701
|
Zhang B, Liu K, Yang H, Jin Z, Ding Q, Zhao L. Gut Microbiota: The Potential Key Target of TCM's Therapeutic Effect of Treating Different Diseases Using the Same Method-UC and T2DM as Examples. Front Cell Infect Microbiol 2022; 12:855075. [PMID: 35433500 PMCID: PMC9005880 DOI: 10.3389/fcimb.2022.855075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Traditional Chinese herbal medicine often exerts the therapeutic effect of "treating different diseases with the same method" in clinical practice; in other words, it is a kind of herbal medicine that can often treat two or even multiple diseases; however, the biological mechanism underlying its multi-path and multi-target pharmacological effects remains unclear. Growing evidence has demonstrated that gut microbiota dysbiosis plays a vital role in the occurrence and development of several diseases, and that the root cause of herbal medicine plays a therapeutic role in different diseases, a phenomenon potentially related to the improvement of the gut microbiota. We used local intestinal diseases, such as ulcerative colitis, and systemic diseases, such as type 2 diabetes, as examples; comprehensively searched databases, such as PubMed, Web of Science, and China National Knowledge Infrastructure; and summarized the related studies. The results indicate that multiple individual Chinese herbal medicines, such as Rhizoma coptidis (Huang Lian), Curcuma longa L (Jiang Huang), and Radix Scutellariae (Huang Qin), and Chinese medicinal compounds, such as Gegen Qinlian Decoction, Banxia Xiexin Decoction, and Shenling Baizhu Powder, potentially treat these two diseases by enriching the diversity of the gut microbiota, increasing beneficial bacteria and butyrate-producing bacteria, reducing pathogenic bacteria, improving the intestinal mucosal barrier, and inhibiting intestinal and systemic inflammation. In conclusion, this study found that a variety of traditional Chinese herbal medicines can simultaneously treat ulcerative colitis and type 2 diabetes, and the gut microbiota may be a significant target for herbal medicine as it exerts its therapeutic effect of "treating different diseases with the same method".
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Liu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
702
|
Kårhus ML, Sonne DP, Thomasen M, Ellegaard AM, Holst JJ, Rehfeld JF, Chávez-Talavera O, Tailleux A, Staels B, Nielsen DS, Krych L, Dragsted LO, Vilsbøll T, Brønden A, Knop FK. Enterohepatic, Gluco-metabolic, and Gut Microbial Characterization of Individuals With Bile Acid Malabsorption. GASTRO HEP ADVANCES 2022; 1:299-312. [PMID: 39131668 PMCID: PMC11307667 DOI: 10.1016/j.gastha.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims Bile acid malabsorption (BAM) is a debilitating disease characterized by loose stools and high stool frequency. The pathophysiology of BAM is not well-understood. We investigated postprandial enterohepatic and gluco-metabolic physiology, as well as gut microbiome composition and fecal bile acid content in patients with BAM. Methods Twelve participants with selenium-75 homocholic acid taurine test-verified BAM and 12 healthy controls, individually matched on sex, age, and body mass index, were included. Each participant underwent 2 mixed meal tests (with and without administration of the bile acid sequestrant colesevelam) with blood sampling and evaluation of gallbladder motility; bile acid content and microbiota composition were evaluated in fecal specimens. Results Patients with BAM were characterized by increased bile acid synthesis as assessed by circulating 7-alpha-hydroxy-4-cholesten-3-one, fecal bile acid content, and postprandial concentrations of glucose, insulin, C-peptide, and glucagon. The McAuley index of insulin sensitivity was lower in patients with BAM than that in healthy controls. In patients with BAM, colesevelam co-administered with the meal reduced postprandial concentrations of bile acids and fibroblast growth factor 19 and increased 7-alpha-hydroxy-4-cholesten-3-one concentrations but did not affect postprandial glucagon-like peptide 1 responses or other gluco-metabolic parameters. Patients with BAM were characterized by a gut microbiome with low relative abundance of bifidobacteria and high relative abundance of Blautia, Streptococcus, Ruminococcus gnavus, and Akkermansia muciniphila. Conclusion Patients with BAM are characterized by an overproduction of bile acids, greater fecal bile acid content, and a gluco-metabolic profile indicative of a dysmetabolic prediabetic-like state, with changes in their gut microbiome composition potentially linking their enterohepatic pathophysiology and their dysmetabolic phenotype. ClinicalTrials.gov number NCT03009916.
Collapse
Affiliation(s)
- Martin L. Kårhus
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David P. Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Martin Thomasen
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
| | - Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Oscar Chávez-Talavera
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Anne Tailleux
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
703
|
Wang N, Ma S, Fu L. Gut Microbiota Feature of Senile Osteoporosis by Shallow Shotgun Sequencing Using Aged Rats Model. Genes (Basel) 2022; 13:genes13040619. [PMID: 35456425 PMCID: PMC9028978 DOI: 10.3390/genes13040619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Senile osteoporosis is defined as an age-related bone metabolic disorder, which is characterized by bone loss and decreased bone fragility. Gut microbiota (GM) could regulate the bone metabolic process and be closely related to senile osteoporosis. Several genus-level GM were found to increase in osteoporotic animals and patients. However, to reveal the pathogenic bacteria in senile osteoporosis, further studies are still needed to investigate the complete characteristics of bacteria species. In the present study, the rats were equally divided into two groups: the control group (Con, 6-month-old) and the osteoporosis group (OP, 22-month-old). Fecal samples were freshly collected to conduct the shallow shotgun sequencing. Then, we compared the species numbers, microbial diversity, GM composition at genus and species-level, and functional metabolic pathways in the two groups. The results showed that the species number was lower in the OP group (1272) than in the control group (1413), and 1002 GM species were shared between the two groups. The OP group had the decreased α diversity compared with the control group. As for β diversity, The PCA revealed that samples in the two groups had distinguishable ecological distance in each coordinate. At the species level, Bacteroide coprocola (B. coprocola), Acinetobacter baumannii (A. baumannii), Parabacteroides distasonis (P. distasonis), and Prevotella copri (P. copri) were higher in the OP group, while Corynebacterium stationis (C. stationis), Akkermansia muciniphila (A. muciniphila), and Alistipes indistinctus (A. indistinctus) were decreased. Moreover, functional metabolic analysis revealed that metabolic pathways of fatty acid biosynthesis, valine/isoleucine biosynthesis, GABA biosynthesis, and ubiquinone biosynthesis were enriched in the senile osteoporotic rats. In conclusion, GM at the species level in senile osteoporotic rats was significantly altered in structure, composition, and function. The altered GM structure, increased GM species such as P. copri, and decreased GM species such as A. muciniphila might be linked with the development of senile osteoporosis.
Collapse
Affiliation(s)
| | | | - Lingjie Fu
- Correspondence: ; Tel.: +86-135-6402-1392; Fax: +86-216-313-9920
| |
Collapse
|
704
|
Nam Y, Yoon S, Baek J, Kim JH, Park M, Hwang K, Kim W. Heat-Killed Lactiplantibacillus plantarum LRCC5314 Mitigates the Effects of Stress-Related Type 2 Diabetes in Mice via Gut Microbiome Modulation. J Microbiol Biotechnol 2022; 32:324-332. [PMID: 34949748 PMCID: PMC9628852 DOI: 10.4014/jmb.2111.11008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
The incidence of stress-related type 2 diabetes (stress-T2D), which is aggravated by physiological stress, is increasing annually. The effects of Lactobacillus, a key component of probiotics, have been widely studied in diabetes; however, studies on the effects of postbiotics are still limited. Here, we aimed to examine the mechanism through which heat-killed Lactiplantibacillus plantarum LRCC5314 (HK-LRCC5314) alleviates stress-T2D in a cold-induced stress-T2D C57BL/6 mouse model. HK-LRCC5314 markedly decreased body weight gain, adipose tissue (neck, subcutaneous, and epididymal) weight, and fasting glucose levels. In the adipose tissue, mRNA expression levels of stress-T2D associated factors (NPY, Y2R, GLUT4, adiponectin, and leptin) and pro-inflammatory factors (TNF-α, IL-6, and CCL-2) were also altered. Furthermore, HK-LRCC5314 increased the abundance of Barnesiella, Alistipes, and butyrate-producing bacteria, including Akkermansia, in feces and decreased the abundance of Ruminococcus, Dorea, and Clostridium. Thus, these findings suggest that HK-LRCC5314 exerts protective effects against stress-T2D via gut microbiome modulation, suggesting its potential as a supplement for managing stress-T2D.
Collapse
Affiliation(s)
- YoHan Nam
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seokmin Yoon
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea,Lotte R&D Center, Seoul 07594, Republic of Korea
| | - Jihye Baek
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Miri Park
- Lotte R&D Center, Seoul 07594, Republic of Korea
| | - KwangWoo Hwang
- College of Pharmacy, Chung‐Ang University, Seoul 06974, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea,Corresponding author Phone: +82-2-820-5685 Fax: +82-2-822-5685 E-mail:
| |
Collapse
|
705
|
Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods 2022; 11:foods11070974. [PMID: 35407061 PMCID: PMC8997417 DOI: 10.3390/foods11070974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) may lead to abnormally elevated blood glucose, lipid metabolism disorder, and low-grade inflammation. Besides, the development of T2DM is always accompanied by gut microbiota dysbiosis and metabolic dysfunction. In this study, the T2DM mice model was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. Additionally, the effects of oral administration of ethanol extract from Sanghuangporous vaninii (SVE) on T2DM and its complications (including hypoglycemia, hyperlipidemia, inflammation, and gut microbiota dysbiosis) were investigated. The results showed SVE could improve body weight, glycolipid metabolism, and inflammation-related parameters. Besides, SVE intervention effectively ameliorated the diabetes-induced pancreas and jejunum injury. Furthermore, SVE intervention significantly increased the relative abundances of Akkermansia, Dubosiella, Bacteroides, and Parabacteroides, and decreased the levels of Lactobacillus, Flavonifractor, Odoribacter, and Desulfovibrio compared to the model group (LDA > 3.0, p < 0.05). Metabolic function prediction of the intestinal microbiota by PICRUSt revealed that glycerolipid metabolism, insulin signaling pathway, PI3K-Akt signaling pathway, and fatty acid degradation were enriched in the diabetic mice treated with SVE. Moreover, the integrative analysis indicated that the key intestinal microbial phylotypes in response to SVE intervention were strongly correlated with glucose and lipid metabolism-associated biochemical parameters. These findings demonstrated that SVE has the potential to alleviate T2DM and its complications by modulating the gut microbiota imbalance.
Collapse
|
706
|
Fang C, Zuo K, Fu Y, Li J, Wang H, Xu L, Yang X. Dysbiosis of Gut Microbiota and Metabolite Phenylacetylglutamine in Coronary Artery Disease Patients With Stent Stenosis. Front Cardiovasc Med 2022; 9:832092. [PMID: 35402559 PMCID: PMC8990098 DOI: 10.3389/fcvm.2022.832092] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Dysbiotic gut microbiota (GM) plays a regulatory role during the pathogenesis of several cardiovascular diseases, including atherosclerosis. GM-derived metabolite phenylacetylglutamine (PAGln) enhances platelet responsiveness and thrombosis potential, thereby inducing major adverse cardiovascular events. However, the role of GM and microbial metabolite PAGln in the pathogenesis of in-stent stenosis remains unknown. Methods 16S rRNA sequencing was performed on fecal samples in 103 coronary artery disease (CAD) patients, including 35 individuals with in-stent patency (control), 32 individuals with in-stent hyperplasia (ISH), and 36 subjects with in-stent stenosis (ISS), and the levels of plasma PAGln were evaluated by enzyme-linked immunosorbent assay. Results The results revealed significantly enhanced microbial diversity and disrupted composition, such as enrichment of Roseburia, Blautia, and Ruminococcus, were observed in CAD patients with in-stent stenosis. The imbalance of microbial function related to PAGln synthesis and elevated plasma GM-derived metabolite PAGln levels was detected in CAD patients with in-stent stenosis. The GM-dependent diagnostic model could identify CAD patients with in-stent stenosis. Conclusion The current study revealed the disordered signature, altered functions, and potential diagnostic ability of GM in CAD patients with in-stent hyperplasia and stenosis. Enhanced microbiota-derived PAGln synthesis-related functions and elevated plasma PAGln levels were associated with in-stent stenosis and hyperplasia in CAD patients. Thus, an intervention targeting gut microbes may be a promising strategy to prevent stent stenosis in patients with CAD.
Collapse
|
707
|
Ding D, Yong H, You N, Lu W, Yang X, Ye X, Wang Y, Cai T, Zheng X, Chen H, Cui B, Zhang F, Liu X, Mao JH, Lu Y, Chang H. Prospective Study Reveals Host Microbial Determinants of Clinical Response to Fecal Microbiota Transplant Therapy in Type 2 Diabetes Patients. Front Cell Infect Microbiol 2022; 12:820367. [PMID: 35402293 PMCID: PMC8990819 DOI: 10.3389/fcimb.2022.820367] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Increasing evidence shows that alterations in gut microbiome (GM) contribute to the development of type 2 diabetes mellitus (T2DM), and fecal microbiota transplantation (FMT) successfully treats various human diseases. However, the benefits of FMT therapy to T2DM patients remain unknown. METHODS We enrolled 17 patients with T2DM for nonblinded, one-armed intervention trial of FMT. A total of 20 healthy individuals were recruited as the baseline control. HbA1c% and metabolic parameter change were evaluated in 17 T2DM patients 12 weeks after they received FMT from healthy donors. The GM composition was characterized by 16S rRNA gene amplicon sequencing from fecal samples prior to and 12 weeks after FMT treatment. RESULTS We found that the GM of T2DM patients was reconstituted by FMT. We observed a statistically significant decrease in HbA1c% (from 7.565 ± 0.148 to 7.190 ± 0.210, p<0.01), blood glucose (from 8.483 ± 0.497 to 7.286 ± 0.454 mmol/L, p<0.01), and uric acid (from 309.4 ± 21.5 to 259.1 ± 15.8 µmol/L, p<0.01) while a significant increase in postprandial C-peptide (from 4.503 ± 0.600 to 5.471 ± 0.728 ng/ml, p<0.01) at 12 weeks after FMT. Closely evaluating the changes in these assays, we found individual variability in response to FMT treatment. Out of 17 T2DM patients, 11 were found to significantly improve T2DM symptoms. The FMT responders have significantly higher levels of the family Rikenellaceae and the genus Anaerotruncus (family Ruminococcaceae) in their pretreated fecal in comparison to nonresponders, which could predict the clinical response with an area under the curve of 0.83. CONCLUSION Our findings suggest that certain T2DM patients can potentially benefit from FMT, and the pretreated abundance of Rikenellaceae and Anaerotruncus in the fecal of patients may serve as potential biomarkers for selecting T2DM patients to receive FMT.
Collapse
Affiliation(s)
- Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huijuan Yong
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na You
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Yang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaolong Ye
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yayun Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Cai
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoling Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
708
|
Zhang M, Yang L, Zhu M, Yang B, Yang Y, Jia X, Feng L. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int J Biol Macromol 2022; 206:849-860. [PMID: 35307460 DOI: 10.1016/j.ijbiomac.2022.03.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that polysaccharides from traditional Chinese medicine positively affect diabetic kidney disease (DKD) mainly through modulating gut microbiota. Previously, we demonstrated that supplementation with the polysaccharide from Moutan Cortex (MC-Pa) alleviated DKD in rats. The study intends to investigate the dynamic modulation of MC-Pa on DKD from the gut microbiota perspective. The DKD rat model was induced by a high-fat and high-sugar diet combined with streptozotocin (STZ). The rats were then supplemented with MC-Pa (80 and 160 mg/kg BW) for 12 weeks. The results showed that MC-Pa administration relieved hyperglycemia and renal injury in DKD rats. MC-Pa also reconstructed gut microbiota, improved intestinal barrier function, reduced serum proinflammatory mediators, and elevated the short-chain fatty acid (SCFAs) contents. In addition, the dynamics of Lactobacillus and Muribaculaceae_unclassified were in a dose- and time-dependent manner. Spearman correlation analysis found that a cluster of gut microbiota phyla and genera were significantly associated with DKD-related indicators. These results demonstrated that MC-Pa positively affected DKD rats by modulating gut microbiota dynamically and had potential as a prebiotic.
Collapse
Affiliation(s)
- Meng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Licheng Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
709
|
Ferrara L, Joksimovic M, Angelo SD. Could Polyphenolic Food Intake Help in the Control of Type 2 Diabetes? A Narrative Review of the Last Evidence. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220317140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Diabetes is one of the largest global public health concerns, imposing a heavy global burden on public health as well as socio-economic development, and about 90% of adults with this condition have type 2 diabetes (T2D).
Introduction:
Beyond the hereditary factor, there are several risk factors connected to the development of this syndrome; the lifestyles play, increasingly, a predominant role in the development of the metabolic complications related to T2D and a significant role in the onset of this syndrome is played from an unbalanced diet. Polyphenolic food is plant-based food including vegetables, fruits, whole grains, tea, coffee, and nuts. In recent years, there is growing evidence that plant-foods polyphenols, due to their biological properties, may be nutraceuticals and supplementary treatments for various aspects of T2D. Polyphenols may influence glycemia and T2D through hypoglycemic properties as reduction of insulin resistance, reduced fasting blood glucose, and glycosylated hemoglobin value. Based on several in vitro, animal models and some human studies, is has been detected that polyphenol-rich products modulate carbohydrate and lipid metabolism, attenuate hyperglycemia, dyslipidemia, and insulin resistance, improve adipose tissue metabolism, and alleviate oxidative stress and stress-sensitive signaling pathways and inflammatory processes.
Methods:
This manuscript summarizes human clinical trials issued within the last 5 years linking dietary polyphenols to T2D, with a focus on polyphenolic-foods typical of the Mediterranean diet.
Results:
Polyphenolic food can also prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy, and retinopathy.
Conclusion:
Further investigations as other human clinical studies are needed to obtain the best dose and duration of supplementation with polyphenolic food in T2D patients.
Collapse
Affiliation(s)
- Luigi Ferrara
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | | | - Stefania D' Angelo
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| |
Collapse
|
710
|
Song X, Zhu Z, Qian X, Liu X, Chen S, Tang H. Multi-Omics Characterization of Type 2 Diabetes Mellitus-Induced Cognitive Impairment in the db/db Mouse Model. Molecules 2022; 27:1904. [PMID: 35335269 PMCID: PMC8951264 DOI: 10.3390/molecules27061904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder frequently accompanied by cognitive impairment. Contributing factors such as modern lifestyle, genetic predisposition, and gene environmental interactions have been postulated, but the pathogenesis remains unclear. In this study, we attempt to investigate the potential mechanisms and interventions underlying T2DM-induced cognitive deficits from the brain-gut axis perspective. A combined analysis of the brain transcriptome, plasma metabolome, and gut microbiota in db/db mice with cognitive decline was conducted. Transcriptome analysis identified 222 upregulated gene sets and 85 downregulated gene sets, mainly related to mitochondrial respiratory, glycolytic, and inflammation. In metabolomic analysis, a total of 75 significantly altered metabolites were identified, correlated with disturbances of glucose, lipid, bile acid, and steroid metabolism under disease state. Gut microbiota analysis suggested that the species abundance and diversity of db/db mice were significantly increased, with 23 significantly altered genus detected. Using the multi-omics integration, significant correlations among key genes (n = 33), metabolites (n = 41), and bacterial genera (n = 21) were identified. Our findings suggest that disturbed circulation and brain energy metabolism, especially mitochondrial-related disturbances, may contribute to cognitive impairment in db/db mice. This study provides novel insights into the functional interactions among the brain, circulating metabolites, and gut microbiota.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Zeyu Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaohang Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaoli Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201400, China;
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Huidong Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
- Department of Neurology, Shanghai Guangci Memorial Hospital, Shanghai 200025, China
| |
Collapse
|
711
|
Chen Y, Song S, Shu A, Liu L, Jiang J, Jiang M, Wu Q, Xu H, Sun J. The Herb Pair Radix Rehmanniae and Cornus Officinalis Attenuated Testicular Damage in Mice With Diabetes Mellitus Through Butyric Acid/Glucagon-Like Peptide-1/Glucagon-Like Peptide-1 Receptor Pathway Mediated by Gut Microbiota. Front Microbiol 2022; 13:831881. [PMID: 35273587 PMCID: PMC8902592 DOI: 10.3389/fmicb.2022.831881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Growing body of research indicates that Traditional Chinese Medicine (TCM) interact with gut microbiota (GM) after oral administration. Radix Rehmanniae and Cornus Officinalis (RR-CO), a well-known TCM pair, is often used to treat diabetes mellitus (DM) and its complications. The current study aimed to explore the protective effects of RR-CO on DM induced testicular damage by modulating GM. The RR-CO treatments significantly reduced hyperglycemia, ameliorated testicular ultrastructural damage and inflammation in DM model to varying degrees. Additionally, 16S-ribosomal DNA (rDNA) sequencing results showed that RR-CO treatment increased the amount of butyric acid-producing GM, such as Clostridiaceae_1 family, and decreased the abundance of Catabacter, Marvinbryantia, and Helicobacter genera. RR-CO fecal bacteria transplantation (RC-FMT) increased the abundance of Clostridiaceae_1 in the Model FMT (M-FMT) group and ameliorated testicular damage. Furthermore, treatment with RR-CO increased the fecal butyric acid level, serum Glucagon-like peptide-1 (GLP-1) level, and testicular GLP-1 receptor (GLP-1R) expression compared to those in DM mice. Finally, intraperitoneal administration of sodium butyrate (SB) significantly improved the pathological damage to the testis and reduced inflammation in the DM group. These data demonstrated a protective effect of RR-CO on DM-induced testicular damage by modulation of GM, which may be mediated by the butyric acid/GLP/GLP-1R pathway.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Siyuan Song
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Anmei Shu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liping Liu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jinjin Jiang
- School of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Ming Jiang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Huiqin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jihu Sun
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
712
|
Liu CC, Dong SS, Chen JB, Wang C, Ning P, Guo Y, Yang TL. MetaDecoder: a novel method for clustering metagenomic contigs. MICROBIOME 2022; 10:46. [PMID: 35272700 PMCID: PMC8908641 DOI: 10.1186/s40168-022-01237-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Clustering the metagenomic contigs into potential genomes is a key step to investigate the functional roles of microbial populations. Existing algorithms have achieved considerable success with simulated or real sequencing datasets. However, accurately classifying contigs from complex metagenomes is still a challenge. RESULTS We introduced a novel clustering algorithm, MetaDecoder, which can classify metagenomic contigs based on the frequencies of k-mers and coverages. MetaDecoder was built as a two-layer model with the first layer being a GPU-based modified Dirichlet process Gaussian mixture model (DPGMM), which controls the weight of each DPGMM cluster to avoid over-segmentation by dynamically dissolving contigs in small clusters and reassigning them to the remaining clusters. The second layer comprises a semi-supervised k-mer frequency probabilistic model and a modified Gaussian mixture model for modeling the coverage based on single copy marker genes. Benchmarks on simulated and real-world datasets demonstrated that MetaDecoder can be served as a promising approach for effectively clustering metagenomic contigs. CONCLUSIONS In conclusion, we developed the GPU-based MetaDecoder for effectively clustering metagenomic contigs and reconstructing microbial communities from microbial data. Applying MetaDecoder on both simulated and real-world datasets demonstrated that it could generate more complete clusters with lower contamination. Using MetaDecoder, we identified novel high-quality genomes and expanded the existing catalog of bacterial genomes. Video Abstract.
Collapse
Affiliation(s)
- Cong-Cong Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
| | - Chen Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
| | - Pan Ning
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004 P. R. China
| |
Collapse
|
713
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
Affiliation(s)
| | - Carole Nicco
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Souhaila Al Khodor
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | | | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Annalisa Terranegra
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | - Chantal Pichon
- Center for Molecular Biophysics CNRS UPR 4301, University of Orléans, Orléans, France
| | - Peter Konturek
- Teaching Hospital of the University of Jena, Jena, Germany
| | - Marvin Edeas
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
714
|
Li W, Zhang L, Xu Q, Yang W, Zhao J, Ren Y, Yu Z, Ma L. Taxifolin Alleviates DSS-Induced Ulcerative Colitis by Acting on Gut Microbiome to Produce Butyric Acid. Nutrients 2022; 14:nu14051069. [PMID: 35268045 PMCID: PMC8912346 DOI: 10.3390/nu14051069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Taxifolin is a bioflavonoid which has been used to treat Inflammatory Bowel Disease. However, taxifolin on DSS-induced colitis and gut health is still unclear. Here, we studied the effect of taxifolin on DSS-induced intestinal mucositis in mice. We measured the degree of intestinal mucosal injury and inflammatory response in DSS treated mice with or without taxifolin administration and studied the changes of fecal metabolites and intestinal microflora using 16S rRNA. The mechanism was further explored by fecal microbiota transplantation. The results showed that the weight loss and diarrhea score of the mice treated with taxifolin decreased in DSS-induced mice and longer colon length was displayed after taxifolin supplementation. Meanwhile, the expression of GPR41 and GPR43 in the colon was significantly increased by taxifolin treatment. Moreover, the expression of TNF-α, IL-1β, and IL-6 in colon tissue was inhibited by taxifolin treatment. The fecal metabolism pattern changed significantly after DSS treatment, which was reversed by taxifolin treatment. Importantly, taxifolin significantly increased the levels of butyric acid and isobutyric acid in the feces of DSS-treated mice. In terms of gut flora, taxifolin reversed the changes of Akkermansia, and further decreased uncultured_bacterium_f_Muribaculaceae. Fecal transplantation from taxifolin-treated mice showed a lower diarrhea score, reduced inflammatory response in the colon, and reduced intestinal mucosal damage, which may be related to the increased level of butyric acid in fecal metabolites. In conclusion, this study provides evidence that taxifolin can ameliorate DSS-induced colitis by altering gut microbiota to increase the production of SCFAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Libao Ma
- Correspondence: ; Tel.: +86-13317192322
| |
Collapse
|
715
|
Xie C, Gao W, Li X, Luo S, Chye FY. Study on the hypolipidemic properties of garlic polysaccharide in vitro and in normal mice as well as its dyslipidemia amelioration in type2 diabetes mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
716
|
Ji J, Zhang S, Tang L, Zhang M, Yuan M, Wang P, Gao X. Integrative analysis of fecal metabolome and gut microbiota in high-fat diet-induced hyperlipidemic rats treated with Rosa Roxburghii Tratt juice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
717
|
Chen K, Wei X, Kortesniemi M, Pariyani R, Zhang Y, Yang B. Effects of acylated and nonacylated anthocyanins extracts on gut metabolites and microbiota in diabetic Zucker rats: A metabolomic and metagenomic study. Food Res Int 2022; 153:110978. [DOI: 10.1016/j.foodres.2022.110978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022]
|
718
|
He L, Bao T, Yang Y, Wang H, Gu C, Chen J, Zhai T, He X, Wu M, Zhao L, Tong X. Exploring the pathogenesis of type 2 diabetes mellitus intestinal damp-heat syndrome and the therapeutic effect of Gegen Qinlian Decoction from the perspective of exosomal miRNA. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114786. [PMID: 34763043 DOI: 10.1016/j.jep.2021.114786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common, complex, chronic metabolic disease. A randomized, double-blind, placebo-parallel controlled clinical study has shown that Gegen Qinlian Decoction (GQD) can reduce glycosylated hemoglobin in type 2 diabetes mellitus (T2DM) intestinal damp-heat syndrome patients in a dose-dependent manner. AIM To explore the pathogenesis of T2DM intestinal damp-heat syndrome and the therapeutic effect of GQD from the perspective of exosomal microRNA (miRNA). METHODS Eligible patients were selected and treated with GQD for 3 months to evaluate their clinical efficacy. Effective cases were matched with healthy volunteers, and saliva samples were collected. Exosomal miRNA was extracted from saliva and analyzed by chip sequencing. Subsequently, the function of the differential gene and the signal transduction pathway were analyzed using bioinformatics technology. Finally, three target miRNAs were randomly selected from the T2DM group/healthy group, and two target miRNAs in the T2DM before treatment/after treatment group were randomly selected for qPCR verification. Finally, we conducted a correlation analysis of the miRNAs and clinical indicators. The registration number for this research is ChiCTR-IOR-15006626. RESULTS (1) The expression of exosomal miRNA chips showed that there were 14 differentially expressed miRNAs in the T2DM group/healthy group, and 26 differentially expressed miRNAs in the T2DM before treatment/after treatment group. (2) Enrichment results showed that in the T2DM group/healthy group, it was primarily related to cell development, body metabolism, TGF-β, and ErbB signaling pathways. In the T2DM before treatment/after treatment group, it was mainly related to cellular metabolic regulation processes, and insulin, Wnt, and AMPK signaling pathways. (3) The qPCR verification showed that the expressions of hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-216b-5p in the T2DM group was higher (P<0.05). Following GQD treatment, hsa-miR-342-3p and hsa-miR-221-3p were significantly downregulated (P<0.05). (4) hsa-miR-9-5p was positively correlated with BMI (P<0.05), and hsa-miR-150-5p was positively correlated with total cholesterol and triglycerides (P<0.05). The GQD efficacy-related gene hsa-miR-342-3p was positively correlated with the patient's initial blood glucose level (P<0.05), and hsa-miR-221-3p was positively correlated with total cholesterol and triglycerides (P<0.05). CONCLUSION The exosomal miRNA expression profile and signaling pathways related to T2DM intestinal damp-heat syndrome and the efficacy of GQD were established, which provides an alternative strategy for precision traditional Chinese medicine treatment.
Collapse
Affiliation(s)
- LiSha He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Bao
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingying Yang
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Han Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chengjuan Gu
- Shenzhen Hospital of Guang Zhou University of Chinese Medicine (Futian), Shenzhen, 518000, China
| | - Jia Chen
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Tiangang Zhai
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinhui He
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650000, China
| | - Mengyi Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Linhua Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, 130117, China.
| |
Collapse
|
719
|
Habitual Dietary Fiber Intake, Fecal Microbiota, and Hemoglobin A1c Level in Chinese Patients with Type 2 Diabetes. Nutrients 2022; 14:nu14051003. [PMID: 35267978 PMCID: PMC8912884 DOI: 10.3390/nu14051003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
High-fiber diet interventions have been proven to be beneficial for gut microbiota and glycemic control in diabetes patients. However, the effect of a low level of fiber in habitual diets remains unclear. This study aims to examine the associations of habitual dietary fiber intake with gut microbiome profiles among Chinese diabetes patients and identify differential taxa that mediated associations of dietary fiber with HbA1c level. Two cross-sectional studies and one longitudinal study were designed based on two follow-up surveys in a randomized trial conducted during 2015−2017. The study included 356 and 310 participants in the first and second follow-ups, respectively, with 293 participants in common in both surveys. Dietary fiber intake was calculated based on a 3-day 24-h diet recall at each survey and was classified into a lower or a higher group according to the levels taken based on the two surveys using 7.2 g/day as a cut-off value. HbA1c was assayed to assess glycemic status using a cut-off point of 7.0% and 8.0%. Microbiome was profiled by 16S rRNA sequencing. A high habitual dietary fiber intake was associated with a decrease in α-diversity in both the cross-sectional and longitudinal analyses. At the first follow−up, phylum Firmicutes and Fusobacteria were negatively associated with a higher dietary fiber intake (p < 0.05, Q < 0.15); at the second follow-up, genus Adlercreutzia, Prevotella, Ruminococcus, and Desulfovibrio were less abundant in patients taking higher dietary fiber (p < 0.05, Q < 0.15); genus Desulfovibrio and Ruminococcaceae (Unknown), two identified differential taxa by HbA1c level, were negatively associated with dietary fiber intake in both the cross-sectional and longitudinal analyses, and mediated the dietary fiber-HbA1c associations among patients taking dietary fiber ≥ 7.2 g/day (mediation effect β [95%CI]: −0.019 [−0.043, −0.003], p = 0.018 and −0.019 [−0.046, −0.003], p = 0.016). Our results suggest that habitual dietary fiber intake has a beneficial effect on gut microbiota in Chinese diabetes patients. Further studies are needed to confirm our results.
Collapse
|
720
|
Wei S, Brejnrod AD, Trivedi U, Mortensen MS, Johansen MY, Karstoft K, Vaag AA, Ried-Larsen M, Sørensen SJ. Impact of intensive lifestyle intervention on gut microbiota composition in type 2 diabetes: a post-hoc analysis of a randomized clinical trial. Gut Microbes 2022; 14:2005407. [PMID: 34965188 PMCID: PMC8726663 DOI: 10.1080/19490976.2021.2005407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) management is based on combined pharmacological and lifestyle intervention approaches. While their clinical benefits are well studied, less is known about their effects on the gut microbiota. We aimed to investigate if an intensive lifestyle intervention combined with conventional standard care leads to a different gut microbiota composition compared to standard care alone treatment in individuals with T2D, and if gut microbiota is associated with the clinical benefits of the treatments. Ninety-eight individuals with T2D were randomized to either an intensive lifestyle intervention combined with standard care group (N = 64), or standard care alone group (N = 34) for 12 months. All individuals received standardized, blinded, target-driven medical therapy, and individual counseling. The lifestyle intervention group moreover received intensified physical training and dietary plans. Clinical characteristics and fecal samples were collected at baseline, 3-, 6-, 9-, and 12-month follow-up. The gut microbiota was profiled with 16S rRNA gene amplicon sequencing. There were no statistical differences in the change of gut microbiota composition between treatments after 12 months, except minor and transient differences at month 3. The shift in gut microbiota alpha diversity at all time windows did not correlate with the change in clinical characteristics, and the gut microbiota did not mediate the treatment effect on clinical characteristics. The clinical benefits of intensive lifestyle and/or pharmacological interventions in T2D are unlikely to be explained by, or causally related to, changes in the gut microbiota composition.
Collapse
Affiliation(s)
- Shaodong Wei
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark,National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Asker Daniel Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark,Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Steen Mortensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Yun Johansen
- Center of Inflammation and Metabolism and Center for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kristian Karstoft
- Center of Inflammation and Metabolism and Center for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark,Department of Clinical Pharmacology, Bispebjerg Hospital,University of Copenhagen, Copenhagen, Denmark
| | - Allan Arthur Vaag
- Center of Inflammation and Metabolism and Center for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mathias Ried-Larsen
- Center of Inflammation and Metabolism and Center for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark,CONTACT Søren Johannes Sørensen Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Bldg. 1, CopenhagenDK-2100, Denmark
| |
Collapse
|
721
|
Petakh P, Kamyshna I, Nykyforuk A, Yao R, Imbery JF, Oksenych V, Korda M, Kamyshnyi A. Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses 2022; 14:477. [PMID: 35336884 PMCID: PMC8955861 DOI: 10.3390/v14030477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019, or COVID-19, is a major challenge facing scientists worldwide. Alongside the lungs, the system of organs comprising the GI tract is commonly targeted by COVID-19. The dysbiotic modulations in the intestine influence the disease severity, potentially due to the ability of the intestinal microbiota to modulate T lymphocyte functions, i.e., to suppress or activate T cell subpopulations. The interplay between the lungs and intestinal microbiota is named the gut-lung axis. One of the most usual comorbidities in COVID-19 patients is type 2 diabetes, which induces changes in intestinal microbiota, resulting in a pro-inflammatory immune response, and consequently, a more severe course of COVID-19. However, changes in the microbiota in this comorbid pathology remain unclear. Metformin is used as a medication to treat type 2 diabetes. The use of the type 2 diabetes drug metformin is a promising treatment for this comorbidity because, in addition to its hypoglycemic action, it can increase amount of intestinal bacteria that induce regulatory T cell response. This dual activity of metformin can reduce lung damage and improve the course of the COVID-19 disease.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine;
| | - Andriy Nykyforuk
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
| | - Rouan Yao
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - John F. Imbery
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
722
|
Zhang X, Wang H, Xie C, Hu Z, Zhang Y, Peng S, He Y, Kang J, Gao H, Yuan H, Liu Y, Fan G. Shenqi compound ameliorates type-2 diabetes mellitus by modulating the gut microbiota and metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123189. [PMID: 35219959 DOI: 10.1016/j.jchromb.2022.123189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
The gut microbiota (GM) and metabolites are important factors in mediating the development of type-2 diabetes mellitus (T2DM). An imbalance in the gut microbiota and metabolites can disrupt the function of the intestinal barrier, cause changes in the permeability of the intestinal mucosa and promote the immune inflammatory response, thereby aggravating the fluctuation of blood glucose level and promoting the occurrence and development of the chronic complications of DM. Manipulating the GM and metabolites is a promising therapeutic intervention and is being studied extensively. Shenqi compound (SQC) is a traditional Chinese medicine formulation, which has been widely used to improve T2DM. Studies have demonstrated that SQC can reduce glycemic variability, alleviate the inflammatory response, etc. However, its underlying mechanism remains unknown. Therefore, in this experiment, We administered SQC to Goto-Kakizaki (GK) rats and evaluated its effect on blood glucose homeostasis and the intestinal mucosal barrier. We identified the profiles of the GM and metabolites with the aid of 16S rDNA gene sequencing and non-target metabolomics analysis. It showed that SQC intervention could reduce glycemic variability, regulate serum levels of glucagon and insulin, and improve injury to the intestinal mucosal barrier of GK rats. In the gut, the ratio of bacteria of the phyla Bacteroidetes/Firmicutes could be improved after SQC intervention. SQC also regulated the relative abundance of Prevotellaceae, Butyricimonas, Bacteroides, Blautia, Roseburia, Lactobacillus, and Rothia. We found out that expression of 40 metabolites was significantly improved after SQC intervention. Further analyses of metabolic pathways indicated that the therapeutic effect of SQC might be related predominantly to its ability to improve gluconeogenesis/glycolysis, amino acid metabolism, lipid metabolism, citrate cycle, and butanoate metabolism. These results suggest that SQC may exert a beneficial role in T2DM by modulating the GM and metabolites in different pathways.
Collapse
Affiliation(s)
- Xiyu Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heting Wang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Zhang
- First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Sihan Peng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchi He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Kang
- Department of Anorectal, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haipo Yuan
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
723
|
Ge X, Zhang A, Li L, Sun Q, He J, Wu Y, Tan R, Pan Y, Zhao J, Xu Y, Tang H, Gao Y. Application of machine learning tools: Potential and useful approach for the prediction of type 2 diabetes mellitus based on the gut microbiome profile. Exp Ther Med 2022; 23:305. [PMID: 35340868 PMCID: PMC8931625 DOI: 10.3892/etm.2022.11234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/09/2022] [Indexed: 12/07/2022] Open
Abstract
The gut microbiota plays an important role in the regulation of the immune system and the metabolism of the host. The aim of the present study was to characterize the gut microbiota of patients with type 2 diabetes mellitus (T2DM). A total of 118 participants with newly diagnosed T2DM and 89 control subjects were recruited in the present study; six clinical parameters were collected and the quantity of 10 different types of bacteria was assessed in the fecal samples using quantitative PCR. Taking into consideration the six clinical variables and the quantity of the 10 different bacteria, 3 predictive models were established in the training set and test set, and evaluated using a confusion matrix, area under the receiver operating characteristic curve (AUC) values, sensitivity (recall), specificity, accuracy, positive predictive value and negative predictive value (npv). The abundance of Bacteroides, Eubacterium rectale and Roseburia inulinivorans was significantly lower in the T2DM group compared with the control group. However, the abundance of Enterococcus was significantly higher in the T2DM group compared with the control group. In addition, Faecalibacterium prausnitzii, Enterococcus and Roseburia inulinivorans were significantly associated with sex status while Bacteroides, Bifidobacterium, Enterococcus and Roseburia inulinivorans were significantly associated with older age. In the training set, among the three models, support vector machine (SVM) and XGboost models obtained AUC values of 0.72 and 0.70, respectively. In the test set, only SVM obtained an AUC value of 0.77, and the precision and specificity were both above 0.77, whereas the accuracy, recall and npv were above 0.60. Furthermore, Bifidobacterium, age and Roseburia inulinivorans played pivotal roles in the model. In conclusion, the SVM model exhibited the highest overall predictive power, thus the combined use of machine learning tools with gut microbiome profiling may be a promising approach for improving early prediction of T2DM in the near feature.
Collapse
Affiliation(s)
- Xiaochun Ge
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Aimin Zhang
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lihui Li
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Qitian Sun
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jianqiu He
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yu Wu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Rundong Tan
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Yingxia Pan
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Hui Tang
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
724
|
Qin X, Zou H. The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmol 2022; 22:86. [PMID: 35193549 PMCID: PMC8862382 DOI: 10.1186/s12886-022-02296-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic syndrome characterized by hyperglycemia. Diabetic retinopathy (DR) is the most common complication of DM and the leading cause of blindness in the working-age population of the Western world. Lipopolysaccharides (LPS) is an essential ingredient of the outer membrane of gram-negative bacteria, which induces systemic inflammatory responses and cellular apoptotic changes in the host. High-level serum LPS has been found in diabetic patients at the advanced stages, which is mainly due to gut leakage and dysbiosis. In this light, increasing evidence points to a strong correlation between systemic LPS challenge and the progression of DR. Although the underlying molecular mechanisms have not been fully elucidated yet, LPS-related pathobiological events in the retina may contribute to the exacerbation of vasculopathy and neurodegeneration in DR. In this review, we focus on the involvement of LPS in the progression of DR, with emphasis on the blood-retina barrier dysfunction and dysregulated glial activation. Eventually, we summarize the recent advances in the therapeutic strategies for antagonising LPS activity, which may be introduced to DR treatment with promising clinical value.
Collapse
Affiliation(s)
- Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China. .,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China. .,National Clinical Research Center for Eye Diseases, Shanghai, China. .,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
| |
Collapse
|
725
|
Johansen J, Plichta DR, Nissen JN, Jespersen ML, Shah SA, Deng L, Stokholm J, Bisgaard H, Nielsen DS, Sørensen SJ, Rasmussen S. Genome binning of viral entities from bulk metagenomics data. Nat Commun 2022; 13:965. [PMID: 35181661 PMCID: PMC8857322 DOI: 10.1038/s41467-022-28581-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/28/2022] [Indexed: 12/26/2022] Open
Abstract
Despite the accelerating number of uncultivated virus sequences discovered in metagenomics and their apparent importance for health and disease, the human gut virome and its interactions with bacteria in the gastrointestinal tract are not well understood. This is partly due to a paucity of whole-virome datasets and limitations in current approaches for identifying viral sequences in metagenomics data. Here, combining a deep-learning based metagenomics binning algorithm with paired metagenome and metavirome datasets, we develop Phages from Metagenomics Binning (PHAMB), an approach that allows the binning of thousands of viral genomes directly from bulk metagenomics data, while simultaneously enabling clustering of viral genomes into accurate taxonomic viral populations. When applied on the Human Microbiome Project 2 (HMP2) dataset, PHAMB recovered 6,077 high-quality genomes from 1,024 viral populations, and identified viral-microbial host interactions. PHAMB can be advantageously applied to existing and future metagenomes to illuminate viral ecological dynamics with other microbiome constituents.
Collapse
Affiliation(s)
- Joachim Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jakob Nybo Nissen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Statens Serum Institut, Viral & Microbial Special diagnostics, Copenhagen, Denmark
| | - Marie Louise Jespersen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ling Deng
- Section of Food Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Section of Food Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Sandris Nielsen
- Section of Food Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
726
|
Thomson P, Santibáñez R, Rodríguez-Salas C, Flores-Yañez C, Garrido D. Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. PeerJ 2022; 10:e12695. [PMID: 35190784 PMCID: PMC8857902 DOI: 10.7717/peerj.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Obesity is a multifactorial nutritional disorder highly prevalent in dogs, observed in developed and developing countries. It is estimated that over 40% of the canine population suffers from obesity, which manifests in an increased risk of chronic osteoarticular, metabolic, and cardiovascular diseases. The intestinal microbiome of obese animals shows increases in the abundance of certain members capable of extracting energy from complex polysaccharides. The objective of this study was to compare the composition and predicted function of the intestinal microbiome of Chilean obese and normal weight adult dogs. Twenty clinically healthy dogs were classified according to their body condition score (BCS) as obese (n = 10) or normal weight (n = 10). DNA was extracted from stool samples, followed by next-generation sequencing of the 16S rRNA V3-V4 region and bioinformatics analysis targeting microbiome composition and function. Significant differences were observed between these groups at the phylum level, with anincrease in Firmicutes and a decrease in Bacteroidetes in obese dogs. Microbiome compositions of these animals correlated with their BCS, and obese dogs showed enrichment in pathways related to transport, chemotaxis, and flagellar assembly. These results highlight the differences in the gut microbiome between normal weight and obese dogs and prompt further research to improve animal health by modulating the gut microbiome.
Collapse
Affiliation(s)
- Pamela Thomson
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | - Rodrigo Santibáñez
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Rodríguez-Salas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | | | - Daniel Garrido
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
727
|
Kashif RR, D’Cunha NM, Mellor DD, Alexopoulos NI, Sergi D, Naumovski N. Prickly Pear Cacti (Opuntia spp.) Cladodes as a Functional Ingredient for Hyperglycemia Management: A Brief Narrative Review. Medicina (B Aires) 2022; 58:medicina58020300. [PMID: 35208623 PMCID: PMC8874358 DOI: 10.3390/medicina58020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of obesity is increasing along with its comorbidities, including type 2 diabetes mellitus (T2DM). From a pathophysiological perspective, T2DM arises as a consequence of insulin resistance and pancreatic β-cell dysfunction, which together induce chronic hyperglycemia. The pharmacological treatment of T2DM specifically focuses on its management, rather than remission, with a lack of pharmacological agents to prevent the onset of the disease. Considering the role of unhealthy dietary patterns on the development of T2DM, identifying novel food ingredients and bioactive substances may provide new avenues by which to address the T2DM epidemic. In this brief review, we have summarized the latest findings on the consumption of the prickly pear (PP; Opuntia spp.) cladode as a potential nutritional tool for the management of hyperglycemia. The consumption of prickly pear cladodes was reported to exert hypoglycemic effects, making it a potential cost-effective nutritional intervention for the management of T2DM. Several studies have demonstrated that the consumption of prickly pear cladodes and the related products reduced post-prandial glucose levels. The cladodes’ high fiber content may be implicated in improving glycemic control, by affecting glucose absorption and effectively slowing its release into the blood circulation. Given these potential hypoglycemic effects, prickly pear cladodes may represent a potential functional food ingredient to improve glycemic control and counter the negative metabolic effects of the modern Western diet. Nonetheless, in consideration of the lack of evidence on the chronic effects of the prickly pear cladode, future research aimed at evaluating its long-term effects on glycemic control is warranted.
Collapse
Affiliation(s)
- Rao Raahim Kashif
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; (R.R.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; (R.R.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Duane D. Mellor
- Aston Medical School, Aston University, Birmingham B4 7ET, UK;
| | | | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia; (R.R.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
- Correspondence: ; Tel.: +61-2-6206-8719
| |
Collapse
|
728
|
Li J, Zhang AH, Wu FF, Wang XJ. Alterations in the Gut Microbiota and Their Metabolites in Colorectal Cancer: Recent Progress and Future Prospects. Front Oncol 2022; 12:841552. [PMID: 35223525 PMCID: PMC8875205 DOI: 10.3389/fonc.2022.841552] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer morbidity and mortality worldwide. The etiology and pathogenesis of CRC remain unclear. A growing body of evidence suggests dysbiosis of gut bacteria can contribute to the occurrence and development of CRC by generating harmful metabolites and changing host physiological processes. Metabolomics, a systems biology method, will systematically study the changes in metabolites in the physiological processes of the body, eventually playing a significant role in the detection of metabolic biomarkers and improving disease diagnosis and treatment. Metabolomics, in particular, has been highly beneficial in tracking microbially derived metabolites, which has substantially advanced our comprehension of host-microbiota metabolic interactions in CRC. This paper has briefly compiled recent research progress of the alterations of intestinal flora and its metabolites associated with CRC and the application of association analysis of metabolomics and gut microbiome in the diagnosis, prevention, and treatment of CRC; furthermore, we discuss the prospects for the problems and development direction of this association analysis in the study of CRC. Gut microbiota and their metabolites influence the progression and causation of CRC, and the association analysis of metabolomics and gut microbiome will provide novel strategies for the prevention, diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-hua Zhang
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
729
|
Rein M, Ben-Yacov O, Godneva A, Shilo S, Zmora N, Kolobkov D, Cohen-Dolev N, Wolf BC, Kosower N, Lotan-Pompan M, Weinberger A, Halpern Z, Zelber-Sagi S, Elinav E, Segal E. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Med 2022; 20:56. [PMID: 35135549 PMCID: PMC8826661 DOI: 10.1186/s12916-022-02254-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dietary modifications are crucial for managing newly diagnosed type 2 diabetes mellitus (T2DM) and preventing its health complications, but many patients fail to achieve clinical goals with diet alone. We sought to evaluate the clinical effects of a personalized postprandial-targeting (PPT) diet on glycemic control and metabolic health in individuals with newly diagnosed T2DM as compared to the commonly recommended Mediterranean-style (MED) diet. METHODS We enrolled 23 adults with newly diagnosed T2DM (aged 53.5 ± 8.9 years, 48% males) for a randomized crossover trial of two 2-week-long dietary interventions. Participants were blinded to their assignment to one of the two sequence groups: either PPT-MED or MED-PPT diets. The PPT diet relies on a machine learning algorithm that integrates clinical and microbiome features to predict personal postprandial glucose responses (PPGR). We further evaluated the long-term effects of PPT diet on glycemic control and metabolic health by an additional 6-month PPT intervention (n = 16). Participants were connected to continuous glucose monitoring (CGM) throughout the study and self-recorded dietary intake using a smartphone application. RESULTS In the crossover intervention, the PPT diet lead to significant lower levels of CGM-based measures as compared to the MED diet, including average PPGR (mean difference between diets, - 19.8 ± 16.3 mg/dl × h, p < 0.001), mean glucose (mean difference between diets, - 7.8 ± 5.5 mg/dl, p < 0.001), and daily time of glucose levels > 140 mg/dl (mean difference between diets, - 2.42 ± 1.7 h/day, p < 0.001). Blood fructosamine also decreased significantly more during PPT compared to MED intervention (mean change difference between diets, - 16.4 ± 37 μmol/dl, p < 0.0001). At the end of 6 months, the PPT intervention leads to significant improvements in multiple metabolic health parameters, among them HbA1c (mean ± SD, - 0.39 ± 0.48%, p < 0.001), fasting glucose (- 16.4 ± 24.2 mg/dl, p = 0.02) and triglycerides (- 49 ± 46 mg/dl, p < 0.001). Importantly, 61% of the participants exhibited diabetes remission, as measured by HbA1c < 6.5%. Finally, some clinical improvements were significantly associated with gut microbiome changes per person. CONCLUSION In this crossover trial in subjects with newly diagnosed T2DM, a PPT diet improved CGM-based glycemic measures significantly more than a Mediterranean-style MED diet. Additional 6-month PPT intervention further improved glycemic control and metabolic health parameters, supporting the clinical efficacy of this approach. TRIAL REGISTRATION ClinicalTrials.gov number, NCT01892956.
Collapse
Affiliation(s)
- Michal Rein
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.,School of Public Health, University of Haifa, 3498838, Haifa, Israel
| | - Orly Ben-Yacov
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Pediatric Diabetes Unit, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
| | - Niv Zmora
- Immunology Department, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Digestive Center, Tel Aviv Sourasky Medical Center, 6423906, Tel Aviv, Israel.,Internal Medicine Department, Tel Aviv Sourasky Medical Center, 6423906, Tel Aviv, Israel
| | - Dmitry Kolobkov
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Cohen-Dolev
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Bat-Chen Wolf
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Kosower
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Zamir Halpern
- Digestive Center, Tel Aviv Sourasky Medical Center, 6423906, Tel Aviv, Israel.,Internal Medicine Department, Tel Aviv Sourasky Medical Center, 6423906, Tel Aviv, Israel
| | - Shira Zelber-Sagi
- School of Public Health, University of Haifa, 3498838, Haifa, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001, Rehovot, Israel. .,Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
730
|
Du Y, Neng Q, Li Y, Kang Y, Guo L, Huang X, Chen M, Yang F, Hong J, Zhou S, Zhao J, Yu F, Su H, Kong X. Gastrointestinal Autonomic Neuropathy Exacerbates Gut Microbiota Dysbiosis in Adult Patients With Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 11:804733. [PMID: 35211420 PMCID: PMC8861497 DOI: 10.3389/fcimb.2021.804733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The diabetic autonomic neuropathy is one of the most common complications in type 2 diabetes mellitus (T2DM), especially gastrointestinal autonomic neuropathy (GAN), which occurs in up to 75% of patients. The study aimed to investigate the gut microbiota composition, structure, and function in T2DM patients with GAN (T2DM_GAN) and set up a link between gut microbiota and clinical characteristics of patients. METHODS DNA was extracted from fecal samples of three groups using the kit method: healthy volunteers (n = 19), the patients with T2DM (n = 76), and T2DM_GAN (n = 27). Sequencing of 16S ribosomal DNA was performed using the MiSeq platform. RESULTS According to the clinical data, higher age, lower triglyceride, and lower body mass index were the main features of patients with T2DM_GAN. The gut microbiota analysis showed that Bacteroidetes, Firmicutes, and Proteobacteria constituted the three dominant phyla in healthy individuals. In addition, the gut microbiota structure and function of T2DM_GAN patients were clearly different from that of T2DM patients. T2DM patients were characterized by Fusobacteria, Fusobacteriia, Fusobacteriales, Fusobacteriaceae, Fusobacterium, Lachnoclostridium, and Fusobacterium_mortiferum. Those gut microbiota may be involved in carotenoid and flavonoid biosyntheses. Relatively, the Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, Escherichia-Shigella, Megasphaera, Escherichia_coli, and Megasphaera_elsdenii were characteristic in the T2DM_GAN patients. Those may be involved in bacterial invasion of epithelial cells and pathogenic Escherichia coli infection. CONCLUSIONS GAN exacerbated gut microbiota dysbiosis in adult patients with T2DM. The findings indicated that phyla Fusobacteria and class Gammaproteobacteria were closely related to the occurrence of T2DM. Especially the latter may promote T2DM_GAN.
Collapse
Affiliation(s)
- Yuhui Du
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Endocrinology Branch, The First People’s Hospital of Yunnan Province, Kunming, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qiongli Neng
- Endocrinology Branch, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yu Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Liqiong Guo
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xinwei Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Minghui Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Fan Yang
- Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jingan Hong
- Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shuai Zhou
- Neurosurgery Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jianhua Zhao
- Neurosurgery Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Fubing Yu
- Digestive System Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Heng Su
- Endocrinology Branch, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiangyang Kong
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
731
|
Antidiabetic Effects of Pediococcus acidilactici pA1c on HFD-Induced Mice. Nutrients 2022; 14:nu14030692. [PMID: 35277051 PMCID: PMC8839473 DOI: 10.3390/nu14030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-β index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1β, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.
Collapse
|
732
|
Chiu KK, Bashir ST, Abdel-Hamid AM, Clark LV, Laws MJ, Cann I, Nowak RA, Flaws JA. Isolation of DiNP-Degrading Microbes from the Mouse Colon and the Influence DiNP Exposure Has on the Microbiota, Intestinal Integrity, and Immune Status of the Colon. TOXICS 2022; 10:toxics10020075. [PMID: 35202261 PMCID: PMC8877566 DOI: 10.3390/toxics10020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Di-isononyl phthalate (DiNP) is a plasticizer used to impart flexibility or stability in a variety of products including polyvinyl chloride, cable coatings, artificial leather, and footwear. Previous studies have examined the impact of DiNP on gut integrity and the colonic immune microenvironment, but this study further expands the research by examining whether DiNP exposure alters the colonic microbiota and various immune markers. Previous studies have also revealed that environmental microbes degrade various phthalates, but no studies have examined whether anaerobic gut bacteria can degrade DiNP. Thus, this study tested the hypothesis that DiNP exposure alters the gut microbiota and immune-related factors, and that anaerobic bacteria in the gut can utilize DiNP as the sole carbon source. To test this hypothesis, adult female mice were orally dosed with corn oil or various doses of DiNP for 10–14 consecutive days. After the treatment period, mice were euthanized during diestrus. Colonic contents were collected for full-length 16S rRNA gene sequencing to identify the bacteria in the colon contents. Sanger sequencing of the 16S rRNA gene was used to identify bacteria that were able to grow in Bacteroides minimal media with DiNP as the sole carbon source. Colon tissues were collected for immunohistochemistry of immune(-related) factors. An environmentally relevant dose of DiNP (200 µg/kg) significantly increased a Lachnoclostridium taxon and decreased Blautia compared to the control. Collectively, minimal changes in the colonic microbiota were observed as indicated by non-significant beta-diversities between DiNP treatments and control. Furthermore, three strains of anaerobic bacteria derived from the colon were identified to use DiNP as the sole carbon source. Interestingly, DiNP exposure did not alter protein levels of interleukin-6, tumor necrosis factor alpha, claudin-1, and mucin-1 compared to the control. Collectively, these findings show that DiNP exposure alters the gut microbiota and that the gut contains DiNP-degrading microbes.
Collapse
Affiliation(s)
- Karen K. Chiu
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, College of Liberal Arts & Sciences, University of Illinois, Urbana, IL 61801, USA; (S.T.B.); (I.C.)
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Ahmed M. Abdel-Hamid
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA;
| | - Lindsay V. Clark
- High Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, USA;
| | - Mary J. Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
| | - Isaac Cann
- Department of Molecular and Integrative Physiology, College of Liberal Arts & Sciences, University of Illinois, Urbana, IL 61801, USA; (S.T.B.); (I.C.)
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA;
| | - Romana A. Nowak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA;
| | - Jodi A. Flaws
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA;
- Correspondence:
| |
Collapse
|
733
|
Wu H, Fang X, Jin D, Miao R, Wei J, Zhao T, Dai D, Liao J, Wang J, Lian F, Tian J. Efficacy and Mechanism of the Jiangtang Tiaozhi Recipe in the Management of Type 2 Diabetes and Dyslipidaemia: A Clinical Trial Protocol. Front Pharmacol 2022; 13:827697. [PMID: 35185579 PMCID: PMC8855101 DOI: 10.3389/fphar.2022.827697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) complicated with dyslipidaemia is associated with a high risk of cardiovascular diseases. The Jiangtang Tiaozhi (JTTZ) recipe is a Chinese herbal formula that has been used to regulate the blood glucose and lipid levels for many years. Interestingly, a previous study has demonstrated its efficacy; however, the associated mechanism remains unclear. We hypothesised that the therapeutic effect of the JTTZ on patients with T2DM may be mediated by the modulation of metabolites secreted by the gut microbiota. This study aims to examine this mechanism. Methods and analysis: This study is a randomised, positive drug parallel-controlled, open-label clinical trial in patients with T2DM and dyslipidaemia. A total of 96 patients will be recruited and randomly assigned to treatment with JTTZ or metformin for 12 weeks. The primary outcome will be the rates of effectively regulated blood glucose and lipid levels (measured with the levels of glycated haemoglobin, fasting plasma glucose, 2-h plasma glucose, triglyceride, and low-density lipoprotein cholesterol). The secondary outcomes will be the changes in body weight, body mass index, and waist circumference and Traditional Chinese Medicine symptom scores. In addition, 16S rRNA gene sequencing will be performed on the gut microbiota obtained from faeces, and metabolomics analysis will be performed based on blood and gut microbiota samples. Intention-to-treat, per-protocol analysis and safety analysis will be performed. Clinical trial registration number: https://clinicaltrials.gov/ct2/show/NCT04623567
Collapse
Affiliation(s)
- Haoran Wu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Fang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runyu Miao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Tianyu Zhao
- Department of Endocrinology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Dai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangquan Liao
- Department of National Integrated Traditional and Western Medicine Centre for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Jia Wang
- Department of General Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Jiaxing Tian,
| | - Jiaxing Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Jiaxing Tian,
| |
Collapse
|
734
|
Tian JL, Si X, Shu C, Wang YH, Tan H, Zang ZH, Zhang WJ, Xie X, Chen Y, Li B. Synergistic Effects of Combined Anthocyanin and Metformin Treatment for Hyperglycemia In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1182-1195. [PMID: 35044756 DOI: 10.1021/acs.jafc.1c07799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanism underlying the hypoglycemic effect of the simultaneous use of metformin and anthocyanin-rich foods is not yet clear. Hence, the effects and possible mechanisms of action of these substances, alone and in combination, were evaluated in insulin-resistant HepG2 cells and a diabetic mouse model. The results indicated that anthocyanin and metformin had a significant synergistic effect on glucose consumption (CI < 0.9) compared with metformin alone in HepG2 cells. In the mouse model, combined treatment (50 and 100 mg/kg metformin + anthocyanin groups) demonstrated synergistic restorative effects on the blood glucose level, insulin resistance, and organ damage in the liver, pancreas, and ileum. Additionally, combined metformin and anthocyanin treatment suppressed protein tyrosine phosphatase 1B expression and regulated the PI3K/AKT/GSK3β pathway. Combined treatment also altered the gut microbial composition and structure by increasing the relative abundance of beneficial bacteria and the short-chain fatty acid content. These results suggest that the use of anthocyanins can enhance the efficacy of metformin treatment for hyperglycemia and provide a reference for further clinical research regarding nutrition and supplementary treatment.
Collapse
Affiliation(s)
- Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yue-Hua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Zhi-Huan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Wei-Jia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Xu Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| |
Collapse
|
735
|
Beulens JWJ, Pinho MGM, Abreu TC, den Braver NR, Lam TM, Huss A, Vlaanderen J, Sonnenschein T, Siddiqui NZ, Yuan Z, Kerckhoffs J, Zhernakova A, Brandao Gois MF, Vermeulen RCH. Environmental risk factors of type 2 diabetes-an exposome approach. Diabetologia 2022; 65:263-274. [PMID: 34792619 DOI: 10.1007/s00125-021-05618-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is one of the major chronic diseases accounting for a substantial proportion of disease burden in Western countries. The majority of the burden of type 2 diabetes is attributed to environmental risks and modifiable risk factors such as lifestyle. The environment we live in, and changes to it, can thus contribute substantially to the prevention of type 2 diabetes at a population level. The 'exposome' represents the (measurable) totality of environmental, i.e. nongenetic, drivers of health and disease. The external exposome comprises aspects of the built environment, the social environment, the physico-chemical environment and the lifestyle/food environment. The internal exposome comprises measurements at the epigenetic, transcript, proteome, microbiome or metabolome level to study either the exposures directly, the imprints these exposures leave in the biological system, the potential of the body to combat environmental insults and/or the biology itself. In this review, we describe the evidence for environmental risk factors of type 2 diabetes, focusing on both the general external exposome and imprints of this on the internal exposome. Studies provided established associations of air pollution, residential noise and area-level socioeconomic deprivation with an increased risk of type 2 diabetes, while neighbourhood walkability and green space are consistently associated with a reduced risk of type 2 diabetes. There is little or inconsistent evidence on the contribution of the food environment, other aspects of the social environment and outdoor temperature. These environmental factors are thought to affect type 2 diabetes risk mainly through mechanisms incorporating lifestyle factors such as physical activity or diet, the microbiome, inflammation or chronic stress. To further assess causality of these associations, future studies should focus on investigating the longitudinal effects of our environment (and changes to it) in relation to type 2 diabetes risk and whether these associations are explained by these proposed mechanisms.
Collapse
Affiliation(s)
- Joline W J Beulens
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Maria G M Pinho
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Taymara C Abreu
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Nicole R den Braver
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Thao M Lam
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Tabea Sonnenschein
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, the Netherlands
| | - Noreen Z Siddiqui
- Department of Epidemiology & Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Zhendong Yuan
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Milla F Brandao Gois
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Roel C H Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
736
|
Arabi SM, Bahrami LS, Rahnama I, Sahebkar A. Impact of synbiotic supplementation on cardiometabolic and anthropometric indices in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2022; 176:106061. [PMID: 34999222 DOI: 10.1016/j.phrs.2022.106061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Probiotic and synbiotic products are being widely used by a large number of patients and clinicians; however, effects on cardiometabolic indices in patients with the metabolic syndrome remain unclear. This meta-analysis aimed to evaluate the effects of a synbiotic intervention on lipid profile, insulin resistance, blood pressure, anthropometric parameters, and inflammatory markers. METHODS We searched MEDLINE, Scopus, and Clarivate Analytics Web of Science by October 2021. Studies were selected if they reported the effectiveness of the synbiotic intervention on cardiometabolic and anthropometric indices. The weighted mean difference was calculated as the effect size using a random-effects model. Subgroup analyses were conducted to determine sources of heterogeneity. Dose-dependent effects were assessed using a dose-response meta-analysis of differences in means. RESULTS Five trials (1049 participants) were finally included in the meta-analysis. Synbiotic intervention significantly reduced serum insulin levels (WMD, -6.39 μU/mL; 95%CI, (-7.2 to -5.4); p = 0.001, I2 = 88.2%, N = 5), triglycerides (WMD, -20.3 mg/dl; 95%CI, (-32.7 to -7.8); p = 0.001, I2 = 87.7, N = 5), total cholesterol (WMD, -7.8 mg/dl; 95%CI, ( -12.5 to -3.02); p = 0.001; I2 = 66.7%, N = 5), low-density lipoprotein cholesterol (WMD, -9.02 mg/dl; 95%CI, (-10.8 to -7.2); p < 0.001, I2 = 0%, N = 5), waist circumference (WMD, -4.04 cm; 95%CI, ( -4.9 to -3.08), p < 0.001; I2 = 22.7%, N = 3), body weight (WMD, -4.3 kg; 95%CI, (-6.2 to -2.5); p = 0.001; I2 = 0%, N = 2), systolic blood pressure (WMD, -1.8 mmHg; 95% CI, (-2.8 to -0.7); p = 0.001; I2 = 0%, N = 3), and serum interleukin-6 concentrations (WMD, -0.2 pg/mL; 95%CI, (-0.3 to -0.08); p = 0.001, I2 = 39.8%, N = 2), and increased high-density lipoprotein cholesterol levels (WMD, 2.3 mg/dl; 95%CI, (0.2-4.4); p = 0.03; 03; I2 = 93.1%, N = 5). Synbiotic administration did not significantly affect fasting plasma glucose, homeostatic model assessment for insulin resistance, body mass index, diastolic blood pressure, heart rate, and serum C-reactive protein concentrations. CONCLUSIONS The present findings suggest that synbiotic intervention effectively improves cardiometabolic risk factors in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Department of Basic Sciences, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran; Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Sadat Bahrami
- Metabolic Syndrome Research Center, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Rahnama
- Binaloud Institute of Higher Education, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
737
|
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022; 11:e1260. [PMID: 35212478 PMCID: PMC8756738 DOI: 10.1002/mbo3.1260] [Citation(s) in RCA: 299] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that the gut microbiota plays an important role in host health and is perturbed by several factors including antibiotics. Antibiotic-induced changes in microbial composition can have a negative impact on host health including reduced microbial diversity, changes in functional attributes of the microbiota, formation, and selection of antibiotic-resistant strains making hosts more susceptible to infection with pathogens such as Clostridioides difficile. Antibiotic resistance is a global crisis and the increased use of antibiotics over time warrants investigation into its effects on microbiota and health. In this review, we discuss the adverse effects of antibiotics on the gut microbiota and thus host health, and suggest alternative approaches to antibiotic use.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of MicrobiologyUniversity College CorkCorkIreland
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| | | | - Eugene Dempsey
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Reynolds Paul Ross
- School of MicrobiologyUniversity College CorkCorkIreland
- APC MicrobiomeCorkIreland
| | - Catherine Stanton
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| |
Collapse
|
738
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
739
|
Wang N, Ma S, Fu L. Gut Microbiota Dysbiosis as One Cause of Osteoporosis by Impairing Intestinal Barrier Function. Calcif Tissue Int 2022; 110:225-235. [PMID: 34480200 DOI: 10.1007/s00223-021-00911-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 01/07/2023]
Abstract
Gut microbiota (GM) dysbiosis is closely related to several metabolic diseases such as hypertension, obesity, and Alzheimer's disease. However, little is known about the causal relationship between GM dysbiosis and osteoporosis. In our work, 32 3-month-old female SD rats were randomly divided into two groups: the fecal microbiota transplantation (FMT) group and the control group. The supernatant of feces from senile osteoporotic rats was transplanted to the FMT group and the same amount of sterile saline was given to the control rats. After 12 and 24 weeks, all rats were sacrificed, and the serum, bone, fecal feces, and intestine tissue were collected for the subsequent analysis. The osteocalcin (OC), CTX, and P1NP of the FMT group increased significantly at 12 and 24 weeks compared with the control group (P < 0.05). Furthermore, the BV, BV/TV, Tb.N, and Tb.Th decreased significantly in the FMT group (P < 0.05). The alpha diversity (ACE, Chao) of the FMT group was higher than the control at 24 weeks (P < 0.05). The beta diversity was close between the FMT rats and the donor rats. In addition, GM from donor rats changed the GM composition and function of the FMT rats, which was similar to that of the donor rats at 24 weeks. The impaired intestinal structure and the decreased expression of occludin, claudin, and ZO-1 were found in FMT rats. In conclusion, GM dysbiosis by transferring the feces from senile osteoporotic rats to young rats could induce osteoporosis. The changed GM and the impaired intestinal barrier contributed to the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Sicong Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
740
|
Nocturnal Light Pollution Induces Weight Gain in Mice and Reshapes the Structure, Functions, and Interactions of Their Colonic Microbiota. Int J Mol Sci 2022; 23:ijms23031673. [PMID: 35163595 PMCID: PMC8836271 DOI: 10.3390/ijms23031673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
In mammals, the daily variation in the ecology of the intestinal microbiota is tightly coupled to the circadian rhythm of the host. On the other hand, a close correlation between increased body weight and light pollution at night has been reported in humans and animal models. However, the mechanisms underlying such weight gain in response to light contamination at night remain elusive. In the present study, we tested the hypothesis that dim light pollution at night alters the colonic microbiota of mice, which could correlate with weight gain in the animals. By developing an experimental protocol using a mouse model that mimics light contamination at night in urban residences (dLAN, dim light at night), we found that mice exposed to dLAN showed a significant weight gain compared with mice exposed to control standard light/dark (LD) photoperiod. To identify possible changes in the microbiota, we sampled two stages from the resting period of the circadian cycle of mice (ZT0 and ZT10) and evaluated them by high-throughput sequencing technology. Our results indicated that microbial diversity significantly differed between ZT0 and ZT10 in both LD and dLAN samples and that dLAN treatment impacted the taxonomic composition, functions, and interactions of mouse colonic microbiota. Together, these results show that bacterial taxa and microbial metabolic pathways might be involved with the mechanisms underlying weight gain in mice subjected to light contamination at night.
Collapse
|
741
|
Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease. Int J Mol Sci 2022; 23:ijms23031222. [PMID: 35163143 PMCID: PMC8835432 DOI: 10.3390/ijms23031222] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Actions of symbiotic gut microbiota are in dynamic balance with the host’s organism to maintain homeostasis. Many different factors have an impact on this relationship, including bacterial metabolites. Several substrates for their synthesis have been established, including tryptophan, an exogenous amino acid. Many biological processes are influenced by the action of tryptophan and its endogenous metabolites, serotonin, and melatonin. Recent research findings also provide evidence that gut bacteria-derived metabolites of tryptophan share the biological effects of their precursor. Thus, this review aims to investigate the biological actions of indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan. We searched PUBMED and Google Scholar databases to identify pre-clinical and clinical studies evaluating the impact of IPA on the health and pathophysiology of the immune, nervous, gastrointestinal and cardiovascular system in mammals. IPA exhibits a similar impact on the energetic balance and cardiovascular system to its precursor, tryptophan. Additionally, IPA has a positive impact on a cellular level, by preventing oxidative stress injury, lipoperoxidation and inhibiting synthesis of proinflammatory cytokines. Its synthesis can be diminished in the presence of different risk factors of atherosclerosis. On the other hand, protective factors, such as the introduction of a Mediterranean diet, tend to increase its plasma concentration. IPA seems to be a promising new target, linking gut health with the cardiovascular system.
Collapse
|
742
|
Hu N, Zhang Q, Wang H, Yang X, Jiang Y, Chen R, Wang L. Comparative Evaluation of the Effect of Metformin and Insulin on Gut Microbiota and Metabolome Profiles of Type 2 Diabetic Rats Induced by the Combination of Streptozotocin and High-Fat Diet. Front Pharmacol 2022; 12:794103. [PMID: 35046817 PMCID: PMC8762251 DOI: 10.3389/fphar.2021.794103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lately, an increasing number of studies have investigated the relationship between metformin and gut microbiota, suggesting that metformin exerts part of its hypoglycemic effect through the microbes. However, its underlying mechanism remains largely undetermined. In the present study, we investigated the effects of metformin on gut microbiota and metabolome profiles in serum and compared it with insulin treatment in rats with type 2 diabetes mellitus (T2DM). Diabetic rats (DM group) were induced by a combination of streptozotocin and high-fat diet (HFD). After 7 days, DM rats were treated with metformin (MET group) or insulin (INS group) for 3 weeks. The 16S rRNA sequencing of the gut microbiota and non-targeted metabolomics analysis of serum were conducted. A total of 13 bile acids (BAs) in serum were further determined and compared among different groups. The rat model of T2DM was well established with the typical diabetic symptoms, showing significantly increased blood glucose, AUC of OGTT, HOMA-IR, TC, TG, LDL-C and TBA. Metformin or insulin treatment could ameliorate symptoms of diabetes and partly recover the abnormal biochemical indicators. Compared with DM rats, the relative abundances of 13 genera were significantly changed after metformin treatment, while only three genera were changed after insulin treatment. The metformin and insulin treatments also exhibited different serum metabolome profiles in T2DM rats. Moreover, 64 differential metabolites were identified between MET and DM groups, whereas 206 were identified between INS and DM groups. Insulin treatment showed greater influence on amino acids, glycerophospholipids/glycerolipids, and acylcarnitine compared with the metformin treatment, while metformin had an important impact on BAs. Furthermore, metformin could significantly decrease the serum levels of CA, GCA, UDCA, and GUDCA, but increase the level of TLCA in DM rats. Insulin treatment significantly decreased the levels of CA, UDCA, and CDCA. Besides, several metabolites in serum or microbiota were positively or negatively correlated with some bacteria. Collectively, our findings indicated that metformin had a stronger effect on gut microbiota than insulin, while insulin treatment showed greater influence on serum metabolites, which provided novel insights into the therapeutic effects of metformin on diabetes.
Collapse
Affiliation(s)
- Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Qi Zhang
- Department of Pharmacy, Changzhou No. 7 People's Hospital, Changzhou, China
| | - Hui Wang
- Department of Pathology, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Yan Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Rong Chen
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Liying Wang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
743
|
Price CA, Jospin G, Brownell K, Eisen JA, Laraia B, Epel ES. Differences in gut microbiome by insulin sensitivity status in Black and White women of the National Growth and Health Study (NGHS): A pilot study. PLoS One 2022; 17:e0259889. [PMID: 35045086 PMCID: PMC8769296 DOI: 10.1371/journal.pone.0259889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
The prevalence of overweight and obesity is greatest amongst Black women in the U.S., contributing to disproportionately higher type 2 diabetes prevalence compared to White women. Insulin resistance, independent of body mass index, tends to be greater in Black compared to White women, yet the mechanisms to explain these differences are not completely understood. The gut microbiome is implicated in the pathophysiology of obesity, insulin resistance and cardiometabolic disease. Only two studies have examined race differences in Black and White women, however none characterizing the gut microbiome based on insulin sensitivity by race and sex. Our objective was to determine if gut microbiome profiles differ between Black and White women and if so, determine if these race differences persisted when accounting for insulin sensitivity status. In a pilot cross-sectional analysis, we measured the relative abundance of bacteria in fecal samples collected from a subset of 168 Black (n = 94) and White (n = 74) women of the National Growth and Health Study (NGHS). We conducted analyses by self-identified race and by race plus insulin sensitivity status (e.g. insulin sensitive versus insulin resistant as determined by HOMA-IR). A greater proportion of Black women were classified as IR (50%) compared to White women (30%). Alpha diversity did not differ by race nor by race and insulin sensitivity status. Beta diversity at the family level was significantly different by race (p = 0.033) and by the combination of race plus insulin sensitivity (p = 0.038). Black women, regardless of insulin sensitivity, had a greater relative abundance of the phylum Actinobacteria (p = 0.003), compared to White women. There was an interaction between race and insulin sensitivity for Verrucomicrobia (p = 0.008), where among those with insulin resistance, Black women had four fold higher abundance than White women. At the family level, we observed significant interactions between race and insulin sensitivity for Lachnospiraceae (p = 0.007) and Clostridiales Family XIII (p = 0.01). Our findings suggest that the gut microbiome, particularly lower beta diversity and greater Actinobacteria, one of the most abundant species, may play an important role in driving cardiometabolic health disparities of Black women, indicating an influence of social and environmental factors on the gut microbiome.
Collapse
Affiliation(s)
- Candice A. Price
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Guillaume Jospin
- Genome Center, University of California Davis, Davis, CA, United States of America
| | - Kristy Brownell
- Center for Obesity Assessment, Study and Treatment, University of California, San Francisco, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California Davis, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Barbara Laraia
- Center for Obesity Assessment, Study and Treatment, University of California, San Francisco, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Elissa S. Epel
- Department of Psychiatry, University of California, San Francisco, CA, United States of America
| |
Collapse
|
744
|
Barman PK, Goodridge HS. Microbial Sensing by Hematopoietic Stem and Progenitor Cells. Stem Cells 2022; 40:14-21. [PMID: 35511863 PMCID: PMC9072977 DOI: 10.1093/stmcls/sxab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Balanced production of immune cells is critical for the maintenance of steady-state immune surveillance, and increased production of myeloid cells is sometimes necessary to eliminate pathogens. Hematopoietic stem and progenitor cell (HSPC) sensing of commensal microbes and invading pathogens has a notable impact on hematopoiesis. In this review, we examine how commensal microbes regulate bone marrow HSPC activity to maintain balanced hematopoiesis in the steady state, and how HSPCs proliferate and differentiate during emergency myelopoiesis in response to infection. HSPCs express a variety of pattern recognition receptors and cytokine receptors that they use to sense the presence of microbes, either directly via detection of microbial components and metabolites, or indirectly by responding to cytokines produced by other host cells. We describe direct and indirect mechanisms of microbial sensing by HSPCs and highlight evidence demonstrating long-term effects of acute and chronic microbial stimuli on HSPCs. We also discuss a possible connection between myeloid-biased hematopoiesis and elevated levels of circulating microbiome-derived components in the context of aging and metabolic stress. Finally, we highlight the prospect of trained immunity-based vaccines that could exploit microbial stimulation of HSPCs.
Collapse
Affiliation(s)
- Pijus K Barman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Corresponding author: Helen S. Goodridge, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
745
|
Tanaka K, Harata G, Miyazawa K, He F, Tanigaki S, Kobayashi Y. The gut microbiota of non-obese Japanese pregnant women with gestational diabetes mellitus. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:4-11. [PMID: 35036248 PMCID: PMC8727054 DOI: 10.12938/bmfh.2021-025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
Recent evidence has shown that gut microbiota dysbiosis is associated with development of gestational diabetes mellitus (GDM). However, the gut microbiota composition of non-obese women with GDM, which accounts for a relatively large percentage of Asian GDM, is unknown. We investigated the characteristics of gut microbiota of Japanese pregnant women with GDM. Fecal samples from Japanese pregnant women with GDM (n=20) and normal glucose tolerance (NGT, n=16) were collected at the time of GDM diagnosis (T1), at 35-37 weeks of gestation (T2), and at 4 weeks postpartum (T3). Gut microbiota composition was characterized from fecal DNA by sequencing of 16S rRNA genes. Serum samples were collected late in the third trimester, and the circulating levels of adiponectin and IL-6 were measured by ELISA. At the genus level, Peptostreptococcaceae Romboutsia was enriched in GDM women at T1 (p=0.008) and T2 (p=0.047). The women with lower serum adiponectin tended to have more Romboutsia. The Shannon index was significantly lower in the GDM women at T3 than in the NGT women (p=0.008), and that of the GDM women decreased significantly from T2 to T3 (p=0.02). No significant difference in bacterial community structure was found in a beta diversity analysis. The non-obese GDM women (body mass index <25.0 kg/m2) showed a lower abundance of Coriobacteriaceae Collinsella at T1 (p=0.03) and higher abundance of Akkermansia at T2 (p=0.04) than the normal control. The non-obese GDM women had the distinctive gut microbiota profiles. Analysis of gut microbiota is potentially useful for risk assessment of GDM in non-obese pregnant women.
Collapse
Affiliation(s)
- Kei Tanaka
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0023, Japan
| | - Kenji Miyazawa
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0023, Japan
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0023, Japan
| | - Shinji Tanigaki
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
746
|
Nag D, Goel A, Padwad Y, Singh D. In Vitro Characterisation Revealed Himalayan Dairy Kluyveromyces marxianus PCH397 as Potential Probiotic with Therapeutic Properties. Probiotics Antimicrob Proteins 2022; 15:761-773. [PMID: 35040023 DOI: 10.1007/s12602-021-09874-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Recently, probiotics have gained much attention for their roles against various clinical conditions. Obesity is a worldwide health problem that triggers various other major complications like type 2 diabetes (T2D) and cancers, including colorectal cancer (CRC). Earlier, Kluyveromyces marxianus PCH397 isolated from yak (Bos grunniens) milk has been characterised by us for its efficient β-galactosidase-producing ability, an important probiotic property. In the present study, yeast PCH397 has been evaluated for various parameters for its probiotic use. PCH397 exhibited tolerance to GI tract conditions (low pH, pancreatin, pepsin, and bile salts) with 78 to 99% survivability, possessed around 81% cell surface hydrophobicity, and 96% autoaggregation ability. The cell-free extract (CFE) and cell-free supernatant (CFS) from PCH397 improved insulin sensitisation by enhancing 2-NBDG (a glucose analogue) uptake in 3T3-L1 adipocytes, an approach useful in T2D treatment. They also exhibited lower intracellular lipid accumulation, triglyceride storage, and reactive oxygen species in differentiated adipocytes, indicating their anti-adipogenic ability. Also, CFE and intact cells (ICs) exhibited 73.33 ± 1.11% and 34.88 ± 2.80% DPPH radical scavenging activity, respectively. Furthermore, CFS showed a cytotoxic effect on SW-480 colorectal cancer (CRC) cells and induced the cell cycle phase arrest after 24 h of treatment. In conclusion, these results demonstrate that K. marxianus PCH397 could be used as a potential probiotic yeast and presents a therapeutic potential against obesity, T2D, and colon cancer.
Collapse
Affiliation(s)
- Deepika Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Goel
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
747
|
Dhar D. Impending Mental Health Issues During Coronavirus Disease 2019 - Time for Personalized Nutrition Based on the Gut Microbiota to Tide Over the Crisis? Front Neurosci 2022; 15:831193. [PMID: 35110993 PMCID: PMC8801909 DOI: 10.3389/fnins.2021.831193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a major pandemic facing the world today caused by SARS-CoV-2 which has implications on our mental health as well. The uncertain future, fear of job loss, lockdown and negative news all around have taken a heavy toll on the mental health of individuals from across the world. Stress and anxiety can affect the COVID-19 patients even more. Recent study suggests COVID-19 infection may lead to post-traumatic stress disorder (PTSD). Certain prebiotics and probiotics have been shown to have anxiolytic effect through gut microbiota modulation. Incidentally, preliminary report also suggests a differential microbial profile in COVID-19 patients as compared to healthy individuals. Gut microbiota's role in anxiety and depression is well studied. The importance of the "gut-brain" axis has been implicated in overall mental health. It is known that diet, environmental factors and genetics play an important role in shaping gut microbiota. Trials may be initiated to study if personalized diet and supplementation based on individual's gut microbiome profile may improve the general mental well-being of people prone to anxiety during this pandemic. Also, COVID-19 patients may be provided personalized nutritional therapy based on their gut microbiota profile to see if PTSD and anxiety symptoms can be alleviated.
Collapse
|
748
|
Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J Mol Sci 2022; 23:963. [PMID: 35055149 PMCID: PMC8778078 DOI: 10.3390/ijms23020963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular disease was for a long time considered a disease of the old age, but it is becoming increasingly clear that a cumulus of factors can cause early vascular aging (EVA). Inflammation plays a key role in vascular stiffening and also in other pathologies that induce vascular damage. There is a known and confirmed connection between inflammation and atherosclerosis. However, it has taken a long time to prove the beneficial effects of anti-inflammatory drugs on cardiovascular events. Diabetes can be both a product of inflammation and a cofactor implicated in the progression of vascular disease. When diabetes and inflammation are accompanied by obesity, this ominous trifecta leads to an increased incidence of atherothrombotic events. Research into earlier stages of vascular disease, and documentation of vulnerability to premature vascular disease, might be the key to success in preventing clinical events. Modulation of inflammation, combined with strict control of classical cardiovascular risk factors, seems to be the winning recipe. Identification of population subsets with a successful vascular aging (supernormal vascular aging-SUPERNOVA) pattern could also bring forth novel therapeutic interventions.
Collapse
Affiliation(s)
| | - Mihaela-Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | - Andreea-Catarina Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | | |
Collapse
|
749
|
Liu S, Yin X, Hou C, Liu X, Ma H, Zhang X, Xu M, Xie Y, Li Y, Wang J. As a Staple Food Substitute, Oat and Buckwheat Compound Has Health-Promoting Effects for Diabetic Rats. Front Nutr 2022; 8:762277. [PMID: 35004803 PMCID: PMC8740054 DOI: 10.3389/fnut.2021.762277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Dietary intervention is crucial for the prevention and control of diabetes. China has the largest diabetic population in the world, yet no one dietary strategy matches the eating habits of the Chinese people. To explore an effective and acceptable dietary pattern, this study uses oat and buckwheat compound (OBC) as a staple food substitute and explored its effects on diabetic Sprague–Dawley rats. The model of diabetic rats was established by combining high-calorie feed and streptozotocin (STZ) injection. The dietary intervention for the seven groups, including a normal control group, a model control group, a metformin control group, a wheat flour control group, and three OBC groups with different doses, started from the beginning of the experiment and lasted for 11 weeks, two consecutive injections of STZ in small doses were operated at the 6th week. General states, glucose metabolism, and lipid metabolism indexes were measured. Antioxidant and inflammatory indexes and pathologic changes of kidney and liver tissues were tested. Changes in kidney and ileum ultramicrostructure were detected. What's more, ileal epithelial tight junction proteins and gut microbiota were analyzed. Significant decreases in fasting blood glucose (FBG), glucose tolerance, serum insulin, and insulin resistance were observed in rats intervened with OBC, and these rats also showed a higher level of superoxide dismutase (SOD) together with improved lipid metabolism, attenuated inflammation, and liver and kidney injuries. In addition, in OBC groups, the intestinal barrier was improved, and the disturbance of gut microbiota was reduced. These results suggest that OBC has health-promoting effects for diabetic rats, and since oat and buckwheat are traditionally consumed grains in China, OBC could be a potential and easy-to-accept staple food substitute for the dietary pattern for Chinese.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xueqian Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Chao Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Huijuan Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaoxuan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Ying Xie
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Junbo Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
750
|
Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep 2022; 12:528. [PMID: 35017590 PMCID: PMC8752627 DOI: 10.1038/s41598-021-04489-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Microplastics (MPs) are a widely recognized global problem due to their prevalence in natural environments and the food chain. However, the impact of microplastics on human microbiota and their possible biotransformation in the gastrointestinal tract have not been well reported. To evaluate the potential risks of microplastics at the digestive level, completely passing a single dose of polyethylene terephthalate (PET) through the gastrointestinal tract was simulated by combining a harmonized static model and the dynamic gastrointestinal simgi model, which recreates the different regions of the digestive tract in physiological conditions. PET MPs started several biotransformations in the gastrointestinal tract and, at the colon, appeared to be structurally different from the original particles. We report that the feeding with microplastics alters human microbial colonic community composition and hypothesize that some members of the colonic microbiota could adhere to MPs surface promoting the formation of biofilms. The work presented here indicates that microplastics are indeed capable of digestive-level health effects. Considering this evidence and the increasing exposure to microplastics in consumer foods and beverages, the impact of plastics on the functionality of the gut microbiome and their potential biodegradation through digestion and intestinal bacteria merits critical investigation.
Collapse
Affiliation(s)
- Alba Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, c/Nicolás Cabrera, 9, 28049, Madrid, Spain
| | - Julián J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
- Encapsulae S.L, c/Lituania 10, 12006, Castellón de la Plana, Spain
| | | | - Raquel Portela
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Miguel A Bañares
- Institute of Catalysis and Petrochemistry, CSIC, C/Marie Curie, 2, 28049, Madrid, Spain
| | - Jose F Fernández
- Instituto de Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049, Madrid, Spain
| | | |
Collapse
|