger reference group. RESULTS Using univariate analysis, age, body mass index (BMI), homeostasis model assessment for insulin resistance (HOMA-IR), limitations in daily activities, regular exercise, high-risk drinking, family income, osteoporosis, daily energy, and protein intake were associated with sarcopenia in men; age, BMI, limitations in daily activities, regular exercise, occupation, osteoporosis at the total hip, and daily energy intake were associated with sarcopenia in women. In the multivariate logistic regression analysis, HOMA-IR ≥2.5 (odds ratio [OR] for sarcopenia, 2.27; 95 % confidence interval [CI], 1.21-4.25), chronic kidney disease stage 3 (OR, 3.13; 95 % CI, 1.14-8.61), and osteoporosis at the femur neck (OR, 6.83; 95 % CI, 1.08-43.41) were identified as risk factors for sarcopenia in men. CONCLUSIONS Insulin resistance, chronic kidney disease, and osteoporosis at the femur neck should be modified to prevent the acceleration of skeletal muscle loss in elderly men.
Collapse
Affiliation(s)
- J E Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea,
| | | | | | | | | | | |
Collapse
|