601
|
Flores-Torres S, Peza-Chavez O, Kuasne H, Munguia-Lopez JG, Kort-Mascort J, Ferri L, Jiang T, Rajadurai CV, Park M, Sangwan V, Kinsella JM. Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Biofabrication 2021; 13. [PMID: 33440351 DOI: 10.1088/1758-5090/abdb87] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Hydrogels consisting of controlled fractions of alginate, gelatin, and Matrigel enable the development of patient-derived bioprinted tissue models that support cancer spheroid growth and expansion. These engineered models can be dissociated to be then reintroduced to new hydrogel solutions and subsequently reprinted to generate multigenerational models. The process of harvesting cells from 3D bioprinted models is possible by chelating the ions that crosslink alginate, causing the gel to weaken. Inclusion of the gelatin and Matrigel fractions to the hydrogel increases the bioactivity by providing cell-matrix binding sites and promoting cross-talk between cancer cells and their microenvironment. Here we show that immortalized triple-negative breast cancer cells (MDA-MB-231) and patient-derived gastric adenocarcinoma cells can be reprinted for at least three 21 d culture cycles following bioprinting in the alginate/gelatin/Matrigel hydrogels. Our drug testing results suggest that our 3D bioprinted model can also be used to recapitulatein vivopatient drug response. Furthermore, our results show that iterative bioprinting techniques coupled with alginate biomaterials can be used to maintain and expand patient-derived cancer spheroid cultures for extended periods without compromising cell viability, altering division rates, or disrupting cancer spheroid formation.
Collapse
Affiliation(s)
| | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Jose G Munguia-Lopez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | | | - Lorenzo Ferri
- Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Charles V Rajadurai
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Veena Sangwan
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
602
|
Dzikowski L, Mirzaei R, Sarkar S, Kumar M, Bose P, Bellail A, Hao C, Yong VW. Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumor-initiating cells. Brain Pathol 2021; 31:e12947. [PMID: 33694259 PMCID: PMC8412081 DOI: 10.1111/bpa.12947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, recurrent, and lethal brain tumors that are maintained via brain tumor‐initiating cells (BTICs). The aggressiveness of BTICs may be dependent on the extracellular matrix (ECM) molecules that are highly enriched within the GBM microenvironment. Here, we investigated the expression of ECM molecules in GBM patients by mining the transcriptomic databases and also staining human GBM specimens. RNA levels for fibronectin, brevican, versican, heparan sulfate proteoglycan 2 (HSPG2), and several laminins were high in GBMs compared to normal brain, and this was corroborated by immunohistochemistry. While fibrinogen transcript was at normal level in GBM, its protein immunoreactivity was prominent within GBM tissues. These ECM molecules in tumor specimens were in proximity to, and surrounding BTICs. In culture, fibronectin and pan‐laminin induced the adhesion of BTICs onto the plastic substratum. However, fibrinogen increased the size of the BTIC spheres by facilitating the adhesive property, motility, and invasiveness of BTICs. These features of elevated invasiveness were corroborated in resected GBM specimens by the close proximity of fibrinogen with matrix metalloproteinase (MMP)‐2 and‐9, which are proteases implicated in metastasis. Moreover, the effect of fibrinogen‐induced invasiveness was attenuated in BTICs where MMP‐2 and ‐9 have been inhibited with siRNAs or pharmacological inhibitors. Our results implicate fibrinogen in GBM as a mediator of the invasive properties of BTICs, and as a target for therapy to reduce BTIC tumorigenecity.
Collapse
Affiliation(s)
- Lauren Dzikowski
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mehul Kumar
- Department of Biochemistry, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Surgery, University of Calgary, Calgary, AB, Canada.,the Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Anita Bellail
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chunhai Hao
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
603
|
An JH, Song WJ, Li Q, Bhang DH, Youn HY. 3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells. J Vet Sci 2021; 22:e25. [PMID: 33908202 PMCID: PMC8170217 DOI: 10.4142/jvs.2021.22.e25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. OBJECTIVES In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). METHODS A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. RESULTS TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. CONCLUSIONS SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.
Collapse
Affiliation(s)
- Ju Hyun An
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Woo Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji 133000, China
| | - Dong Ha Bhang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.
| | - Hwa Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
604
|
Holstein E, Dittmann A, Kääriäinen A, Pesola V, Koivunen J, Pihlajaniemi T, Naba A, Izzi V. The Burden of Post-Translational Modification (PTM)-Disrupting Mutations in the Tumor Matrisome. Cancers (Basel) 2021; 13:1081. [PMID: 33802493 PMCID: PMC7959462 DOI: 10.3390/cancers13051081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To evaluate the occurrence of mutations affecting post-translational modification (PTM) sites in matrisome genes across different tumor types, in light of their genomic and functional contexts and in comparison with the rest of the genome. METHODS This study spans 9075 tumor samples and 32 tumor types from The Cancer Genome Atlas (TCGA) Pan-Cancer cohort and identifies 151,088 non-silent mutations in the coding regions of the matrisome, of which 1811 affecting known sites of hydroxylation, phosphorylation, N- and O-glycosylation, acetylation, ubiquitylation, sumoylation and methylation PTM. RESULTS PTM-disruptive mutations (PTMmut) in the matrisome are less frequent than in the rest of the genome, seem independent of cell-of-origin patterns but show dependence on the nature of the matrisome protein affected and the background PTM types it generally harbors. Also, matrisome PTMmut are often found among structural and functional protein regions and in proteins involved in homo- and heterotypic interactions, suggesting potential disruption of matrisome functions. CONCLUSIONS Though quantitatively minoritarian in the spectrum of matrisome mutations, PTMmut show distinctive features and damaging potential which might concur to deregulated structural, functional, and signaling networks in the tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Holstein
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Annalena Dittmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Anni Kääriäinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Vilma Pesola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Jarkko Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA;
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland; (E.H.); (A.D.); (A.K.); (V.P.); (J.K.); (T.P.)
- Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Finnish Cancer Institute, 00130 Helsinki, Finland
| |
Collapse
|
605
|
Liu X, Hao Y, Popovtzer R, Feng L, Liu Z. Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. Adv Healthc Mater 2021; 10:e2001167. [PMID: 32985139 DOI: 10.1002/adhm.202001167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Enzymes play pivotal roles in regulating and maintaining the normal functions of all living systems, and some of them are extensively employed for diagnosis and treatment of diverse diseases. More recently, several kinds of enzymes with unique catalytic activities have been found to be promising options to directly suppress tumor growth and/or augment the therapeutic efficacy of other treatments by modulating the hostile tumor microenvironment (TME), which is reported to negatively impair the therapeutic efficacy of different cancer treatments. In this review, first a summary is presented on the chemical approaches utilized for the construction of distinct enzyme nanoreactors with well-retained catalytic performance and reduced immunogenicity. Then, the utilization of such enzyme nanoreactors in attenuating tumor hypoxia, modulating extracellular matrix, and amplifying tumor oxidative stress is discussed in depth. Afterward, some perspectives are presented on the future development of such enzyme nanoreactors in TME modulation and enhanced cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Liu
- Clinical Translational Center for Targeted Drug Department of Pharmacology School of Medicine Jinan University Guangzhou Guangdong Province 510632 China
| | - Yu Hao
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 52900 Israel
| | - Liangzhu Feng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
606
|
Ding Z, Ericksen RE, Lee QY, Han W. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis. Amino Acids 2021; 53:1807-1815. [PMID: 33646427 DOI: 10.1007/s00726-021-02961-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Dysregulated cellular energetics has recently been recognized as a hallmark of cancer and garnered attention as a potential targeting strategy for cancer therapeutics. Cancer cells reprogram metabolic activities to meet bio-energetic, biosynthetic and redox requirements needed to sustain indefinite proliferation. In many cases, metabolic reprogramming is the result of complex interactions between genetic alterations in well-known oncogenes and tumor suppressors and epigenetic changes. While the metabolism of the two most abundant nutrients, glucose and glutamine, is reprogrammed in a wide range of cancers, accumulating evidence demonstrates that additional metabolic pathways are also critical for cell survival and growth. Proline metabolism is one such metabolic pathway that promotes tumorigenesis in multiple cancer types, including liver cancer, which is the fourth main cause of cancer mortality in the world. Despite the recent spate of approved treatments, including targeted therapy and combined immunotherapies, there has been no significant gain in clinical benefits in the majority of liver cancer patients. Thus, exploring novel therapeutic strategies and identifying new molecular targets remains a top priority for liver cancer. Two of the enzymes in the proline biosynthetic pathway, pyrroline-5-carboxylate reductase (PYCR1) and Aldehyde Dehydrogenase 18 Family Member A1 (ALDH18A1), are upregulated in liver cancer of both human and animal models, while proline catabolic enzymes, such as proline dehydrogenase (PRODH) are downregulated. Here we review the latest evidence linking proline metabolism to liver and other cancers and potential mechanisms of action for the proline pathway in cancer development.
Collapse
Affiliation(s)
- Zhaobing Ding
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Russell E Ericksen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Qian Yi Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore, 138667, Singapore.
| |
Collapse
|
607
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
608
|
Therapeutic Efficacy and Biodistribution of Paclitaxel-Bound Amphiphilic Cyclodextrin Nanoparticles: Analyses in 3D Tumor Culture and Tumor-Bearing Animals In Vivo. NANOMATERIALS 2021; 11:nano11020515. [PMID: 33670527 PMCID: PMC7922126 DOI: 10.3390/nano11020515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
The uniqueness of paclitaxel’s antimitotic action mechanism has fueled research toward its application in more effective and safer cancer treatments. However, the low water solubility, recrystallization, and side effects hinder the clinical success of classic paclitaxel chemotherapy. The aim of this study was to evaluate the in vivo efficacy and biodistribution of paclitaxel encapsulated in injectable amphiphilic cyclodextrin nanoparticles of different surface charges. It was found that paclitaxel-loaded amphiphilic cyclodextrin nanoparticles showed an antitumoral effect earlier than the drug solution. Moreover, the blank nanoparticles reduced the tumor growth with a similar trend to the paclitaxel solution. At 24 h, the nanoparticles had not accumulated in the heart and lungs according to the biodistribution assessed by in vivo imaging. Therefore, our results indicated that the amphiphilic cyclodextrin nanoparticles are potentially devoid of cardiac toxicity, which limits the clinical use and commercialization of certain polymeric nanoparticles. In conclusion, the amphiphilic cyclodextrin nanoparticles with different surface charge increased the efficiency of paclitaxel in vitro and in vivo. Cyclodextrin nanoparticles could be a good candidate vehicle for intravenous paclitaxel delivery.
Collapse
|
609
|
Saksis R, Silamikelis I, Laksa P, Megnis K, Peculis R, Mandrika I, Rogoza O, Petrovska R, Balcere I, Konrade I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Pirags V, Klovins J, Rovite V. Medication for Acromegaly Reduces Expression of MUC16, MACC1 and GRHL2 in Pituitary Neuroendocrine Tumour Tissue. Front Oncol 2021; 10:593760. [PMID: 33680922 PMCID: PMC7928352 DOI: 10.3389/fonc.2020.593760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Acromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein–protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein–protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.
Collapse
Affiliation(s)
- Rihards Saksis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Pola Laksa
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Olesja Rogoza
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Inga Balcere
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Ilze Konrade
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Liva Steina
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Austra Breiksa
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | | | - Valdis Pirags
- Pauls Stradins Clinical University Hospital, Riga, Latvia.,University of Latvia Faculty of Medicine, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
610
|
Hacking SM, Chakraborty B, Nasim R, Vitkovski T, Thomas R. A Holistic Appraisal of Stromal Differentiation in Colorectal Cancer: Biology, Histopathology, Computation, and Genomics. Pathol Res Pract 2021; 220:153378. [PMID: 33690050 DOI: 10.1016/j.prp.2021.153378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Cancer comprises epithelial tumor cells and associated stroma, often times referred to as the "tumoral microenvironment". Cancer-associated fibroblasts (CAFs) are the most notable components of the tumor mesenchyme. CAFs promote the initiation of cancer through angiogenesis, invasion and metastasis. Histologically, the differentiation of stroma has been reported to correlate with prognostic outcomes in patients with colorectal cancer. This review summarizes our current understanding of the extracellular matrix (ECM) in colorectal carcinoma (CRC), showcasing the functions of CAFs and its role in stromal differentiation (SD). We also review current state-of-the-art biology, histopathology, computation, and genomics in the setting of the stroma. SD is distinctive morphologically, and is easily recognized by a surgical pathologist; we offer a lexicon and guide for discovering the essence of stroma, as well as an incipient vision of the future for computation and molecular genomics. We propose that the mesenchymal phenotype, which encompasses a cancer migratory/metastatic capacity, could occur through the process of SD. Looking forward, pathologists will need to invest time and energy into SD, embracing the concept and propagating its use. For patients with colorectal cancer, stroma is a brave new frontier, one not only rich in biologic diversity, but also potentially critical for therapeutic decision making.
Collapse
Affiliation(s)
- Sean M Hacking
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States.
| | - Baidarbhi Chakraborty
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, United States
| | | | - Taisia Vitkovski
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| | - Rebecca Thomas
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, United States
| |
Collapse
|
611
|
McKenna MK, Englisch A, Brenner B, Smith T, Hoyos V, Suzuki M, Brenner MK. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol Ther 2021; 29:1808-1820. [PMID: 33571680 DOI: 10.1016/j.ymthe.2021.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) is a formidable barrier to the success of adoptive cell therapies for solid tumors. Oncolytic immunotherapy with engineered adenoviruses (OAd) may disrupt the TME by infecting tumor cells, as well as surrounding stroma, to improve the functionality of tumor-directed chimeric antigen receptor (CAR)-T cells, yet efficient delivery of OAds to solid tumors has been challenging. Here we describe how mesenchymal stromal cells (MSCs) can be used to systemically deliver a binary vector containing an OAd together with a helper-dependent Ad (HDAd; combinatorial Ad vector [CAd]) that expresses interleukin-12 (IL-12) and checkpoint PD-L1 (programmed death-ligand 1) blocker. CAd-infected MSCs deliver and produce functional virus to infect and lyse lung tumor cells while stimulating CAR-T cell anti-tumor activity by release of IL-12 and PD-L1 blocker. The combination of this approach with administration of HER.2-specific CAR-T cells eliminates 3D tumor spheroids in vitro and suppresses tumor growth in two orthotopic lung cancer models in vivo. Treatment with CAd MSCs increases the overall numbers of human T cells in vivo compared to CAR-T cell only treatment and enhances their polyfunctional cytokine secretion. These studies combine the predictable targeting of CAR-T cells with the advantages of cancer cell lysis and TME disruption by systemic MSC delivery of oncolytic virotherapy: incorporation of immunostimulation by cytokine and checkpoint inhibitor production through the HDAd further enhances anti-tumor activity.
Collapse
Affiliation(s)
- Mary K McKenna
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Alexander Englisch
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Benjamin Brenner
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Tyler Smith
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Valentina Hoyos
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masataka Suzuki
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Baylor College of Medicine, Center for Cell Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
612
|
Boija A, Klein IA, Young RA. Biomolecular Condensates and Cancer. Cancer Cell 2021; 39:174-192. [PMID: 33417833 PMCID: PMC8721577 DOI: 10.1016/j.ccell.2020.12.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
613
|
Louis C, Edeline J, Coulouarn C. Targeting the tumor microenvironment in cholangiocarcinoma: implications for therapy. Expert Opin Ther Targets 2021; 25:153-162. [PMID: 33502260 DOI: 10.1080/14728222.2021.1882998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a rare, deadly cancer that is characterized by an abundant desmoplastic stroma. Late diagnoses and limited available effective treatments are major problems with this malignancy. Targeting of the tumor microenvironment (TME) has emerged as a potential therapeutic strategy.Areas covered: In this review, we describe the role of the various compartments of the TME in CCA and focus on the preclinical rationale for the development of innovative therapies. Relevant literature was identified by a PubMed search covering the last decade (2010-2020).Expert opinion: Low efficacy of surgery and cytotoxic chemotherapy emphasizes the need for new therapeutic strategies and companion biomarkers. Single-cell RNA sequencing of the stroma is yielding a critical functional characterization of TME in CCA and is paving the way for immunotherapies and cancer-associated fibroblast and extracellular matrix-oriented treatments. We believe that the development of treatments targeting the components of the TME will produce the best results if in combination with cytotoxic chemotherapy. Biomarkers should be developed to define the patient population of interest for each combination strategy.
Collapse
Affiliation(s)
- Corentin Louis
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre De Lutte Contre Le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre De Lutte Contre Le Cancer Eugène Marquis, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, COSS (Chemistry, Oncogenesis Stress Signaling), UMR_S 1242, Centre De Lutte Contre Le Cancer Eugène Marquis, Rennes, France
| |
Collapse
|
614
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
615
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
616
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
617
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
618
|
Weng CY, Kao CX, Chang TS, Huang YH. Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance. Int J Mol Sci 2021; 22:1258. [PMID: 33514004 PMCID: PMC7865434 DOI: 10.3390/ijms22031258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICI) in treating cancer has revolutionized the approach to eradicate cancer cells by reactivating immune responses. However, only a subset of patients benefits from this treatment; the majority remains unresponsive or develops resistance to ICI therapy. Increasing evidence suggests that metabolic machinery in the tumor microenvironment (TME) plays a role in the development of ICI resistance. Within the TME, nutrients and oxygen are scarce, forcing immune cells to undergo metabolic reprogramming to adapt to harsh conditions. Cancer-induced metabolic deregulation in immune cells can attenuate their anti-cancer properties, but can also increase their immunosuppressive properties. Therefore, targeting metabolic pathways of immune cells in the TME may strengthen the efficacy of ICIs and prevent ICI resistance. In this review, we discuss the interactions of immune cells and metabolic alterations in the TME. We also discuss current therapies targeting cellular metabolism in combination with ICIs for the treatment of cancer, and provide possible mechanisms behind the cellular metabolic rewiring that may improve clinical outcomes.
Collapse
Affiliation(s)
- Chao-Yuan Weng
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Cheng-Xiang Kao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
619
|
Mechanism of tumour microenvironment in the progression and development of oral cancer. Mol Biol Rep 2021; 48:1773-1786. [PMID: 33492572 DOI: 10.1007/s11033-020-06054-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
Oral cancer has been a major problem all across the globe, majorly in the developing countries. With a growing emphasis in the field of cancer research, the contribution of the tumour microenvironment has been gaining a lot of importance in identifying the role of components other than the tumour cells that cause the development of cancer, thus changing the outlook. The review will shed light on the studies that describe the role of microenvironment, its components as well as summarize the studies related to their mechanism in the progression of oral cancer. The literature for the review was derived mainly from Google Scholar and PubMed, in particular concentrating on the most recent papers published in 2019 and 2020, by using the keywords "Cancer, Oral Cancer, Metastasis, OSCC, Tumour microenvironment, CAFs, ECM, Cytokines, Hypoxia, Therapeutics targeting the microenvironment". The study provides insight into the world of micro-environmental regulation of oral cancer, the mechanism by which they interact and how to exploit it as a potential therapeutic haven for treating the disease. The components Cancer-Associated Fibroblasts (CAFs), Tumour-associated Macrophages (TAMs), Tumour-associated neutrophils (TANs), Hypoxic environment, myeloid-derived stem cells (MDSCs) and T regulatory (Tregs) cells and underlying mechanisms that control them will be the targets of study to understand the microenvironment.
Collapse
|
620
|
Bedon L, Dal Bo M, Mossenta M, Busato D, Toffoli G, Polano M. A Novel Epigenetic Machine Learning Model to Define Risk of Progression for Hepatocellular Carcinoma Patients. Int J Mol Sci 2021; 22:1075. [PMID: 33499054 PMCID: PMC7865606 DOI: 10.3390/ijms22031075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Although extensive advancements have been made in treatment against hepatocellular carcinoma (HCC), the prognosis of HCC patients remains unsatisfied. It is now clearly established that extensive epigenetic changes act as a driver in human tumors. This study exploits HCC epigenetic deregulation to define a novel prognostic model for monitoring the progression of HCC. We analyzed the genome-wide DNA methylation profile of 374 primary tumor specimens using the Illumina 450 K array data from The Cancer Genome Atlas. We initially used a novel combination of Machine Learning algorithms (Recursive Features Selection, Boruta) to capture early tumor progression features. The subsets of probes obtained were used to train and validate Random Forest models to predict a Progression Free Survival greater or less than 6 months. The model based on 34 epigenetic probes showed the best performance, scoring 0.80 accuracy and 0.51 Matthews Correlation Coefficient on testset. Then, we generated and validated a progression signature based on 4 methylation probes capable of stratifying HCC patients at high and low risk of progression. Survival analysis showed that high risk patients are characterized by a poorer progression free survival compared to low risk patients. Moreover, decision curve analysis confirmed the strength of this predictive tool over conventional clinical parameters. Functional enrichment analysis highlighted that high risk patients differentiated themselves by the upregulation of proliferative pathways. Ultimately, we propose the oncogenic MCM2 gene as a methylation-driven gene of which the representative epigenetic markers could serve both as predictive and prognostic markers. Briefly, our work provides several potential HCC progression epigenetic biomarkers as well as a new signature that may enhance patients surveillance and advances in personalized treatment.
Collapse
Affiliation(s)
- Luca Bedon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| |
Collapse
|
621
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
622
|
Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1698. [PMID: 33463090 DOI: 10.1002/wnan.1698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, the spread of disease from a primary to a distal site through the circulatory or lymphatic systems, accounts for over 90% of all cancer related deaths. Despite significant progress in the field of cancer therapy in recent years, mortality rates remain dramatically higher for patients with metastatic disease versus those with local or regional disease. Although there is clearly an urgent need to develop drugs that inhibit cancer spread, the overwhelming majority of anticancer therapies that have been developed to date are designed to inhibit tumor growth but fail to address the key stages of the metastatic process: invasion, intravasation, circulation, extravasation, and colonization. There is growing interest in engineering targeted therapeutics, such as antibody drugs, that inhibit various steps in the metastatic cascade. We present an overview of antibody therapeutic approaches, both in the pipeline and in the clinic, that disrupt the essential mechanisms that underlie cancer metastasis. These therapies include classes of antibodies that indirectly target metastasis, including anti-integrin, anticadherin, and immune checkpoint blocking antibodies, as well as monoclonal and bispecific antibodies that are specifically designed to interrupt disease dissemination. Although few antimetastatic antibodies have achieved clinical success to date, there are many promising candidates in various stages of development, and novel targets and approaches are constantly emerging. Collectively, these efforts will enrich our understanding of the molecular drivers of metastasis, and the new strategies that arise promise to have a profound impact on the future of cancer therapeutic development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zion I Smith
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
623
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
624
|
Overchuk M, Harmatys KM, Sindhwani S, Rajora MA, Koebel A, Charron DM, Syed AM, Chen J, Pomper MG, Wilson BC, Chan WCW, Zheng G. Subtherapeutic Photodynamic Treatment Facilitates Tumor Nanomedicine Delivery and Overcomes Desmoplasia. NANO LETTERS 2021; 21:344-352. [PMID: 33301689 DOI: 10.1021/acs.nanolett.0c03731] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Limited tumor nanoparticle accumulation remains one of the main challenges in cancer nanomedicine. Here, we demonstrate that subtherapeutic photodynamic priming (PDP) enhances the accumulation of nanoparticles in subcutaneous murine prostate tumors ∼3-5-times without inducing cell death, vascular destruction, or tumor growth delay. We also found that PDP resulted in an ∼2-times decrease in tumor collagen content as well as a significant reduction of extracellular matrix density in the subendothelial zone. Enhanced nanoparticle accumulation combined with the reduced extravascular barriers improved therapeutic efficacy in the absence of off-target toxicity, wherein 5 mg/kg of Doxil with PDP was equally effective in delaying tumor growth as 15 mg/kg of Doxil. Overall, this study demonstrates the potential of PDP to enhance tumor nanomedicine accumulation and alleviate tumor desmoplasia without causing cell death or vascular destruction, highlighting the utility of PDP as a minimally invasive priming strategy that can improve therapeutic outcomes in desmoplastic tumors.
Collapse
Affiliation(s)
- Marta Overchuk
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Kara M Harmatys
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Shrey Sindhwani
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Maneesha A Rajora
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Adam Koebel
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Danielle M Charron
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Abdullah M Syed
- J. David Gladstone Institutes, San Francisco, California 94158, USA
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Martin G Pomper
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
625
|
Ridwan SM, Hainfeld JF, Ross V, Stanishevskiy Y, Smilowitz HM. Novel Iodine nanoparticles target vascular mimicry in intracerebral triple negative human MDA-MB-231 breast tumors. Sci Rep 2021; 11:1203. [PMID: 33441981 PMCID: PMC7806637 DOI: 10.1038/s41598-020-80862-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC), ~ 10-20% of diagnosed breast cancers, metastasizes to brain, lungs, liver. Iodine nanoparticle (INP) radioenhancers specifically localize to human TNBC MDA-MB-231 tumors growing in mouse brains after iv injection, significantly extending survival of mice after radiation therapy (RT). A prominent rim of INP contrast (MicroCT) previously seen in subcutaneous tumors but not intracerebral gliomas, provide calculated X-ray dose-enhancements up to > eightfold. Here, MDA-MB-231-cells, INPs, CD31 were examined by fluorescence confocal microscopy. Most INP staining co-localized with CD31 in the tumor center and periphery. Greatest INP/CD31 staining was in the tumor periphery, the region of increased MicroCT contrast. Tumor cells are seen to line irregularly-shaped spaces (ISS) with INP, CD31 staining very close to or on the tumor cell surface and PAS stain on their boundary and may represent a unique form of CD31-expressing vascular mimicry in intracerebral 231-tumors. INP/CD31 co-staining is also seen around ISS formed around tumor cells migrating on CD31+ blood-vessels. The significant radiation dose enhancement to the prolific collagen I containing, INP-binding ISS found throughout the tumor but concentrated in the tumor rim, may contribute significantly to the life extensions observed after INP-RT; VM could represent a new drug/NP, particularly INP, tumor-homing target.
Collapse
Affiliation(s)
- Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | | | - Vanessa Ross
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | | | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
626
|
García-Olmo D, Villarejo Campos P, Barambio J, Gomez-Heras SG, Vega-Clemente L, Olmedillas-Lopez S, Guadalajara H, Garcia-Arranz M. Intraperitoneal collagenase as a novel therapeutic approach in an experimental model of colorectal peritoneal carcinomatosis. Sci Rep 2021; 11:503. [PMID: 33436728 PMCID: PMC7803982 DOI: 10.1038/s41598-020-79721-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023] Open
Abstract
The usefulness of local collagenase in therapeutic approaches to solid tumors has been tested recently. In this study, we evaluate the safety and efficacy of intraperitoneal collagenase associated or not to mitomycin for treatment of colorectal peritoneal metastases in an experimental rat model. Using a fixed-dose procedure, we found that a dose of collagenase of 37 IU/mL administered for 15 min with a hyperthermia pump at 37.5 °C, both in isolation or associated to sequential treatment with intraperitoneal mitomycin, led to a macroscopic decrease in tumor volume as evaluated by the modified peritoneal cancer index (mPCI). Concerning the safety of the procedure, the animals showed no physiological or behavioral disorders during 8 weeks of follow-up. Local treatment for peritoneal metastases of colorectal origin with intraperitoneal collagenase has proved safe and effective in an experimental murine model. Therefore, the stroma-first approach by enzymatic breakdown of collagen from the tumor's extracellular matrix provides a new therapeutic target for colorectal peritoneal metastases.
Collapse
Affiliation(s)
- D García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28034, Madrid, Spain
| | - P Villarejo Campos
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - J Barambio
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - S Garcia Gomez-Heras
- Department of Human Histology, Universidad Rey Juan Carlos, Avda de Atenas s/n, 28922, Alcorcón, Spain
| | - L Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - S Olmedillas-Lopez
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - H Guadalajara
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28034, Madrid, Spain
| | - M Garcia-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28034, Madrid, Spain
| |
Collapse
|
627
|
Cong S, Guo Q, Cheng Y, He Y, Zhao X, Kong C, Ning S, Zhang G. Immune Characterization of Ovarian Cancer Reveals New Cell Subtypes With Different Prognoses, Immune Risks, and Molecular Mechanisms. Front Cell Dev Biol 2020; 8:614139. [PMID: 33409283 PMCID: PMC7779527 DOI: 10.3389/fcell.2020.614139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
Ovarian cancer (OV) is a considerable threat to the health of women due to its complex mechanisms and atypical symptoms. Various currently available treatments fail to substantially increase the survival rate of OV patients. The tumor microenvironment (TME) is gaining attention due to its role in tumorigenesis and tumor progression. This study mainly investigated the immune characteristics of OV by CIBERSORT and MCP-counter. We reclassified OV into four TME cell subtypes with different prognoses and evaluated the infiltration of the cells in each subtype. The immune risk of diverse subtypes was evaluated based on the immunoscore calculated by Cox regression analysis. The molecular mechanisms and hallmark pathways of the four subtypes were analyzed. The results indicate that the immune procancer cell subtype is associated with the worst prognosis, closely related to the high immune risk group, and characterized by low expression of checkpoints and MHC class I and II molecules, high expression of hypoxia-related genes, high enrichment of the EMT and hypoxia pathways, and low enrichment of the DNA repair and interferon α response pathways. This study contributes to the investigation of immune mechanisms and identifies more effective targets for immunotherapy of OV.
Collapse
Affiliation(s)
- Shanshan Cong
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiuyan Guo
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Cheng
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Congcong Kong
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
628
|
Evaluation of the In Vitro Cytotoxic Activity of Caffeic Acid Derivatives and Liposomal Formulation against Pancreatic Cancer Cell Lines. MATERIALS 2020; 13:ma13245813. [PMID: 33352809 PMCID: PMC7766656 DOI: 10.3390/ma13245813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer belongs to the most aggressive group of cancers, with very poor prognosis. Therefore, there is an important need to find more potent drugs that could deliver an improved therapeutic approach. In the current study we searched for selective and effective caffeic acid derivatives. For this purpose, we analyzed twelve compounds and evaluated their in vitro cytotoxic activity against two human pancreatic cancer cell lines, along with a control, normal fibroblast cell line, by the classic MTT assay. Six out of twelve tested caffeic acid derivatives showed a desirable effect. To improve the therapeutic efficacy of such active compounds, we developed a formulation where caffeic acid derivative (7) was encapsulated into liposomes composed of soybean phosphatidylcholine and DSPE-PEG2000. Subsequently, we analyzed the properties of this formulation in terms of basic physical parameters (such as size, zeta potential, stability at 4 °C and morphology), hemolytic and cytotoxic activity and cellular uptake. Overall, the liposomal formulation was found to be stable, non-hemolytic and had activity against pancreatic cancer cells (IC50 19.44 µM and 24.3 µM, towards AsPC1 and BxPC3 cells, respectively) with less toxicity against normal fibroblasts. This could represent a promising alternative to currently available treatment options.
Collapse
|
629
|
Involvement of the FAK Network in Pathologies Related to Altered Mechanotransduction. Int J Mol Sci 2020; 21:ijms21249426. [PMID: 33322030 PMCID: PMC7764271 DOI: 10.3390/ijms21249426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Mechanotransduction is a physiological process in which external mechanical stimulations are perceived, interpreted, and translated by cells into biochemical signals. Mechanical stimulations exerted by extracellular matrix stiffness and cell–cell contacts are continuously applied to living cells, thus representing a key pivotal trigger for cell homeostasis, survival, and function, as well as an essential factor for proper organ development and metabolism. Indeed, a deregulation of the mechanotransduction process consequent to gene mutations or altered functions of proteins involved in perceiving cellular and extracellular mechanics can lead to a broad range of diseases, from muscular dystrophies and cardiomyopathies to cancer development and metastatization. Here, we recapitulate the involvement of focal adhesion kinase (FAK) in the cellular conditions deriving from altered mechanotransduction processes.
Collapse
|
630
|
Ghahremanifard P, Chanda A, Bonni S, Bose P. TGF-β Mediated Immune Evasion in Cancer-Spotlight on Cancer-Associated Fibroblasts. Cancers (Basel) 2020; 12:cancers12123650. [PMID: 33291370 PMCID: PMC7762018 DOI: 10.3390/cancers12123650] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Various components of the tumor microenvironment (TME) play a critical role in promoting tumorigenesis, progression, and metastasis. One of the primary functions of the TME is to stimulate an immunosuppressive environment around the tumor through multiple mechanisms including the activation of the transforming growth factor-beta (TGF-β) signaling pathway. Cancer-associated fibroblasts (CAFs) are key cells in the TME that regulate the secretion of extracellular matrix (ECM) components under the influence of TGF-β. Recent reports from our group and others have described an ECM-related and CAF-associated novel gene signature that can predict resistance to immune checkpoint blockade (ICB). Importantly, studies have begun to test whether targeting some of these CAF-associated components can be used as a combinatorial approach with ICB. This perspective summarizes recent advances in our understanding of CAF and TGF-β-regulated immunosuppressive mechanisms and ways to target such signaling in cancer.
Collapse
Affiliation(s)
- Parisa Ghahremanifard
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ayan Chanda
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: ; Tel.: +1-403-220-8507; Fax: +1-403-270-3145
| |
Collapse
|
631
|
Choi SR, Yang Y, Huang KY, Kong HJ, Flick MJ, Han B. Engineering of biomaterials for tumor modeling. MATERIALS TODAY. ADVANCES 2020; 8:100117. [PMID: 34541484 PMCID: PMC8448271 DOI: 10.1016/j.mtadv.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Development of biomaterials mimicking tumor and its microenvironment has recently emerged for the use of drug discovery, precision medicine, and cancer biology. These biomimetic models have developed by reconstituting tumor and stroma cells within the 3D extracellular matrix. The models are recently extended to recapitulate the in vivo tumor microenvironment, including biological, chemical, and mechanical conditions tailored for specific cancer type and its microenvironment. In spite of the recent emergence of various innovative engineered tumor models, many of these models are still early stage to be adapted for cancer research. In this article, we review the current status of biomaterials engineering for tumor models considering three main aspects - cellular engineering, matrix engineering, and engineering for microenvironmental conditions. Considering cancer-specific variability in these aspects, our discussion is focused on pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). In addition, we further discussed the current challenges and future opportunities to create reliable and relevant tumor models.
Collapse
Affiliation(s)
- Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kai-Yu Huang
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Joon Kong
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
632
|
Knott SJ, Brown KA, Josyer H, Carr A, Inman D, Jin S, Friedl A, Ponik SM, Ge Y. Photocleavable Surfactant-Enabled Extracellular Matrix Proteomics. Anal Chem 2020; 92:15693-15698. [PMID: 33232116 DOI: 10.1021/acs.analchem.0c03104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) provides an architectural meshwork that surrounds and supports cells. The dysregulation of heavily post-translationally modified ECM proteins directly contributes to various diseases. Mass spectrometry (MS)-based proteomics is an ideal tool to identify ECM proteins and characterize their post-translational modifications, but ECM proteomics remains challenging owing to the extremely low solubility of the ECM. Herein, enabled by effective solubilization of ECM proteins using our recently developed photocleavable surfactant, Azo, we have developed a streamlined ECM proteomic strategy that allows fast tissue decellularization, efficient extraction and enrichment of ECM proteins, and rapid digestion prior to reversed-phase liquid chromatography (RPLC)-MS analysis. A total of 173 and 225 unique ECM proteins from mouse mammary tumors have been identified using 1D and 2D RPLC-MS/MS, respectively. Moreover, 87 (from 1DLC-MS/MS) and 229 (from 2DLC-MS/MS) post-translational modifications of ECM proteins, including glycosylation, phosphorylation, and hydroxylation, were identified and localized. This Azo-enabled ECM proteomics strategy will streamline the analysis of ECM proteins and promote the study of ECM biology.
Collapse
Affiliation(s)
- Samantha J Knott
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Harini Josyer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Austin Carr
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States.,Human Proteomics Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
633
|
Leb-Reichl V, Guttmann-Gruber C, Piñon Hofbauer J. Linked in: the extracellular matrix network in tumour dissemination. Br J Dermatol 2020; 184:799. [PMID: 33179769 PMCID: PMC8246853 DOI: 10.1111/bjd.19617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Linked Article: Caley et al. Br J Dermatol 2021; 184:923–934.
Collapse
Affiliation(s)
- V Leb-Reichl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - C Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - J Piñon Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology & Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
634
|
Everts A, Bergeman M, McFadden G, Kemp V. Simultaneous Tumor and Stroma Targeting by Oncolytic Viruses. Biomedicines 2020; 8:E474. [PMID: 33167307 PMCID: PMC7694393 DOI: 10.3390/biomedicines8110474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Current cancer therapeutics often insufficiently eradicate malignant cells due to the surrounding dense tumor stroma. This multi-componential tissue consists of mainly cancer-associated fibroblasts, the (compact) extracellular matrix, tumor vasculature, and tumor-associated macrophages, which all exert crucial roles in maintaining a pro-tumoral niche. Their continuous complex interactions with tumor cells promote tumor progression and metastasis, emphasizing the challenges in tumor therapy development. Over the last decade, advances in oncolytic virotherapy have shown that oncolytic viruses (OVs) are a promising multi-faceted therapeutic platform for simultaneous tumor and stroma targeting. In addition to promoting tumor cell oncolysis and systemic anti-tumor immunity, accumulating data suggest that OVs can also directly target stromal components, facilitating OV replication and spread, as well as promoting anti-tumor activity. This review provides a comprehensive overview of the interactions between native and genetically modified OVs and the different targetable tumor stromal components, and outlines strategies to improve stroma targeting by OVs.
Collapse
Affiliation(s)
- Anne Everts
- Research Program Infection and Immunity, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Melissa Bergeman
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands;
| |
Collapse
|
635
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
636
|
Guo F, Cui J. CAR-T in solid tumors: Blazing a new trail through the brambles. Life Sci 2020; 260:118300. [DOI: 10.1016/j.lfs.2020.118300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
637
|
Voß H, Wurlitzer M, Smit DJ, Ewald F, Alawi M, Spohn M, Indenbirken D, Omidi M, David K, Juhl H, Simon R, Sauter G, Fischer L, Izbicki JR, Molloy MP, Nashan B, Schlüter H, Jücker M. Differential regulation of extracellular matrix proteins in three recurrent liver metastases of a single patient with colorectal cancer. Clin Exp Metastasis 2020; 37:649-656. [PMID: 33099724 PMCID: PMC7666585 DOI: 10.1007/s10585-020-10058-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) patients suffer from the second highest mortality among all cancer entities. In half of all CRC patients, colorectal cancer liver metastases (CRLM) can be observed. Metastatic colorectal cancer is associated with poor overall survival and limited treatment options. Even after successful surgical resection of the primary tumor, metachronous liver metastases occur in one out of eight cases. The only available curative intended treatment is hepatic resection, but metachronous CRLM frequently recur after approximately 1 year. In this study, we performed a proteome analysis of three recurrent liver metastases of a single CRC patient by mass spectrometry. Despite surgical resection of the primary CRC and adjuvant chemotherapy plus cetuximab treatment, the patient developed three metachronous CRLM which occurred consecutively after 9, 21 and 31 months. We identified a set of 1132 proteins expressed in the three metachronous CRLM, of which 481 were differentially regulated, including 81 proteins that were associated with the extracellular matrix (ECM). 56 ECM associated proteins were identified as upregulated in the third metastasis, 26 (46%) of which were previously described as negative prognostic markers in CRC, including tenascin C, nidogen 1, fibulin 1 and vitronectin. These data may reflect an ascending trend of malignancy from the first to the third metachronous colorectal cancer liver metastasis. Additionally, the results indicate different ECM phenotypes for recurrent metachronous metastasis, associated with different grades of malignancy and highlights the importance of individual analysis of molecular features in different, consecutive metastatic events in a single patient.
Collapse
Affiliation(s)
- Hannah Voß
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Wurlitzer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Florian Ewald
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Björn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinic of Hepato-Pancreatico-Biliary Surgery and Transplantation, First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
638
|
Therapy Resistance, Cancer Stem Cells and ECM in Cancer: The Matrix Reloaded. Cancers (Basel) 2020; 12:cancers12103067. [PMID: 33096662 PMCID: PMC7589733 DOI: 10.3390/cancers12103067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) has remained an enigmatic component of the tumor microenvironment. It drives metastasis via its interaction with the integrin signaling pathway, contributes to tumor progression and confers therapy resistance by providing a physical barrier around the tumor. The complexity of the ECM lies in its heterogeneous composition and complex glycosylation that can provide a support matrix as well as trigger oncogenic signaling pathways by interacting with the tumor cells. In this review, we attempt to dissect the role of the ECM in enriching for the treatment refractory cancer stem cell population and how it may be involved in regulating their metabolic needs. Additionally, we discuss how the ECM is instrumental in remodeling the tumor immune microenvironment and the potential ways to target this component in order to develop a viable therapy.
Collapse
|
639
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
640
|
Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020; 8:E401. [PMID: 33050151 PMCID: PMC7601142 DOI: 10.3390/biomedicines8100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) originates in the glandular compartment of the exocrine pancreas. Histologically, PDAC tumors are characterized by a parenchyma that is embedded in a particularly prominent stromal component or desmoplastic stroma. The unique characteristics of the desmoplastic stroma shape the microenvironment of PDAC and modulate the reciprocal interactions between cancer and stromal cells in ways that have profound effects in the pathophysiology and treatment of this disease. Here, we review some of the most recent findings regarding the regulation of PDAC cell invasion by the unique microenvironment of this tumor, and how new knowledge is being translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Mejia
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Sandhya Bodapati
- College of Osteopathic Medicine, Pacific Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kathryn T. Chen
- Department of Surgery, Division of Surgical Oncology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Begoña Díaz
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
641
|
Freeman P, Mielgo A. Cancer-Associated Fibroblast Mediated Inhibition of CD8+ Cytotoxic T Cell Accumulation in Tumours: Mechanisms and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12092687. [PMID: 32967079 PMCID: PMC7564636 DOI: 10.3390/cancers12092687] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The ability of the immune system to kill tumour cells is a natural and extremely effective defence mechanism for fighting cancer. Cytotoxic-T-cells are a critical component of our immune system which function is to eliminate cancer cells. In some cancers, especially those with a rich tumour stroma, these cytotoxic-T-cells are unable to reach and kill the tumour cells. Cancer-associated fibroblasts are the most abundant cells in the tumour stroma and play a key role of the recruitment, infiltration and function of cytotoxic T-cells in the tumour, via several molecular mechanisms which we describe in this review. Abstract The tumour microenvironment (TME) is the complex environment in which various non-cancerous stromal cell populations co-exist, co-evolve and interact with tumour cells, having a profound impact on the progression of solid tumours. The TME is comprised of various extracellular matrix (ECM) proteins in addition to a variety of immune and stromal cells. These include tumour-associated macrophages, regulatory T cells (Tregs), myeloid-derived suppressor cells, as well as endothelial cells, pericytes and cancer-associated fibroblasts (CAFs). CAFs are the most abundant stromal cell population in many tumours and support cancer progression, metastasis and resistance to therapies through bidirectional signalling with both tumour cells and other cells within the TME. More recently, CAFs have been shown to also affect the anti-tumour immune response through direct and indirect interactions with immune cells. In this review, we specifically focus on the interactions between CAFs and cytotoxic CD8+ T cells, and on how these interactions affect T cell recruitment, infiltration and function in the tumour. We additionally provide insight into the therapeutic implications of targeting these interactions, particularly in the context of cancer immunotherapy.
Collapse
|
642
|
Boyle ST, Mittal P, Kaur G, Hoffmann P, Samuel MS, Klingler-Hoffmann M. Uncovering Tumor-Stroma Inter-relationships Using MALDI Mass Spectrometry Imaging. J Proteome Res 2020; 19:4093-4103. [PMID: 32870688 DOI: 10.1021/acs.jproteome.0c00511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumorigenesis involves a complex interplay between genetically modified cancer cells and their adjacent normal tissue, the stroma. We used an established breast cancer mouse model to investigate this inter-relationship. Conditional activation of Rho-associated protein kinase (ROCK) in a model of mammary tumorigenesis enhances tumor growth and progression by educating the stroma and enhancing the production and remodeling of the extracellular matrix. We used peptide matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to quantify the proteomic changes occurring within tumors and their stroma in their regular spatial context. Peptides were ranked according to their ability to discriminate between the two groups, using a receiver operating characteristic tool. Peptides were identified by liquid chromatography tandem mass spectrometry, and protein expression was validated by quantitative immunofluorescence using an independent set of tumor samples. We have identified and validated four key proteins upregulated in ROCK-activated mammary tumors relative to those expressing kinase-dead ROCK, namely, collagen I, α-SMA, Rab14, and tubulin-β4. Rab14 and tubulin-β4 are expressed within tumor cells, whereas collagen I is localized within the stroma. α-SMA is predominantly localized within the stroma but is also expressed at higher levels in the epithelia of ROCK-activated tumors. High expression of COL1A, the gene encoding the pro-α 1 chain of collagen, correlates with cancer progression in two human breast cancer genomic data sets, and high expression of COL1A and ACTA2 (the gene encoding α-SMA) are associated with a low survival probability (COLIA, p = 0.00013; ACTA2, p = 0.0076) in estrogen receptor-negative breast cancer patients. To investigate whether ROCK-activated tumor cells cause stromal cancer-associated fibroblasts (CAFs) to upregulate expression of collagen I and α-SMA, we treated CAFs with medium conditioned by primary mammary tumor cells in which ROCK had been activated. This led to abundant production of both proteins in CAFs, clearly highlighting the inter-relationship between tumor cells and CAFs and identifying CAFs as the potential source of high levels of collagen 1 and α-SMA and associated enhancement of tissue stiffness. Our research emphasizes the capacity of MALDI-MSI to quantitatively assess tumor-stroma inter-relationships and to identify potential prognostic factors for cancer progression in human patients, using sophisticated mouse cancer models.
Collapse
Affiliation(s)
- Sarah T Boyle
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia
| | - Parul Mittal
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800 Pulau Pinang, Malaysia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide SA 5000, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide SA 5000, Australia
| | | |
Collapse
|
643
|
Gouarderes S, Mingotaud AF, Vicendo P, Gibot L. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site. Expert Opin Drug Deliv 2020; 17:1703-1726. [PMID: 32838565 DOI: 10.1080/17425247.2020.1814735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Modern comprehensive studies of tumor microenvironment changes allowed scientists to develop new and more efficient strategies that will improve anticancer drug delivery on site. The tumor microenvironment, especially the dense extracellular matrix, has a recognized capability to hamper the penetration of conventional drugs. Development and co-applications of strategies aiming at remodeling the tumor microenvironment are highly demanded to improve drug delivery at the tumor site in a therapeutic prospect. AREAS COVERED Increasing indications suggest that classical physical approaches such as exposure to ionizing radiations, hyperthermia or light irradiation, and emerging ones as sonoporation, electric field or cold plasma technology can be applied as standalone or associated strategies to remodel the tumor microenvironment. The impacts on vasculature and extracellular matrix remodeling of these physical approaches will be discussed with the goal to improve nanotherapeutics delivery at the tumor site. EXPERT OPINION Physical approaches to modulate vascular properties and remodel the extracellular matrix are of particular interest to locally control and improve drug delivery and thus increase its therapeutic index. They are particularly powerful as adjuvant to nanomedicine delivery; the development of these technologies could have extremely widespread implications for cancer treatment.[Figure: see text].
Collapse
Affiliation(s)
- Sara Gouarderes
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier , Toulouse, France
| |
Collapse
|
644
|
Engineering extracellular matrix to improve drug delivery for cancer therapy. Drug Discov Today 2020; 25:1727-1734. [DOI: 10.1016/j.drudis.2020.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
645
|
Arolt C, Meyer M, Hoffmann F, Wagener-Ryczek S, Schwarz D, Nachtsheim L, Beutner D, Odenthal M, Guntinas-Lichius O, Buettner R, von Eggeling F, Klußmann JP, Quaas A. Expression Profiling of Extracellular Matrix Genes Reveals Global and Entity-Specific Characteristics in Adenoid Cystic, Mucoepidermoid and Salivary Duct Carcinomas. Cancers (Basel) 2020; 12:cancers12092466. [PMID: 32878206 PMCID: PMC7564650 DOI: 10.3390/cancers12092466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The extracellular matrix (ECM), an important factor in tumour metastasis and therapy resistance, has not been studied in salivary gland carcinomas (SGC), so far. In this retrospective study, we profiled the RNA expression of 28 ECM-related genes in 11 adenoid cystic (AdCy), 14 mucoepidermoid (MuEp) and 9 salivary duct carcinomas (SaDu). Also, we validated our results in a multimodal approach. MuEp and SaDu shared a common gene signature involving an overexpression of COL11A1. In contrast, nonhierarchical clustering revealed a more specific gene expression pattern for AdCy, characterized by overexpression of COL27A1. In situ studies at RNA level indicated that in AdCy, ECM production results from tumour cells and not from cancer-associated fibroblasts as is the case in MuEp and SaDu. For the first time, we characterized the ECM composition in SGC and identified several differentially expressed genes, which are potential therapeutic targets. Abstract The composition of the extracellular matrix (ECM) plays a pivotal role in tumour initiation, metastasis and therapy resistance. Until now, the ECM composition of salivary gland carcinomas (SGC) has not been studied. We quantitatively analysed the mRNA of 28 ECM-related genes of 34 adenoid cystic (AdCy; n = 11), mucoepidermoid (MuEp; n = 14) and salivary duct carcinomas (SaDu; n = 9). An incremental overexpression of six collagens (including COL11A1) and four glycoproteins from MuEp and SaDu suggested a common ECM alteration. Conversely, AdCy and MuEp displayed a distinct overexpression of COL27A1 and LAMB3, respectively. Nonhierarchical clustering and principal component analysis revealed a more specific pattern for AdCy with low expression of the common gene signature. In situ studies at the RNA and protein level confirmed these results and indicated that, in contrast to MuEp and SaDu, ECM production in AdCy results from tumour cells and not from cancer-associated fibroblasts (CAFs). Our findings reveal different modes of ECM production leading to common and distinct RNA signatures in SGC. Of note, an overexpression of COL27A1, as in AdCy, has not been linked to any other neoplasm so far. Here, we contribute to the dissection of the ECM composition in SGC and identified a panel of deferentially expressed genes, which could be putative targets for SGC therapy and overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Christoph Arolt
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
- Correspondence: ; Tel.: +49-221-478-4726
| | - Moritz Meyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, MALDI Imaging and Innovative Biophotonics, Jena University Hospital, 07747 Jena, Germany;
| | - Svenja Wagener-Ryczek
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - David Schwarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Lisa Nachtsheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Margarete Odenthal
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Head and Neck Surgery, Jena University Hospital, 07747 Jena, Germany;
| | - Reinhard Buettner
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, MALDI Imaging, Core Unit Proteome Analysis, DFG Core Unit Jena Biophotonic and Imaging Laboratory (JBIL), Jena University Hospital, 07747 Jena, Germany;
| | - Jens Peter Klußmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (M.M.); (D.S.); (L.N.); (J.P.K.)
| | - Alexander Quaas
- Institute of Pathology, Medical Faculty, University of Cologne, 50937 Cologne, Germany; (S.W.-R.); (M.O.); (R.B.); (A.Q.)
| |
Collapse
|
646
|
Jena BC, Das CK, Bharadwaj D, Mandal M. Cancer associated fibroblast mediated chemoresistance: A paradigm shift in understanding the mechanism of tumor progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188416. [PMID: 32822826 DOI: 10.1016/j.bbcan.2020.188416] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
Abstract
One of the undeniable issues with cancer eradication is the evolution of chemoresistance in due course of treatment, and the mechanisms of chemoresistance have been the subject of extensive research for several years. The efficacy of chemotherapy is hindered by cancer epithelium, mostly in a cell-autonomous mechanism. However, recently the valid experimental evidence showed that the surrounding tumor microenvironment (TME) is equivalently responsible for the induction of chemoresistance. Of the verities of cells in the tumor microenvironment, cancer-associated fibroblasts (CAFs) are the major cellular component of TME and act as a key regulator in the acquisition of cancer chemoresistance by providing a protective niche to the cancer cells against the anti-cancer drugs. Moreover, the symbiotic relationship between the tumor and CAFs to obtain key resources such as growth factors and nutrients for optimal tumor growth and proliferation favors the chemoresistance phenotype. Here, in this review, we provide an up-to-date overview of our knowledge of the role of the CAFs in inducing chemoresistance and tumor progression. We also further delineated the emerging events leading to the CAF origins and activation of normal fibroblasts to CAFs. Along with this, we also discuss the novel area of research confined to the CAF targeted therapies of cancer. The identification of CAF-specific markers may allow unveiling new targets and avenues for blunting or reverting the detrimental pro-tumorigenic potential of CAFs in the foreseeable future.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Deblina Bharadwaj
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
647
|
Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D Bioprinting of Tumor Models for Cancer Research. ACS APPLIED BIO MATERIALS 2020; 3:5552-5573. [DOI: 10.1021/acsabm.0c00791] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Youngnam Kang
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal 711103, India
| | - Santhanam Shanmughapriya
- Department of Medicine, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Heart and Vascular Institute, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Neurosurgery, Penn State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
648
|
Co-treatment with nitroglycerin and metformin exhibits physicochemically and pathohistologically detectable anticancer effects on fibrosarcoma in hamsters. Biomed Pharmacother 2020; 130:110510. [PMID: 32707437 DOI: 10.1016/j.biopha.2020.110510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated the effect of nitroglycerin with metformin on fibrosarcoma in hamsters. Syrian golden hamsters of both sexes, weighing approximately 60 g, were randomly allocated to control and experimental groups, with 8 animals per group. In all groups, 2 × 106 BHK-21/C13 cells in 1 ml were injected subcutaneously into the animals' backs. Peroral treatment carried out with nitroglycerin 25 mg/kg daily, or with metformin 500 mg/kg daily, or with a combination of nitroglycerin 25 mg/kg and metformin 500 mg/kg daily. Later validation experiments were conducted with double doses of the single therapy and additional rescue doses of mebendazole 460 mg/kg daily, via a gastric probe after tumor inoculation. After 2 weeks, when the tumors were approximately 2-3 cm in the control group, all animals were sacrificed. Blood samples were collected for hematological and biochemical analyses, the tumors were excised and weighed, and their diameters and volumes were measured. The tumor samples were pathohistologically and immunohistochemically assessed for proliferation marker protein Ki-67, proliferating cell nuclear antigen PCNA, hematopoietic progenitor cell antigen CD34, cluster of differentiation 31 (CD31), cytochrome c oxidase subunit 4 (COX4), mitochondria marker Cytochrome C, glucose transporter 1 (GLUT1) and inducible nitric oxide synthase (iNOS), and the main organs were toxicologically tested. The Ki-67 and PCNA positivity and the cytoplasmic marker (CD34, CD31, COX4, Cytochrome C, GLUT1, iNOS) immunoexpression in the tumor samples were quantified. The combination of nitroglycerin and metformin significantly inhibited fibrosarcoma growth in hamsters without toxicity, compared to monotherapy or control. The results were validated and confirmed in the subsequently accomplished experiment with doubled doses of the single drug therapy and in the rescue experiment with addition of mebendazole. The single treatments did not show significant antisarcoma effect, regardless of the dose. Co-treatment with mebendazole inhibited anticancer activity of the nitroglycerin and metformin combination. Mebendazole rescued tumor progression suppressed by the combination of nitroglycerin and metformin. Administration of nitroglycerin with metformin might be an effective and safe approach in novel nontoxic adjuvant and relapse prevention anticancer treatment.
Collapse
|
649
|
Reinhard J, Wagner N, Krämer MM, Jarocki M, Joachim SC, Dick HB, Faissner A, Kakkassery V. Expression Changes and Impact of the Extracellular Matrix on Etoposide Resistant Human Retinoblastoma Cell Lines. Int J Mol Sci 2020; 21:ijms21124322. [PMID: 32560557 PMCID: PMC7352646 DOI: 10.3390/ijms21124322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of this study was to evaluate possible expression differences in the ECM compartment of the parental human cell lines WERI-RB1 (retinoblastoma 1) and Y79 and their Etoposide resistant subclones via polymerase chain reaction (PCR). Western blot analyses were performed to analyze protein levels. To explore the influence of ECM molecules on RB cell proliferation, death, and cluster formation, WERI-RB1 and resistant WERI-ETOR cells were cultivated on Fibronectin, Laminin, Tenascin-C, and Collagen IV and analyzed via time-lapse video microscopy as well as immunocytochemistry. We revealed a significantly reduced mRNA expression of the proteoglycans Brevican, Neurocan, and Versican in resistant WERI-ETOR compared to sensitive WERI-RB1 cells. Also, for the glycoproteins α1-Laminin, Fibronectin, Tenascin-C, and Tenascin-R as well as Collagen IV, reduced expression levels were observed in WERI-ETOR. Furthermore, a downregulation was detected for the matrix metalloproteinases MMP2, MMP7, MMP9, the tissue-inhibitor of metalloproteinase TIMP2, the Integrin receptor subunits ITGA4, ITGA5 and ITGB1, and all receptor protein tyrosine phosphatase β/ζ isoforms. Downregulation of Brevican, Collagen IV, Tenascin-R, MMP2, TIMP2, and ITGA5 was also verified in Etoposide resistant Y79 cells compared to sensitive ones. Protein levels of Tenascin-C and MMP-2 were comparable in both WERI cell lines. Interestingly, Fibronectin displayed an apoptosis-inducing effect on WERI-RB1 cells, whereas an anti-apoptotic influence was observed for Tenascin-C. Conversely, proliferation of WERI-ETOR cells was enhanced on Tenascin-C, while an anti-proliferative effect was observed on Fibronectin. In WERI-ETOR, cluster formation was decreased on the substrates Collagen IV, Fibronectin, and Tenascin-C. Collectively, we noted a different ECM mRNA expression and behavior of Etoposide resistant compared to sensitive RB cells. These findings may indicate a key role of ECM components in chemotherapy resistance formation of RB.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| | - Natalie Wagner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Miriam M. Krämer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Marvin Jarocki
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Vinodh Kakkassery
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| |
Collapse
|
650
|
Izzi V, Koivunen J, Rappu P, Heino J, Pihlajaniemi T. Integration of Matrisome Omics: Towards System Biology of the Tumor Matrisome. EXTRACELLULAR MATRIX OMICS 2020. [DOI: 10.1007/978-3-030-58330-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|