651
|
Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 2008; 10:776-87. [PMID: 18552835 PMCID: PMC2878716 DOI: 10.1038/ncb1740] [Citation(s) in RCA: 614] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/27/2008] [Indexed: 02/08/2023]
Abstract
Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy - autophagosome formation and maturation - but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.
Collapse
Affiliation(s)
- Chengyu Liang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | - Jong-soo Lee
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | - Kyung-Soo Inn
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | - Michaela U. Gack
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | - Qinglin Li
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | - Esteban A. Roberts
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Isabelle Vergne
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Pinghui Feng
- University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Chihiro Akazawa
- Department of Biophysics and Biochemistry, Graduate School of Health Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-Ku, Tokyo 113-8519, Japan
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| |
Collapse
|
652
|
Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization. Toxicol Appl Pharmacol 2008; 228:364-77. [DOI: 10.1016/j.taap.2007.12.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022]
|
653
|
Jahreiss L, Menzies FM, Rubinsztein DC. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 2008; 9:574-87. [PMID: 18182013 PMCID: PMC2329914 DOI: 10.1111/j.1600-0854.2008.00701.x] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 01/03/2008] [Indexed: 01/07/2023]
Abstract
Macroautophagy, a constitutive process in higher eukaryotic cells, mediates degradation of many long-lived proteins and organelles. The actual events occurring during the process in the dynamic system of a living cell have never been thoroughly investigated. We aimed to develop a live-cell assay in which to follow the complete itinerary of an autophagosome. Our experiments show that autophagosomes are formed randomly in peripheral regions of the cell. They then move bidirectionally along microtubules, accumulating at the microtubule-organizing centre, in a similar way to lysosomes. Their centripetal movement is dependent on the motor protein dynein and is important for their fusion with lysosomes. Initially, autophagosomes dock on to lysosomes, independent of lysosomal acidification. Two kinds of fusion then occur: complete fusions, creating a hybrid organelle, or more often kiss-and-run fusions, i.e. transfer of some content while still maintaining two separate vesicles. Surprisingly, the autophagolysosomal compartment seems to be more long lived than expected. Our study documents many aspects of autophagosome behaviour, adding to our understanding of the mechanism and control of autophagy. Indeed, although the formation of autophagosomes is completely different from any other vesicular structures, their later itinerary appears to be very similar to those of other trafficking pathways.
Collapse
Affiliation(s)
- Luca Jahreiss
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of CambridgeWellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Fiona M Menzies
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of CambridgeWellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of CambridgeWellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
654
|
Spinosa MR, Progida C, De Luca A, Colucci AMR, Alifano P, Bucci C. Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease. J Neurosci 2008; 28:1640-8. [PMID: 18272684 PMCID: PMC6671532 DOI: 10.1523/jneurosci.3677-07.2008] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/04/2007] [Accepted: 12/29/2007] [Indexed: 11/21/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) type 2 neuropathies are a group of autosomal-dominant axonal disorders genetically and clinically heterogeneous. In particular, CMT type 2B (CMT2B) neuropathies are characterized by severe sensory loss, often complicated by infections, arthropathy, and amputations. Recently, four missense mutations in the small GTPase Rab7 associated with the Charcot-Marie Tooth type 2B phenotype have been identified. These mutations target highly conserved amino acid residues. However, nothing is known about whether and how these mutations affect Rab7 function. We investigated the biochemical and functional properties of three of the mutant proteins. Interestingly, all three proteins exhibited higher nucleotide exchange rates and hydrolyzed GTP slower than the wild-type protein. In addition, whereas 23% of overexpressed wild-type Rab7 was GTP bound in HeLa cells, the large majority of the mutant proteins (82-89%) were in the GTP-bound form, consistent with the data on GTP hydrolysis and exchange rates. The CMT2B-associated Rab7 proteins were also able to bind the Rab7 effector RILP (Rab-interacting lysosomal protein) and to rescue Rab7 function after silencing. Altogether, these data demonstrate that all tested CMT2B-associated Rab7 mutations are mechanistically similar, suggesting that activated forms of the Rab7 are responsible for CMT2B disease.
Collapse
Affiliation(s)
- Maria Rita Spinosa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Cinzia Progida
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Azzurra De Luca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Anna Maria Rosaria Colucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Cecilia Bucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| |
Collapse
|
655
|
Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:207-47. [PMID: 18544495 DOI: 10.1016/s1937-6448(07)66005-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macroautophagy is a self-digesting pathway responsible for the removal of long-lived proteins and organelles by the lysosomal compartment. Parts of the cytoplasm are first segregated in double-membrane-bound autophagosomes, which then undergo a multistep maturation process including fusion with endosomes and lysosomes. The segregated cytoplasm is then degraded by the lysosomal hydrolases. The discovery of ATG genes has greatly enhanced our understanding of the mechanisms of this pathway. Two novel ubiquitin-like protein conjugation systems were shown to function during autophagosome formation. Autophagy has been shown to play a role in a wide variety of physiological processes including energy metabolism, organelle turnover, growth regulation, and aging. Impaired autophagy can lead to diseases such as cardiomyopathy and cancer. This review summarizes current knowledge about the formation and maturation of autophagosomes, the role of macroautophagy in various physiological and pathological conditions, and the signaling pathways that regulate this process in mammalian cells.
Collapse
Affiliation(s)
- Eeva-Liisa Eskelinen
- Division of Biochemistry, Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
656
|
Kawakami A, Sakane F, Imai SI, Yasuda S, Kai M, Kanoh H, Jin HY, Hirosaki K, Yamashita T, Fisher DE, Jimbow K. Rab7 regulates maturation of melanosomal matrix protein gp100/Pmel17/Silv. J Invest Dermatol 2008; 128:143-50. [PMID: 17625594 DOI: 10.1038/sj.jid.5700964] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosome biogenesis consists of multistep processes that involve synthesis of melanosomal protein, which is followed by vesicle transport/fusion and post-translational modifications such as glycosylation, proteolysis, and oligomerization. Because of its complexity, the details of the molecular mechanism of melanosome biogenesis are not yet fully understood. Here, we report that, in MMAc melanoma cells, wild-type (WT) Rab7 and its dominant-active mutant (Rab7-Q67L), but not its dominant-negative mutant (Rab7-T22N), were colocalized in the perinuclear region with granules containing Stage I melanosomes, where the full-length, immature gp100/Pmel17/Silv was present. It was also found that overexpression of Rab7-Q67L and, to a lesser extent, Rab7-WT increased the amount of proteolytically processed, mature gp100. However, Rab7-T22N did not show such an effect. Moreover, siRNA-mediated Rab7 knockdown considerably inhibited gp100 maturation. These results collectively suggest that the GTP-bound form of Rab7 promotes melanogenesis through the regulation of gp100 maturation in melanoma cells.
Collapse
Affiliation(s)
- Akinori Kawakami
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
657
|
Abstract
Apoptosis and autophagy are genetically-regulated, evolutionarily-conserved processes that regulate cell fate. Both apoptosis and autophagy are important in development and normal physiology and in a wide range of diseases. Recent studies show that despite the marked differences between these two processes, their regulation is intimately connected and the same regulators can sometimes control both apoptosis and autophagy. In this review, I discuss some of these findings, which provide possible molecular mechanisms for crosstalk between apoptosis and autophagy and suggest that it may be useful to think of these processes as different facets of the same cell death continuum rather than completely separate processes.
Collapse
Affiliation(s)
- Andrew Thorburn
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| |
Collapse
|
658
|
Abstract
This chapter describes the electron microscopic fine structure of early and late autophagic vacuoles in mammalian cells. Detailed instructions are given for the preparation of cells for conventional electron microscopy and for the identification of autophagic vacuoles by morphology. Electron microscopy remains one of the most accurate methods for quantitation of autophagic vacuole accumulation. Therefore, quantitation of autophagic vacuoles by electron microscopy and point counting is also described. Finally, a short description is given for preparation of ultra thin cryosections for immunogold labeling of autophagic vacuoles.
Collapse
Affiliation(s)
- Eeva-Liisa Eskelinen
- University of Helsinki, Department of Biological and Environmental Sciences, Division of Biochemistry, Helsinki, Finland
| |
Collapse
|
659
|
Fader CM, Sánchez D, Furlán M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 2007; 9:230-50. [PMID: 17999726 DOI: 10.1111/j.1600-0854.2007.00677.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Morphological and biochemical studies have shown that autophagosomes fuse with endosomes forming the so-called amphisomes, a prelysosomal hybrid organelle. In the present report, we have analyzed this process in K562 cells, an erythroleukemic cell line that generates multivesicular bodies (MVBs) and releases the internal vesicles known as exosomes into the extracellular medium. We have previously shown that in K562 cells, Rab11 decorates MVBs. Therefore, to study at the molecular level the interaction of MVBs with the autophagic pathway, we have examined by confocal microscopy the fate of MVBs in cells overexpressing green fluorescent protein (GFP)-Rab11 and the autophagosomal protein red fluorescent protein-light chain 3 (LC3). Autophagy inducers such as starvation or rapamycin caused an enlargement of the vacuoles decorated with GFP-Rab11 and a remarkable colocalization with LC3. This convergence was abrogated by a Rab11 dominant negative mutant, indicating that a functional Rab11 is involved in the interaction between MVBs and the autophagic pathway. Interestingly, we presented evidence that autophagy induction caused calcium accumulation in autophagic compartments. Furthermore, the convergence between the endosomal and the autophagic pathways was attenuated by the Ca2+ chelator acetoxymethyl ester (AM) of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), indicating that fusion of MVBs with the autophagosome compartment is a calcium-dependent event. In addition, autophagy induction or overexpression of LC3 inhibited exosome release, suggesting that under conditions that stimulates autophagy, MVBs are directed to the autophagic pathway with consequent inhibition in exosome release.
Collapse
Affiliation(s)
- Claudio M Fader
- Laboratorio de Biología Celular y Molecular - Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, 5500 Mendoza, Argentina
| | | | | | | |
Collapse
|
660
|
Martinet W, Knaapen MWM, Kockx MM, De Meyer GRY. Autophagy in cardiovascular disease. Trends Mol Med 2007; 13:482-91. [PMID: 18029229 DOI: 10.1016/j.molmed.2007.08.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 08/14/2007] [Accepted: 08/30/2007] [Indexed: 01/12/2023]
Abstract
Autophagy is a major cytoprotective pathway that eukaryotic cells use to degrade and recycle cytoplasmic contents. Recent evidence indicates that autophagy under baseline conditions represents an important homeostatic mechanism for the maintenance of normal cardiovascular function and morphology. By contrast, excessive induction of the autophagic process by environmental or intracellular stress has an important role in several types of cardiomyopathy by functioning as a death pathway. As a consequence, enhanced autophagy represents one of the mechanisms underlying the cardiomyocyte dropout responsible for the worsening of heart failure. Successful therapeutic approaches that regulate autophagy have been reported recently, suggesting that the autophagic machinery can be manipulated to treat heart failure or to prevent rupture of atherosclerotic plaques and sudden death.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
661
|
Rusten TE, Vaccari T, Lindmo K, Rodahl LMW, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 2007; 17:1817-25. [PMID: 17935992 DOI: 10.1016/j.cub.2007.09.032] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/16/2007] [Accepted: 09/17/2007] [Indexed: 11/16/2022]
Abstract
Eukaryotes use autophagy to turn over organelles, protein aggregates, and cytoplasmic constituents. The impairment of autophagy causes developmental defects, starvation sensitivity, the accumulation of protein aggregates, neuronal degradation, and cell death [1, 2]. Double-membraned autophagosomes sequester cytoplasm and fuse with endosomes or lysosomes in higher eukaryotes [3], but the importance of the endocytic pathway for autophagy and associated disease is not known. Here, we show that regulators of endosomal biogenesis and functions play a critical role in autophagy in Drosophila melanogaster. Genetic and ultrastructural analysis showed that subunits of endosomal sorting complex required for transport (ESCRT)-I, -II and -III, as well as their regulatory ATPase Vps4 and the endosomal PtdIns(3)P 5-kinase Fab1, all are required for autophagy. Although the loss of ESCRT or Vps4 function caused the accumulation of autophagosomes, probably because of inhibited fusion with the endolysosomal system, Fab1 activity was necessary for the maturation of autolysosomes. Importantly, reduced ESCRT functions aggravated polyglutamine-induced neurotoxicity in a model for Huntington's disease. Thus, this study links ESCRT function with autophagy and aggregate-induced neurodegeneration, thereby providing a plausible explanation for the fact that ESCRT mutations are involved in inherited neurodegenerative disease in humans [4].
Collapse
Affiliation(s)
- Tor Erik Rusten
- Centre for Cancer Biomedicine, University of Oslo, N-0310 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
662
|
Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 2007; 67:9677-84. [PMID: 17942897 DOI: 10.1158/0008-5472.can-07-1462] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several types of cancer cells, including colorectal cancer-derived cell lines, show austerity, the resistance to nutrient starvation, but exactly how cancer cells obtain energy sources under conditions in which their external nutrient supply is extremely limited remains to be clarified. Because autophagy is a catabolic process by which cells supply amino acids from self-digested organelles, cancer cells are likely to use autophagy to obtain amino acids as alternative energy sources. Amino acid deprivation-induced autophagy was assessed in DLD-1 and other colorectal cancer-derived cell lines. The autophagosome-incorporated LC3-II protein level increased after treatment with a combination of autolysosome inhibitors, which interferes with the consumption of autophagosomes. Autophagosome formation was also morphologically confirmed using ectopically expressed green fluorescent protein-LC3 fusion proteins in DLD-1 and SW480 cells. These data suggest that autophagosomes were actively produced and promptly consumed in colorectal cancer cells under nutrient starvation. Autolysosome inhibitors and 3-methyl adenine, which suppresses autophagosome formation, remarkably enhanced apoptosis under amino acid-deprived and glucose-deprived condition. Similar results were obtained in the cells with decreased ATG7 level by the RNA interference. These data suggest that autophagy is pivotal for the survival of colorectal cancer cells that have acquired austerity. Furthermore, autophagosome formation was seen only in the tumor cells but not in the adjacent noncancerous epithelial cells of colorectal cancer specimens. Taken together, autophagy is activated in colorectal cancers in vitro and in vivo, and autophagy may contribute to the survival of the cancer cells in their microenvironment.
Collapse
Affiliation(s)
- Kazunori Sato
- Cancer Physiology Project and Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, and Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
663
|
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2007; 90:313-23. [PMID: 17928127 DOI: 10.1016/j.biochi.2007.08.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/31/2007] [Indexed: 02/07/2023]
Abstract
Macroautophagy or autophagy is a vacuolar degradative pathway terminating in the lysosomal compartment after forming a cytoplasmic vacuole or autophagosome that engulfs macromolecules and organelles. The original discovery that ATG (AuTophaGy related) genes in yeast are involved in the formation of autophagosomes has greatly increased our knowledge of the molecular basis of autophagy, and its role in cell function that extends far beyond non-selective degradation. The regulation of autophagy by signaling pathways overlaps the control of cell growth, proliferation, cell survival and death. The evolutionarily conserved TOR (Target of Rapamycin) kinase complex 1 plays an important role upstream of the Atg1 complex in the control of autophagy by growth factors, nutrients, calcium signaling and in response to stress situations, including hypoxia, oxidative stress and low energy. The Beclin 1 (Atg6) complex, which is involved in the initial step of autophagosome formation, is directly targeted by signaling pathways. Taken together, these data suggest that multiple signaling checkpoints are involved in regulating autophagosome formation.
Collapse
Affiliation(s)
- Sophie Pattingre
- INSERM U756, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
664
|
Abstract
Poliovirus infection remodels intracellular membranes, creating a large number of membranous vesicles on which viral RNA replication occurs. Poliovirus-induced vesicles display hallmarks of cellular autophagosomes, including delimiting double membranes surrounding the cytosolic lumen, acquisition of the endosomal marker LAMP-1, and recruitment of the 18-kDa host protein LC3. Autophagy results in the covalent lipidation of LC3, conferring the property of membrane association to this previously microtubule-associated protein and providing a biochemical marker for the induction of autophagy. Here, we report that a similar modification of LC3 occurs both during poliovirus infection and following expression of a single viral protein, a stable precursor termed 2BC. Therefore, one of the early steps in cellular autophagy, LC3 modification, can be genetically separated from the induction of double-membraned vesicles that contain the modified LC3, which requires both viral proteins 2BC and 3A. The existence of viral inducers that promote a distinct aspect of the formation of autophagosome-like membranes both facilitates the dissection of this cellular process and supports the hypothesis that this branch of the innate immune response is directly subverted by poliovirus.
Collapse
Affiliation(s)
- Matthew P Taylor
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
665
|
Takagi H, Matsui Y, Sadoshima J. The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal 2007; 9:1373-81. [PMID: 17627477 DOI: 10.1089/ars.2007.1689] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Autophagy is a major mechanism for degrading long-lived cytosolic proteins and the only known pathway for degrading organelles. Autophagy is activated by many forms of stress, including nutrient and energy starvation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and infections. Although autophagy recycles amino acids and fatty acids to produce energy and removes damaged organelles, thereby playing an essential role in cell survival, inappropriate activation of autophagy leads to cell death. In the heart, activation of autophagy can be observed in response to nutrient starvation, ischemia/reperfusion, and heart failure. In this review, the signaling mechanism and the functional significance of autophagy during myocardial ischemia and reperfusion are discussed.
Collapse
Affiliation(s)
- Hiromitsu Takagi
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
666
|
Hamacher-Brady A, Brady NR, Gottlieb RA. The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 2007; 20:445-62. [PMID: 17149555 DOI: 10.1007/s10557-006-0583-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Programmed cell death of cardiac myocytes occurs following a bout of ischemia/reperfusion (I/R), which results in reduced function of the heart. Numerous studies, including in vivo, have shown that cell death occurs via necrosis and apoptosis following I/R. Recently, autophagy has emerged as a powerful mediator of programmed cell death, either opposing or enhancing apoptosis, or acting as an alternative form of programmed cell death distinct from apoptosis. AIM Here we review the apoptotic and autophagic signaling pathways, their influences on each other, and we discuss the relevance of autophagy in the heart.
Collapse
Affiliation(s)
- Anne Hamacher-Brady
- Department of Molecular and Experimental Medicine MEM-220, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, San Diego, CA 92037, USA
| | | | | |
Collapse
|
667
|
Abstract
Lysosomes are dynamic organelles that receive and degrade macromolecules from the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Live-cell imaging has shown that fusion with lysosomes occurs by both transient and full fusion events, and yeast genetics and mammalian cell-free systems have identified much of the protein machinery that coordinates these fusion events. Many pathogens that hijack the endocytic pathways to enter cells have evolved mechanisms to avoid being degraded by the lysosome. However, the function of lysosomes is not restricted to protein degradation: they also fuse with the plasma membrane during cell injury, as well as having more specialized secretory functions in some cell types.
Collapse
Affiliation(s)
- J Paul Luzio
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK.
| | | | | |
Collapse
|
668
|
Espert L, Codogno P, Biard-Piechaczyk M. Involvement of autophagy in viral infections: antiviral function and subversion by viruses. J Mol Med (Berl) 2007; 85:811-23. [PMID: 17340132 PMCID: PMC7080067 DOI: 10.1007/s00109-007-0173-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/31/2007] [Accepted: 02/12/2007] [Indexed: 12/26/2022]
Abstract
Autophagy is a cellular process involved in the degradation and turn-over of long-lived proteins and organelles, which can be subjected to suppression or further induction in response to different stimuli. According to its essential role in cellular homeostasis, autophagy has been implicated in several pathologies including cancer, neurodegeneration and myopathies. More recently, autophagy has been described as a mechanism of both innate and adaptive immunity against intracellular bacteria and viruses. In this context, autophagy has been proposed as a protective mechanism against viral infection by degrading the pathogens into autolysosomes. This is strengthened by the fact that several proteins involved in interferon (IFN) signalling pathways are linked to autophagy regulation. However, several viruses have evolved strategies to divert IFN-mediated pathways and autophagy to their own benefit. This review provides an overview of the autophagic process and its involvement in the infection by different viral pathogens and of the connections existing between autophagy and proteins involved in IFN signalling pathways.
Collapse
Affiliation(s)
- Lucile Espert
- CPBS, UM1, UM2, CNRS, Institut de Biologie, 4, Bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| | - Patrice Codogno
- CPBS, UM1, UM2, CNRS, Institut de Biologie, 4, Bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
- INSERM U756, Faculté de Pharmacie, Université Paris-Sud XI, 92296 Châtenay-Malabry, France
| | - Martine Biard-Piechaczyk
- CPBS, UM1, UM2, CNRS, Institut de Biologie, 4, Bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| |
Collapse
|
669
|
Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A, Liang X, Bi X. Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 -/- mouse brain. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:962-75. [PMID: 17631520 PMCID: PMC1959498 DOI: 10.2353/ajpath.2007.070052] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive disorder caused by mutations of NPC1 and NPC2 genes. Progressive neurodegeneration that accompanies NPC is fatal, but the underlying mechanisms are still poorly understood. In the present study, we characterized the association of autophagic-lysosomal dysfunction with cholesterol accumulation in Npc1(-/-) mice during postnatal development. Brain levels of lysosomal cathepsin D were significantly higher in mutant than in wild-type mice. Increases in cathepsin D occurred first in neurons and later in astrocytes and microglia and were both spatially and temporally associated with intracellular cholesterol accumulation and neurodegeneration. Furthermore, levels of ubiquitinated proteins were higher in endosomal/lysosomal fractions of brains from Npc1(-/-) mice than from wild-type mice. Immunoblotting results showed that levels of LC3-II were significantly higher in brains of mutant than wild-type mice. Combined LC3 immunofluorescence and filipin staining showed that LC3 accumulated within filipin-labeled cholesterol clusters inside Purkinje cells. Electron microscopic examination revealed the existence of autophagic vacuole-like structures and multivesicles in brains from Npc1(-/-) mice. These results provide strong evidence that cholesterol accumulation-induced changes in autophagy-lysosome function are closely associated with neurodegeneration in NPC.
Collapse
Affiliation(s)
- Guanghong Liao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | | | | | | | | | | | | | | |
Collapse
|
670
|
Tamai K, Tanaka N, Nara A, Yamamoto A, Nakagawa I, Yoshimori T, Ueno Y, Shimosegawa T, Sugamura K. Role of Hrs in maturation of autophagosomes in mammalian cells. Biochem Biophys Res Commun 2007; 360:721-7. [PMID: 17624298 DOI: 10.1016/j.bbrc.2007.06.105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/16/2007] [Indexed: 12/30/2022]
Abstract
Autophagy is an evolutionarily conserved system responsible for the degradation of cellular components and contributes to the increasing of amino acid pool, organelle turnover, and elimination of intracellular bacteria. The molecular process of autophagy is still unclear. Here we demonstrate that Hrs, a master regulator in endosomal protein sorting, plays critical roles for the autophagic degradation of non-specific proteins and Streptococcus pyogenes. We found that Hrs containing FYVE domain is localized to autophagosomes. Hrs depletion resulted in a significant decrease in the number of mature autophagosomes (autophagolysosomes) detected by the co-localization of autophagosome marker LC3 and lysosome marker LAMP-1. In contrast, formation of the primary autophagosome, detected by LC3 immunoblotting and lysosomal degradation of non-specific proteins, were not significantly altered by Hrs depletion. Based on these results, we propose a novel function of Hrs, as a crucial player in the maturation of autophagosomes.
Collapse
Affiliation(s)
- Keiichi Tamai
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
671
|
Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462:245-53. [PMID: 17475204 PMCID: PMC2756107 DOI: 10.1016/j.abb.2007.03.034] [Citation(s) in RCA: 1223] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/25/2007] [Indexed: 12/14/2022]
Abstract
Mitochondria are the essential site of aerobic energy production in eukaryotic cells. Reactive oxygen species (ROS) are an inevitable by-product of mitochondrial metabolism and can cause mitochondrial DNA mutations and dysfunction. Mitochondrial damage can also be the consequence of disease processes. Therefore, maintaining a healthy population of mitochondria is essential to the well-being of cells. Autophagic delivery to lysosomes is the major degradative pathway in mitochondrial turnover, and we use the term mitophagy to refer to mitochondrial degradation by autophagy. Although long assumed to be a random process, increasing evidence indicates that mitophagy is a selective process. This review provides an overview of the process of mitophagy, the possible role of the mitochondrial permeability transition in mitophagy and the importance of mitophagy in turnover of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Insil Kim
- Center for Cell Death, Injury and Regeneration, Departments of Pharmaceutical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - John J. Lemasters
- Center for Cell Death, Injury and Regeneration, Departments of Pharmaceutical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina
| |
Collapse
|
672
|
Brady NR, Hamacher-Brady A, Yuan H, Gottlieb RA. The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J 2007; 274:3184-97. [PMID: 17540004 DOI: 10.1111/j.1742-4658.2007.05849.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macroautophagy is a vital process in the cardiac myocyte: it plays a protective role in the response to ischemic injury, and chronic perturbation is causative in heart disease. Recent findings evidence a link between the apoptotic and autophagic pathways through the interaction of the antiapoptotic proteins Bcl-2 and Bcl-XL with Beclin 1. However, the nature of the interaction, either in promoting or blocking autophagy, remains unclear. Here, using a highly sensitive, macroautophagy-specific flux assay allowing for the distinction between enhanced autophagosome production and suppressed autophagosome degradation, we investigated the control of Beclin 1 and Bcl-2 on nutrient deprivation-activated macroautophagy. We found that in HL-1 cardiac myocytes the relationship between Beclin 1 and Bcl-2 is subtle: Beclin 1 mutant lacking the Bcl-2-binding domain significantly reduced autophagic activity, indicating that Beclin 1-mediated autophagy required an interaction with Bcl-2. Overexpression of Bcl-2 had no effect on the autophagic response to nutrient deprivation; however, targeting Bcl-2 to the sarco/endoplasmic reticulum (S/ER) significantly suppressed autophagy. The suppressive effect of S/ER-targeted Bcl-2 was in part due to the depletion of S/ER calcium stores. Intracellular scavenging of calcium by BAPTA-AM significantly blocked autophagy, and thapsigargin, an inhibitor of sarco/endoplasmic reticulum calcium ATPase, reduced autophagic activity by approximately 50%. In cells expressing Bcl-2-ER, thapsigargin maximally reduced autophagic flux. Thus, our results demonstrate that Bcl-2 negatively regulated the autophagic response at the level of S/ER calcium content rather than via direct interaction with Beclin 1. Moreover, we identify calcium homeostasis as an essential component of the autophagic response to nutrient deprivation.
Collapse
Affiliation(s)
- Nathan R Brady
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
673
|
Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A, Matsuda C, Hayashi YK, Momoi T. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet 2007; 16:618-29. [PMID: 17331981 DOI: 10.1093/hmg/ddm002] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dysferlin is a type-II transmembrane protein and the causative gene of limb girdle muscular dystrophy type 2B and Miyoshi myopathy (LGMD2B/MM), in which specific loss of dysferlin labeling has been frequently observed. Recently, a novel mutant (L1341P) dysferlin has been shown to aggregate in the muscle of the patient. Little is known about the relationship between degradation of dysferlin and pathogenesis of LGMD2B/MM. Here, we examined the degradation of normal and mutant (L1341P) dysferlin. Wild-type (wt) dysferlin mainly localized to the ER/Golgi, associated with retrotranslocon, Sec61alpha, and VCP(p97), and was degraded by endoplasmic reticulum (ER)-associated degradation system (ERAD) composed of ubiquitin/proteasome. In contrast, mutant dysferlin spontaneously aggregated in the ER and induced eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and LC3 conversion, a key step for autophagosome formation, and finally, ER stress cell death. Unlike proteasome inhibitor, E64d/pepstatin A, inhibitors of lysosomal proteases did not stimulate the accumulation of the wt-dysferlin, but stimulated aggregation of mutant dysferlin in the ER. Furthermore, deficiency of Atg5 and dephosphorylation of eIF2alpha, key molecules for LC3 conversion, also stimulated the mutant dysferlin aggregation in the ER. Rapamycin, which induces eIF2alpha phosphorylation-mediated LC3 conversion, inhibited mutant dysferlin aggregation in the ER. Thus, mutant dysferlin aggregates in the ER-stimulated autophagosome formation to engulf them via activation of ER stress-eIF2alpha phosphorylation pathway. We propose two ERAD models for dysferlin degradation, ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Mutant dysferlin aggregates on the ER are degraded by the autophagy/lysosome ERAD(II), as an alternative to ERAD(I), when retrotranslocon/ERAD(I) system is impaired by these mutant aggregates.
Collapse
Affiliation(s)
- Eriko Fujita
- Divisions of Development and Differentiation, Department of Human Inherited Metabolic Disease, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
674
|
Gutierrez MG, Saka HA, Chinen I, Zoppino FCM, Yoshimori T, Bocco JL, Colombo MI. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci U S A 2007; 104:1829-34. [PMID: 17267617 PMCID: PMC1794277 DOI: 10.1073/pnas.0601437104] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is the unique, regulated mechanism for the degradation of organelles. This intracellular process acts as a prosurvival pathway during cell starvation or stress and is also involved in cellular response against specific bacterial infections. Vibrio cholerae is a noninvasive intestinal pathogen that has been studied extensively as the causative agent of the human disease cholera. V. cholerae illness is produced primarily through the expression of a potent toxin (cholera toxin) within the human intestine. Besides cholera toxin, this bacterium secretes a hemolytic exotoxin termed V. cholerae cytolysin (VCC) that causes extensive vacuolation in epithelial cells. In this work, we explored the relationship between the vacuolation caused by VCC and the autophagic pathway. Treatment of cells with VCC increased the punctate distribution of LC3, a feature indicative of autophagosome formation. Moreover, VCC-induced vacuoles colocalized with LC3 in several cell lines, including human intestinal Caco-2 cells, indicating the interaction of the large vacuoles with autophagic vesicles. Electron microscopy analysis confirmed that the vacuoles caused by VCC presented hallmarks of autophagosomes. Additionally, biochemical evidence demonstrated the degradative nature of the VCC-generated vacuoles. Interestingly, autophagy inhibition resulted in decreased survival of Caco-2 cells upon VCC intoxication. Also, VCC failed to induce vacuolization in Atg5-/- cells, and the survival response of these cells against the toxin was dramatically impaired. These results demonstrate that autophagy acts as a cellular defense pathway against secreted bacterial toxins.
Collapse
Affiliation(s)
- Maximiliano Gabriel Gutierrez
- *Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Hector Alex Saka
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología–CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Isabel Chinen
- Servicio de Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán,” 1281 Buenos Aires, Argentina; and
| | - Felipe C. M. Zoppino
- *Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Tamotsu Yoshimori
- Department of Cell Genetics, National Institute of Genetics, Yata 1111 Mishima, Shizuoka 455-8540, Japan
| | - Jose Luis Bocco
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología–CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- To whom correspondence may be addressed. E-mail:
or
| | - María Isabel Colombo
- *Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
675
|
Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 2007; 26:313-24. [PMID: 17245426 PMCID: PMC1783450 DOI: 10.1038/sj.emboj.7601511] [Citation(s) in RCA: 502] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 11/28/2006] [Indexed: 12/25/2022] Open
Abstract
Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other.
Collapse
Affiliation(s)
- Kassidy K Huynh
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | - Cameron C Scott
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Anatoly Malevanets
- Center for Computational Biology, The Hospital for Sick Children, Toronto, Canada
| | - Paul Saftig
- Biochemical Institute, University of Kiel, Kiel, Germany
| | - Sergio Grinstein
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
676
|
Sillence DJ. New insights into glycosphingolipid functions--storage, lipid rafts, and translocators. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:151-89. [PMID: 17631188 DOI: 10.1016/s0074-7696(07)62003-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycosphingolipids are key components of eukaryotic cellular membranes. Through their propensity to form lipid rafts, they are important in membrane transport and signaling. At the cell surface, they are required for caveolar-mediated endocytosis, a process required for the action of many glycosphingolipid-binding toxins. Glycosphingolipids also exist intracellularly, on both leaflets of organelle membranes. It is expected that dissecting the mechanisms of cell pathology seen in the glycosphingolipid storage diseases, where lysosomal glycosphingolipid degradation is defective, will reveal their functions. Disrupted cation gradients in Mucolipidosis type IV disease are interlinked with glycosphingolipid storage, defective rab 7 function, and the activation of autophagy. Relationships between drug translocators and glycosphingolipid synthesis are also discussed. Mass spectrometry of cell lines defective in drug transporters reveal clear differences in glycosphingolipid mass and fatty acid composition. The potential roles of glycosphingolipids in lipid raft formation, endocytosis, and cationic gradients are discussed.
Collapse
Affiliation(s)
- Dan J Sillence
- Leicester School of Pharmacy, Hawthorne Building, De Montfort University, Leicester, LE1 9BH, United Kingdom
| |
Collapse
|
677
|
Romano PS, Gutierrez MG, Berón W, Rabinovitch M, Colombo MI. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol 2006; 9:891-909. [PMID: 17087732 DOI: 10.1111/j.1462-5822.2006.00838.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The etiologic agent of Q fever Coxiella burnetii, is an intracellular obligate parasite that develops large vacuoles with phagolysosomal characteristics, containing multiple replicating bacteria. We have previously shown that Phase II C. burnetii replicative vacuoles generated after 24-48 h post infection are decorated with the autophagic protein LC3. The aim of the present study was to examine, at earlier stages of infection, the distribution and roles of the small GTPases Rab5 and Rab7, markers of early and late endosomes respectively, as well as of the protein LC3 on C. burnetii trafficking. Our results indicate that: (i) Coxiella phagosomes (Cph) acquire the two Rab proteins sequentially during infection; (ii) overexpression of a dominant negative mutant form of Rab5, but not of Rab7, impaired Coxiella entry, whereas both Rab5 and Rab7 dominant negative mutants inhibited vacuole formation; (iii) Cph colocalized with the protein LC3 as early as 5 min after infection; acquisition of this protein appeared to be a bacterially driven process, because it was inhibited by the bacteriostatic antibiotic chloramphenicol and (iv) C. burnetii delayed the arrival of the typical lysosomal protease cathepsin D to the Cph, which delay is further increased by starvation-induced autophagy. Based on our results we propose that C. burnetii transits through the normal endo/phagocytic pathway but actively interacts with autophagosomes at early times after infection. This intersection with the autophagic pathway delays fusion with the lysosomal compartment possibly favouring the intracellular differentiation and survival of the bacteria.
Collapse
Affiliation(s)
- Patricia S Romano
- Laboratorio de Biología Celular y Molecular, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo--Mendoza, 5500, Argentina
| | | | | | | | | |
Collapse
|
678
|
Deinhardt K, Salinas S, Verastegui C, Watson R, Worth D, Hanrahan S, Bucci C, Schiavo G. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 2006; 52:293-305. [PMID: 17046692 DOI: 10.1016/j.neuron.2006.08.018] [Citation(s) in RCA: 377] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 06/26/2006] [Accepted: 08/07/2006] [Indexed: 12/16/2022]
Abstract
Vesicular pathways coupling the neuromuscular junction with the motor neuron soma are essential for neuronal function and survival. To characterize the organelles responsible for this long-distance crosstalk, we developed a purification strategy based on a fragment of tetanus neurotoxin (TeNT H(C)) conjugated to paramagnetic beads. This approach enabled us to identify, among other factors, the small GTPase Rab7 as a functional marker of a specific pool of axonal retrograde carriers, which transport neurotrophins and their receptors. Furthermore, Rab5 is essential for an early step in TeNT H(C) sorting but is absent from axonally transported vesicles. Our data demonstrate that TeNT H(C) uses a retrograde transport pathway shared with p75(NTR), TrkB, and BDNF, which is strictly dependent on the activities of both Rab5 and Rab7. Therefore, Rab7 plays an essential role in axonal retrograde transport by controlling a vesicular compartment implicated in neurotrophin traffic.
Collapse
Affiliation(s)
- Katrin Deinhardt
- Molecular NeuroPathobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
679
|
Abstract
The lysosomal membrane proteins LAMP-1 and LAMP-2 are estimated to contribute to about 50% of all proteins of the lysosome membrane. Surprisingly, mice deficient in either LAMP-1 or LAMP-2 are viable and fertile. However, mice deficient in both LAMP-1 and LAMP-2 have an embryonic lethal phenotype. These results show that these two major lysosomal membrane proteins share common functions in vivo. However, LAMP-2 seems to have more specific functions since LAMP-2 single deficiency has more severe consequences than LAMP-1 single deficiency. Mutations in LAMP-2 gene cause a lysosomal glycogen storage disease, Danon disease, in humans. LAMP-2 deficient mice replicate the symptoms found in Danon patients including accumulation of autophagic vacuoles in heart and skeletal muscle. In embryonic fibroblasts, mutual disruption of both LAMPs is associated with an increased accumulation of autophagic vacuoles and unesterified cholesterol, while protein degradation rates are not affected. These results clearly show that the LAMP proteins fulfil functions far beyond the initially suggested roles in maintaining the structural integrity of the lysosomal compartment.
Collapse
Affiliation(s)
- Eeva-Liisa Eskelinen
- Department of Biological and Environmental Sciences, Division of Biochemistry, University of Helsinki, Viikinkaari 5D, 00014 Helsinki, Finland.
| |
Collapse
|
680
|
Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes. J Biol Chem 2006; 281:29776-87. [PMID: 16882669 DOI: 10.1074/jbc.m603783200] [Citation(s) in RCA: 455] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiac myocytes undergo programmed cell death as a result of ischemia/reperfusion (I/R). One feature of I/R injury is the increased presence of autophagosomes. However, to date it is not known whether macroautophagy functions as a protective pathway, contributes to programmed cell death, or is an irrelevant event during cardiac I/R injury. We employed simulated I/R of cardiac HL-1 cells as an in vitro model of I/R injury to the heart. To assess macroautophagy, we quantified autophagosome generation and degradation (autophagic flux), as determined by steady-state levels of autophagosomes in relation to lysosomal inhibitor-mediated accumulation of autophagosomes. We found that I/R impaired both formation and downstream lysosomal degradation of autophagosomes. Overexpression of Beclin1 enhanced autophagic flux following I/R and significantly reduced activation of pro-apoptotic Bax, whereas RNA interference knockdown of Beclin1 increased Bax activation. Bcl-2 and Bcl-x(L) were protective against I/R injury, and expression of a Beclin1 Bcl-2/-x(L) binding domain mutant resulted in decreased autophagic flux and did not protect against I/R injury. Overexpression of Atg5, a component of the autophagosomal machinery downstream of Beclin1, did not affect cellular injury, whereas expression of a dominant negative mutant of Atg5 increased cellular injury. These results demonstrate that autophagic flux is impaired at the level of both induction and degradation and that enhancing autophagy constitutes a powerful and previously uncharacterized protective mechanism against I/R injury to the heart cell.
Collapse
Affiliation(s)
- Anne Hamacher-Brady
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
681
|
Kadowaki M, Karim MR, Carpi A, Miotto G. Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med 2006; 27:426-43. [PMID: 16999992 DOI: 10.1016/j.mam.2006.08.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A growing number of evidences indicate a strict causality between the reduction of autophagic functionality and aging. In this context the preservation of a proper autophagic response is of paramount importance to preserve the cellular processes in aging cell. Nutrients availability, especially for amino acids, is the most physiological key regulator of macroautophagy. In mammalian cells the knowledge of the mechanism and the underlying regulation of macroautophagy has been greatly improved in recent years and we focus on the role of nutrients, in particular on their involvement in preventing cellular aging through the modulation of autophagy. This review covers the main features of macroautophagy regulation by nutrients, in particular amino acids as well as glucose and vitamins, and its mechanisms, focusing primarily on the mammalian hepatocyte, which has been extensively utilized to dissect signaling pathways underlying the regulation of macroautophagy.
Collapse
Affiliation(s)
- Motoni Kadowaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | | | | | | |
Collapse
|
682
|
Mavrakis M, Lippincott-Schwartz J, Stratakis CA, Bossis I. Depletion of type IA regulatory subunit (RIalpha) of protein kinase A (PKA) in mammalian cells and tissues activates mTOR and causes autophagic deficiency. Hum Mol Genet 2006; 15:2962-71. [PMID: 16963469 DOI: 10.1093/hmg/ddl239] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human PRKAR1A gene encodes the regulatory subunit 1-alpha (RIalpha) of the cAMP-dependent protein kinase A (PKA) holoenzyme. Regulation of the catalytic activity of PKA is the only well-studied function of RIalpha. Inactivating PRKAR1A mutations cause primary pigmented nodular adrenocortical disease (PPNAD) or Carney complex (CNC), an inherited syndrome associated with abnormal skin pigmentation and multiple neoplasias, including PPNAD. Histochemistry of tissues from CNC patients is indicative of autophagic deficiency and this led us to investigate the relationship between RIalpha and mammalian autophagy. We found that fluorescently tagged RIalpha associates with late endosomes and autophagosomes in cultured cells. The number of autophagosomes in prkar1a-/- mouse embryonic fibroblasts (MEFs) was reduced compared with wild-type MEFs. RIalpha co-immunoprecipitated with mTOR kinase, a major regulator of autophagy. Phosphorylated-mTOR levels and mTOR activity were dramatically increased in prkar1a-/- mouse cells, and in HEK 293 cells with RIalpha levels reduced by siRNA. Finally, phosphorylated-mTOR levels and mTOR activity were increased in CNC cells and in PPNAD tissues. These data suggest that RIalpha deficiency decreases autophagy by the activation of mTOR, providing a molecular basis to autophagic deficiency in PPNAD.
Collapse
Affiliation(s)
- Manos Mavrakis
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
683
|
Corcelle E, Nebout M, Bekri S, Gauthier N, Hofman P, Poujeol P, Fénichel P, Mograbi B. Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res 2006; 66:6861-70. [PMID: 16818664 DOI: 10.1158/0008-5472.can-05-3557] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) has emerged as a key tumor suppressor pathway. During this process, the cytosolic constituents are sequestered into autophagosomes, which subsequently fuse with lysosomes to become autolysosomes where their contents are finally degraded. Although a reduced autophagy has been shown in human tumors or in response to oncogenes and carcinogens, the underlying mechanism(s) remain(s) unknown. Here, we show that widely used carcinogen Lindane promotes vacuolation of Sertoli cells. By electron and immunofluorescent microscopy analyses, we showed that these structures are acid autolysosomes, containing cellular debris, and labeled by LC3, Rab7, and LAMP1, markers of autophagosomes, late endosomes, and lysosomes, respectively. Such Lindane-induced vacuolation results from significant delay in autophagy degradation, in relation with a decline of the lysosomal activity of aryl sulfatase A. At molecular level, we show that this defect in autolysosomal maturation is independent of mammalian target of rapamycin and p38 inhibitions. Rather, the activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is required for Lindane to disrupt the autophagic pathway. Most importantly, we provide the first evidence that sustained activation of ERK pathway is sufficient to commit cell to autophagic vacuolation. Taken together, these findings strongly support that the aberrant sustained activation of ERK by the carcinogen Lindane disrupts the maturation of autophagosomes into functional autolysosomes. Our findings therefore suggest the possibility that high constitutive ERK activity found in all cancers may provide a malignant advantage by impeding the tumor suppressive function of autophagy.
Collapse
Affiliation(s)
- Elisabeth Corcelle
- Institut National de la Santé et de la Recherche Médicale U670, IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cedex 02, France
| | | | | | | | | | | | | | | |
Collapse
|
684
|
Andrade RM, Wessendarp M, Gubbels MJ, Striepen B, Subauste CS. CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin Invest 2006; 116:2366-77. [PMID: 16955139 PMCID: PMC1555650 DOI: 10.1172/jci28796] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/27/2006] [Indexed: 12/21/2022] Open
Abstract
Many intracellular pathogens, including Toxoplasma gondii, survive within macrophages by residing in vacuoles that avoid fusion with lysosomes. It is important to determine whether cell-mediated immunity can trigger macrophage antimicrobial activity by rerouting these vacuoles to lysosomes. We report that CD40 stimulation of human and mouse macrophages infected with T. gondii resulted in fusion of parasitophorous vacuoles and late endosomes/lysosomes. Vacuole/lysosome fusion took place even when CD40 was ligated after the formation of parasitophorous vacuoles. Genetic and pharmacological approaches that impaired phosphoinositide-3-class 3 (PIK3C3), Rab7, vacuolar ATPase, and lysosomal enzymes revealed that vacuole/lysosome fusion mediated antimicrobial activity induced by CD40. Ligation of CD40 caused colocalization of parasitophorous vacuoles and LC3, a marker of autophagy, which is a process that controls lysosomal degradation. Vacuole/lysosome fusion and antimicrobial activity were shown to be dependent on autophagy. Thus, cell-mediated immunity through CD40 stimulation can reroute an intracellular pathogen to the lysosomal compartment, resulting in macrophage antimicrobial activity.
Collapse
Affiliation(s)
- Rosa M. Andrade
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Matthew Wessendarp
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Marc-Jan Gubbels
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Boris Striepen
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Carlos S. Subauste
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
685
|
Young ARJ, Chan EYW, Hu XW, Köchl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 2006; 119:3888-900. [PMID: 16940348 DOI: 10.1242/jcs.03172] [Citation(s) in RCA: 635] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy, fundamentally a lysosomal degradation pathway, functions in cells during normal growth and certain pathological conditions, including starvation, to maintain homeostasis. Autophagosomes are formed through a mechanism that is not well understood, despite the identification of many genes required for autophagy. We have studied the mammalian homologue of Atg9p, a multi-spanning transmembrane protein essential in yeast for autophagy, to gain a better understanding of the function of this ubiquitious protein. We show that both the N- and C-termini of mammalian Atg9 (mAtg9) are cytosolic, and predict that mAtg9 spans the membrane six times. We find that mAtg9 is located in the trans-Golgi network and late endosomes and colocalizes with TGN46, the cation-independent mannose-6-phosphate receptor, Rab7 and Rab9. Amino acid starvation or rapamycin treatment, which upregulates autophagy, causes a redistribution of mAtg9 from the TGN to peripheral, endosomal membranes, which are positive for the autophagosomal marker GFP-LC3. siRNA-mediated depletion of the putative mammalian homologue of Atg1p, ULK1, inhibits this starvation-induced redistribution. The redistribution of mAtg9 also requires PI 3-kinase activity, and is reversed after restoration of amino acids. We speculate that starvation-induced autophagy, which requires mAtg9, may rely on an alteration of the steady-state trafficking of mAtg9, in a Atg1-dependent manner.
Collapse
Affiliation(s)
- Andrew R J Young
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
686
|
Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2006; 14:230-9. [PMID: 16794605 DOI: 10.1038/sj.cdd.4401984] [Citation(s) in RCA: 755] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.
Collapse
Affiliation(s)
- Y Kouroku
- Division of Development, National Institute of Neuroscience, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
687
|
Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 2006; 281:20483-93. [PMID: 16714284 DOI: 10.1074/jbc.m602180200] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis is caused by mutation of a novel, endosomal/lysosomal membrane protein encoded by CLN3. The observation that the mitochondrial ATPase subunit c protein accumulates in this disease suggests that autophagy, a pathway that regulates mitochondrial turnover, may be disrupted. To test this hypothesis, we examined the autophagic pathway in Cln3(Deltaex7/8) knock-in mice and CbCln3(Deltaex7/8) cerebellar cells, accurate genetic models of juvenile neuronal ceroid lipofuscinosis. In homozygous knock-in mice, we found that the autophagy marker LC3-II was increased, and mammalian target of rapamycin was down-regulated. Moreover, isolated autophagic vacuoles and lysosomes from homozygous knock-in mice were less mature in their ultrastructural morphology than the wild-type organelles, and subunit c accumulated in autophagic vacuoles. Intriguingly, we also observed subunit c accumulation in autophagic vacuoles in normal aging mice. Upon further investigation of the autophagic pathway in homozygous knock-in cerebellar cells, we found that LC3-positive vesicles were altered and overlap of endocytic and lysosomal dyes was reduced when autophagy was stimulated, compared with wildtype cells. Surprisingly, however, stimulation of autophagy did not significantly impact cell survival, but inhibition of autophagy led to cell death. Together these observations suggest that autophagy is disrupted in juvenile neuronal ceroid lipofuscinosis, likely at the level of autophagic vacuolar maturation, and that activation of autophagy may be a prosurvival feedback response in the disease process.
Collapse
Affiliation(s)
- Yi Cao
- Molecular Neurogenetics Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
688
|
Shacka JJ, Klocke BJ, Shibata M, Uchiyama Y, Datta G, Schmidt RE, Roth KA. Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Mol Pharmacol 2006; 69:1125-36. [PMID: 16391239 DOI: 10.1124/mol.105.018408] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of cells with the macrolide antibiotic bafilomycin A1, an inhibitor of vacuolar (V)-ATPase, or with the lysosomotropic agent chloroquine, has been shown to pharmacologically inhibit autophagy as evidenced by an accumulation of autophagosomes, which in turn causes Bax-dependent apoptosis. However, bafilomycin A1 has also been reported to inhibit chloroquine-induced apoptosis, suggesting a complex interrelationship between these two inhibitors of autophagy. To determine whether the cytoprotective effect of bafilomycin A1 on chloroquine-treated cells was dependent on inhibition of V-ATPase, we examined the single and combined effects of bafilomycin and chloroquine on cultured cerebellar granule neurons. When added separately, chloroquine or high concentrations of bafilomycin A1 (> or =10 nM) induced a dose-dependent inhibition of autophagy (as measured by an increase in LC3-II, a marker specific for autophagosomes), followed by caspase-3 activation and cell death. When added in combination, bafilomycin A1 potently inhibited chloroquine-induced caspase-3 activity and cell death at concentrations (< or =1 nM) that neither altered vacuolar acidification nor inhibited autophagy. The neuroprotective effects of bafilomycin A1 against chloroquine were substantially greater than those produced by Bax deficiency. Bafilomycin A1-induced neuroprotection seemed to be stimulus-specific, in that staurosporine-induced death was not attenuated by coaddition of bafilomycin A1. Together, these data suggest that in addition to promoting death via inhibition of V-ATPase and autophagy, bafilomycin A1 possesses novel, neuroprotective properties that inhibit Bax-dependent activation of the intrinsic apoptotic pathway resulting from the pharmacological inhibition of autophagy.
Collapse
Affiliation(s)
- John J Shacka
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, SC961, 1530 3rd Ave South, Birmingham, AL 35294-0017, USA
| | | | | | | | | | | | | |
Collapse
|
689
|
Abstract
Autophagy is a highly conserved process in eukaryotes in which the cytoplasm, including excess or aberrant organelles, is sequestered into double-membrane vesicles and delivered to the degradative organelle, the lysosome/vacuole, for breakdown and eventual recycling of the resulting macromolecules. This process has an important role in various biological events such as adaptation to changing environmental conditions, cellular remodeling during development and differentiation, and determination of lifespan. Auto-phagy is also involved in preventing certain types of disease, although it may contribute to some pathologies. Recent studies have identified many components that are required to drive this complicated cellular process. Auto-phagy-related genes were first identified in yeast, but homologs are found in all eukaryotes. Analyses in a range of model systems have provided huge advances toward understanding the molecular basis of autophagy. Here we review our current knowledge on the machinery and molecular mechanism of autophagy.
Collapse
Affiliation(s)
- T Yorimitsu
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
690
|
Kamimoto T, Shoji S, Hidvegi T, Mizushima N, Umebayashi K, Perlmutter DH, Yoshimori T. Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem 2005; 281:4467-76. [PMID: 16365039 DOI: 10.1074/jbc.m509409200] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutant alpha(1)-antitrypsin Z (alpha(1)-ATZ) protein, which has a tendency to form aggregated polymers as it accumulates within the endoplasmic reticulum of the liver cells, is associated with the development of chronic liver injury and hepatocellular carcinoma in hereditary alpha(1)-antitrypsin (alpha(1)-AT) deficiency. Previous studies have suggested that efficient intracellular degradation of alpha(1)-ATZ is correlated with protection from liver disease in alpha(1)-AT deficiency and that the ubiquitin-proteasome system accounts for a major route, but not the sole route, of alpha(1)-ATZ disposal. Yet another intracellular degradation system, autophagy, has also been implicated in the pathophysiology of alpha(1)-AT deficiency. To provide genetic evidence for autophagy-mediated disposal of alpha(1)-ATZ, here we used cell lines deleted for the Atg5 gene that is necessary for initiation of autophagy. In the absence of autophagy, the degradation of alpha(1)-ATZ was retarded, and the characteristic cellular inclusions of alpha(1)-ATZ accumulated. In wild-type cells, colocalization of the autophagosomal membrane marker GFP-LC3 and alpha(1)-ATZ was observed, and this colocalization was enhanced when clearance of autophagosomes was prevented by inhibiting fusion between autophagosome and lysosome. By using a transgenic mouse with liver-specific inducible expression of alpha(1)-ATZ mated to the GFP-LC3 mouse, we also found that expression of alpha(1)-ATZ in the liver in vivo is sufficient to induce autophagy. These data provide definitive evidence that autophagy can participate in the quality control/degradative pathway for alpha(1)-ATZ and suggest that autophagic degradation plays a fundamental role in preventing toxic accumulation of alpha(1)-ATZ.
Collapse
Affiliation(s)
- Takahiro Kamimoto
- Department of Cell Genetics, National Institute of Genetics, Mishima, Japan
| | | | | | | | | | | | | |
Collapse
|
691
|
Gutierrez MG, Vázquez CL, Munafó DB, Zoppino FCM, Berón W, Rabinovitch M, Colombo MI. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 2005; 7:981-93. [PMID: 15953030 DOI: 10.1111/j.1462-5822.2005.00527.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pathogens evolved mechanisms to invade host cells and to multiply in the cytosol or in compositionally and functionally customized membrane-bound compartments. Coxiella burnetii, the agent of Q fever in man is a Gram-negative gamma-proteobacterium which multiplies in large, acidified, hydrolase-rich and fusogenic vacuoles with phagolysosomal-like characteristics. We reported previously that C. burnetii phase II replicative compartments are labelled by LC3, a protein specifically localized to autophagic vesicles. We show here that autophagy in Chinese hamster ovary cells, induced by amino acid deprivation prior to infection with Coxiella increased the number of infected cells, the size of the vacuoles, and their bacterial load. Furthermore, overexpression of GFP-LC3 or of GFP-Rab24 - a protein also localized to autophagic vacuoles - likewise accelerated the development of Coxiella-vacuoles at early times after infection. However, overexpression of mutants of those proteins that cannot be targeted to autophagosomes dramatically decreased the number and size of the vacuoles in the first hours of infection, although by 48 h the infection was similar to that of non-transfected controls. Overall, the results suggest that transit through the autophagic pathway increases the infection with Coxiella by providing a niche more favourable to their initial survival and multiplication.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, 5500, Argentina
| | | | | | | | | | | | | |
Collapse
|
692
|
Johansson M, Lehto M, Tanhuanpää K, Cover TL, Olkkonen VM. The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Mol Biol Cell 2005; 16:5480-92. [PMID: 16176980 PMCID: PMC1289395 DOI: 10.1091/mbc.e05-03-0189] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ORP1L is a member of the human oxysterol-binding protein (OSBP) family. ORP1L localizes to late endosomes (LEs)/lysosomes, colocalizing with the GTPases Rab7 and Rab9 and lysosome-associated membrane protein-1. We demonstrate that ORP1L interacts physically with Rab7, preferentially with its GTP-bound form, and provide evidence that ORP1L stabilizes GTP-bound Rab7 on LEs/lysosomes. The Rab7-binding determinant is mapped to the ankyrin repeat (ANK) region of ORP1L. The pleckstrin homology domain (PHD) of ORP1L binds phosphoinositides with low affinity and specificity. ORP1L ANK- and ANK+PHD fragments induce perinuclear clustering of LE/lysosomes. This is dependent on an intact microtubule network and a functional dynein/dynactin motor complex. The dominant inhibitory Rab7 mutant T22N reverses the LE clustering, suggesting that the effect is dependent on active Rab7. Transport of fluorescent dextran to LEs is inhibited by overexpression of ORP1L. Overexpression of ORP1L, and in particular the N-terminal fragments of ORP1L, inhibits vacuolation of LE caused by Helicobacter pylori toxin VacA, a process also involving Rab7. The present study demonstrates that ORP1L binds to Rab7, modifies its functional cycle, and can interfere with LE/lysosome organization and endocytic membrane trafficking. This is the first report of a direct connection between the OSBP-related protein family and the Rab GTPases.
Collapse
Affiliation(s)
- Marie Johansson
- Department of Molecular Medicine, National Public Health Institute, FI-00251 Helsinki, Finland
| | | | | | | | | |
Collapse
|
693
|
Colucci AMR, Campana MC, Bellopede M, Bucci C. The Rab-interacting lysosomal protein, a Rab7 and Rab34 effector, is capable of self-interaction. Biochem Biophys Res Commun 2005; 334:128-33. [PMID: 15996637 DOI: 10.1016/j.bbrc.2005.06.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 11/28/2022]
Abstract
Rab-interacting lysosomal protein (RILP) has been identified as an interacting partner of the small GTPases Rab7 and Rab34. Active Rab7 recruits RILP on the late endosomal/lysosomal membrane and RILP then functions as a Rab7 effector controlling transport to degradative compartments. Indeed, RILP induces recruitment of dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Recently, Rab7 and RILP have been found to be key proteins also for the biogenesis of phagolysosomes. Therefore, RILP represents probably an important factor for all endocytic routes to lysosomes. In this study, we show, using the yeast two-hybrid system, that RILP is able to interact with itself. The data obtained with the two-hybrid system were confirmed using co-immunoprecipitation in HeLa cells. The data together indicate that RILP, as already demonstrated for several other Rab effector proteins, is capable of self-association, thus probably forming a homo-dimer.
Collapse
Affiliation(s)
- Anna Maria Rosaria Colucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Via Monteroni, 73100 Lecce, Italy
| | | | | | | |
Collapse
|
694
|
Stein MP, Cao C, Tessema M, Feng Y, Romero E, Welford A, Wandinger-Ness A. Interaction and functional analyses of human VPS34/p150 phosphatidylinositol 3-kinase complex with Rab7. Methods Enzymol 2005; 403:628-49. [PMID: 16473626 DOI: 10.1016/s0076-6879(05)03055-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rab7 GTPase is a key regulator of late endocytic membrane transport and autophagy. Rab7 exerts temporal and spatial control over late endocytic membrane transport through interactions with various effector proteins. Among Rab7 effectors, the hVPS34/p150 phosphatidylinositol (PtdIns) 3-kinase complex serves to regulate late endosomal phosphatidylinositol signaling that is important for protein sorting and intraluminal vesicle sequestration. In this chapter, reagents and methods for the characterization of the interactions and regulation of the Rab7/hVPS34/p150 complex are described. Using these methods we demonstrate the requirement for activated Rab7 in the regulation of hVPS34/p150 PtdIns 3-kinase activity on late endosomes in vivo.
Collapse
|
695
|
Johansson M, Olkkonen VM. Assays for interaction between Rab7 and oxysterol binding protein related protein 1L (ORP1L). Methods Enzymol 2005; 403:743-58. [PMID: 16473636 DOI: 10.1016/s0076-6879(05)03065-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ORP1L belongs to the recently described family of human oxysterol binding protein homologues. We have previously shown that ORP1L localizes to late endosomes. In this chapter we describe methods that have been used to investigate the functional link of ORP1L with the protein machinery regulating late endosomal membrane trafficking. Co-immunoprecipitation, COS cell two-hybrid, and pull-down assays were applied to demonstrate a physical interaction between ORP1L and the late endosomal small GTPase Rab7. With these methods we were able to map the Rab7-binding determinant of ORP1L to the amino-terminal ankyrin repeat region (aa 1-237) and show that the interaction is preferentially with the GTP-bound form of Rab7. Furthermore, we describe approaches based on transient transfection and confocal immunofluorescence microscopy, which were employed to study the effect of this amino-terminal ORP1L fragment on late endosome morphology. The ankyrin repeat fragment induces juxtanuclear clustering of late endosomes, dependent on an intact microtubule network. When it is coexpressed with the dominant inhibitory Rab7 mutant T22N, the clustering is inhibited, suggesting that the effect involves interaction of the fragment with active Rab7.
Collapse
|
696
|
Abstract
Rab proteins are master regulators of vesicular membrane traffic of endocytic and exocytic pathways. They basically serve to recruit proteins and lipids required for vesicle formation, docking, and fusion. Each Rab protein is able to recruit one or more effectors, and, through the action of effectors, it drives its specific downstream functions. The Rab interacting lysosomal protein (RILP) is a common effector of Rab7 and Rab34, two Rab proteins implicated in the biogenesis of lysosomes. RILP is recruited onto late endosomal/lysosomal membranes by Rab7-GTP where it induces the recruitment of the dynein-dynactin motor complexes. Therefore, through the timed and selective dynein motor recruitment onto late endosomes and lysosomes, Rab7 and RILP control transport to endocytic degradative compartments. A similar role for Rab7 and RILP has been demonstrated also for phagosomes. Indeed, RILP recruits dynein-dynactin motors on Rab7-GTP-positive phagosomes and the recruitment not only displaces phagosomes centripetally, but also promotes the extension of phagosomal tubules toward late endocytic compartments. RILP is therefore a key protein for the biogenesis of lysosomes and phagolysosomes. This chapter describes how to express wild-type or mutated RILP in mammalian cells, and how to test the effects caused by RILP dysfunction. In particular, we report assays to monitor the interaction between RILP and Rab7, morphology and distribution of endosomes, and to measure degradation of endocytic markers.
Collapse
|