651
|
Kiniry BE, Li S, Ganesh A, Hunt PW, Somsouk M, Skinner PJ, Deeks SG, Shacklett BL. Detection of HIV-1-specific gastrointestinal tissue resident CD8 + T-cells in chronic infection. Mucosal Immunol 2018; 11:909-920. [PMID: 29139476 PMCID: PMC5953759 DOI: 10.1038/mi.2017.96] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023]
Abstract
Tissue-resident memory (TRM) CD8+ T-cells are non-recirculating, long-lived cells housed in tissues that can confer protection against mucosal pathogens. Human immunodeficiency virus-1 (HIV-1) is a mucosal pathogen and the gastrointestinal tract is an important site of viral pathogenesis and transmission. Thus, CD8+ TRM cells may be an important effector subset for controlling HIV-1 in mucosal tissues. This study sought to determine the abundance, phenotype, and functionality of CD8+ TRM cells in the context of chronic HIV-1 infection. We found that the majority of rectosigmoid CD8+ T-cells were CD69+CD103+S1PR1- and T-betLowEomesoderminNeg, indicative of a tissue-residency phenotype similar to that described in murine models. HIV-1-specific CD8+ TRM responses appeared strongest in individuals naturally controlling HIV-1 infection. Two CD8+ TRM subsets, distinguished by CD103 expression intensity, were identified. CD103Low CD8+ TRM primarily displayed a transitional memory phenotype and contained HIV-1-specific cells and cells expressing high levels of Eomesodermin, whereas CD103High CD8+ TRM primarily displayed an effector memory phenotype and were EomesoderminNeg. These findings suggest a large fraction of CD8+ T-cells housed in the human rectosigmoid mucosa are tissue-resident and that TRM contribute to the anti-HIV-1 immune response. Further exploration of CD8+ TRM will inform development of anti-HIV-1 immune-based therapies and vaccines targeted to the mucosa.
Collapse
Affiliation(s)
- Brenna E. Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
| | - Shengbin Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Anupama Ganesh
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
| | - Peter W. Hunt
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Ma Somsouk
- Division of Gastroenterology, Dept. of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Division of Infectious Diseases, Dept. of Medicine, School of Medicine, University of California, Davis, CA USA
| |
Collapse
|
652
|
Reading JL, Gálvez-Cancino F, Swanton C, Lladser A, Peggs KS, Quezada SA. The function and dysfunction of memory CD8 + T cells in tumor immunity. Immunol Rev 2018; 283:194-212. [PMID: 29664561 DOI: 10.1111/imr.12657] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The generation and maintenance of CD8+ T cell memory is crucial to long-term host survival, yet the basic tenets of CD8+ T cell immunity are still being established. Recent work has led to the discovery of tissue-resident memory cells and refined our understanding of the transcriptional and epigenetic basis of CD8+ T cell differentiation and dysregulation. In parallel, the unprecedented clinical success of immunotherapy has galvanized an intense, global research effort to decipher and de-repress the anti-tumor response. However, the progress of immunotherapy is at a critical juncture, since the efficacy of immuno-oncology agents remains confined to a fraction of patients and often fails to provide durable benefit. Unlocking the potential of immunotherapy requires the design of strategies that both induce a potent effector response and reliably forge stable, functional memory T cell pools capable of protecting from recurrence or relapse. It is therefore essential that basic and emerging concepts of memory T cell biology are rapidly and faithfully transposed to advance therapeutic development in cancer immunotherapy. This review highlights seminal and recent reports in CD8+ T cell memory and tumor immunology, and evaluates recent data from solid cancer specimens in the context of the key paradigms from preclinical models. We elucidate the potential significance of circulating effector cells poised downstream of neoantigen recognition and upstream of T cell dysfunction and propose that cells in this immunological 'sweet spot' may be key anti-tumor effectors.
Collapse
Affiliation(s)
- James L Reading
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | | | | | - Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile
| | - Karl S Peggs
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| |
Collapse
|
653
|
Sommer BC, Dhawan D, Ratliff TL, Knapp DW. Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies. Bladder Cancer 2018; 4:149-159. [PMID: 29732386 PMCID: PMC5929349 DOI: 10.3233/blc-170145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials. The animal model(s) should possess key features that dictate success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). While it may not be possible to create these collective features in experimental models, these features are present in naturally-occurring InvUC in pet dogs. Naturally occurring canine InvUC closely mimics muscle-invasive bladder cancer in humans in regards to cellular and molecular features, molecular subtypes, biological behavior (sites and frequency of metastasis), and response to therapy. Clinical treatment trials in pet dogs with InvUC are considered a win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. This review will provide an overview of canine InvUC, the similarities to the human condition, and the potential for dogs with InvUC to serve as a model to predict the outcomes of targeted therapy and immunotherapy in humans.
Collapse
Affiliation(s)
- Breann C Sommer
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
654
|
Heim L, Friedrich J, Engelhardt M, Trufa DI, Geppert CI, Rieker RJ, Sirbu H, Finotto S. NFATc1 Promotes Antitumoral Effector Functions and Memory CD8 + T-cell Differentiation during Non-Small Cell Lung Cancer Development. Cancer Res 2018; 78:3619-3633. [PMID: 29691251 DOI: 10.1158/0008-5472.can-17-3297] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Nuclear factor of activated T cells 1 (NFATc1) is a transcription factor activated by T-cell receptor (TCR) and Ca2+ signaling that affects T-cell activation and effector function. Upon tumor antigen challenge, TCR and calcium-release-activated channels are induced, promoting NFAT dephosphorylation and translocation into the nucleus. In this study, we report a progressive decrease of NFATc1 in lung tumor tissue and in tumor-infiltrating lymphocytes (TIL) of patients suffering from advanced-stage non-small cell lung cancer (NSCLC). Mice harboring conditionally inactivated NFATc1 in T cells (NFATc1ΔCD4) showed increased lung tumor growth associated with impaired T-cell activation and function. Furthermore, in the absence of NFATc1, reduced IL2 influenced the development of memory CD8+ T cells. We found a reduction of effector memory and CD103+ tissue-resident memory (TRM) T cells in the lung of tumor-bearing NFATc1ΔCD4 mice, underlining an impaired cytotoxic T-cell response and a reduced TRM tissue-homing capacity. In CD4+ICOS+ T cells, programmed cell death 1 (PD-1) was induced in the draining lymph nodes of these mice and associated with lung tumor cell growth. Targeting PD-1 resulted in NFATc1 induction in CD4+ and CD8+ T cells in tumor-bearing mice and was associated with increased antitumor cytotoxic functions. This study reveals a role of NFATc1 in the activation and cytotoxic functions of T cells, in the development of memory CD8+ T-cell subsets, and in the regulation of T-cell exhaustion. These data underline the indispensability of NFATc1 for successful antitumor immune responses in patients with NSCLC.Significance: The multifaceted role of NFATc1 in the activation and function of T cells during lung cancer development makes it a critical participant in antitumor immune responses in patients with NSCLC. Cancer Res; 78(13); 3619-33. ©2018 AACR.
Collapse
Affiliation(s)
- Lisanne Heim
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Friedrich
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Engelhardt
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
655
|
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018; 24:541-550. [PMID: 29686425 DOI: 10.1038/s41591-018-0014-x] [Citation(s) in RCA: 3710] [Impact Index Per Article: 530.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient's tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
Collapse
Affiliation(s)
- Mikhail Binnewies
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Edward W Roberts
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Chan
- UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA, USA
| | | | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | | | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.,Huntsman Cancer Institute and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Robert H Vonderheide
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | | | | | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA. .,UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
656
|
Okada M, Chikuma S, Kondo T, Hibino S, Machiyama H, Yokosuka T, Nakano M, Yoshimura A. Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. Cell Rep 2018; 20:1017-1028. [PMID: 28768188 DOI: 10.1016/j.celrep.2017.07.027] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/15/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Programmed cell death 1 (PD-1) is highly expressed on exhausted T cells and inhibits T cell activation. Antibodies that block the interaction between PD-1 and its ligand prevent this inhibitory signal and reverse T cell dysfunction, providing beneficial anti-tumor responses in a substantial number of patients. Mechanisms for the induction and maintenance of high PD-1 expression on exhausted T cells have not been fully understood. Utilizing a genome-wide loss-of-function screening method based on the CRISPR-Cas9 system, we identified genes involved in the core fucosylation pathway as positive regulators of cell-surface PD-1 expression. Inhibition of Fut8, a core fucosyltransferase, by genetic ablation or pharmacologic inhibition reduced cell-surface expression of PD-1 and enhanced T cell activation, leading to more efficient tumor eradication. Taken together, our findings suggest that blocking core fucosylation of PD-1 can be a promising strategy for improving anti-tumor immune responses.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sana Hibino
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8530, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
657
|
Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, Jiang Y, Xu L, Ma Y, Zheng H, Kong Y, Zeng H. T-cell Immunoglobulin and ITIM Domain Contributes to CD8 + T-cell Immunosenescence. Aging Cell 2018; 17:e12716. [PMID: 29349889 PMCID: PMC5847879 DOI: 10.1111/acel.12716] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 02/02/2023] Open
Abstract
Aging is associated with immune dysfunction, especially T-cell defects, which result in increased susceptibility to various diseases. Previous studies showed that T cells from aged mice express multiple inhibitory receptors, providing evidence of the relationship between T-cell exhaustion and T-cell senescence. In this study, we showed that T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), a novel co-inhibitory receptor, was upregulated in CD8+ T cells of elderly adults. Aged TIGIT+ CD8+ T cells expressed high levels of other inhibitory receptors including PD-1 and exhibited features of exhaustion such as downregulation of the key costimulatory receptor CD28, representative intrinsic transcriptional regulation, low production of cytokines, and high susceptibility to apoptosis. Importantly, their functional defects associated with aging were reversed by TIGIT knockdown. CD226 downregulation on aged TIGIT+ CD8+ T cells is likely involved in TIGIT-mediated negative immune suppression. Collectively, our findings indicated that TIGIT acts as a critical immune regulator during aging, providing a strong rationale for targeting TIGIT to improve dysfunction related to immune system aging.
Collapse
Affiliation(s)
- Yangzi Song
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Beibei Wang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Rui Song
- Beijing Key Laboratory of Emerging Infectious DiseasesThe National Clinical Key Department of Infectious DiseaseBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yu Hao
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Di Wang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yuxin Li
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yu Jiang
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Ling Xu
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yaluan Ma
- Lab for Molecular BiologyInstitute of Basic Theory on Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong Zheng
- Penn State Hershey Cancer InstitutePenn State University College of MedicineHersheyPAUSA
| | - Yaxian Kong
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious DiseasesInstitute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
658
|
Tremblay-LeMay R, Rastgoo N, Chang H. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway. J Hematol Oncol 2018; 11:46. [PMID: 29580288 PMCID: PMC5870495 DOI: 10.1186/s13045-018-0589-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/11/2018] [Indexed: 02/08/2023] Open
Abstract
Even with recent advances in therapy regimen, multiple myeloma patients commonly develop drug resistance and relapse. The relevance of targeting the PD-1/PD-L1 axis has been demonstrated in pre-clinical models. Monotherapy with PD-1 inhibitors produced disappointing results, but combinations with other drugs used in the treatment of multiple myeloma seemed promising, and clinical trials are ongoing. However, there have recently been concerns about the safety of PD-1 and PD-L1 inhibitors combined with immunomodulators in the treatment of multiple myeloma, and several trials have been suspended. There is therefore a need for alternative combinations of drugs or different approaches to target this pathway. Protein expression of PD-L1 on cancer cells, including in multiple myeloma, has been associated with intrinsic aggressive features independent of immune evasion mechanisms, thereby providing a rationale for the adoption of new strategies directly targeting PD-L1 protein expression. Drugs modulating the transcriptional and post-transcriptional regulation of PD-L1 could represent new therapeutic strategies for the treatment of multiple myeloma, help potentiate the action of other drugs or be combined to PD-1/PD-L1 inhibitors in order to avoid the potentially problematic combination with immunomodulators. This review will focus on the pathophysiology of PD-L1 expression in multiple myeloma and drugs that have been shown to modulate this expression.
Collapse
Affiliation(s)
- Rosemarie Tremblay-LeMay
- Laboratory Hematology/Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada
| | - Hong Chang
- Laboratory Hematology/Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, Canada. .,Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, Canada. .,Department of Talent Highland, First Affiliated Hospital of Xi'an Jiao Tong University, Xian, China. .,Laboratory Hematology, Toronto General Hospital, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
659
|
Bone marrow CD8 T cells express high frequency of PD-1 and exhibit reduced anti-leukemia response in newly diagnosed AML patients. Blood Cancer J 2018; 8:34. [PMID: 29563517 PMCID: PMC5862839 DOI: 10.1038/s41408-018-0069-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022] Open
|
660
|
Yao Q, Fischer KP, Tyrrell DL, Gutfreund KS. The Pekin duck programmed death ligand-2: cDNA cloning, genomic structure, molecular characterization and expression analysis. Biochem Biophys Rep 2018; 13:116-122. [PMID: 29556566 PMCID: PMC5857182 DOI: 10.1016/j.bbrep.2018.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/22/2018] [Indexed: 11/27/2022] Open
Abstract
Programmed death-1 (PD-1), upon engagement by its ligands, programmed death ligand-1 (PD-L1) and programmed death ligand-2 (PD-L2), provides signals that attenuate adaptive immune responses. Here we describe the identification of the Pekin duck PD-L2 (duPD-L2) and its gene structure. The duPD-L2 cDNA encodes a 321 amino acid protein that has an amino acid identity of 76% and 35% with chicken and human PD-L2, respectively. Mapping of the duPD-L2 cDNA with duck genomic sequences revealed an exonic structure similar to that of the human Pdcd1lg2 gene. Homology modelling of the duPD-L2 protein was compatible with the murine PD-L2 ectodomain structure. Residues known to be important for PD-1 receptor binding of murine PD-L2 were mostly conserved in duPD-L2 within sheets A and G and partially conserved within sheets C and F. DuPD-L2 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung, spleen, cloaca, bursa, cecal tonsil, duodenum and very low levels of expression in muscle, kidney and brain. Lipopolysaccharide treatment of adherent duck PBMC upregulated duPD-L2 mRNA expression. Our work shows evolutionary conservation of the PD-L2 ectodomain structure and residues important for PD-1 binding in vertebrates including fish. The information provided will be useful for further investigation of the role of duPD-L2 in the regulation of duck adaptive immunity and exploration of PD-1-targeted immunotherapies in the duck hepatitis B infection model.
Collapse
Affiliation(s)
- Qingxia Yao
- Depts. of Medicine, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Karl P Fischer
- Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - D Lorne Tyrrell
- Depts. of Medicine, University of Alberta, Edmonton, AB, Canada.,Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Klaus S Gutfreund
- Depts. of Medicine, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
661
|
Patel SA, Minn AJ. Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies. Immunity 2018; 48:417-433. [PMID: 29562193 PMCID: PMC6948191 DOI: 10.1016/j.immuni.2018.03.007] [Citation(s) in RCA: 427] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
The success of immune checkpoint blockade in patients with a wide variety of malignancies has changed the treatment paradigm in oncology. However, combination therapies with immune checkpoint blockade will be needed to overcome resistance and broaden the clinical utility of immunotherapy. Here we discuss a framework for rationally designing combination therapy strategies based on enhancing major discriminatory functions of the immune system that are corrupted by cancer-namely, antigenicity, adjuvanticity, and homeostatic feedback inhibition. We review recent advances on how conventional genotoxic cancer therapies, molecularly targeted therapies, epigenetic agents, and immune checkpoint inhibitors can restore these discriminatory functions. Potential barriers that can impede response despite combination therapy are also discussed.
Collapse
Affiliation(s)
- Shetal A Patel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
662
|
Liu L, Chang YJ, Xu LP, Zhang XH, Wang Y, Liu KY, Huang XJ. T cell exhaustion characterized by compromised MHC class I and II restricted cytotoxic activity associates with acute B lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation. Clin Immunol 2018; 190:32-40. [PMID: 29477343 DOI: 10.1016/j.clim.2018.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/28/2017] [Accepted: 02/22/2018] [Indexed: 01/01/2023]
Abstract
Acute B lymphoblastic leukemia (B-ALL) relapse contributes predominantly to the mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanism of B-ALL relapse after allo-HSCT remains unknown. The eradication of leukemia after allo-HSCT largely relies on graft-versus-leukemia (GVL) effects mediated by donor T cells. T cell exhaustion, characterized by the increased expression of inhibitory receptors and impaired function, may suppress GVL effects. In this study, we evaluated whether T cell exhaustion was involved in B-ALL relapse after allo-HSCT. The results showed that CD4+ and CD8+ T cells exhibited increased coexpression of PD-1 and Tim-3, and compromised proliferative capacity, cytokine production and cytotoxic potentials in relapsed patients. Additionally, T cells at the tumor site were more easily exhausted than T cells in the peripheral blood. Moreover, the reversal of T cell exhaustion might correlate with effective anti-leukemic responses after reinduction. These results suggested that T cell exhaustion was associated with B-ALL relapse after allo-HSCT as well as its treatment outcome.
Collapse
Affiliation(s)
- Long Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; Collaborative Innovation Center of Hematology, Peking University, China.
| |
Collapse
|
663
|
He QF, Xu Y, Li J, Huang ZM, Li XH, Wang X. CD8+ T-cell exhaustion in cancer: mechanisms and new area for cancer immunotherapy. Brief Funct Genomics 2018; 18:99-106. [DOI: 10.1093/bfgp/ely006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | - Jun Li
- Nanjing Medical University
| | | | - Xiu-Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Beijing Youan Hospital, Capital Medical University
| | | |
Collapse
|
664
|
Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front Immunol 2018; 9:444. [PMID: 29593717 PMCID: PMC5857565 DOI: 10.3389/fimmu.2018.00444] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment.
Collapse
Affiliation(s)
- Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Mathieu Leclerc
- Université Paris-Est and INSERM U955, Créteil, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| | - Jimena Tosello
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eliane Piaggio
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - José L Cohen
- Université Paris-Est and INSERM U955, Créteil, France.,Centre d'Investigation Clinique Biothérapie, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| |
Collapse
|
665
|
Wang J, Xu Y, Huang Z, Lu X. T cell exhaustion in cancer: Mechanisms and clinical implications. J Cell Biochem 2018; 119:4279-4286. [DOI: 10.1002/jcb.26645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Jin‐Cheng Wang
- Department of General SurgeryLiver Transplantation CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yong Xu
- Department of NephrologyHuai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Zheng‐Ming Huang
- Department of Clinical Pharmacology302 Hospital of PLABeijingChina
| | - Xiao‐Jie Lu
- Department of General SurgeryLiver Transplantation CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
666
|
Xia AL, Wang JC, Yang K, Ji D, Huang ZM, Xu Y. Genomic and epigenomic perspectives of T-cell exhaustion in cancer. Brief Funct Genomics 2018. [PMID: 29518177 DOI: 10.1093/bfgp/ely005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- An-Liang Xia
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Cheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Yang
- Department of Medical Engineering, 302 Hospital of PLA, Beijing, China
| | - Dong Ji
- Liver Cirrhosis Treatment and Research Center II, 302 Military Hospital of China 100 XiSiHuan Middle Road, FengTai District, Beijing, China
| | - Zheng-Ming Huang
- Department of Clinical Pharmacology, 302 Hospital of PLA, Beijing, China
| | - Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
667
|
Spranger S, Gajewski TF. Mechanisms of Tumor Cell–Intrinsic Immune Evasion. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050606] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefani Spranger
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA;,
- Current affiliation: Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Thomas F. Gajewski
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA;,
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
668
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
669
|
Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 2018; 11:31. [PMID: 29482595 PMCID: PMC6389077 DOI: 10.1186/s13045-018-0578-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immunotherapy, especially checkpoint inhibitor-based immunotherapy, has provided novel and powerful weapons against cancer. Because only a subset of cancer patients exhibit durable responses, further exploration of the mechanisms underlying the resistance to immunotherapy in the bulk of cancer patients is merited. Such efforts may help to identify which patients could benefit from immune checkpoint blockade. Given the existence of a great number of pathways by which cancer can escape immune surveillance, and the complexity of tumor-immune system interaction, development of various combination therapies, including those that combine with conventional therapies, would be necessary. In this review, we summarize the current understanding of the mechanisms by which resistance to checkpoint blockade immunotherapy occurs, and outline how actionable combination strategies may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Weidong Han
- Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
670
|
Tim-3 co-stimulation promotes short-lived effector T cells, restricts memory precursors, and is dispensable for T cell exhaustion. Proc Natl Acad Sci U S A 2018; 115:2455-2460. [PMID: 29463725 DOI: 10.1073/pnas.1712107115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tim-3 is highly expressed on a subset of T cells during T cell exhaustion in settings of chronic viral infection and tumors. Using lymphocytic choriomeningitis virus (LCMV) Clone 13, a model for chronic infection, we found that Tim-3 was neither necessary nor sufficient for the development of T cell exhaustion. Nonetheless, expression of Tim-3 was sufficient to drive resistance to PD-L1 blockade therapy during chronic infection. Strikingly, expression of Tim-3 promoted the development of short-lived effector T cells, at the expense of memory precursor development, after acute LCMV infection. These effects were accompanied by increased Akt/mTOR signaling in T cells expressing endogenous or ectopic Tim-3. Conversely, Akt/mTOR signaling was reduced in effector T cells from Tim-3-deficient mice. Thus, Tim-3 is essential for optimal effector T cell responses, and may also contribute to exhaustion by restricting the development of long-lived memory T cells. Taken together, our results suggest that Tim-3 is actually more similar to costimulatory receptors that are up-regulated after T cell activation than to a dominant inhibitory protein like PD-1. These findings have significant implications for the development of anti-Tim-3 antibodies as therapeutic agents.
Collapse
|
671
|
Knudson KM, Hicks KC, Luo X, Chen JQ, Schlom J, Gameiro SR. M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 2018; 7:e1426519. [PMID: 29721396 PMCID: PMC5927523 DOI: 10.1080/2162402x.2018.1426519] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 02/07/2023] Open
Abstract
Tumors evade host immune surveillance through multiple mechanisms, including the generation of a tumor microenvironment that suppresses immune effector function. Secretion of TGFβ and upregulation of immune checkpoint programmed cell death ligand-1 (PD-L1) are two main contributors to immune evasion and tumor progression. Here, we examined the efficacy of a first-in-class bifunctional checkpoint inhibitor, the fusion protein M7824, comprising the extracellular domain of human TGFβRII (TGFβ Trap) linked to the C-terminus of human anti-PD-L1 heavy chain (αPD-L1). We demonstrate that M7824 reduces plasma TGFβ1, binds to PD-L1 in the tumor, and decreases TGFβ-induced signaling in the tumor microenvironment in mice. In murine breast and colon carcinoma models, M7824 decreased tumor burden and increased overall survival as compared to targeting TGFβ alone. M7824 treatment promoted CD8+ T cell and NK cell activation, and both of these immune populations were required for optimal M7824-mediated tumor control. M7824 was superior to TGFβ- or αPD-L1-targeted therapies when in combination with a therapeutic cancer vaccine. These findings demonstrate the value of using M7824 to simultaneously target TGFβ and PD-L1/PD-1 immunosuppressive pathways to promote anti-tumor responses and efficacy. The studies also support the potential clinical use of M7824 as a monotherapy or in combination with other immunotherapies, such as therapeutic cancer vaccines, including for patients who have progressed on αPD-L1/αPD-1 checkpoint blockade therapies.
Collapse
Affiliation(s)
- Karin M Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristin C Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoling Luo
- Collaborative Protein Technology Resource (CPTR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource (CPTR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
672
|
Metabolic exhaustion in infection, cancer and autoimmunity. Nat Immunol 2018; 19:213-221. [DOI: 10.1038/s41590-018-0045-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
|
673
|
Scheffel MJ, Scurti G, Wyatt MM, Garrett-Mayer E, Paulos CM, Nishimura MI, Voelkel-Johnson C. N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Akt-dependent manner. Cancer Immunol Immunother 2018; 67:691-702. [PMID: 29396710 DOI: 10.1007/s00262-018-2120-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022]
Abstract
Therapeutic outcomes for adoptive cell transfer (ACT) therapy are constrained by the quality of the infused T cells. The rapid expansion necessary to obtain large numbers of cells results in a more terminally differentiated phenotype with decreased durability and functionality. N-acetyl cysteine (NAC) protects against activation-induced cell death (AICD) and improves anti-tumor efficacy of Pmel-1 T cells in vivo. Here, we show that these benefits of NAC can be extended to engineered T cells and significantly increases T-cell survival within the tumor microenvironment. The addition of NAC to the expansion protocol of human TIL13838I TCR-transduced T cells that are under evaluation in a Phase I clinical trial, demonstrated that findings in murine cells extend to human cells. Expansion of TIL13838I TCR-transduced T cells in NAC also increased their ability to kill target cells in vitro. Interestingly, NAC did not affect memory subsets, but diminished up-regulation of senescence (CD57) and exhaustion (PD-1) markers and significantly decreased expression of the transcription factors EOMES and Foxo1. Pharmacological inhibition of the PI3K/Akt pathway ablates the decrease in Foxo1 induced by NAC treatment of activated T cells. This suggests a model in which NAC through PI3K/Akt activation suppresses Foxo1 expression, thereby impacting its transcriptional targets EOMES, PD-1, and granzyme B. Taken together, our results indicate that NAC exerts pleiotropic effects that impact the quality of TCR-transduced T cells and suggest that the addition of NAC to current clinical protocols should be considered.
Collapse
Affiliation(s)
- Matthew J Scheffel
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Gina Scurti
- Department of Surgery, Loyola University, Maywood, IL, USA
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | | | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, MSC 250504, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
674
|
Wang Y, Wu L, Tian C, Zhang Y. PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas. Ann Hematol 2018; 97:229-237. [DOI: 10.1007/s00277-017-3176-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
675
|
Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C, Illidge T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann Oncol 2018; 29:301-310. [PMID: 29309540 DOI: 10.1093/annonc/mdx790] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Despite the unheralded success of immune checkpoint blockade in delivering durable responses for some patients with non-small-cell lung cancer (NSCLC), the majority of patients do not respond. PD-L1 tumour expression and pre-existing tumour T-cell infiltration have been correlated with improved clinical outcomes to anti-PD-1/anti-PD-L1. However, patients with tumours that are negative for PD-L1 expression can also respond to treatment. Strategies to combine other treatment modalities like radiotherapy (RT) with immune checkpoint inhibitors are being investigated as means of improving the response rates to PD-1/PD-L1 antibody blockade. RT induces immunogenic changes in cancer cells, can adaptively upregulate tumour cell PD-L1 expression and can improve the efficacy of anti-PD-1/anti-PD-L1 therapy. How we design future clinical trials in NSCLC also depends on practical considerations of delivering these treatment combinations, such as RT dose, fractionation and field volume, as well as scheduling with immune checkpoint blockade. Here, we review reasons for resistance to anti-PD-1/anti-PD-L1 and how RT may be utilised in combination with these drugs to enhance their effect by building better translational research platforms.
Collapse
Affiliation(s)
- T Kordbacheh
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK.
| | - J Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK
| | - F Blackhall
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK
| | - C Faivre-Finn
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK
| | - T Illidge
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK
| |
Collapse
|
676
|
Hammer M, Bagley S, Aggarwal C, Bauml J, Nachiappan AC, Simone CB, Langer C, Katz SI. Thoracic Imaging of Non-Small Cell Lung Cancer Treated With Anti-programmed Death Receptor-1 Therapy. Curr Probl Diagn Radiol 2018; 48:142-147. [PMID: 29573843 DOI: 10.1067/j.cpradiol.2018.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Treatment with anti-programmed death receptor-1 (PD-1) therapeutics can lead to unconventional responses and side effect profiles due to their potentiating effects on the immune system. Here we evaluate the radiologic manifestations of anti-PD-1 therapy in the chest in patients with non-small cell lung cancer (NSCLC) receiving anti-PD-1 therapy. MATERIALS AND METHODS A retrospective review of real-world clinical practice was conducted of all the patients with NSCLC receiving anti-PD-1 therapy at our institution between 2013 and 2016. All patients without adequate clinical or radiologic follow-up data in the electronic medical records were excluded. Imaging examinations for all patients deemed by their thoracic oncologists to have radiologic pseudoprogression or therapy-associated pneumonitis were reviewed by experienced thoracic radiologists. RESULTS A total of 166 patients with NSCLC had available clinical and imaging data for retrospective review. Of these patients, 4 (2%) were considered to have radiologic pseudoprogression, 3 of which manifested as increased tumor size and 1 of which manifested with new lesions. A total of 5 patients (3%) were clinically deemed to have pneumonitis attributable to anti-PD-1 therapy, 4 of which had radiologic manifestations on computed tomography. CONCLUSION Radiologic pseudoprogression and drug-induced pneumonitis are uncommon but important manifestations of anti-PD-1 therapy on thoracic imaging.
Collapse
Affiliation(s)
- Mark Hammer
- Department of Radiology, Brigham and Women's Hospital, Boston, MA; Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen Bagley
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Charu Aggarwal
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Joshua Bauml
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Arun C Nachiappan
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Corey Langer
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sharyn I Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
677
|
Rivadeneira DB, Delgoffe GM. Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy. Clin Cancer Res 2018; 24:2473-2481. [PMID: 29386217 DOI: 10.1158/1078-0432.ccr-17-0894] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/18/2017] [Accepted: 01/25/2018] [Indexed: 01/28/2023]
Abstract
With the rapid rise of immunotherapy for cancer treatment, attention has focused on gaining a better understanding of T-cell biology in the tumor microenvironment. Elucidating the factors underlying changes in their function will allow for the development of new therapeutic strategies that could expand the patient population benefiting from immunotherapy, as well as circumvent therapy resistance. Cancers go beyond avoiding immune recognition and inducing T-cell dysfunction through coinhibitory molecules. Recent work has demonstrated that the tumor microenvironment elicits metabolic changes in T cells that dampen their ability to respond and that manipulating these metabolic changes can strengthen an antitumor immune response. Here we review the metabolic status of various types of T cells, the energetic state of the tumor microenvironment, and proposed modalities for improvement of immunotherapy through metabolic remodeling. Clin Cancer Res; 24(11); 2473-81. ©2018 AACR.
Collapse
Affiliation(s)
- Dayana B Rivadeneira
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Greg M Delgoffe
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. .,Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
678
|
Xu W, Hiếu T, Malarkannan S, Wang L. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 2018; 15:438-446. [PMID: 29375120 DOI: 10.1038/cmi.2017.148] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022] Open
Abstract
Among various immunoregulatory molecules, the B7 family of immune-checkpoint receptors consists of highly valuable targets for cancer immunotherapy. Antibodies targeting two B7 family co-inhibitory receptors, CTLA-4 and PD-1, have elicited long-term clinical outcomes in previously refractory cancer types and are considered a breakthrough in cancer therapy. Despite the success, the relatively low response rate (20-30%) warrants efforts to identify and overcome additional immune-suppressive pathways. Among the expanding list of T cell inhibitory regulators, V domain immunoglobulin suppressor of T cell activation (VISTA) is a unique B7 family checkpoint that regulates a broad spectrum of immune responses. Here, we summarize recent advances that highlight the structure, expression, and multi-faceted immunomodulatory mechanisms of VISTA in the context of autoimmunity, inflammation, and anti-tumor immunity.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA
| | - TạMinh Hiếu
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA.,Department of Medicine, Milwaukee, WI 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Research Institute, 53226, Milwaukee, WI, USA
| | - Li Wang
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA.
| |
Collapse
|
679
|
Sormendi S, Wielockx B. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. Front Immunol 2018; 9:40. [PMID: 29434587 PMCID: PMC5796897 DOI: 10.3389/fimmu.2018.00040] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/05/2018] [Indexed: 12/24/2022] Open
Abstract
Low oxygen tension or hypoxia is a determining factor in the course of many different processes in animals, including when tissue expansion and cellular metabolism result in high oxygen demands that exceed its supply. This is mainly happening when cells actively proliferate and the proliferating mass becomes distant from the blood vessels, such as in growing tumors. Metabolic alterations in response to hypoxia can be triggered in a direct manner, such as the switch from oxidative phosphorylation to glycolysis or inhibition of fatty acid desaturation. However, as the modulated action of hypoxia-inducible factors or the oxygen sensors (prolyl hydroxylase domain-containing enzymes) can also lead to changes in enzyme expression, these metabolic changes can also be indirect. With this review, we want to summarize our current knowledge of the hypoxia-induced changes in metabolism during cancer development, how they are affected in the tumor cells and in the cells of the microenvironment, most prominently in immune cells.
Collapse
Affiliation(s)
- Sundary Sormendi
- Heisenberg Research Group, Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Heisenberg Research Group, Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
680
|
Noyan K, Nguyen S, Betts MR, Sönnerborg A, Buggert M. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells. Front Immunol 2018; 9:19. [PMID: 29403500 PMCID: PMC5786543 DOI: 10.3389/fimmu.2018.00019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a “healthy” state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.
Collapse
Affiliation(s)
- Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
681
|
Chisolm DA, Weinmann AS. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annu Rev Immunol 2018; 36:221-246. [PMID: 29328786 DOI: 10.1146/annurev-immunol-042617-053127] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4+ T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.
Collapse
Affiliation(s)
- Danielle A Chisolm
- Department of Microbiology, University of Alabama at Birmingham, Alabama 35294, USA; ,
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Alabama 35294, USA; ,
| |
Collapse
|
682
|
Kim KS, Sekar RR, Patil D, Dimarco MA, Kissick HT, Bilen MA, Osunkoya AO, Master VA. Evaluation of programmed cell death protein 1 (PD-1) expression as a prognostic biomarker in patients with clear cell renal cell carcinoma. Oncoimmunology 2018; 7:e1413519. [PMID: 29632730 DOI: 10.1080/2162402x.2017.1413519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/08/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) immune checkpoint inhibitors have shown activity in patients with advanced renal cell carcinoma (RCC). However, the role of PD-1 expression in tumor-infiltrating lymphocytes (TILs) as a biomarker for poor outcome is not clear. In this study, we evaluated the prognostic value of TIL PD-1 expression in patients with clear cell RCC (ccRCC). 82 patients who underwent nephrectomy for localized or metastatic ccRCC and followed up for at least four years were searched from our database and retrospectively enrolled. Their fixed primary tumor specimens were stained with anti-PD-1 (NAT105). The specimens were classified as negative or positive for PD-1 expression, and the positive specimens were further scored in 10% increments. 37 (45.12%) patients were negative (<1% stained), 26 (31.71%) patients were low (<10 and 10%), and 19 (23.17%) patients were high (20-50%) for PD-1 expression. The prognostic value of TIL PD-1 expression was evaluated by univariate Cox proportional hazards regression on overall and recurrence-free survivals. Higher TIL PD-1 expression was not associated with increased risk of death (P = 0.336) or with increased risk of recurrence (P = 0.572). Higher primary tumor stage was associated with increased risk of recurrence (P = 0.003), and higher Fuhrman nuclear grade was associated with increased risk of death (P <0.001) and with increased risk of recurrence (P <0.001). Our study shows that TIL PD-1 expression by immunohistochemistry (IHC) does not correlate with poor clinical outcome in patients with ccRCC and is inferior to established prognosticating tools.
Collapse
Affiliation(s)
- Kyu Seo Kim
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Rishi R Sekar
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Dattatraya Patil
- School of Medicine, Emory University, Atlanta, GA, United States.,Department of Urology, Emory University, Atlanta, GA, United States
| | - Michelle A Dimarco
- School of Medicine, Emory University, Atlanta, GA, United States.,Department of Pathology, Emory University, Atlanta, GA, United States
| | - Haydn T Kissick
- School of Medicine, Emory University, Atlanta, GA, United States.,Department of Urology, Emory University, Atlanta, GA, United States.,Department of Microbiology & Immunology, Emory University, Atlanta, GA, United States.,Emory Vaccine Center, Atlanta, GA, United States
| | - Mehmet A Bilen
- Winship Cancer Institute, Atlanta, GA, United States.,Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Adeboye O Osunkoya
- School of Medicine, Emory University, Atlanta, GA, United States.,Department of Urology, Emory University, Atlanta, GA, United States.,Department of Pathology, Emory University, Atlanta, GA, United States.,Winship Cancer Institute, Atlanta, GA, United States
| | - Viraj A Master
- School of Medicine, Emory University, Atlanta, GA, United States.,Department of Urology, Emory University, Atlanta, GA, United States.,Winship Cancer Institute, Atlanta, GA, United States
| |
Collapse
|
683
|
Wang Z, Arat S, Magid-Slav M, Brown JR. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets. BMC SYSTEMS BIOLOGY 2018; 12:3. [PMID: 29321020 PMCID: PMC5763539 DOI: 10.1186/s12918-017-0524-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/24/2023]
Abstract
Background With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Results Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson’s disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Conclusions Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies. Electronic supplementary material The online version of this article (doi: 10.1186/s12918-017-0524-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhang Wang
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA
| | - Seda Arat
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.,Current address: The Jackson Laboratory, Farmington, CT, 06032, USA
| | - Michal Magid-Slav
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.
| | - James R Brown
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.
| |
Collapse
|
684
|
Chen CL, Pan QZ, Weng DS, Xie CM, Zhao JJ, Chen MS, Peng RQ, Li DD, Wang Y, Tang Y, Wang QJ, Zhang ZL, Zhang XF, Jiang LJ, Zhou ZQ, Zhu Q, He J, Liu Y, Zhou FJ, Xia JC. Safety and activity of PD-1 blockade-activated DC-CIK cells in patients with advanced solid tumors. Oncoimmunology 2018; 7:e1417721. [PMID: 29632736 DOI: 10.1080/2162402x.2017.1417721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023] Open
Abstract
Cytokine-induced killer (CIK) cells that are stimulated using mature dendritic cells (DCs), referred to as (DC-CIK cells) exhibit superior anti-tumor potency. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. This phase I study aimed to assess the safety and clinical activity of immunotherapy with PD-1 blockade (pembrolizumab)-activated autologous DC-CIK cells in patients with advanced solid tumors. Patients with selected types of advanced solid tumors received a single intravenous infusion of activated autologous DC-CIK cells weekly for the first month and every 2 weeks thereafter. The primary end points were safety and adverse event (AE) profiles. Antitumor responses, overall survival (OS), progression-free survival (PFS) and cytolytic activity were secondary end points. Treatment-related AEs occurred in 20/31 patients. Grade 3 or 4 toxicities, including fever and chills, were observed in two patients. All treatment-related AEs were reversible or controllable. The cytotoxicity of DC-CIK cells induced up-regulation of PD-L1 expression on autologous tumor cells. When activated using pembrolizumab ex vivo, DC-CIK cells exerted superior antitumor properties and elevated IFN-γ secretion. Objective responses (complete or partial responses) were observed in 7 of the 31patients.These responses were durable, with 6 of 7 responses lasting more than 5 months. The overall disease control rate in the patients was 64.5%. At the time of this report, the median OS and PFS were 270 and 162 days, respectively. In conclusions, treatment with pembrolizumab-activated autologous DC-CIK cells was safe and exerted encouraging antitumor activity in advanced solid tumors. A larger phase II trial is warranted.
Collapse
Affiliation(s)
- Chang-Long Chen
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-Zhong Pan
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Sheng Weng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuan-Miao Xie
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Jing Zhao
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Min-Shan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Qing Peng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Dan-Dan Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ying Wang
- Department of Immunization Program, Haizhu District Center for Disease Control and Prevention, Guangzhou, China
| | - Yan Tang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Jing Wang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zhi-Ling Zhang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Fei Zhang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Juan Jiang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Qi Zhou
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan Liu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang-Jian Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
685
|
Modeling tumor immunity of mouse glioblastoma by exhausted CD8 + T cells. Sci Rep 2018; 8:208. [PMID: 29317703 PMCID: PMC5760520 DOI: 10.1038/s41598-017-18540-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
T cell exhaustion occurs during chronic infection and cancers. Programmed cell death protein-1 (PD-1) is a major inhibitory checkpoint receptor involved in T cell exhaustion. Blocking antibodies (Abs) against PD-1 or its ligand, PD-L1, have been shown to reverse T cell exhaustion during chronic infection and cancers, leading to improved control of persistent antigen. However, modeling tumor-specific T cell responses in mouse has been difficult due to the lack of reagents to detect and phenotype tumor-specific immune responses. We developed a novel mouse glioma model expressing a viral epitope derived from lymphocytic choriomeningitis virus (LCMV), which allowed monitoring of tumor-specific CD8 T-cell responses. These CD8 T cells express high levels of PD-1 and are unable to reject tumors, but this can be reversed by anti-PD-1 treatment. These results suggest the efficacy of PD-1 blockade as a treatment for glioblastoma, an aggressive tumor that results in a uniformly lethal outcome. Importantly, this new syngeneic tumor model may also provide further opportunities to characterize anti-tumor T cell exhaustion and develop novel cancer immunotherapies.
Collapse
|
686
|
Billerbeck E, Wolfisberg R, Fahnøe U, Xiao JW, Quirk C, Luna JM, Cullen JM, Hartlage AS, Chiriboga L, Ghoshal K, Lipkin WI, Bukh J, Scheel TKH, Kapoor A, Rice CM. Mouse models of acute and chronic hepacivirus infection. Science 2018; 357:204-208. [PMID: 28706073 DOI: 10.1126/science.aal1962] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/03/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections in laboratory mice with immunological features resembling those seen in human viral hepatitis. Whereas immune-compromised mice developed persistent infection, immune-competent mice cleared the virus within 3 to 5 weeks. Acute clearance was T cell dependent and associated with liver injury. Transient depletion of CD4+ T cells before infection resulted in chronic infection, characterized by high levels of intrahepatic regulatory T cells and expression of inhibitory molecules on intrahepatic CD8+ T cells. Natural killer cells controlled early infection but were not essential for viral clearance. This model may provide mechanistic insights into hepatic antiviral immunity, a prerequisite for the development of HCV vaccines.
Collapse
Affiliation(s)
- Eva Billerbeck
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jing W Xiao
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - John M Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY, USA
| | - Kalpana Ghoshal
- Department of Pathology, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels K H Scheel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.,Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
687
|
Hijikata Y, Okazaki T, Tanaka Y, Murahashi M, Yamada Y, Yamada K, Takahashi A, Inoue H, Kishimoto J, Nakanishi Y, Oda Y, Nakamura Y, Tani K. A phase I clinical trial of RNF43 peptide-related immune cell therapy combined with low-dose cyclophosphamide in patients with advanced solid tumors. PLoS One 2018; 13:e0187878. [PMID: 29293510 PMCID: PMC5749706 DOI: 10.1371/journal.pone.0187878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to investigate the safety and the tolerability of combined cellular immunotherapy with low-dose cyclophosphamide (CPA) in patients with advanced solid tumors. This study targeted a novel tumor-associated antigen, ring finger protein 43 (RNF43). Eligible patients were resistant to standard therapy, HLA-A*24:02- or A*02:01-positive and exhibiting high RNF43 expression in their tumor cells. They were administered 300 mg/m2 CPA followed by autologous lymphocytes, preliminarily cultured with autologous RNF43 peptide-pulsed dendritic cells (DCs), RNF43 peptide-pulsed DCs and systemic low dose interleukin-2. The primary endpoint was safety whereas the secondary endpoint was immunological and clinical response to treatment. Ten patients, in total, were enrolled in this trial. Primarily, no adverse events greater than Grade 3 were observed. Six out of 10 patients showed stable disease (SD) on day 49, while 4 other patients showed progressive disease. In addition, one patient with SD exhibited a partial response after the second trial. The frequency of regulatory T cells (Tregs) in patients with SD significantly decreased after CPA administration. The ratio of interferon-γ-producing, tumor-reactive CD8+ T cells increased with time in patients with SD. We successfully showed that the combination of immune cell therapy and CPA was safe, might induce tumor-specific immune responses and clinical efficacy, and was accompanied by a decreased ratio of Tregs in patients with RNF43-positive advanced solid tumors.
Collapse
Affiliation(s)
- Yasuki Hijikata
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiko Okazaki
- ARO Advanced Medical Center, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshihiro Tanaka
- ARO Advanced Medical Center, Kyushu University Hospital, Fukuoka, Japan
| | - Mutsunori Murahashi
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Pathological Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunari Yamada
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Atsushi Takahashi
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroyuki Inoue
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
| | - Junji Kishimoto
- ARO Advanced Medical Center, Kyushu University Hospital, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute of Diseases of Chest, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakamura
- Human genome center, Institute of medical science, University of Tokyo, Tokyo, Japan
| | - Kenzaburo Tani
- Department of Advanced Cell and Molecular Therapy, Kyushu University Hospital, Fukuoka, Japan
- Project Division of ALA Advanced Medical Research, Advanced Medical Science of Internal Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
688
|
Corrales L, Scilla K, Caglevic C, Miller K, Oliveira J, Rolfo C. Immunotherapy in Lung Cancer: A New Age in Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 995:65-95. [PMID: 30539506 DOI: 10.1007/978-3-030-02505-2_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The management of Non-Small Cell Lung Cancer (NSCLC) has changed dramatically in the last 10 years with an increase in the understanding of the biology and with the development of new and multiple treatments. Chemotherapy being the first systemic treatment used in the setting of advanced disease, proving benefit for patients over palliative care. With the identification of oncogenic drivers, innovative targeted therapies were developed and tested, leading to important changes in the management of certain patients and giving to some of them the possibility to be treated in first line with oral inhibitors. Immunotherapy was then explored as a potential option, with promising results, and data of impact in important endpoints in lung cancer treatments. This chapter explores the different CTLA-4 inhibitors that have been investigated in NSCLC: ipilimumab and tremelimumab, as well as the different immune checkpoint inhibitors: anti PD-1 (nivolumab and pembrolizumab) and PD-L1 (atezolizumab, durvalumab, avelumab, BMS-936559) medications. It also analyzes the different studies that have been developed for NSCLC with these medications, the evidence obtained, and the possible role in the management of patients. Immunotherapy has definitely changed the paradigm on NSCLC treatment, and the future is promising for the benefit of patients.
Collapse
Affiliation(s)
- Luis Corrales
- Medical Oncology Department, CIMCA / Hospital San Juan de Dios-CCSS, San José, Costa Rica
| | - Katherine Scilla
- Thoracic Oncology Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Ken Miller
- Thoracic Oncology Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Julio Oliveira
- Medical Oncology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Christian Rolfo
- Thoracic Oncology Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
689
|
Abstract
Cancer immunotherapies, widely heralded as transformational for many adult cancer patients, are becoming viable options for selected subsets of pediatric cancer patients. Many therapies are currently being investigated, from immunomodulatory agents to adoptive cell therapy, bispecific T-cell engagers, oncolytic virotherapy, and checkpoint inhibition. One of the most exciting immunotherapies recently FDA approved is the use of CD19 chimeric antigen receptor T cells for pre-B-cell acute lymphoblastic leukemia. With this approval and others, immunotherapy for pediatric cancers is gaining traction. One of the caveats to many of these immunotherapies is the challenge of predictive biomarkers; determining which patients will respond to a given therapy is not yet possible. Much research is being focused on which biomarkers will be predictive and prognostic for these patients. Despite many benefits of immunotherapy, including less long-term side effects, some treatments are fraught with immediate side effects that range from mild to severe, although most are manageable. With few downsides and the potential for disease cures, immunotherapy in the pediatric population has the potential to move to the front-line of therapeutic options.
Collapse
Affiliation(s)
- Mary Frances Wedekind
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Nicholas L. Denton
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Chun-Yu Chen
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Timothy P. Cripe
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| |
Collapse
|
690
|
Karagiannis P, Nakauchi A, Yamanaka S. Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA J 2018; 1:6-14. [PMID: 33748517 PMCID: PMC7969850 DOI: 10.31662/jmaj.2018-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) describe somatic cells that have been reprogrammed to the pluripotent state. From a scientific perspective, their discovery has provided a molecular roadmap for turning on and off cell identities, effectively allowing any cell type to have its identity changed into any other cell type. They also act as a human model for understanding the development of every cell and organ in the body. In addition, because they can be prepared from patients, iPSCs offer a unique human model for studying disease development, including many diseases that are generally diagnosed at a late stage of their development. These models have provided new insights on the pathogenesis and new targets to prevent or reverse the disease development process. Indeed, clinical studies on compounds based on drug screening hits in human iPSC disease models have begun. Because of their proliferation and differentiation capacity, iPSCs can also be used to prepare cells for transplantations, and related clinical studies using iPSC-based cell therapies are ongoing. The combination of iPSCs with other technologies or therapeutic strategies is expected to expand their medical benefits. In this review, we consider medical accomplishments based on iPSC research and future ones that can be anticipated.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ayaka Nakauchi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
691
|
Brummelman J, Pilipow K, Lugli E. The Single-Cell Phenotypic Identity of Human CD8+ and CD4+ T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:63-124. [DOI: 10.1016/bs.ircmb.2018.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
692
|
Villanueva N, Bazhenova L. New strategies in immunotherapy for lung cancer: beyond PD-1/PD-L1. Ther Adv Respir Dis 2018; 12:1753466618794133. [PMID: 30215300 PMCID: PMC6144513 DOI: 10.1177/1753466618794133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has significantly altered the treatment landscape for many cancers, including non-small cell lung cancer (NSCLC). Currently approved immuno-oncology agents for lung cancer are aimed at the reversal of immune checkpoints, programmed death protein-1 (PD-1) and programmed death ligand-1 (PD-L1). Although responses to checkpoint inhibitors are encouraging, and in some cases durable, these successes are not universal among all treated patients. In order to optimize our treatment approach utilizing immunotherapy, we must better understand the interaction between cancer and the immune system and evasion mechanisms. In this review, we will provide an overview of the immune system and cancer, and review novel therapies that promote tumor antigen release for immune system detection, activate the effector T-cell response, and reverse inhibitory antitumor signals.
Collapse
Affiliation(s)
- Nicolas Villanueva
- University of California, San Diego, Moore’s Cancer Center, San Diego, CA, USA
| | - Lyudmila Bazhenova
- 3855 Health Sciences Drive, #0987 La Jolla, University of California, San Diego, Moore’s Cancer Center, San Diego, CA 92093, USA
| |
Collapse
|
693
|
Lin Z, Xu Y, Zhang Y, He Q, Zhang J, He J, Liang W. The prevalence and clinicopathological features of programmed death-ligand 1 (PD-L1) expression: a pooled analysis of literatures. Oncotarget 2017; 7:15033-46. [PMID: 26930715 PMCID: PMC4924769 DOI: 10.18632/oncotarget.7590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022] Open
Abstract
Background & Aims Programmed death-ligand 1 (PD-L1) has been recognized as a critical and promising target in therapies that direct immune escape of cancers. However, its association with aggressive clinicopathological features in solid tumors remains unclear. We investigated this question by synthesizing published articles. Methods Electronic databases were searched for relevant studies. Outcomes of interest included age, gender, tumor size, tumor size, lymph node metastasis and tumor cell differentiation. Results A total of 61 studies involving 17 types of malignancies were included. The overall expression rate of PD-L1 was 44.5% (95% CI, 37.5% to 51.6 %). Patients with regional lymph node metastases (OR 1.38; P < 0.01), large size tumor (OR 1.89; P < 0.01) or poor differentiated tumors (OR 1.71; P < 0.01) were associated with higher PD-L1 expression rate. However, no significant association was observed between young and elder patients (OR 1.04; P = 0.58), or male and female patients (OR 1.13; P = 0.06). A numerically higher PD-L1 expression rate was detected in polyclonal antibodies (57.2%) than monoclonal antibodies (39.6%). In addition, the PD-L1 expression rate reported by studies from Asian areas (52.3%) was numerically higher than those from non-Asian areas, namely Caucasians (32.7%). Conclusions This meta-analysis indicated that patients with larger tumors, regional lymph node metastases, or poor-differentiated tumors were associated with a higher PD-L1 expression rate; in addition the expression rate of PD-L1 in Asians might be higher than that of Caucasians. This information might be useful in screening candidates for relevant tests and treatments.
Collapse
Affiliation(s)
- Ziying Lin
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yutong Xu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaxiong Zhang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Medical Oncology of Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qihua He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianrong Zhang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China
| |
Collapse
|
694
|
Seki N, Kan-O K, Matsumoto K, Fukuyama S, Hamano S, Tonai K, Ota K, Inoue H, Nakanishi Y. Interleukin-22 attenuates double-stranded RNA-induced upregulation of PD-L1 in airway epithelial cells via a STAT3-dependent mechanism. Biochem Biophys Res Commun 2017; 494:242-248. [PMID: 29032197 DOI: 10.1016/j.bbrc.2017.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023]
Abstract
Double-stranded RNA derived from viruses induces host immune responses. PD-L1, also known as B7-H1, is an immune-checkpoint molecule associated with the escape of viruses from host immune systems, which plays a role in the persistence of viral infection, resulting in exacerbations of underlying diseases such as asthma and chronic obstructive pulmonary disease. Interleukin (IL)-22 is produced from various immune cells and has protective properties on mucosal tissue. The binding of IL-22 to IL-22 receptor induces STAT3 activation. We investigated the effect of IL-22 on the expression in airway epithelial cells in vitro and in mouse lungs in vivo after the stimulation with an analog of viral double-stranded RNA, polyinosinic-polycytidylic acid (poly I:C). Stimulation with poly I:C upregulated PD-L1 expression on BEAS-2B cells. This upregulation of PD-L1 was attenuated by IL-22 administration. STAT3 phosphorylation was induced by IL-22 and poly I:C. Treatment of cells with STAT3 siRNA abolished the effect of IL-22 on the poly I:C-induced upregulation of PD-L1. This upregulation of PD-L1 was also attenuated by IL-11, a cytokine inducing STAT3 phosphorylation, in BEAS-2B cells. In mouse lung cells in vivo, IL-22 suppressed poly I:C-induced upregulation of PD-L1. These results suggest that IL-22 attenuates virus-induced upregulation of PD-L1 in airway epithelial cells via a STAT3-dependent mechanism.
Collapse
Affiliation(s)
- Nanae Seki
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Saaka Hamano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-0075, Japan.
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
695
|
Assi HI, Kamphorst AO, Moukalled NM, Ramalingam SS. Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer 2017; 124:248-261. [PMID: 29211297 DOI: 10.1002/cncr.31105] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
The emergence of immune checkpoint inhibitors for the treatment of cancer has led to major changes to the therapeutic landscape of lung cancer. Improvements in overall survival relative to standard chemotherapy have been observed in the first-line and second-line therapy settings for patients with advanced non-small cell lung cancer (NSCLC) who are treated with immune checkpoint inhibitors. Consequently, every patient with advanced-stage NSCLC is now a candidate for immune checkpoint inhibitor therapy. However, it is clear that the benefit from therapy is not universal, and identification of biomarkers to select therapy has assumed importance. In addition to programmed cell death receptor ligand 1 expression, both tissue-based and blood-based markers are under evaluation to select patients. In an era of increasing costs of care and potential for toxicities related to immune checkpoint inhibition, proper patient selection is critical to the optimal use of this new class of agents. In addition, development of novel combination approaches has also emerged as an important way to improve the efficacy of immune checkpoint inhibition. Studies in earlier stages of NSCLC are already underway with the hope of improving the cure rate. In this article, the authors review the current landscape of immune checkpoint inhibitors in the treatment of advanced NSCLC. Cancer 2018;124:248-61. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Hazem I Assi
- Department of Internal Medicine, Naef K. Bassile Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Alice O Kamphorst
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Nour M Moukalled
- Department of Internal Medicine, Naef K. Bassile Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Suresh S Ramalingam
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
696
|
Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunol Immunother 2017; 67:445-457. [PMID: 29204701 DOI: 10.1007/s00262-017-2095-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
Abstract
A substantial body of evidence suggests the existence of MUC1-specific antibodies and cytotoxic T cell activities in pancreatic cancer patients. However, tumor-induced immunosuppression renders these responses ineffective. The current study explores a novel therapeutic combination wherein tumor-bearing hosts can be immunologically primed with their own antigen, through opsonization with a tumor antigen-targeted antibody, mAb-AR20.5. We evaluated the efficacy of immunization with this antibody in combination with PolyICLC and anti-PD-L1. The therapeutic combination of mAb-AR20.5 + anti-PD-L1 + PolyICLC induced rejection of human MUC1 expressing tumors and provided a long-lasting, MUC1-specific cellular immune response, which could be adoptively transferred and shown to provide protection against tumor challenge in human MUC1 transgenic (MUC.Tg) mice. Furthermore, antibody depletion studies revealed that CD8 cells were effectors for the MUC1-specific immune response generated by the mAb-AR20.5 + anti-PD-L1 + PolyICLC combination. Multichromatic flow cytometry data analysis demonstrated a significant increase over time in circulating, activated CD8 T cells, CD3+CD4-CD8-(DN) T cells, and mature dendritic cells in mAb-AR20.5 + anti-PD-L1 + PolyICLC combination-treated, tumor-bearing mice, as compared to saline-treated control counterparts. Our study provides a proof of principle that an effective and long-lasting anti-tumor cellular immunity can be achieved in pancreatic tumor-bearing hosts against their own antigen (MUC1), which can be further potentiated using a vaccine adjuvant and an immune checkpoint inhibitor.
Collapse
|
697
|
The mitochondrial dynamics in cancer and immune-surveillance. Semin Cancer Biol 2017; 47:29-42. [DOI: 10.1016/j.semcancer.2017.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/09/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022]
|
698
|
|
699
|
Biology Informs Treatment Choices in Diffuse Large B Cell Lymphoma. Trends Cancer 2017; 3:871-882. [PMID: 29198442 DOI: 10.1016/j.trecan.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023]
Abstract
The effective deployment of rationally developed therapies for diffuse large B cell lymphoma (DLBCL) requires rapid assimilation of new biological data. Within this framework, here we address topical issues at the intersection of DLBCL biology and the clinic. We discuss targeting of B cell receptor (BCR) signaling, with emphasis on identifying patients who may benefit from this maneuver and how to best achieve it. We address strategies to modulate the DLBCL microenvironment, including the use of immune checkpoint inhibitors in selected DLBCL subsets, and the potential activity of alternative antiangiogenic therapies. Lastly, we highlight the emerging recognition of MYC and BCL2 coexpression as the most robust predictor of DLBCL outcome, and discuss rationally conceived experimental approaches to treat these high-risk patients.
Collapse
|
700
|
Local and Systemic CD4 + T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis. J Immunol Res 2017; 2017:3642832. [PMID: 29234685 PMCID: PMC5695030 DOI: 10.1155/2017/3642832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/26/2017] [Indexed: 01/23/2023] Open
Abstract
Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p < 0.05), enhanced apoptosis (p < 0.01), and increased PD-1 expression (p < 0.001). BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p < 0.05). Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p < 0.05). Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion.
Collapse
|