651
|
Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ. TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. THE PLANT CELL 2012; 24:2470-82. [PMID: 22693280 PMCID: PMC3406923 DOI: 10.1105/tpc.111.095430] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/11/2012] [Accepted: 05/25/2012] [Indexed: 05/18/2023]
Abstract
Plants are confronted with predictable daily biotic and abiotic stresses that result from the day-night cycle. The circadian clock provides an anticipation mechanism to respond to these daily stress signals to increase fitness. Jasmonate (JA) is a phytohormone that mediates various growth and stress responses. Here, we found that the circadian-clock component TIME FOR COFFEE (TIC) acts as a negative factor in the JA-signaling pathway. We showed that the tic mutant is hypersensitive to growth-repressive effects of JA and displays altered JA-regulated gene expression. TIC was found to interact with MYC2, a key transcription factor of JA signaling. From this, we discovered that the circadian clock rhythmically regulates JA signaling. TIC is a key determinant in this circadian-gated process, and as a result, the tic mutant is defective in rhythmic JA responses to pathogen infection. TIC acts here by inhibiting MYC2 protein accumulation and by controlling the transcriptional repression of CORONATINE INSENSITIVE1 in an evening-phase-specific manner. Taken together, we propose that TIC acts as an output component of the circadian oscillator to influence JA signaling directly.
Collapse
Affiliation(s)
- Jieun Shin
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Katharina Heidrich
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Alfredo Sanchez-Villarreal
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Seth J. Davis
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Address correspondence to
| |
Collapse
|
652
|
Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. THE PLANT CELL 2012. [PMID: 22669881 DOI: 10.2307/23264480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Arabidopsis thaliana flowers emit volatile terpenes, which may function in plant-insect interactions. Here, we report that Arabidopsis MYC2, a basic helix-loop-helix transcription factor, directly binds to promoters of the sesquiterpene synthase genes TPS21 and TPS11 and activates their expression. Expression of TPS21 and TPS11 can be induced by the phytohormones gibberellin (GA) and jasmonate (JA), and both inductions require MYC2. The induction of TPS21 and TPS11 results in increased emission of sesquiterpene, especially (E)-β-caryophyllene. DELLAs, the GA signaling repressors, negatively affect sesquiterpene biosynthesis, as the sesquiterpene synthase genes were repressed in plants overaccumulating REPRESSOR OF GA1-3 (RGA), one of the Arabidopsis DELLAs, and upregulated in a penta DELLA-deficient mutant. Yeast two-hybrid and coimmunoprecipitation assays demonstrated that DELLAs, represented by RGA, directly interact with MYC2. In yeast cells, the N terminus of MYC2 was responsible for binding to RGA. MYC2 has been proposed as a major mediator of JA signaling and crosstalk with abscisic acid, ethylene, and light signaling pathways. Our results demonstrate that MYC2 is also connected to GA signaling in regulating a subset of genes. In Arabidopsis inflorescences, it integrates both GA and JA signals into transcriptional regulation of sesquiterpene synthase genes and promotes sesquiterpene production.
Collapse
Affiliation(s)
- Gao-Jie Hong
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
653
|
Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. THE PLANT CELL 2012; 24:2635-48. [PMID: 22669881 PMCID: PMC3406894 DOI: 10.1105/tpc.112.098749] [Citation(s) in RCA: 431] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/02/2012] [Accepted: 05/17/2012] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana flowers emit volatile terpenes, which may function in plant-insect interactions. Here, we report that Arabidopsis MYC2, a basic helix-loop-helix transcription factor, directly binds to promoters of the sesquiterpene synthase genes TPS21 and TPS11 and activates their expression. Expression of TPS21 and TPS11 can be induced by the phytohormones gibberellin (GA) and jasmonate (JA), and both inductions require MYC2. The induction of TPS21 and TPS11 results in increased emission of sesquiterpene, especially (E)-β-caryophyllene. DELLAs, the GA signaling repressors, negatively affect sesquiterpene biosynthesis, as the sesquiterpene synthase genes were repressed in plants overaccumulating REPRESSOR OF GA1-3 (RGA), one of the Arabidopsis DELLAs, and upregulated in a penta DELLA-deficient mutant. Yeast two-hybrid and coimmunoprecipitation assays demonstrated that DELLAs, represented by RGA, directly interact with MYC2. In yeast cells, the N terminus of MYC2 was responsible for binding to RGA. MYC2 has been proposed as a major mediator of JA signaling and crosstalk with abscisic acid, ethylene, and light signaling pathways. Our results demonstrate that MYC2 is also connected to GA signaling in regulating a subset of genes. In Arabidopsis inflorescences, it integrates both GA and JA signals into transcriptional regulation of sesquiterpene synthase genes and promotes sesquiterpene production.
Collapse
Affiliation(s)
- Gao-Jie Hong
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Xue-Yi Xue
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics and National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People’s Republic of China
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, People’s Republic of China
- Address correspondence to
| |
Collapse
|
654
|
Oh Y, Baldwin IT, Gális I. NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. PLANT PHYSIOLOGY 2012; 159:769-88. [PMID: 22496510 PMCID: PMC3375940 DOI: 10.1104/pp.112.193771] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/05/2012] [Indexed: 05/18/2023]
Abstract
The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development.
Collapse
Affiliation(s)
- Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena D–07745, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena D–07745, Germany
| | | |
Collapse
|
655
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
656
|
Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. TRENDS IN PLANT SCIENCE 2012; 17:250-9. [PMID: 22305233 PMCID: PMC3346861 DOI: 10.1016/j.tplants.2012.01.003] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
The capacity to perceive and respond is integral to biological immune systems, but to what extent can plants specifically recognize and respond to insects? Recent findings suggest that plants possess surveillance systems that are able to detect general patterns of cellular damage as well as highly specific herbivore-associated cues. The jasmonate (JA) pathway has emerged as the major signaling cassette that integrates information perceived at the plant-insect interface into broad-spectrum defense responses. Specificity can be achieved via JA-independent processes and spatio-temporal changes of JA-modulating hormones, including ethylene (ET), salicylic acid (SA), abscisic acid (ABA), auxin, cytokinins (CK), brassinosteroids (BR) and gibberellins (GB). The identification of receptors and ligands and an integrative view of hormone-mediated response systems are crucial to understand specificity in plant immunity to herbivores.
Collapse
Affiliation(s)
- Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany.
| | | | | |
Collapse
|
657
|
Thaler JS, Humphrey PT, Whiteman NK. Evolution of jasmonate and salicylate signal crosstalk. TRENDS IN PLANT SCIENCE 2012; 17:260-70. [PMID: 22498450 DOI: 10.1016/j.tplants.2012.02.010] [Citation(s) in RCA: 706] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/25/2012] [Accepted: 02/28/2012] [Indexed: 05/18/2023]
Abstract
The evolution of land plants approximately 470 million years ago created a new adaptive zone for natural enemies (attackers) of plants. In response to attack, plants evolved highly effective, inducible defense systems. Two plant hormones modulating inducible defenses are salicylic acid (SA) and jasmonic acid (JA). Current thinking is that SA induces resistance against biotrophic pathogens and some phloem feeding insects and JA induces resistance against necrotrophic pathogens, some phloem feeding insects and chewing herbivores. Signaling crosstalk between SA and JA commonly manifests as a reciprocal antagonism and may be adaptive, but this remains speculative. We examine evidence for and against adaptive explanations for antagonistic crosstalk, trace its phylogenetic origins and provide a hypothesis-testing framework for future research on the adaptive significance of SA-JA crosstalk.
Collapse
|
658
|
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. PLANT PHYSIOLOGY 2012; 159:266-85. [PMID: 22392279 PMCID: PMC3375964 DOI: 10.1104/pp.111.192641] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/05/2012] [Indexed: 05/17/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph.
Collapse
Affiliation(s)
| | | | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (R.P.B., I.E.S.); Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany (C.D.)
| |
Collapse
|
659
|
Miyamoto K, Shimizu T, Lin F, Sainsbury F, Thuenemann E, Lomonossoff G, Nojiri H, Yamane H, Okada K. Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:621-627. [PMID: 22266099 DOI: 10.1016/j.jplph.2011.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
The plant hormone jasmonic acid (JA) is known to be involved in multiple defence responses against pathogens, which include the production of pathogenesis-related (PR) proteins. In order to investigate the induction mechanism of the rice defence responses by JA, we performed transcriptome analyses and focused on a chitinase gene, OsChia4a, which was identified to be one of the highest JA-inductive genes. The recombinant protein of His-tagged OsChia4a exhibited an inhibitory effect against the spore germination and hyphal growth of Magnaporthe oryzae. The promoter analysis of OsChia4a revealed that the region from -515 bp to -265 bp upstream of the ATG translation initiation site was required for the responsiveness to JA. A subsequent mutation analysis indicated that an E-box (CANNTG) in this region act as a JA-responsive cis element. These results imply that a basic helix-loop-helix transcription factor is likely to be involved in the regulation of the OsChia4a expression in a JA-dependent manner.
Collapse
Affiliation(s)
- Koji Miyamoto
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
660
|
Jiang L, Pan LJ. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses. Mol Biol Rep 2012; 39:7105-15. [PMID: 22484790 DOI: 10.1007/s11033-012-1542-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/24/2012] [Indexed: 11/29/2022]
Abstract
C2H2 proteins belong to a group of transcription factors (TFs) existing as a superfamily that plays important roles in defense responses and various other physiological processes in plants. The present study aimed to screen for and identify C2H2 proteins associated with defense responses to abiotic and biotic stresses in Carica papaya L. Data were collected for 47,483 papaya-expressed sequence tags (ESTs). The full-length cDNA nucleotide sequences of 87 C2H2 proteins were predicated by BioEdit. All 91 C2H2 proteins were aligned, and a phylogenetic tree was constructed using DNAman. The expression levels of 42 C2H2 were analyzed under conditions of salt stress by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Methyl jasmonate treatment rapidly upregulated ZF(23.4) and ZF(30,912.1) by 18.6- and 21.7-fold, respectively. ZF(1.3), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were found to be downregulated after low temperature treatment at very significant levels (p < 0.01). ZF(23.4), ZF(161.1), and ZF(30,912.1) were upregulated while ZF1.3, ZF(158.1), ZF(249.5), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were significantly downregulated by Spermine treatment. ZF(23.4) was upregulated while ZF(1.3), ZF(249.5), ZF(94.94), ZF(29.160), ZF(138.44), and ZF(20.206) were significantly repressed after SA treatment. ZF(23.4) and ZF(30,912.1) were significantly upregulated after sap inoculation with papaya ringspot virus pathogen. ZF(30,912.1) was subcellularly localized in the nucleus by a transgenic fusion of pBS-ZF(30,912.1)-GFP into the protoplast of papaya. The results of the present study showed that ZF(30,912.1) could be an important TF that mediates responses to abiotic and biotic stresses in papaya.
Collapse
Affiliation(s)
- Ling Jiang
- College of the Department of Horticulture and Forestry of Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Wuhan, Hubei, China.
| | | |
Collapse
|
661
|
Sherif S, Paliyath G, Jayasankar S. Molecular characterization of peach PR genes and their induction kinetics in response to bacterial infection and signaling molecules. PLANT CELL REPORTS 2012; 31:697-711. [PMID: 22101723 DOI: 10.1007/s00299-011-1188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 05/11/2023]
Abstract
'Venture' and 'BabyGold 5' are two peach cultivars with a demonstrated resistance and susceptibility, respectively, to bacterial spot disease caused by Xanthomonas campestris pv. pruni (Xcp). To explore the differences between these cultivars at the molecular level, two PR1 (Pp-PR1a, Pp-PR1b) and three PR5 (Pp-TLP1, Pp-TLP2 and Pp-TLP3) genes were isolated from peach (Prunus persica L.) and investigated by in silico and in situ approaches. The analysis of gene expression by qRT-PCR indicated that all PR genes, except Pp-PR1a, were induced to a significantly higher degree in the resistant cultivar. In response to signaling molecules, Pp-PR1a was induced chiefly by SA treatment, while other PR genes were induced mainly by ethephon or MeJA treatments. The induction of the same set of PR genes in response to bacterial infection, MeJA or ethephon suggests the involvement of jasmonic acid (JA)/ethylene (ET)-signaling pathways in mediating resistance against Xcp, which is consistent with the potential hemibiotrophic nature of this bacterium. The identification of binding sites for ERF and MYC2 transcription factors in the promoter of Pp-TLP1 and Pp-TLP2 genes further supported the role of JA/ET pathways in the transcription regulation of these genes. The role of stomata in defense against Xcp was also investigated by measuring stomatal apertures in both 'Venture' and 'BabyGold 5' leaves after 1 and 3 HPI. While most stomata closed in both cultivars within 1 HPI, stomata reopened again at 3 HPI with a higher percentage recorded for 'BabyGold 5', suggesting a potential role of stomata in the susceptibility of this cultivar.
Collapse
Affiliation(s)
- S Sherif
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0, Canada
| | | | | |
Collapse
|
662
|
Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RN, Kolomiets MV. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. THE PLANT CELL 2012; 24:1420-36. [PMID: 22523204 PMCID: PMC3398555 DOI: 10.1105/tpc.111.094151] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/22/2012] [Accepted: 04/04/2012] [Indexed: 05/20/2023]
Abstract
Here, multiple functions of jasmonic acid (JA) in maize (Zea mays) are revealed by comprehensive analyses of JA-deficient mutants of the two oxo-phytodienoate reductase genes, OPR7 and OPR8. Single mutants produce wild-type levels of JA in most tissues, but the double mutant opr7 opr8 has dramatically reduced JA in all organs tested. opr7 opr8 displayed strong developmental defects, including formation of a feminized tassel, initiation of female reproductive buds at each node, and extreme elongation of ear shanks; these defects were rescued by exogenous JA. These data provide evidence that JA is required for male sex determination and suppression of female reproductive organ biogenesis. Moreover, opr7 opr8 exhibited delayed leaf senescence accompanied by reduced ethylene and abscisic acid levels and lack of anthocyanin pigmentation of brace roots. Remarkably, opr7 opr8 is nonviable in nonsterile soil and under field conditions due to extreme susceptibility to a root-rotting oomycete (Pythium spp), demonstrating that these genes are necessary for maize survival in nature. Supporting the importance of JA in insect defense, opr7 opr8 is susceptible to beet armyworm. Overall, this study provides strong genetic evidence for the global roles of JA in maize development and immunity to pathogens and insects.
Collapse
Affiliation(s)
- Yuanxin Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Shawn Christensen
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Tom Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Jürgen Engelberth
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | | | - Allison Hayward
- Biology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - R.J. Neil Emery
- Biology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Address correspondence to
| |
Collapse
|
663
|
Prasad BRV, Kumar SV, Nandi A, Chattopadhyay S. Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development. BMC PLANT BIOLOGY 2012; 12:37. [PMID: 22424472 PMCID: PMC3353174 DOI: 10.1186/1471-2229-12-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/17/2012] [Indexed: 05/19/2023]
Abstract
Arabidopsis seedling development is controlled by many regulatory genes involved in multiple signaling pathways. The functional relationships of these genes working in multiple signaling cascades have started to be unraveled. Arabidopsis HY1/HO1 is a rate-limiting enzyme involved in biosynthesis of phytochrome chromophore. HY5 (a bZIP protein) promotes photomorphogenesis, however ZBF1/MYC2 (a bHLH protein) works as a negative regulator of photomorphogenic growth and light regulated gene expression. Further, MYC2 and HY1 have been shown to play important roles in jasmonic acid (JA) signaling pathways. Here, we show the genetic interactions of HY1 with two key transcription factor genes of light signaling, HY5 and MYC2, in Arabidopsis seedling development. Our studies reveal that although HY1 acts in an additive manner with HY5, it is epistatic to MYC2 in light-mediated seedling growth and gene expression. This study further demonstrates that HY1 additively or synergistically functions with HY5, however it works upstream to MYC2 in JA signaling pathways. Taken together, this study demonstrates the functional interrelations of HY1, MYC2 and HY5 in light and JA signaling pathways.
Collapse
Affiliation(s)
| | - Selva V Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashis Nandi
- School of Life Sciences, Jawharlal Neheru University, New Delhi, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| |
Collapse
|
664
|
The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1193-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
665
|
Pineda A, Zheng SJ, van Loon JJA, Dicke M. Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14 Suppl 1:83-90. [PMID: 22348327 DOI: 10.1111/j.1438-8677.2011.00549.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Beneficial microbes, such as plant growth-promoting rhizobacteria and mycorrhizal fungi, may have a plant-mediated effect on insects aboveground. The plant growth-promoting rhizobacterium Pseudomonas fluorescens can induce systemic resistance in Arabidopsis thaliana against several microbial pathogens and chewing insects. However, the plant-mediated effect of these beneficial microbes on phloem-feeding insects is not well understood. Using Arabidopsis as a model, we here report that P. fluorescens has a positive effect on the performance (weight gain and intrinsic rate of increase) of the generalist aphid Myzus persicae, while no effect was recorded on the crucifer specialist aphid Brevicoryne brassicae. Additionally, transcriptional analyses of selected marker genes revealed that in the plant-microbe interaction with M. persicae, rhizobacteria (i) prime the plant for enhanced expression of LOX2, a gene involved in the jasmonic acid (JA)-regulated defence pathway, and (ii) suppress the expression of ABA1, a gene involved in the abscisic acid (ABA) signalling pathway, at several time points. In contrast, almost no effect of the plant-microbe interaction with B. brassicae was found at the transcriptional level. This study presents the first data on rhizobacteria-induced systemic susceptibility to an herbivorous insect, supporting the pattern proposed for other belowground beneficial microbes and aboveground phloem feeders. Moreover, we provide further evidence that at the transcript level, soil-borne microbes modify plant-aphid interactions.
Collapse
Affiliation(s)
- A Pineda
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
666
|
Shyu C, Figueroa P, DePew CL, Cooke TF, Sheard LB, Moreno JE, Katsir L, Zheng N, Browse J, Howe GA. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. THE PLANT CELL 2012; 24:536-50. [PMID: 22327740 PMCID: PMC3315231 DOI: 10.1105/tpc.111.093005] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/16/2011] [Accepted: 01/25/2012] [Indexed: 05/17/2023]
Abstract
The lipid-derived hormone jasmonoyl-L-Ile (JA-Ile) initiates large-scale changes in gene expression by stabilizing the interaction of JASMONATE ZIM domain (JAZ) repressors with the F-box protein CORONATINE INSENSITIVE1 (COI1), which results in JAZ degradation by the ubiquitin-proteasome pathway. Recent structural studies show that the JAZ1 degradation signal (degron) includes a short conserved LPIAR motif that seals JA-Ile in its binding pocket at the COI1-JAZ interface. Here, we show that Arabidopsis thaliana JAZ8 lacks this motif and thus is unable to associate strongly with COI1 in the presence of JA-Ile. As a consequence, JAZ8 is stabilized against jasmonate (JA)-mediated degradation and, when ectopically expressed in Arabidopsis, represses JA-regulated growth and defense responses. These findings indicate that sequence variation in a hypervariable region of the degron affects JAZ stability and JA-regulated physiological responses. We also show that JAZ8-mediated repression depends on an LxLxL-type EAR (for ERF-associated amphiphilic repression) motif at the JAZ8 N terminus that binds the corepressor TOPLESS and represses transcriptional activation. JAZ8-mediated repression does not require the ZIM domain, which, in other JAZ proteins, recruits TOPLESS through the EAR motif-containing adaptor protein NINJA. These findings show that EAR repression domains in a subgroup of JAZ proteins repress gene expression through direct recruitment of corepressors to cognate transcription factors.
Collapse
Affiliation(s)
- Christine Shyu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Pablo Figueroa
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Cody L. DePew
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Thomas F. Cooke
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Laura B. Sheard
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Javier E. Moreno
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Leron Katsir
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Ning Zheng
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Gregg A. Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
667
|
Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW. A regulatory network for coordinated flower maturation. PLoS Genet 2012; 8:e1002506. [PMID: 22346763 PMCID: PMC3276552 DOI: 10.1371/journal.pgen.1002506] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Collapse
Affiliation(s)
- Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christine M. Ellis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara E. Ploense
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vandana Yadav
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Aurore Chételat
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ina Haupt
- Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Brian J. Kennerley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Hodgens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Edward E. Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
668
|
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. PLANT CELL REPORTS 2012; 31:253-70. [PMID: 22044964 DOI: 10.1007/s00299-011-1180-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 05/04/2023]
Abstract
Appropriate responses of seeds and fruits to environmental factors are key traits that control the establishment of a species in a particular ecosystem. Adaptation of germination to abiotic stresses and changing environmental conditions is decisive for fitness and survival of a species. Two opposing forces provide the basic physiological mechanism for the control of seed germination: the increasing growth potential of the embryo and the restraint weakening of the various covering layers (seed envelopes), including the endosperm which is present to a various extent in the mature seeds of most angiosperms. Gibberellins (GA), abscisic acid (ABA) and ethylene signaling and metabolism mediate environmental cues and in turn influence developmental processes like seed germination. Cross-species work has demonstrated that GA, ABA and ethylene interact during the regulation of endosperm weakening, which is at least partly based on evolutionarily conserved mechanisms. We summarize the recent progress made in unraveling how ethylene promotes germination and acts as an antagonist of ABA. Far less is known about jasmonates in seeds for which we summarize the current knowledge about their role in seeds. While it seems very clear that jasmonates inhibit germination, the results obtained so far are partly contradictory and depend on future research to reach final conclusions on the mode of jasmonate action during seed germination. Understanding the mechanisms underlying the control of seed germination and its hormonal regulation is not only of academic interest, but is also the ultimate basis for further improving crop establishment and yield, and is therefore of common importance.
Collapse
Affiliation(s)
- Ada Linkies
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.
| | | |
Collapse
|
669
|
Deng H, Liu H, Li X, Xiao J, Wang S. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. PLANT PHYSIOLOGY 2012; 158:876-89. [PMID: 22158700 PMCID: PMC3271775 DOI: 10.1104/pp.111.191379] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial blight is a devastating disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv oryzae (Xoo). Zinc finger proteins harboring the motif with three conserved cysteine residues and one histidine residue (CCCH) belong to a large family. Although at least 67 CCCH-type zinc finger protein genes have been identified in the rice genome, their functions are poorly understood. Here, we report that one of the rice CCCH-type zinc finger proteins, C3H12, containing five typical CX(8)-CX(5)-CX(3)-H zinc finger motifs, is involved in the rice-Xoo interaction. Activation of C3H12 partially enhanced resistance to Xoo, accompanied by the accumulation of jasmonic acid (JA) and induced expression of JA signaling genes in rice. In contrast, knockout or suppression of C3H12 resulted in partially increased susceptibility to Xoo, accompanied by decreased levels of JA and expression of JA signaling genes in rice. C3H12 colocalized with a minor disease resistance quantitative trait locus to Xoo, and the enhanced resistance of randomly chosen plants in the quantitative trait locus mapping population correlated with an increased expression level of C3H12. The C3H12 protein localized in the nucleus and possessed nucleic acid-binding activity in vitro. These results suggest that C3H12, as a nucleic acid-binding protein, positively and quantitatively regulates rice resistance to Xoo and that its function is likely associated with the JA-dependent pathway.
Collapse
|
670
|
Tominaga-Wada R, Nukumizu Y, Wada T. Amino acid substitution converts WEREWOLF function from an activator to a repressor of Arabidopsis non-hair cell development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:37-42. [PMID: 22195575 DOI: 10.1016/j.plantsci.2011.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
Root hair cell or non-hair cell fate determination in Arabidopsis thaliana root epidermis is model system for plant cell development. Two types of MYB transcription factors, the R2R3-type MYB, WEREWOLF (WER), and an R3-type MYB, CAPRICE (CPC), are involved in this cell fate determination process. To study the molecular basis of this process, we analyzed the functional relationship of WER and CPC. WER-CPC chimeric constructs were made from WER where all or parts of the MYB R3 region were replaced with the corresponding regions from CPC R3, and the constructs were introduced into the cpc-2 mutant. Although, the WER gene did not rescue the cpc-2 mutant 'small number of root hairs' phenotype, the WER-CPC chimera with two amino acids substitution (WC6) completely rescued the cpc-2 mutant phenotype. Furthermore, the WER-CPC chimera with 37 amino acids substitution (WC5) excessively rescued the cpc-2 mutant and induced 2.5 times more root hairs than wild-type. Consistent with this phenotype, GL2 gene expression was strongly reduced in WC5 in a cpc-2 background. Our results suggest that swapping at least two amino acids is sufficient to convert WER to CPC function. Therefore, these key residues may have strongly contributed to the selection of these important functions over evolution.
Collapse
Affiliation(s)
- Rumi Tominaga-Wada
- Interdisciplinary Research Organization, University of Miyazaki, 1-1, Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan.
| | | | | |
Collapse
|
671
|
Ji X, Wang Y, Liu G. Expression analysis of MYC genes from Tamarix hispida in response to different abiotic stresses. Int J Mol Sci 2012; 13:1300-1313. [PMID: 22408392 PMCID: PMC3291961 DOI: 10.3390/ijms13021300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/10/2023] Open
Abstract
The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA)-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT)-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.
Collapse
Affiliation(s)
| | | | - Guifeng Liu
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-451-82191627; Fax: +86-451-2190607-11
| |
Collapse
|
672
|
Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1171-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
673
|
Germain H, Lachance D, Pelletier G, Fossdal CG, Solheim H, Séguin A. The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:785-95. [PMID: 22048038 PMCID: PMC3254680 DOI: 10.1093/jxb/err303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/26/2011] [Accepted: 08/30/2011] [Indexed: 05/04/2023]
Abstract
A 1149 bp genomic fragment corresponding to the 5' non-coding region of the PgD1 (Picea glauca Defensin 1) gene was cloned, characterized, and compared with all Arabidopsis thaliana defensin promoters. The cloned fragment was found to contain several motifs specific to defence or hormonal response, including a motif involved in the methyl jasmonate reponse, a fungal elicitor responsive element, and TC-rich repeat cis-acting element involved in defence and stress responsiveness. A functional analysis of the PgD1 promoter was performed using the uidA (GUS) reporter system in stably transformed Arabidopsis and white spruce plants. The PgD1 promoter was responsive to jasmonic acid (JA), to infection by fungus and to wounding. In transgenic spruce embryos, GUS staining was clearly restricted to the shoot apical meristem. In Arabidopsis, faint GUS coloration was observed in leaves and flowers and a strong blue colour was observed in guard cells and trichomes. Transgenic Arabidopsis plants expressing the PgD1::GUS construct were also infiltrated with the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. It caused a suppression of defensin expression probably resulting from the antagonistic relationship between the pathogen-stimulated salicylic acid pathway and the jasmonic acid pathway. It is therefore concluded that the PgD1 promoter fragment cloned appears to contain most if not all the elements for proper PgD1 expression and that these elements are also recognized in Arabidopsis despite the phylogenetic and evolutionary differences that separates them.
Collapse
Affiliation(s)
- Hugo Germain
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Denis Lachance
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | | | - Halvor Solheim
- Norwegian Forest and Landscape Institute, P.O.Box 115, 1431 Ås, Norway
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| |
Collapse
|
674
|
Fernández-Arbaizar A, Regalado JJ, Lorenzo O. Isolation and characterization of novel mutant loci suppressing the ABA hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) mutant during germination and seedling growth. PLANT & CELL PHYSIOLOGY 2012; 53:53-63. [PMID: 22156383 DOI: 10.1093/pcp/pcr174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The phytohormone ABA regulates seed germination and stress responses. The identification of clade A protein phosphatase type 2C (PP2C)-interacting proteins PYRABACTIN RESISTANCE 1 (PYR1)/RCAR (REGULATORY COMPONENT OF ABA RECEPTOR) and PYR1-LIKEs (PYLs) as ABA receptors has been a major advance in understanding this process. Here, our aim was to identify additional ABA response loci by suppressor screening of the jasmonate (JA)-insensitive coronatine insensitive 1-16 (coi1-16) mutant using its ABA-hypersensitive phenotype. The identification and genetic characterization of Coi1-16 Resistant to ABA (CRA) loci revealed several unknown and three previously known abi mutants (abi1, abi3 and abi4), thus providing proof-of-concept evidence for this study. The synergistic effect of ABA and JA on seed germination and cotyledon expansion was analyzed in depth and the roles of cra5 coi1-16, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 in ABA signaling during seed germination and stress responses were functionally characterized. The cra5 coi1-16 mutant showed resistance to ABA, paclobutrazol, and abiotic stresses during germination and early developmental stages. Furthermore, the cra5 coi1-16 mutation was mapped to the short arm of chromosome V and mutants exhibited differential expression of ABA-responsive genes, suggesting that CRA5 may function as a positive regulator of ABA signaling. Interestingly, cra6 coi1-16, cra7 coi1-16 and cra8 coi1-16 mutants display similar ABA- and abiotic stress-insensitive phenotypes during seed germination and seedling establishment. Taken together, our results demonstrate a key role for CRA genes in regulating the onset of seed germination by ABA, and highlight how cra mutants can be used as powerful tools to analyze novel molecular components of ABA signaling in seeds.
Collapse
|
675
|
Zhang HB, Bokowiec MT, Rushton PJ, Han SC, Timko MP. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. MOLECULAR PLANT 2012; 5:73-84. [PMID: 21746701 DOI: 10.1093/mp/ssr056] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Biotic and abiotic stress lead to elevated levels of jasmonic acid (JA) and its derivatives and activation of the biosynthesis of nicotine and related pyridine alkaloids in cultivated tobacco (Nicotiana tabacum L.). Among the JA-responsive genes is NtPMT1a, encoding putrescine N-methyl transferase, a key regulatory enzyme in nicotine formation. We have characterized three genes (NtMYC2a, b, c) encoding basic helix-loop-helix (bHLH) transcription factors (TFs) whose expression is rapidly induced by JA and that specifically activate JA-inducible NtPMT1a expression by binding a G-box motif within the NtPMT1a promoter in in vivo and in vitro assays. Using split-YFP assays, we further show that, in the absence of JA, NtMYC2a and NtMYC2b are present as nuclear complexes with the NtJAZ1 repressor. RNA interference (RNAi)-mediated knockdown of NtMYC2a and NtMYC2b expression results in significant decreases in JA-inducible NtPMT1a transcript levels, as well as reduced levels of transcripts encoding other enzymes involved in nicotine and minor alkaloid biosynthesis, including an 80-90% reduction in the level of transcripts encoding the putative nicotine synthase gene NtA662. In contrast, ectopic overexpression of NtMYC2a and NtMYC2b had no effect on NtPMT1a expression in the presence or absence of exogenously added JA. These data suggest that NtMYC2a, b, c are required components of JA-inducible expression of multiple genes in the nicotine biosynthetic pathway and may act additively in the activation of JA responses.
Collapse
Affiliation(s)
- Hong-Bo Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | |
Collapse
|
676
|
Wager A, Browse J. Social Network: JAZ Protein Interactions Expand Our Knowledge of Jasmonate Signaling. FRONTIERS IN PLANT SCIENCE 2012; 3:41. [PMID: 22629274 PMCID: PMC3355530 DOI: 10.3389/fpls.2012.00041] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/18/2012] [Indexed: 05/17/2023]
Abstract
Members of the family of JASMONATE ZIM-DOMAIN (JAZ) proteins are key regulators of the jasmonate (JA) hormonal response. The 12-member family is characterized by three conserved domains, an N-terminal domain, a TIFY-containing ZINC-FINGER EXPRESSED IN INFLORESCENCE MERISTEM domain, and a C-terminal Jas domain. JAZ proteins regulate JA-responsive gene transcription by inhibiting DNA-binding transcription factors in the absence of JA. JAZ proteins interact in a hormone-dependent manner with CORONATINE INSENSITIVE 1 (COI1), the recognition component of the E3 ubiquitin ligase, SCF(COI1), resulting in the ubiquitination and subsequent degradation of JAZs via the 26S proteasome pathway. Since their discovery in 2007, JAZ proteins have been implicated in protein-protein interactions with multiple transcription factors. These studies have shed light on the mechanism by which JAZs repress transcription, are targeted for degradation, modulate the JA signaling response, and participate in crosstalk with other hormone signaling pathways. In this review, we will take a close look at the recent discoveries made possible by the characterization JAZ protein-protein interactions.
Collapse
Affiliation(s)
- Amanda Wager
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
- *Correspondence: John Browse, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA. e-mail:
| |
Collapse
|
677
|
Demianski AJ, Chung KM, Kunkel BN. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. MOLECULAR PLANT PATHOLOGY 2012; 13:46-57. [PMID: 21726394 PMCID: PMC6638877 DOI: 10.1111/j.1364-3703.2011.00727.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The jasmonates (JAs) comprise a family of plant hormones that regulate several developmental processes and mediate responses to various abiotic and biotic stresses, including pathogens. JA signalling is manipulated by several strains of the bacterial pathogen Pseudomonas syringae, including P. syringae strain DC3000, using the virulence factor coronatine (COR) as a mimic of jasmonyl-L-isoleucine (JA-Ile). To better understand the JA-Ile-mediated processes contributing to P. syringae disease susceptibility, it is important to investigate the regulation of JA signalling during infection. In Arabidopsis thaliana, JASMONATE ZIM-DOMAIN (JAZ) proteins are negative regulators of JA signalling. The transcription factor JASMONATE INSENSITIVE1 (JIN1/ATMYC2) has been implicated in the regulation of JAZ gene expression. To investigate the regulation of JAZ genes during P. syringae pathogenesis, we examined JAZ gene expression during infection of Arabidopsis by DC3000. We found that eight of the 12 JAZ genes are induced during infection in a COR-dependent manner. Unexpectedly, the induction of the majority of JAZ genes during infection was not dependent on JIN1, indicating that JIN1 is not the only transcription factor regulating JAZ genes. A T-DNA insertion mutant and an RNA interference line disrupted for the expression of JAZ10, one of the few JAZ genes regulated by JIN1 during infection, exhibited enhanced JA sensitivity and increased susceptibility to DC3000, with the primary effect being increased disease symptom severity. Thus, JAZ10 is a negative regulator of both JA signalling and disease symptom development.
Collapse
Affiliation(s)
- Agnes J Demianski
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | |
Collapse
|
678
|
Avilés-Arnaut H, Délano-Frier JP. Characterization of the tomato prosystemin promoter: organ-specific expression, hormone specificity and methyl jasmonate responsiveness by deletion analysis in transgenic tobacco plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:15-32. [PMID: 22044436 DOI: 10.1111/j.1744-7909.2011.01084.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tomato systemin is a bioactive peptide that regulates the systemic activation of wound-responsive genes. It is released from its 200 amino acid precursor called prosystemin. Initial tissue-localization and hormone-induced expression assays indicated that the tomato prosystemin gene (SlPS) accumulates mainly in floral tissues and in response to exogenous abscisic acid and methyl jasmonate (MeJA) treatments, respectively. Later, the promoter regions of the PS gene in tomato (Solanum lycopersicum L. cv. Castlemart), pepper (Capsicum annuum) and potato (Solanum tuberosum) were isolated and an in silico analysis of the SlPS promoter revealed an over-representation of stress- and MeJA-responsive motifs. A subsequent 5' deletion analysis of the SlPS promoter fused to the β-glucuronidase reporter (GUS) gene showed that the -221 to +40 bp proximal SlPS promoter region was sufficient to direct the stigma, vascular bundle-specific and MeJA-responsive expression of GUS in transgenic tobacco plants. Important vascular-tissue-specific, light- and MeJA-responsive cis-elements were also present in this region. These findings provide relevant information regarding the transcriptional regulation mechanisms of the SlPS promoter operating in transgenic tobacco plants. They also suggest that its tissue-specificity and inducible nature could have wide applicability in plant biotechnology.
Collapse
Affiliation(s)
- Hamlet Avilés-Arnaut
- Center of Research and Advanced Studies (Cinvestav) at Irapuato, Unit for Plant Biotechnology and Genetic Engineering, Irapuato, Gto., Mexico, PO Box 36821, Mexico
| | | |
Collapse
|
679
|
Abstract
Plants inhabit environments crowded with infectious microbes that pose constant threats to their survival. Necrotrophic pathogens are notorious for their aggressive and wide-ranging virulence strategies that promote host cell death and acquire nutrients for growth and reproduction from dead cells. This lifestyle constitutes the axis of their pathogenesis and virulence strategies and marks contrasting immune responses to biotrophic pathogens. The diversity of virulence strategies in necrotrophic species corresponds to multifaceted host immune response mechanisms. When effective, the plant immune system disarms the infectious necrotroph of its pathogenic arsenal or attenuates its effect, restricting further ingress and disease symptom development. Simply inherited resistance traits confer protection against host-specific necrotrophs (HSNs), whereas resistance to broad host-range necrotrophs (BHNs) is complex. Components of host genetic networks, as well as the molecular and cellular processes that mediate host immune responses to necrotrophs, are being identified. In this review, recent advances in our understanding of plant immune responses to necrotrophs and comparison with responses to biotrophic pathogens are summarized, highlighting common and contrasting mechanisms.
Collapse
Affiliation(s)
- Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
680
|
Figueroa P, Browse J. The Arabidopsis JAZ2 Promoter Contains a G-Box and Thymidine-Rich Module that are Necessary and Sufficient for Jasmonate-Dependent Activation by MYC Transcription Factors and Repression by JAZ Proteins. ACTA ACUST UNITED AC 2011; 53:330-43. [DOI: 10.1093/pcp/pcr178] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
681
|
Yamada K, Hara-Nishimura I, Nishimura M. Unique defense strategy by the endoplasmic reticulum body in plants. PLANT & CELL PHYSIOLOGY 2011; 52:2039-49. [PMID: 22102697 DOI: 10.1093/pcp/pcr156] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | |
Collapse
|
682
|
Mecey C, Hauck P, Trapp M, Pumplin N, Plovanich A, Yao J, He SY. A critical role of STAYGREEN/Mendel's I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1965-74. [PMID: 21994350 PMCID: PMC3327183 DOI: 10.1104/pp.111.181826] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/29/2011] [Indexed: 05/18/2023]
Abstract
Production of disease symptoms represents the final phase of infectious diseases and is a main cause of crop loss and/or marketability. However, little is known about the molecular basis of disease symptom development. In this study, a genetic screening was conducted to identify Arabidopsis (Arabidopsis thaliana) mutants that are impaired specifically in the development of disease symptoms (leaf chlorosis and/or necrosis) after infection with the bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000. An ethyl methanesulfonate-induced Arabidopsis mutant (no chlorosis1 [noc1]) was identified. In wild-type plants, the abundance of chlorophylls decreased markedly after Pst DC3000 infection, whereas the total amount of chlorophylls remained relatively unchanged in the noc1 mutant. Interestingly, noc1 mutant plants also exhibited reduced disease symptoms in response to the fungal pathogen Alternaria brassicicola. Genetic and molecular analyses showed that the nuclear gene STAYGREEN (SGR; or Mendel's I locus) is mutated (resulting in the aspartic acid to tyrosine substitution at amino acid position 88) in noc1 plants. Transforming wild-type SGR cDNA into the noc1 mutant rescued the chlorosis phenotype in response to Pst DC3000 infection. The SGR transcript was highly induced by Pst DC3000, A. brassicicola, or coronatine (COR), a bacterial phytotoxin that promotes chlorosis. The induction of SGR expression by COR is dependent on COI1, a principal component of the jasmonate receptor complex. These results suggest that pathogen/COR-induced expression of SGR is a critical step underlying the development of plant disease chlorosis.
Collapse
|
683
|
Stotz HU, Jikumaru Y, Shimada Y, Sasaki E, Stingl N, Mueller MJ, Kamiya Y. Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. PLANT & CELL PHYSIOLOGY 2011; 52:1941-56. [PMID: 21937677 DOI: 10.1093/pcp/pcr127] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The jasmonate receptor COI1 is known to facilitate plant defense responses against necrotrophic pathogens, including the ascomycete Sclerotinia sclerotiorum. However, it is not known to what extent jasmonates contribute to defense nor have COI1-independent defense pathways been sufficiently characterized. Here we show that the susceptibility to S. sclerotiorum of the aos mutant, deficient in biosynthesis of jasmonic acid (JA) and its precursor 12-oxophytadienoic acid, was elevated to a level reminiscent of that of hypersusceptible coi1 mutants. In contrast, susceptibility of the JA-deficient opr3 mutant was comparable with that of the wild type. A set of 99 genes responded similarly to infection with S. sclerotiorum in wild-type and coi1 mutant leaves. Expression of this COI1-independent gene set correlated with known differences in gene expression between wild-type plants and a mutant in the transcriptional repressor auxin response factor 2 (arf2). Susceptibility to S. sclerotiorum was reduced in two arf2 mutants early during infection, implicating ARF2 as a negative regulator of defense responses against this pathogen. Hypersusceptibility of an axr1 mutant to S. sclerotiorum confirmed the contribution of auxin action to defense responses against this fungal pathogen.
Collapse
Affiliation(s)
- Henrik U Stotz
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
684
|
Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1138-50. [PMID: 21875894 PMCID: PMC3252167 DOI: 10.1104/pp.111.184689] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 05/18/2023]
Abstract
Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.
Collapse
|
685
|
Laluk K, Mengiste T. The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:480-94. [PMID: 21749505 DOI: 10.1111/j.1365-313x.2011.04702.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protease inhibitors (PIs) function in the precise regulation of proteases, and are thus involved in diverse biological processes in many organisms. Here, we studied the functions of the Arabidopsis UNUSUAL SERINE PROTEASE INHIBITOR (UPI) gene, which encodes an 8.8 kDa protein of atypical sequence relative to other PIs. Plants harboring a loss-of-function UPI allele displayed enhanced susceptibility to the necrotrophic fungi Botrytis cinerea and Alternaria brassicicola as well as the generalist herbivore Trichoplusia ni. Further, ectopic expression conferred increased resistance to B. cinerea and T. ni. In contrast, the mutant has wild-type responses to virulent, avirulent and non-pathogenic strains of Pseudomonas syringae, thus limiting the defense function of UPI to necrotrophic fungal infection and insect herbivory. Expression of UPI is significantly induced by jasmonate, salicylic acid and abscisic acid, but is repressed by ethylene, indicating complex phytohormone regulation of UPI expression. The upi mutant also shows significantly delayed flowering, associated with decreased SOC1 expression and elevated levels of MAF1, two regulators of floral transition. Recombinant UPI strongly inhibits the serine protease chymotrypsin but also weakly blocks the cysteine protease papain. Interestingly, jasmonate induces intra- and extracellular UPI accumulation, suggesting a possible role in intercellular or extracellular functions. Overall, our results show that UPI is a dual-specificity PI that functions in plant growth and defense, probably through the regulation of endogenous proteases and/or those of biotic invaders.
Collapse
Affiliation(s)
- Kristin Laluk
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
686
|
Yamada Y, Koyama T, Sato F. Basic helix-loop-helix transcription factors and regulation of alkaloid biosynthesis. PLANT SIGNALING & BEHAVIOR 2011; 6:1627-30. [PMID: 22067108 PMCID: PMC3329321 DOI: 10.4161/psb.6.11.17599] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transcription factors of the basic Helix-Loop-Helix (bHLH) family play a central role in cell proliferation, determination, and differentiation. In plants, the regulatory functions of bHLHs in phenylpropanoid biosynthesis have been well established with regard to other interacting-proteins; i.e., MYB and WD40 repeat proteins. On the other hand, those in alkaloid biosynthesis are greatly limited due to the limited distribution of alkaloids in plant species. Recently, several groups have reported the regulatory functions of bHLH in alkaloid biosynthesis: novel CjbHLH1 in isoquinoline alkaloid biosynthesis in Coptis japonica, and Jasmonate-inducible MYC2-type bHLHs in nicotine-alkaloid biosynthesis in Nicotiana plants and indole alkaloid biosynthesis in Catharanthus roseus. We report here the JA-inducibility of CjbHLH1 and discuss the similarity and differences of non-MYC2-resemblant CjbHLH1 and MYC2-type bHLHs in nicotine and indole alkaloid biosynthesis.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University; Sakyo, Kyoto, Japan
| | - Tomotsugu Koyama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University; Sakyo, Kyoto, Japan
| | - Fumihiko Sato
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University; Sakyo, Kyoto, Japan
| |
Collapse
|
687
|
Abstract
Entry control of Arabidopsis thaliana against non-adapted powdery mildews largely depends on the PEN1 secretion pathway and the PEN2-PEN3 antifungal metabolite pathway, and is critical for non-host resistance. In a recent study, we reported that ENHANCED DISEASE RESISTANCE 1 (EDR1) plays a role in entry control against a non-adapted anthracnose fungus, which exhibits an infection style distinct from that of powdery mildews. Results obtained using edr1 pen2 double mutants indicate that the contribution of EDR1 to non-host resistance is independent of that of the PEN2-mediated defence pathway. Comparative transcript profiling revealed that EDR1 is critical for expression of four plant defensin genes. The MYC2-encoded transcription factor represses defensin expression. Inactivation of MYC fully restored defensin expression in edr1 mutants, implying that EDR1 cancels MYC2 function to regulate defensin expression. These findings indicate that EDR1 exerts a critical role in non-host resistance, in part by inducing antifungal peptide expression via interference in MYC2-mediated repressor function.
Collapse
|
688
|
Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q. The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5405-18. [PMID: 21865178 PMCID: PMC3223041 DOI: 10.1093/jxb/err217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 05/19/2023]
Abstract
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
689
|
Tominaga-Wada R, Iwata M, Nukumizu Y, Wada T. Analysis of IIId, IIIe and IVa group basic-helix-loop-helix proteins expressed in Arabidopsis root epidermis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:471-8. [PMID: 21889054 DOI: 10.1016/j.plantsci.2011.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 05/10/2023]
Abstract
Differentiation of Arabidopsis epidermal cells into root hairs and trichomes is a functional model system for understanding plant cell development. Previous studies showed that one of the Arabidopsis basic-helix-loop-helix (AtbHLH) proteins, GLABRA3 (GL3), is involved in root-hair and trichome differentiation. We analyzed 11 additional AtbHLH genes with homology to GL3. Estimation of the phylogeny based on amino acid sequences of the bHLH region suggests that 11 AtbHLH genes used in this study evolved by duplications of a single common GL3 ancestor. Promoter-GUS analysis showed that AtbHLH006, AtbHLH013, AtbHLH017 and AtbHLH020 were expressed in roots. Among them, AtbHLH006 and AtbHLH020 were preferentially expressed in root epidermal non-hair cells. Consistent with the expression patterns from promoter-GUS analysis, GFP fluorescence was observed in the nuclei of root epidermal non-hair cells of AtbHLH006p::AtbHLH006:GFP and AtbHLH020p::AtbHLH020:GFP transgenic plants. However, AtbHLH006 and AtbHLH0020 proteins did not interact with epidermis-specific MYB proteins and TTG1. Taken together, AtbHLH006 and AtbHLH020 may function in root epidermal cells, but other GL3-like bHLH proteins may have evolved to regulate different processes.
Collapse
Affiliation(s)
- Rumi Tominaga-Wada
- Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, Japan.
| | | | | | | |
Collapse
|
690
|
Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. PLANT SIGNALING & BEHAVIOR 2011; 6:1503-9. [PMID: 21897131 PMCID: PMC3256378 DOI: 10.4161/psb.6.10.17088] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 05/18/2023]
Abstract
Dehydrins (DHNs), or group 2 LEA (Late Embryogenesis Abundant) proteins, play a fundamental role in plant response and adaptation to abiotic stresses. They accumulate typically in maturing seeds or are induced in vegetative tissues following salinity, dehydration, cold, and freezing stress. The generally accepted classification of dehydrins is based on their structural features, such as the presence of conserved sequences, designated as Y, S, and K segments. The K segment representing a highly conserved 15 amino acid motif forming amphiphilic α-helix is especially important since it has been found in all dehydrins. Since more than 20 years, they are thought to play an important protective role during cellular dehydration but their precise function remains unclear. This review outlines the current status of the progress made towards the structural, physico-chemical and functional characterization of plant dehydrins and how these features could be exploited in improving stress tolerance in plants.
Collapse
Affiliation(s)
- Moez Hanin
- Laboratory of Plant Protection and Improvement, Centre of Biotechnology of Sfax, Institute of Biotechnology, University of Sfax, Sfax, Tunisia.
| | | | | | | | | | | |
Collapse
|
691
|
Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc Natl Acad Sci U S A 2011; 108:16837-42. [PMID: 21930895 DOI: 10.1073/pnas.1105892108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Light is critical for supplying carbon to the energetically expensive, nitrogen-fixing symbiosis between legumes and rhizobia. Here, we show that phytochrome B (phyB) is part of the monitoring system to detect suboptimal light conditions, which normally suppress Lotus japonicus nodule development after Mesorhizobium loti inoculation. We found that the number of nodules produced by L. japonicus phyB mutants is significantly reduced compared with the number produced of WT Miyakojima MG20. To explore causes other than photoassimilate production, the possibility that local control by the root genotype occurred was investigated by grafting experiments. The results showed that the shoot and not the root genotype is responsible for root nodule formation. To explore systemic control mechanisms exclusive of photoassimilation, we moved WT MG20 plants from white light to conditions that differed in their ratios of low or high red/far red (R/FR) light. In low R/FR light, the number of MG20 root nodules dramatically decreased compared with plants grown in high R/FR, although photoassimilate content was higher for plants grown under low R/FR. Also, the expression of jasmonic acid (JA) -responsive genes decreased in both low R/FR light-grown WT and white light-grown phyB mutant plants, and it correlated with decreased jasmonoyl-isoleucine content in the phyB mutant. Moreover, both infection thread formation and root nodule formation were positively influenced by JA treatment of WT plants grown in low R/FR light and white light-grown phyB mutants. Together, these results indicate that root nodule formation is photomorphogenetically controlled by sensing the R/FR ratio through JA signaling.
Collapse
|
692
|
Zhao Y, Zhou LM, Chen YY, Yang SG, Tian WM. MYC genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Hevea brasiliensis Muell. Arg.). JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1649-58. [PMID: 21489651 DOI: 10.1016/j.jplph.2011.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 05/05/2023]
Abstract
MYC2 transcription factor is a key component of the core module COI1-JAZ-MYC2 of jasmonate signaling in Arabidopsis, but the MYC transcription factor (s) associated with jasmonate signaling in jasmonate-responsive laticifer cells remains to be identified. Two full-length cDNAs, designated HblMYC1 and HblMYC2, were isolated from laticifer cells in Hevea brasiliensis by the method of RACE. HblMYC1 contained 1431bp ORF encoding a putative protein of 476 amino acids while HblMYC2 contained 1428bp ORF encoding a putative protein of 475 amino acids. Bioinformatic analysis showed that the putative proteins, HblMYC1 and HblMYC2, possessed a bHLH domain and were most related to the MYC2 among the selected 27 MYC members with identified functions in Arabidopsis. In addition to the presence of cis-regulatory elements involving jasmonate responsiveness in the promoter regions of HblMYC1 and HblMYC2, the abscisic acid-, salicylic acid- and gibberellin-responsive elements were found in the promoter region of HblMYC1. Transcripts of HblMYC1 and HblMYC2 were most abundant in latex, relatively low in male flowers and nearly undetected in bark tissues and roots by real-time RT-PCR analysis. Regular tapping, mechanical wounding, and ethrel remarkably up-regulated HblMYC1 expression, but had little effect on the expression of HblMYC2 in laticifer cells. Successive tapping, however, significantly down-regulated the expression of HblMYC2 while up-regulating the expression of HblMYC1. The HblMYC2 expression took a mutual ebb and flow relationship with the HblMYC1 expression upon treatment with methyl jasmonate. Characterization of HblMYC1 and HblMYC2 will contribute to the understanding of jasmonate signaling in laticifiers, a kind of specialized tissue for natural rubber biosynthesis in Hevea brasiliensis.
Collapse
Affiliation(s)
- Yue Zhao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | | | | | | | | |
Collapse
|
693
|
Pauwels L, Goossens A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. THE PLANT CELL 2011; 23:3089-100. [PMID: 21963667 PMCID: PMC3203442 DOI: 10.1105/tpc.111.089300] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/06/2011] [Accepted: 09/19/2011] [Indexed: 05/17/2023]
Abstract
Jasmonates are phytohormones that regulate many aspects of plant growth, development, and defense. Within the signaling cascades that are triggered by jasmonates, the JASMONATE-ZIM DOMAIN (JAZ) repressor proteins play a central role. The endogenous bioactive JA-Ile conjugate mediates the binding of JAZ proteins to the F-box protein CORONATINE INSENSITIVE1 (COI1), part of the Skp1/Cullin/F-box SCF(COI1) ubiquitin E3 ligase complex. Upon the subsequent destruction of the JAZ proteins by the 26S proteasome, multiple transcription factors are relieved from JAZ-mediated repression, allowing them to activate their respective downstream responses. However, many questions remain regarding the targets, specificity, function, and regulation of the different JAZ proteins. Here, we review recent studies on the model plant Arabidopsis thaliana that provided essential and novel insights. JAZ proteins have been demonstrated to interact with a broad array of transcription factors that each control specific downstream processes. Recruitment of the corepressor TOPLESS unveiled a mechanism for JAZ-mediated gene repression. Finally, the presence of JAZ proteins was also found to be regulated by alternative splicing and interactions with proteins from other hormonal signaling pathways. Overall, these contemporary findings underscore the value of protein-protein interaction studies to acquire fundamental insight into molecular signaling pathways.
Collapse
Affiliation(s)
- Laurens Pauwels
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
694
|
Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P, Takano Y. Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:980-92. [PMID: 21605210 DOI: 10.1111/j.1365-313x.2011.04651.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Arabidopsis thaliana exhibits durable resistance, called nonhost resistance, against non-adapted fungal pathogens that typically terminates pathogen entry. The PEN2-dependent indole glucosinolate metabolism pathway is involved in preventing the entry of a range of non-adapted fungi. Here, we report that ENHANCED DISEASE RESISTANCE 1 (EDR1) functions in pre-invasive nonhost resistance. Plants lacking EDR1 exhibit impaired entry resistance to the non-adapted hemibiotrophic Colletotrichum gloeosporioides, in contrast to the enhanced resistance of edr1 against biotrophic infection of a host-adapted powdery mildew fungus. Analysis of the edr1 pen2 double mutant indicates that EDR1 acts in a defense pathway independent from the PEN2 indole glucosinolate pathway. The edr1 mutant also exhibited enhanced susceptibility to host-adapted pathogens, including Colletotrichum higginsianum and necrotrophic Alternaria brassicicola. Comparative transcript profiling revealed that upon C. gloeosporioides inoculation, the expression of four plant defensin genes was severely impaired in edr1, indicating that EDR1 is required for the induced expression of these antifungal proteins. Inactivation of the MYC2-encoded transcription factor fully restored defensin expression in edr1, implying that EDR1 interferes with MYC2 function to abrogate repression of defensin expression. Furthermore, constitutive expression of plant defensin PDF1.2b largely rescued pre-invasive resistance responses in edr1 plants. These results indicate that EDR1 exerts a positive and critical role in resistance responses to hemibiotrophic/necrotrophic fungi, in part by inducing antifungal protein expression through derepression of MYC2 function.
Collapse
Affiliation(s)
- Kei Hiruma
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
695
|
García-Andrade J, Ramírez V, Flors V, Vera P. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:783-94. [PMID: 21564353 DOI: 10.1111/j.1365-313x.2011.04633.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the present study, we evaluated the role of the defense-related gene OCP3 in callose deposition as a response to two necrotrophic fungal pathogens, Botrytis cinerea and Plectosphaerella cucumerina. ocp3 plants exhibited accelerated and intensified callose deposition in response to fungal infection associated with enhanced disease resistance to the two pathogens. A series of double mutant analyses showed potentiation of callose deposition and the heightened disease resistance phenotype in ocp3 plants required the plant hormone abscisic acid (ABA) and the PMR4 gene encoding a callose synthase. This finding was congruent with an observation that ocp3 plants exhibited increased ABA accumulation, and ABA was rapidly synthesized following fungal infection in wild-type plants. Furthermore, we determined that potentiation of callose deposition in ocp3 plants, including enhanced disease resistance, also required jasmonic acid (JA) recognition though a COI1 receptor, however JA was not required for basal callose deposition following fungal infection. In addition, potentiation of callose deposition in ocp3 plants appeared to follow a different mechanism than that proposed for callose β-amino-butyric acid (BABA)-induced resistance and priming, because ocp3 plants responded to BABA-induced priming for callose deposition and induced resistance of a magnitude similar to that observed in wild-type plants. Our results point to a model in which OCP3 represents a specific control point for callose deposition regulated by JA yet ultimately requiring ABA. These results provide new insights into the mechanism of callose deposition regulation in response to pathogen attack; however the complexities of the processes remain poorly understood.
Collapse
Affiliation(s)
- Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
696
|
Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, Li C. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. THE PLANT CELL 2011; 23:3335-52. [PMID: 21954460 PMCID: PMC3203420 DOI: 10.1105/tpc.111.089870] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/27/2011] [Accepted: 09/09/2011] [Indexed: 05/17/2023]
Abstract
The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese–German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese–German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenkun Zhou
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlin Qi
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Xu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Chen
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese–German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Qi
- Chinese–German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Xugang Li
- Chinese–German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Klaus Palme
- Chinese–German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese–German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
697
|
Ruberti I, Sessa G, Ciolfi A, Possenti M, Carabelli M, Morelli G. Plant adaptation to dynamically changing environment: the shade avoidance response. Biotechnol Adv 2011; 30:1047-58. [PMID: 21888962 DOI: 10.1016/j.biotechadv.2011.08.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/23/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
Abstract
The success of competitive interactions between plants determines the chance of survival of individuals and eventually of whole plant species. Shade-tolerant plants have adapted their photosynthesis to function optimally under low-light conditions. These plants are therefore capable of long-term survival under a canopy shade. In contrast, shade-avoiding plants adapt their growth to perceive maximum sunlight and therefore rapidly dominate gaps in a canopy. Daylight contains roughly equal proportions of red and far-red light, but within vegetation that ratio is lowered as a result of red absorption by photosynthetic pigments. This light quality change is perceived through the phytochrome system as an unambiguous signal of the proximity of neighbors resulting in a suite of developmental responses (termed the shade avoidance response) that, when successful, result in the overgrowth of those neighbors. Shoot elongation induced by low red/far-red light may confer high relative fitness in natural dense communities. However, since elongation is often achieved at the expense of leaf and root growth, shade avoidance may lead to reduction in crop plant productivity. Over the past decade, major progresses have been achieved in the understanding of the molecular basis of shade avoidance. However, uncovering the mechanisms underpinning plant response and adaptation to changes in the ratio of red to far-red light is key to design new strategies to precise modulate shade avoidance in time and space without impairing the overall crop ability to compete for light.
Collapse
Affiliation(s)
- I Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, Piazzalle Aldo Moro 5, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
698
|
Kazan K, Manners JM. The interplay between light and jasmonate signalling during defence and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4087-100. [PMID: 21705384 DOI: 10.1093/jxb/err142] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During their evolution, plants have acquired diverse capabilities to sense their environment and modify their growth and development as required. The versatile utilization of solar radiation for photosynthesis as well as a signal to coordinate developmental responses to the environment is an excellent example of such a capability. Specific light quality inputs are converted to developmental outputs mainly through hormonal signalling pathways. Accordingly, extensive interactions between light and the signalling pathways of every known plant hormone have been uncovered in recent years. One such interaction that has received recent attention and forms the focus of this review occurs between light and the signalling pathway of the jasmonate hormone with roles in regulating plant defence and development. Here the recent research that revealed new mechanistic insights into how plants might integrate light and jasmonate signals to modify their growth and development, especially when defending themselves from either pests, pathogens, or encroaching neighbours, is discussed.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Plant Industry, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia.
| | | |
Collapse
|
699
|
Delporte A, Lannoo N, Vandenborre G, Ongenaert M, Van Damme EJM. Jasmonate response of the Nicotiana tabacum agglutinin promoter in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:843-51. [PMID: 21570857 DOI: 10.1016/j.plaphy.2011.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/20/2011] [Indexed: 05/26/2023]
Abstract
NICTABA is a carbohydrate-binding protein (also called lectin) that is expressed in several Nicotiana species after treatment with jasmonates and insect herbivory. Analyses with tobacco lines overexpressing the NICTABA gene as well as lines with reduced lectin expression have shown the entomotoxic effect of NICTABA against Lepidopteran larvae, suggesting a role of the lectin in plant defense. Until now, little is known with respect to the upstream regulatory mechanisms that are controlling the expression of inducible plant lectins. Using Arabidopsis thaliana plants stably expressing a promoter-β-glucuronidase (GUS) fusion construct, it was shown that jasmonate treatment influenced the NICTABA promoter activity. A strong GUS staining pattern was detected in very young tissues (the apical and root meristems, the cotyledons and the first true leaves), but the promoter activity decreased when plants were getting older. NICTABA was also expressed at low concentrations in tobacco roots and expression levels increased after cold treatment. The data presented confirm a jasmonate-dependent response of the promoter sequence of the tobacco lectin gene in Arabidopsis. These new jasmonate-responsive tobacco promoter sequences can be used as new tools in the study of jasmonate signalling related to plant development and defense.
Collapse
Affiliation(s)
- Annelies Delporte
- Ghent University, Department of Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
700
|
Laluk K, AbuQamar S, Mengiste T. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. PLANT PHYSIOLOGY 2011; 156:2053-68. [PMID: 21653783 PMCID: PMC3149943 DOI: 10.1104/pp.111.177501] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 06/07/2011] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins (PPRPs) are encoded by a large gene family in Arabidopsis (Arabidopsis thaliana), and their functions are largely unknown. The few studied PPRPs are implicated in different developmental processes through their function in RNA metabolism and posttranscriptional regulation in plant organelles. Here, we studied the functions of Arabidopsis PENTATRICOPEPTIDE REPEAT PROTEIN FOR GERMINATION ON NaCl (PGN) in plant defense and abiotic stress responses. Inactivation of PGN results in susceptibility to necrotrophic fungal pathogens as well as hypersensitivity to abscisic acid (ABA), glucose, and salinity. Interestingly, ectopic expression of PGN results in the same phenotypes as the pgn null allele, indicating that a tight regulation of the PGN transcript is required for normal function. Loss of PGN function dramatically enhanced reactive oxygen species accumulation in seedlings in response to salt stress. Inhibition of ABA synthesis and signaling partially alleviates the glucose sensitivity of pgn, suggesting that the mutant accumulates high endogenous ABA. Accordingly, induction of NCED3, encoding the rate-limiting enzyme in stress-induced ABA biosynthesis, is significantly higher in pgn, and the mutant has higher basal ABA levels, which may underlie its phenotypes. The pgn mutant has altered expression of other ABA-related genes as well as mitochondria-associated transcripts, most notably elevated levels of ABI4 and ALTERNATIVE OXIDASE1a, which are known for their roles in retrograde signaling induced by changes in or inhibition of mitochondrial function. These data, coupled with its mitochondrial localization, suggest that PGN functions in regulation of reactive oxygen species homeostasis in mitochondria during abiotic and biotic stress responses, likely through involvement in retrograde signaling.
Collapse
|