701
|
Millevoi S, Moine H, Vagner S. G-quadruplexes in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:495-507. [PMID: 22488917 DOI: 10.1002/wrna.1113] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression. Indeed, RNA G-quadruplexes appear as important regulators of pre-mRNA processing (splicing and polyadenylation), RNA turnover, mRNA targeting and translation. The regulatory mechanisms controlled by RNA G-quadruplexes involve the binding of protein factors that modulate G-quadruplex conformation and/or serve as a bridge to recruit additional protein regulators. In this review, we summarize the current knowledge on the role of G-quadruplexes in RNA biology with particular emphasis on the molecular mechanisms underlying their specific function in RNA metabolism occurring in physiological or pathological conditions.
Collapse
Affiliation(s)
- Stefania Millevoi
- Inserm UMR 1037, University of Toulouse III, Cancer Research Center of Toulouse, Toulouse 31432, Cedex 4, France.
| | | | | |
Collapse
|
702
|
Sánchez-Hernández N, Ruiz L, Sánchez-Álvarez M, Montes M, Macias MJ, Hernández-Munain C, Suñé C. The FF4 and FF5 domains of transcription elongation regulator 1 (TCERG1) target proteins to the periphery of speckles. J Biol Chem 2012; 287:17789-17800. [PMID: 22453921 DOI: 10.1074/jbc.m111.304782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transcription elongation regulator 1 (TCERG1) is a human factor implicated in interactions with the spliceosome as a coupler of transcription and splicing. The protein is highly concentrated at the interface between speckles (the compartments enriched in splicing factors) and nearby transcription sites. Here, we identified the FF4 and FF5 domains of TCERG1 as the amino acid sequences required to direct this protein to the periphery of nuclear speckles, where coordinated transcription/RNA processing events occur. Consistent with our localization data, we observed that the FF4 and FF5 pair is required to fold in solution, thus suggesting that the pair forms a functional unit. When added to heterologous proteins, the FF4-FF5 pair is capable of targeting the resulting fusion protein to speckles. This represents, to our knowledge, the first description of a targeting signal for the localization of proteins to sites peripheral to speckled domains. Moreover, this "speckle periphery-targeting signal" contributes to the regulation of alternative splicing decisions of a reporter pre-mRNA in vivo.
Collapse
Affiliation(s)
- Noemí Sánchez-Hernández
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Lidia Ruiz
- Structural and Computational Biology Programme, Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Marta Montes
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Maria J Macias
- Structural and Computational Biology Programme, Institute for Research in Biomedicine (IRB), 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Cristina Hernández-Munain
- Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18100 Armilla, Spain.
| |
Collapse
|
703
|
Ankö ML, Neugebauer KM. RNA-protein interactions in vivo: global gets specific. Trends Biochem Sci 2012; 37:255-62. [PMID: 22425269 DOI: 10.1016/j.tibs.2012.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 01/01/2023]
Abstract
RNA-binding proteins (RBPs) impact every process in the cell; they act as splicing and polyadenylation factors, transport and localization factors, stabilizers and destabilizers, modifiers, and chaperones. RNA-binding capacity can be attributed to numerous protein domains that bind a limited repertoire of short RNA sequences. How is specificity achieved in cells? Here we focus on recent advances in determining the RNA-binding properties of proteins in vivo and compare these to in vitro determinations, highlighting insights into how endogenous RNA molecules are recognized and regulated. We also discuss the crucial contribution of structural determinations for understanding RNA-binding specificity and mechanisms.
Collapse
Affiliation(s)
- Minna-Liisa Ankö
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany.
| | | |
Collapse
|
704
|
The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nat Struct Mol Biol 2012; 19:378-86. [PMID: 22388736 DOI: 10.1038/nsmb.2242] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/03/2012] [Indexed: 12/31/2022]
Abstract
The ASAP complex interacts with the exon-junction complex (EJC), a messenger ribonucleoprotein complex involved in post-transcriptional regulation. The three ASAP subunits (Acinus, RNPS1 and SAP18) have been individually implicated in transcriptional regulation, pre-mRNA splicing and mRNA quality control. To shed light on the basis for and consequences of ASAP's interaction with the EJC, we have determined the 1.9-Å resolution structure of a eukaryotic ASAP core complex. The RNA-recognition motif of RNPS1 binds to a conserved motif of Acinus with a recognition mode similar to that observed in splicing U2AF proteins. The Acinus-RNPS1 platform recruits the ubiquitin-like domain of SAP18, forming a ternary complex that has both RNA- and protein-binding properties. Unexpectedly, our structural analysis identified an Acinus-like motif in Pinin, another EJC-associated splicing factor. We show that Pinin physically interacts with RNPS1 and SAP18, forming an alternative ternary complex, PSAP.
Collapse
|
705
|
Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, Graham SV, Schirmer EC. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through Nup62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem 2012; 287:12277-92. [PMID: 22334672 PMCID: PMC3320978 DOI: 10.1074/jbc.m111.331777] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex virus ICP27 protein is important for the expression and nuclear export of viral mRNAs. Although several binding sites have been mapped along the ICP27 sequence for various RNA and protein partners, including the transport receptor TAP of the host cell nuclear transport machinery, several aspects of ICP27 trafficking through the nuclear pore complex remain unclear. We investigated if ICP27 could interact directly with the nuclear pore complex itself, finding that ICP27 directly binds the core nucleoporin Nup62. This is confirmed through co-immunoprecipitation and in vitro binding assays with purified components. Mapping with ICP27 deletion and point mutants further shows that the interaction requires sequences in both the N and C termini of ICP27. Expression of wild type ICP27 protein inhibited both classical, importin α/β-dependent and transportin-dependent nuclear import. In contrast, an ICP27 point mutant that does not interact with Nup62 had no such inhibitory effect. We suggest that ICP27 association with Nup62 provides additional binding sites at the nuclear pore for ICP27 shuttling, thus supporting ICP27-mediated transport. We propose that ICP27 competes with some host cell transport receptors for binding, resulting in inhibition of those host transport pathways.
Collapse
Affiliation(s)
- Poonam Malik
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
706
|
Gulledge AA, Roberts AD, Vora H, Patel K, Loraine AE. Mining Arabidopsis thaliana RNA-seq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a. AMERICAN JOURNAL OF BOTANY 2012; 99:219-31. [PMID: 22291167 DOI: 10.3732/ajb.1100355] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PREMISE OF THE STUDY High-throughput sequencing of cDNA libraries prepared from diverse samples (RNA-seq) can reveal genome-wide changes in alternative splicing. Using RNA-seq data to assess splicing at the level of individual genes requires the ability to visualize read alignments alongside genomic annotations. To meet this need, we added RNA-seq visualization capability to Integrated Genome Browser (IGB), a free desktop genome visualization tool. To illustrate this capability, we present an in-depth analysis of abiotic stresses and their effects on alternative splicing of SR45a (AT1G07350), a putative splicing regulator from Arabidopsis thaliana. METHODS cDNA libraries prepared from Arabidopsis plants that were subjected to heat and dehydration stresses were sequenced on an Illumina GAIIx sequencer, yielding more than 511 million high-quality 75-base, single-end sequence reads. Reads were aligned onto the reference genome and visualized in IGB. KEY RESULTS Using IGB, we confirmed exon-skipping alternative splicing in SR45a. Exon-skipped variant AT1G07350.1 encodes full-length SR45a protein with intact RS and RNA recognition motifs, while nonskipped variant AT1G07350.2 lacks the C-terminal RS region due to a frameshift in the alternative exon. Heat and drought stresses increased both transcript abundance and the proportion of exon-skipped transcripts encoding the full-length protein. We identified new splice sites and observed frequent intron retention flanking the alternative exon. CONCLUSIONS This study underlines the importance of visual inspection of RNA-seq alignments when investigating alternatively spliced genes. We showed that heat and dehydration stresses increase overall abundance of SR45a mRNA while also increasing production of transcripts encoding the full-length SR45a protein relative to other splice variants.
Collapse
Affiliation(s)
- Alyssa A Gulledge
- Department of Bioinformatics and Genomics, North Carolina Research Campus, University of North Carolina at Charlotte, 600 Laureate Way, Kannapolis, North Carolina 28081, USA
| | | | | | | | | |
Collapse
|
707
|
Califice S, Baurain D, Hanikenne M, Motte P. A single ancient origin for prototypical serine/arginine-rich splicing factors. PLANT PHYSIOLOGY 2012; 158:546-60. [PMID: 22158759 PMCID: PMC3271749 DOI: 10.1104/pp.111.189019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/09/2011] [Indexed: 05/20/2023]
Abstract
Eukaryotic precursor mRNA splicing is a process involving a very complex RNA-protein edifice. Serine/arginine-rich (SR) proteins play essential roles in precursor mRNA constitutive and alternative splicing and have been suggested to be crucial in plant-specific forms of developmental regulation and environmental adaptation. Despite their functional importance, little is known about their origin and evolutionary history. SR splicing factors have a modular organization featuring at least one RNA recognition motif (RRM) domain and a carboxyl-terminal region enriched in serine/arginine dipeptides. To investigate the evolution of SR proteins, we infer phylogenies for more than 12,000 RRM domains representing more than 200 broadly sampled organisms. Our analyses reveal that the RRM domain is not restricted to eukaryotes and that all prototypical SR proteins share a single ancient origin, including the plant-specific SR45 protein. Based on these findings, we propose a scenario for their diversification into four natural families, each corresponding to a main SR architecture, and a dozen subfamilies, of which we profile both sequence conservation and composition. Finally, using operational criteria for computational discovery and classification, we catalog SR proteins in 20 model organisms, with a focus on green algae and land plants. Altogether, our study confirms the homogeneity and antiquity of SR splicing factors while establishing robust phylogenetic relationships between animal and plant proteins, which should enable functional analyses of lesser characterized SR family members, especially in green plants.
Collapse
Affiliation(s)
| | | | | | - Patrick Motte
- Laboratory of Functional Genomics and Plant Molecular Imaging and Centre for Assistance in Technology of Microscopy, Department of Life Sciences, Institute of Botany, University of Liège, B–4000 Liege, Belgium (S.C., M.H., P.M.); Unit of Animal Genomics, Department of Animal Production, GIGA-Research, and Faculty of Veterinary Medicine, University of Liège, B-4000 Liege, Belgium (D.B.)
| |
Collapse
|
708
|
Sun S, Zhang Z, Fregoso O, Krainer AR. Mechanisms of activation and repression by the alternative splicing factors RBFOX1/2. RNA (NEW YORK, N.Y.) 2012; 18:274-83. [PMID: 22184459 PMCID: PMC3264914 DOI: 10.1261/rna.030486.111] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/09/2011] [Indexed: 05/20/2023]
Abstract
RBFOX1 and RBFOX2 are alternative splicing factors that are predominantly expressed in the brain and skeletal muscle. They specifically bind the RNA element UGCAUG, and regulate alternative splicing positively or negatively in a position-dependent manner. The molecular basis for the position dependence of these and other splicing factors on alternative splicing of their targets is not known. We explored the mechanisms of RBFOX splicing activation and repression using an MS2-tethering assay. We found that the Ala/Tyr/Gly-rich C-terminal domain is sufficient for exon activation when tethered to the downstream intron, whereas both the C-terminal domain and the central RRM are required for exon repression when tethered to the upstream intron. Using immunoprecipitation and mass spectrometry, we identified hnRNP H1, RALY, and TFG as proteins that specifically interact with the C-terminal domain of RBFOX1 and RBFOX2. RNA interference experiments showed that hnRNP H1 and TFG modulate the splicing activity of RBFOX1/2, whereas RALY had no effect. However, TFG is localized in the cytoplasm, and likely modulates alternative splicing indirectly.
Collapse
Affiliation(s)
- Shuying Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zuo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Oliver Fregoso
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Corresponding author.E-mail .
| |
Collapse
|
709
|
Smith JP, Harms JF, Matters GL, McGovern CO, Ruggiero FM, Liao J, Fino KK, Ortega EE, Gilius EL, Phillips JA. A single nucleotide polymorphism of the cholecystokinin-B receptor predicts risk for pancreatic cancer. Cancer Biol Ther 2012; 13:164-74. [PMID: 22277584 DOI: 10.4161/cbt.13.3.18698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There currently are no tests available for early diagnosis or for the identification of patients at risk for development of pancreatic cancer. We report the discovery of single nucleotide polymorphism (SNP) in the cholecystokinin B receptor (CCKBR) gene predicts survival and risk of pancreatic cancer. Growth of human pancreatic cancer is stimulated by gastrin through the CCKBR and an alternatively spliced isoform of the CCKBR gene called CCKCR. One hundred and ten surgically resected benign and malignant pancreatic tissues as well as normal pancreas were prospectively evaluated for CCKBR genotype and protein expression. Analysis demonstrated the expression of the spliced isoform, CCKCR, was associated with a (SNP) (C > A) at position 32 of the intron 4 (IVS 4) of the CCKBR gene. Since the SNP is within an intron, it has not previously been identified in the GWAS studies. Only patients with the A/A or A/C genotypes, exhibited immunoreactivity to a selective CCKCR antibody. Survival among pancreatic cancer patients with the A-SNP was significantly shorter (p = 0.0001, hazard ratio = 3.63) compared with individuals with C/C genotype. Other variables such as surgical margins, lymph node status, histologic grade or adjuvant chemotherapy were not associated with survival. Furthermore, having one or two of the A-alleles was found to increase the risk of pancreatic adenocarcinoma by 174% (p = 0.0192) compared with the C/C wild type. Cancer cells transfected to overexpress the CCKCR demonstrated increased proliferation over controls. Genetic screening for this SNP may aid in early detection of pancreatic cancer in high risk subjects.
Collapse
Affiliation(s)
- Jill P Smith
- Penn State Hershey Medical Center, Medicine, Gastroenterology, Hershey, PA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
710
|
Akaike Y, Kurokawa K, Kajita K, Kuwano Y, Masuda K, Nishida K, Kang SW, Tanahashi T, Rokutan K. Skipping of an alternative intron in the srsf1 3' untranslated region increases transcript stability. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 58:180-7. [PMID: 21921418 DOI: 10.2152/jmi.58.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The srsf1 gene encodes serine/arginine-rich splicing factor 1 (SRSF1) that participates in both constitutive and alternative splicing reactions. This gene possesses two ultraconserved elements in the 3' untranslated region (UTR). Skipping of an alternative intron between the two elements has no effect on the protein-coding sequence, but it generates a premature stop codon (PTC)-containing mRNA isoform, whose degradation is considered to depend on nonsense-mediated mRNA decay (NMD). However, several cell lines (HCT116, RKO, HeLa, and WI38 cells) constitutively expressed significant amounts of the srsf1 PTC variant. HCT116 cells expressed the PTC variant nearly equivalent to the major isoform that includes the alternative intron in the 3' UTR. Inhibition of NMD by silencing a key effecter UPF1 or by treatment with cycloheximide failed to increase amounts of the PTC variant in HCT116 cells, and the PTC variant was rather more stable than the major isoform in the presence of actinomycin D. Our results suggest that the original stop codon may escape from the NMD surveillance even in skipping of the alternative intron. The srsf1 gene may produce an alternative splice variant having truncated 3' UTR to relief the microRNA- and/or RNA-binding protein-mediated control of translation or degradation.
Collapse
Affiliation(s)
- Yoko Akaike
- Department of Stress Science, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
711
|
Chemical approaches for structure and function of RNA in postgenomic era. J Nucleic Acids 2012; 2012:369058. [PMID: 22347623 PMCID: PMC3278928 DOI: 10.1155/2012/369058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 01/11/2023] Open
Abstract
In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5′-cap structures (types 0–III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work “Function and Structure of Spliceosome” in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.
Collapse
|
712
|
Nuclear export as a key arbiter of "mRNA identity" in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:566-77. [PMID: 22248619 DOI: 10.1016/j.bbagrm.2011.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 01/15/2023]
Abstract
Over the past decade, various studies have indicated that most of the eukaryotic genome is transcribed at some level. The pervasiveness of transcription might seem surprising when one considers that only a quarter of the human genome comprises genes (including exons and introns) and less than 2% codes for protein. This conundrum is partially explained by the unique evolutionary pressures that are imposed on species with small population sizes, such as eukaryotes. These conditions promote the expansion of introns and non-functional intergenic DNA, and the accumulation of cryptic transcriptional start sites. As a result, the eukaryotic gene expression machinery must effectively evaluate whether or not a transcript has all the hallmarks of a protein-coding mRNA. If a transcript contains these features, then positive feedback loops are activated to further stimulate its transcription, processing, nuclear export and ultimately, translation. However if a transcript lacks features associated with "mRNA identity", then the RNA is degraded and/or used to inhibit further transcription and translation of the gene. Here we discuss how mRNA identity is assessed by the nuclear export machinery in order to extract meaningful information from the eukaryotic genome. In the process, we provide an explanation of why certain sequences that are enriched in protein-coding genes, such as the signal sequence coding region, promote mRNA nuclear export in vertebrates. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
|
713
|
Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proc Natl Acad Sci U S A 2012; 109:1216-21. [PMID: 22232677 DOI: 10.1073/pnas.1120368109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic hypermutation (SHM) of Ig variable region (IgV) genes requires both IgV transcription and the enzyme activation-induced cytidine deaminase (AID). Identification of a cofactor responsible for the fact that IgV genes are much more sensitive to AID-induced mutagenesis than other genes is a key question in immunology. Here, we describe an essential role for a splice isoform of the prototypical serine/arginine-rich (SR) protein SRSF1, termed SRSF1-3, in AID-induced SHM in a DT40 chicken B-cell line. Unexpectedly, we found that SHM does not occur in a DT40 line lacking SRSF1-3 (DT40-ASF), although it is readily detectable in parental DT40 cells. Strikingly, overexpression of AID in DT40-ASF cells led to a large increase in nonspecific (off-target) mutations. In contrast, introduction of SRSF1-3, but not SRSF1, into these cells specifically restored SHM without increasing off-target mutations. Furthermore, we found that SRSF1-3 binds preferentially to the IgV gene and inhibits processing of the Ig transcript, providing a mechanism by which SRSF1-3 makes the IgV gene available for AID-dependent SHM. SRSF1 not only acts as an essential splicing factor but also regulates diverse aspects of mRNA metabolism and maintains genome stability. Our findings, thus, define an unexpected and important role for SRSF1, particularly for its splice variant, in enabling AID to function specifically on its natural substrate during SHM.
Collapse
|
714
|
Russo J, Santucci-Pereira J, de Cicco RL, Sheriff F, Russo PA, Peri S, Slifker M, Ross E, Mello MLS, Vidal BC, Belitskaya-Lévy I, Arslan A, Zeleniuch-Jacquotte A, Bordas P, Lenner P, Ahman J, Afanasyeva Y, Hallmans G, Toniolo P, Russo IH. Pregnancy-induced chromatin remodeling in the breast of postmenopausal women. Int J Cancer 2012; 131:1059-70. [PMID: 22025034 DOI: 10.1002/ijc.27323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/22/2011] [Indexed: 01/12/2023]
Abstract
Early pregnancy and multiparity are known to reduce the risk of women to develop breast cancer at menopause. Based on the knowledge that the differentiation of the breast induced by the hormones of pregnancy plays a major role in this protection, this work was performed with the purpose of identifying what differentiation-associated molecular changes persist in the breast until menopause. Core needle biopsies (CNB) obtained from the breast of 42 nulliparous (NP) and 71 parous (P) postmenopausal women were analyzed in morphology, immunocytochemistry and gene expression. Whereas in the NP breast, nuclei of epithelial cells were large and euchromatic, in the P breast they were small and hyperchromatic, showing strong methylation of histone 3 at lysine 9 and 27. Transcriptomic analysis performed using Affymetrix HG_U133 oligonucleotide arrays revealed that in CNB of the P breast, there were 267 upregulated probesets that comprised genes controlling chromatin organization, transcription regulation, splicing machinery, mRNA processing and noncoding elements including XIST. We concluded that the differentiation process induced by pregnancy is centered in chromatin remodeling and in the mRNA processing reactome, both of which emerge as important regulatory pathways. These are indicative of a safeguard step that maintains the fidelity of the transcription process, becoming the ultimate mechanism mediating the protection of the breast conferred by full-term pregnancy.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
715
|
Leu S, Lin YM, Wu CH, Ouyang P. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICA**. J Cell Sci 2012; 125:3164-72. [DOI: 10.1242/jcs.100859] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pinin (Pnn), a serine/arginine-rich (SR)-related protein, has been shown to play multiple roles within eukaryotic cells including in cell-cell adhesion, cell migration, regulation of gene transcription, mRNA export, and alternative splicing. In this study, an attempt to generate mice homozygously deficient in Pnn failed due to early embryonic lethality. To evaluate the effects of loss of Pnn expression on cell survival, RNA interference experiments were performed in MCF-7 cells. With Pnn-depletion, cellular apoptosis and nuclear condensation were observed. In addition, nuclear speckles were disrupted, and expression levels of SR proteins were diminished. RT-PCR analysis showed that alternative splicing patterns of SRSF1 as well as of apoptosis-related genes Bcl-x and ICAD were altered and expression levels of Bim isoforms were modulated in Pnn-depleted cells. Cellular apoptosis induced by Pnn depletion was rescued by overexpression of SRSF1 which also restored generation of Bcl-xL and functionless ICAD. Pnn expression is, therefore, essential for survival of mouse embryos and the breast carcinoma cell line MCF-7. Moreover, Pnn-depletion, modulated by SRSF1, determines cellular apoptosis through activation of expression of pro-apoptotic Bcl-xS transcripts.
Collapse
|
716
|
Backström Winquist E, Abdurahman S, Tranell A, Lindström S, Tingsborg S, Schwartz S. Inefficient splicing of segment 7 and 8 mRNAs is an inherent property of influenza virus A/Brevig Mission/1918/1 (H1N1) that causes elevated expression of NS1 protein. Virology 2012; 422:46-58. [DOI: 10.1016/j.virol.2011.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/16/2011] [Accepted: 10/05/2011] [Indexed: 11/16/2022]
|
717
|
Reddy ASN, Day IS, Göhring J, Barta A. Localization and dynamics of nuclear speckles in plants. PLANT PHYSIOLOGY 2012; 158:67-77. [PMID: 22045923 PMCID: PMC3252098 DOI: 10.1104/pp.111.186700] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/31/2011] [Indexed: 05/17/2023]
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
718
|
Modulation of Pre-mRNA Splicing Patterns with Synthetic Chemicals and Their Clinical Applications. CHEMBIOMOLECULAR SCIENCE 2012. [PMCID: PMC7121560 DOI: 10.1007/978-4-431-54038-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent whole genome sequence analyses revealed that a high degree of proteomic complexity is achieved with a limited number of genes. This surprising finding underscores the importance of alternative splicing through which a single gene can generate structurally and functionally distinct protein isoforms [1]. Based on genome-wide analysis, 75% of human genes are thought to encode at least two alternatively spliced isoforms [2, 3]. The regulation of splice site usage provides a versatile mechanism for controlling gene expression and for the generation of proteome diversity, playing essential roles in many biological processes, such as embryonic development, cell growth, and apoptosis. The splice sites are generally recognized by the splicing machinery, a ribonuclear protein complex known as the spliceosome. Spliceosome binding is determined by competing activities of various auxiliary regulatory proteins, such as members of SR protein or heterogeneous nuclear ribonucleoprotein (hnRNP) protein families, which bind specific regulatory sequences and alter the binding of the spliceosome to a particular splice site [1, 4]. Pre-mRNA splicing is regulated in a tissue-specific or developmental stage-specific manner [5]. The selection of splice site can be altered by numerous extracellular stimuli such as hormones, immune response, neuronal depolarization, and cellular stress, through changes in synthesis/degradation, complex formation, and intracellular localization of regulatory proteins. SR proteins are heavily phosphorylated in cells and involved in constitutive and alternative splicing, and the phosphorylation states of SR proteins are altered in response to these extracellular stimuli [6]. Splicing mutations located in either intronic or exonic regions frequently cause hereditary diseases, and more than 15% of mutations that cause genetic disease affect pre-mRNA splicing [7]. Based on a hypothetical idea that we can cure human diseases by regulating the phosphorylation state of SR proteins with synthetic inhibitors of protein kinases, we started our long voyage to challenge the development of new chemical therapeutics.
Collapse
|
719
|
Turner M, Hodson DJ. An emerging role of RNA-binding proteins as multifunctional regulators of lymphocyte development and function. Adv Immunol 2012; 115:161-85. [PMID: 22608259 DOI: 10.1016/b978-0-12-394299-9.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sequence-specific RNA-binding proteins (RBP) and the regulation of RNA decay have long been recognized as important regulators of the inflammatory response. RBP influence gene expression throughout the lifespan of the mRNA by regulating splicing, polyadenylation, cellular localization, translation, and decay. Increasing evidence now indicates that these proteins, together with the RNA decay machinery that they recruit, also regulate the development and activation of lymphocytes. The activity of RBP is regulated by the same signal transduction pathways that govern lymphocyte development and differentiation in response to antigen and cytokine receptor engagement. Roles for these proteins in regulating the diverse functions of lymphocytes are becoming increasingly apparent.
Collapse
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | |
Collapse
|
720
|
Markus MA, Marques FZ, Morris BJ. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs. PLoS One 2011; 6:e28926. [PMID: 22174926 PMCID: PMC3236773 DOI: 10.1371/journal.pone.0028926] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.
Collapse
Affiliation(s)
- M. Andrea Markus
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Francine Z. Marques
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Brian J. Morris
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
721
|
Halvey PJ, Zhang B, Coffey RJ, Liebler DC, Slebos RJC. Proteomic consequences of a single gene mutation in a colorectal cancer model. J Proteome Res 2011; 11:1184-95. [PMID: 22103262 PMCID: PMC3271737 DOI: 10.1021/pr2009109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proteomic effects of specific cancer-related mutations have not been well characterized. In colorectal cancer (CRC), a relatively small number of mutations in key signaling pathways appear to drive tumorigenesis. Mutations in adenomatous polyposis coli (APC), a negative regulator of Wnt signaling, occur in up to 60% of CRC tumors. Here we examine the proteomic consequences of a single gene mutation by using an isogenic CRC cell culture model in which wildtype APC expression has been ectopically restored. Using LC-MS/MS label free shotgun proteomics, over 5000 proteins were identified in SW480Null (mutant APC) and SW480APC (APC restored). We observed 155 significantly differentially expressed proteins between the two cell lines, with 26 proteins showing opposite expression trends relative to gene expression measurements. Protein changes corresponded to previously characterized features of the APCNull phenotype: loss of cell adhesion proteins, increase in cell cycle regulators, alteration in Wnt signaling related proteins, and redistribution of β-catenin. Increased expression of RNA processing and isoprenoid biosynthetic proteins occurred in SW480Null cells. Therefore, shotgun proteomics reveals proteomic differences associated with a single gene change, including many novel differences that fall outside known target pathways.
Collapse
Affiliation(s)
- Patrick J Halvey
- Department of Biochemistry, Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-6350, United States
| | | | | | | | | |
Collapse
|
722
|
Hamilton T, Li X, Novotny M, Pavicic PG, Datta S, Zhao C, Hartupee J, Sun D. Cell type- and stimulus-specific mechanisms for post-transcriptional control of neutrophil chemokine gene expression. J Leukoc Biol 2011; 91:377-83. [PMID: 22167720 DOI: 10.1189/jlb.0811404] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half-lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional activator, as is the case with TLR ligands, or may cooperate with independent transcriptional stimuli, as with IL-17, which extends the half-life of TNF-induced transcripts. These different stimuli engage independent signaling pathways that target different instability mechanisms distinguished by dependence on different regulatory nucleotide sequence motifs within the 3'UTRs, which involve that action of different mRNA-binding proteins. The selective use of these pathways by different stimuli and in distinct cell populations provides the potential for tailoring of chemokine expression patterns to meet specific needs in different pathophysiologic circumstances.
Collapse
Affiliation(s)
- Thomas Hamilton
- Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195-0001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
723
|
Ma L, Tan Z, Teng Y, Hoersch S, Horvitz HR. In vivo effects on intron retention and exon skipping by the U2AF large subunit and SF1/BBP in the nematode Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2011; 17:2201-2211. [PMID: 22033331 PMCID: PMC3222132 DOI: 10.1261/rna.027458.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
The in vivo analysis of the roles of splicing factors in regulating alternative splicing in animals remains a challenge. Using a microarray-based screen, we identified a Caenorhabditis elegans gene, tos-1, that exhibited three of the four major types of alternative splicing: intron retention, exon skipping, and, in the presence of U2AF large subunit mutations, the use of alternative 3' splice sites. Mutations in the splicing factors U2AF large subunit and SF1/BBP altered the splicing of tos-1. 3' splice sites of the retained intron or before the skipped exon regulate the splicing pattern of tos-1. Our study provides in vivo evidence that intron retention and exon skipping can be regulated largely by the identities of 3' splice sites.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Medical Genetics, School of Biological Sciences and Technology, Central South University, Changsha, Hunan 410078, China
| | - Zhiping Tan
- Center for Clinical Gene Diagnosis and Therapy, The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | - Yanling Teng
- State Key Laboratory of Medical Genetics, School of Biological Sciences and Technology, Central South University, Changsha, Hunan 410078, China
| | - Sebastian Hoersch
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - H. Robert Horvitz
- Department of Biology, Howard Hughes Medical Institute, MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
724
|
Transcriptional regulation of the human Raver2 ribonucleoprotein gene. Gene 2011; 493:243-52. [PMID: 22146317 DOI: 10.1016/j.gene.2011.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 01/11/2023]
Abstract
Raver2 is a putative modulator of the activity of the polypyrimidine-tract binding protein (PTB), one of the most intensively studied splicing repressors. Little is known about Raver2 expression, and all current data is from mice where it shows tissue specificity. In the present study, by comparing Raver2 transcript expression in human and mouse tissues, we found that human Raver2 is ubiquitously expressed in adult tissues. In order to investigate human Raver2 transcription regulation, we identified and characterized a putative promoter region in a 1000bp region upstream of the transcription starting site of the gene. Dual luciferase reporter assays demonstrated that this region had promoter activity conferred by the first 160bp. By mutagenic analyses of putative cis-acting regulatory sequences, we identified an individual site that decreased the promoter activity by up to 40% when mutated. Together, our results suggest that regulation of human Raver2 expression involves TATA-less transcriptional activity.
Collapse
|
725
|
Regulation of alternative splicing within the supraspliceosome. J Struct Biol 2011; 177:152-9. [PMID: 22100336 DOI: 10.1016/j.jsb.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a fundamental feature in regulating the eukaryotic transcriptome, as ~95% of multi-exon human Pol II transcripts are subject to this process. Regulated splicing operates through the combinatorial interplay of positive and negative regulatory signals present in the pre-mRNA, which are recognized by trans-acting factors. All these RNA and protein components are assembled in a gigantic, 21 MDa, ribonucleoprotein splicing machine - the supraspliceosome. Because most alternatively spliced mRNA isoforms vary between different cell and tissue types, the ability to perform alternative splicing is expected to be an integral part of the supraspliceosome, which constitutes the splicing machine in vivo. Here we show that both the constitutively and alternatively spliced mRNAs of the endogenous human pol II transcripts: hnRNP A/B, survival of motor neuron (SMN) and ADAR2 are predominantly found in supraspliceosomes. This finding is consistent with our observations that the splicing regulators hnRNP G as well as all phosphorylated SR proteins are predominantly associated with supraspliceosomes. We further show that changes in alternative splicing of hnRNP A/B, affected by up regulation of SRSF5 (SRp40) or by treatment with C6-ceramide, occur within supraspliceosomes. These observations support the proposed role of the supraspliceosome in splicing regulation and alternative splicing.
Collapse
|
726
|
Abstract
The assembly of prespliceosomes is responsible for selection of intron sites for splicing. U1 and U2 snRNPs recognize 5' splice sites and branch sites, respectively; although there is information regarding the composition of these complexes, little is known about interaction among the components or between the two snRNPs. Here we describe the protein network of interactions linking U1 and U2 snRNPs with the ATPase Prp5, important for branch site recognition and fidelity during the first steps of the reaction, using fission yeast Schizosaccharomyces pombe. The U1 snRNP core protein U1A binds to a novel SR-like protein, Rsd1, which has homologs implicated in transcription. Rsd1 also contacts S. pombe Prp5 (SpPrp5), mediated by SR-like domains in both proteins. SpPrp5 then contacts U2 snRNP through SF3b, mediated by a conserved DPLD motif in Prp5. We show that mutations in this motif have consequences not only in vitro (defects in prespliceosome formation) but also in vivo, yielding intron retention and exon skipping defects in fission yeast and altered intron recognition in budding yeast Saccharomyces cerevisiae, indicating that the U1-U2 network provides critical, evolutionarily conserved contacts during intron definition.
Collapse
|
727
|
Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun 2011; 2:308. [PMID: 21556062 PMCID: PMC3113229 DOI: 10.1038/ncomms1306] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/11/2011] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by a loss of the dystrophin protein. Control of dystrophin mRNA splicing to convert severe DMD to a milder phenotype is attracting much attention. Here we report a dystrophinopathy patient who has a point mutation in exon 31 of the dystrophin gene. Although the mutation generates a stop codon, a small amount of internally deleted, but functional, dystrophin protein is produced in the patient cells. An analysis of the mRNA reveals that the mutation promotes exon skipping and restores the open reading frame of dystrophin. Presumably, the mutation disrupts an exonic splicing enhancer and creates an exonic splicing silencer. Therefore, we searched for small chemicals that enhance exon skipping, and found that TG003 promotes the skipping of exon 31 in the endogenous dystrophin gene in a dose-dependent manner and increases the production of the dystrophin protein in the patient's cells. Duchenne muscular dystrophy is caused by a loss of the dystrophin gene, and control of dystrophin mRNA splicing could aid treatment of the disease. Nishida et al. show that a small molecule promotes skipping of exon 31 and increases production of a functional dystrophin protein in a patient.
Collapse
|
728
|
Zong X, Tripathi V, Prasanth KV. RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol 2011; 8:968-77. [PMID: 21941126 DOI: 10.4161/rna.8.6.17606] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian genome harbors a large number of long non-coding RNAs (lncRNAs) that do not code for proteins, but rather they exert their function directly as RNA molecules. LncRNAs are involved in executing several vital cellular functions. They facilitate the recruitment of proteins to specific chromatin sites, ultimately regulating processes like dosage compensation and genome imprinting. LncRNAs are also known to regulate nucleocytoplasmic transport of macromolecules. A large number of the regulatory lncRNAs are retained within the cell nucleus and constitute a subclass termed nuclear-retained RNAs (nrRNAs). NrRNAs are speculated to be involved in crucial gene regulatory networks, acting as structural scaffolds of subnuclear domains. NrRNAs modulate gene expression by influencing chromatin modification, transcription and post-transcriptional gene processing. The cancer-associated Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) is one such long nrRNA that regulates pre-mRNA processing in mammalian cells. Thus far, our understanding about the roles played by nrRNAs and their relevance in disease pathways is only 'a tip of an iceberg'. It will therefore be crucial to unravel the functions for the vast number of long nrRNAs, buried within the complex mine of the human genome.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
729
|
Benmoyal-Segal L, Soreq L, Ben-Shaul Y, Ben-Ari S, Ben-Moshe T, Aviel S, Bergman H, Soreq H. Adaptive alternative splicing correlates with less environmental risk of parkinsonism. NEURODEGENER DIS 2011; 9:87-98. [PMID: 22042332 DOI: 10.1159/000331328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/27/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/OBJECTIVE Environmental exposure to anti-acetylcholinesterases (AChEs) aggravates the risk of Parkinsonism due to currently unclear mechanism(s). We explored the possibility that the brain's capacity to induce a widespread adaptive alternative splicing response to such exposure may be involved. METHODS Following exposure to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), brain region transcriptome profiles were tested. RESULTS Changes in transcript profiles, alternative splicing patterns and splicing-related gene categories were identified. Engineered mice over-expressing the protective AChE-R splice variant showed less total changes but more splicing-related ones than hypersensitive AChE-S over-expressors with similarly increased hydrolytic activities. Following MPTP exposure, the substantia nigra and prefrontal cortex (PFC) of both strains showed a nuclear increase in the splicing factor ASF/SF2 protein. Furthermore, intravenous injection with highly purified recombinant human AChE-R changed transcript profiles in the striatum. CONCLUSIONS Our findings are compatible with the working hypothesis that inherited or acquired alternative splicing deficits may promote parkinsonism, and we propose adaptive alternative splicing as a strategy for attenuating its progression.
Collapse
Affiliation(s)
- Liat Benmoyal-Segal
- Department of Biological Chemistry, Life Sciences Institute, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
730
|
Bartkowiak B, Mackellar AL, Greenleaf AL. Updating the CTD Story: From Tail to Epic. GENETICS RESEARCH INTERNATIONAL 2011; 2011:623718. [PMID: 22567360 PMCID: PMC3335468 DOI: 10.4061/2011/623718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 12/03/2022]
Abstract
Eukaryotic RNA polymerase II (RNAPII) not only synthesizes mRNA but also coordinates transcription-related processes via its unique C-terminal repeat domain (CTD). The CTD is an RNAPII-specific protein segment consisting of repeating heptads with the consensus sequence Y1S2P3T4S5P6S7 that has been shown to be extensively post-transcriptionally modified in a coordinated, but complicated, manner. Recent discoveries of new modifications, kinases, and binding proteins have challenged previously established paradigms. In this paper, we examine results and implications of recent studies related to modifications of the CTD and the respective enzymes; we also survey characterizations of new CTD-binding proteins and their associated processes and new information regarding known CTD-binding proteins. Finally, we bring into focus new results that identify two additional CTD-associated processes: nucleocytoplasmic transport of mRNA and DNA damage and repair.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
731
|
Daubner GM, Cléry A, Jayne S, Stevenin J, Allain FHT. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J 2011; 31:162-74. [PMID: 22002536 DOI: 10.1038/emboj.2011.367] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/12/2011] [Indexed: 11/09/2022] Open
Abstract
SRSF2 (SC35) is a key player in the regulation of alternative splicing events and binds degenerated RNA sequences with similar affinity in nanomolar range. We have determined the solution structure of the SRSF2 RRM bound to the 5'-UCCAGU-3' and 5'-UGGAGU-3' RNA, both identified as SRSF2 binding sites in the HIV-1 tat exon 2. RNA recognition is achieved through a novel sandwich-like structure with both termini forming a positively charged cavity to accommodate the four central nucleotides. To bind both RNA sequences equally well, SRSF2 forms a nearly identical network of intermolecular interactions by simply flipping the bases of the two consecutive C or G nucleotides into either anti or syn conformation. We validate this unusual mode of RNA recognition functionally by in-vitro and in-vivo splicing assays and propose a 5'-SSNG-3' (S=C/G) high-affinity binding consensus sequence for SRSF2. In conclusion, in addition to describe for the first time the RNA recognition mode of SRSF2, we provide the precise consensus sequence to identify new putative binding sites for this splicing factor.
Collapse
Affiliation(s)
- Gerrit M Daubner
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
732
|
Abstract
Eukaryotic gene expression relies on several complex molecular machineries that act in a highly coordinated fashion. These machineries govern all the different steps of mRNA maturation, from gene transcription and pre-mRNA processing in the nucleus to the export of the mRNA to the cytoplasm and its translation. In particular, the pre-mRNA splicing process consists in the joining together of sequences (known as “exons”) that have to be differentiated from their intervening sequences commonly referred to as “introns.” The complex required to perform this process is a very dynamic macromolecular ribonucleoprotein assembly that functions as an enzyme, and is called the “spliceosome.” Because of its flexibility, the splicing process represents one of the main mechanisms of qualitative and quantitative regulation of gene expression in eukaryotic genomes. This flexibility is mainly due to the possibility of alternatively recognizing the various exons that are present in a pre-mRNA molecule and therefore enabling the possibility of obtaining multiple transcripts from the same gene. However, regulation of gene expression by the spliceosome is also achieved through its ability to influence many other gene expression steps that include transcription, mRNA export, mRNA stability, and even protein translation. Therefore, from a biotechnological point of view the splicing process can be exploited to improve production strategies and processes of molecules of interest. In this work, we have aimed to provide an overview on how biotechnology applications may benefit from the introduction of introns within a sequence of interest.
Collapse
Affiliation(s)
- Natasa Skoko
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | |
Collapse
|
733
|
Pedrotti S, Busà R, Compagnucci C, Sette C. The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res 2011; 40:1021-32. [PMID: 21984414 PMCID: PMC3273811 DOI: 10.1093/nar/gkr819] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian tissues display a remarkable complexity of splicing patterns. Nevertheless, only few examples of tissue-specific splicing regulators are known. Herein, we characterize a novel splicing regulator named RBM11, which contains an RNA Recognition Motif (RRM) at the amino terminus and a region lacking known homology at the carboxyl terminus. RBM11 is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 mRNA levels fluctuate in a developmentally regulated manner, peaking perinatally in brain and cerebellum, and at puberty in testis, in concomitance with differentiation events occurring in neurons and germ cells. Deletion analysis indicated that the RRM of RBM11 is required for RNA binding, whereas the carboxyl terminal region permits nuclear localization and homodimerization. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. Transcription inhibition/release experiments and exposure of cells to stress revealed a dynamic movement of RBM11 between nucleoplasm and speckles, suggesting that its localization is affected by the transcriptional status of the cell. Splicing assays revealed a role for RBM11 in the modulation of alternative splicing. In particular, RBM11 affected the choice of alternative 5′ splice sites in BCL-X by binding to specific sequences in exon 2 and antagonizing the SR protein SRSF1. Thus, our findings identify RBM11 as a novel tissue-specific splicing factor with potential implication in the regulation of alternative splicing during neuron and germ cell differentiation.
Collapse
Affiliation(s)
- Simona Pedrotti
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | |
Collapse
|
734
|
Leva V, Giuliano S, Bardoni A, Camerini S, Crescenzi M, Lisa A, Biamonti G, Montecucco A. Phosphorylation of SRSF1 is modulated by replicational stress. Nucleic Acids Res 2011; 40:1106-17. [PMID: 21984412 PMCID: PMC3273819 DOI: 10.1093/nar/gkr837] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA ligase I-deficient 46BR.1G1 cells show a delay in the maturation of replicative intermediates resulting in the accumulation of single- and double-stranded DNA breaks. As a consequence the ataxia telangiectasia mutated protein kinase (ATM) is constitutively phosphorylated at a basal level. Here, we use 46BR.1G1 cells as a model system to study the cell response to chronic replication-dependent DNA damage. Starting from a proteomic approach, we demonstrate that the phosphorylation level of factors controlling constitutive and alternative splicing is affected by the damage elicited by DNA ligase I deficiency. In particular, we show that SRSF1 is hyperphosphorylated in 46BR.1G1 cells compared to control fibroblasts. This hyperphosphorylation can be partially prevented by inhibiting ATM activity with caffeine. Notably, hyperphosphorylation of SRSF1 affects the subnuclear distribution of the protein and the alternative splicing pattern of target genes. We also unveil a modulation of SRSF1 phosphorylation after exposure of MRC-5V1 control fibroblasts to different exogenous sources of DNA damage. Altogether, our observations indicate that a relevant aspect of the cell response to DNA damage involves the post-translational regulation of splicing factor SRSF1 which is associated with a shift in the alternative splicing program of target genes to control cell survival or cell death.
Collapse
Affiliation(s)
- Valentina Leva
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
735
|
Yoshimura K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T, Shigeoka S. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. PLANT & CELL PHYSIOLOGY 2011; 52:1786-805. [PMID: 21862516 DOI: 10.1093/pcp/pcr115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have demonstrated that an Arabidopsis serine/arginine rich-like protein, atSR45a, interacts with other splicing factors and its expression is markedly induced by high-light stress, suggesting the involvement of atSR45a in the regulation of stress-responsive alternative splicing. A whole-genome tiling array identified the alternative splicing of genes regulated by atSR45a by comparing gene expression profiles in wild-type and knockout atSR45a (KO-sr45a) plants under high-light stress. The expression levels of genomic regions within 217 genes were significantly altered in the KO-sr45a plants compared with the wild-type plants. Many genes encoded factors involved in signal transduction, cell cycle and DNA processing, protein fate and transcription. A semi-quantitative reverse transcription-PCR (RT-PCR) analysis confirmed changes in the transcript levels and/or alternative splicing efficiency under high-light stress in 18 genes, suggesting that atSR45a affects directly or indirectly not only alternative splicing efficiency but also the transcription of these target genes. Changes in the expression of atSR45a in response to high-light stress temporally correlated with changes in the alternative splicing efficiency and transcript levels of three and one target genes, respectively. Sequencing of the alternatively spliced variants of three target genes showed that atSR45a suppresses the splicing efficiency of intron retention-type alternative splicing events. These findings indicated the importance of atSR45a to the diversification of the transcriptome under high-light stress.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
736
|
Blanco FJ, Bernabeu C. Alternative splicing factor or splicing factor-2 plays a key role in intron retention of the endoglin gene during endothelial senescence. Aging Cell 2011; 10:896-907. [PMID: 21668763 DOI: 10.1111/j.1474-9726.2011.00727.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing involving intron retention plays a key role in the regulation of gene expression. We previously reported that the alternatively spliced short isoform of endoglin (S-endoglin) is induced during the aging or senescence of endothelial cells by a mechanism of intron retention. In this work, we demonstrate that the alternative splicing factor or splicing factor-2 (ASF/SF2) is involved in the synthesis of endoglin. Overexpression of ASF/SF2 in endothelial cells switched the balance between the two endoglin isoforms, favoring the synthesis of S-endoglin. Using a minigene reporter vector and RNA immunoprecipitation experiments, it was shown that ASF/SF2 interacts with the nucleotide sequence of the endoglin minigene, suggesting the direct involvement of ASF/SF2. Accordingly, the sequence recognized by ASF/SF2 in the endoglin gene was identified inside the retained intron near the consensus branch point. Finally, the ASF/SF2 subcellular localization during endothelial senescence showed a preferential scattered distribution throughout the cytoplasm, where it interferes with the activity of the minor spliceosome, leading to an increased expression of S-endoglin mRNA. In summary, we report for the first time the molecular mechanisms by which ASF/SF2 regulates the alternative splicing of endoglin in senescent endothelial cells, as well as the involvement of ASF/SF2 in the minor spliceosome.
Collapse
MESH Headings
- Alternative Splicing
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Blotting, Western
- Cellular Senescence
- Conserved Sequence
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Endoglin
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- HEK293 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Immunoprecipitation/methods
- Introns
- Microscopy, Fluorescence
- Mutagenesis, Site-Directed
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Serine-Arginine Splicing Factors
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Francisco J Blanco
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Raras, c/Ramiro de Maeztu 9, Madrid, Spain.
| | | |
Collapse
|
737
|
Xiao PJ, Peng ZY, Huang L, Li Y, Chen XH. Dephosphorylated NSSR1 is induced by androgen in mouse epididymis and phosphorylated NSSR1 is increased during sperm maturation. PLoS One 2011; 6:e25667. [PMID: 21980524 PMCID: PMC3183062 DOI: 10.1371/journal.pone.0025667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022] Open
Abstract
NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization.
Collapse
Affiliation(s)
- Ping-Jie Xiao
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zheng-Yu Peng
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Huang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ya Li
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xian-Hua Chen
- Laboratory of Genomic Physiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
738
|
Ninomiya K, Kataoka N, Hagiwara M. Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. ACTA ACUST UNITED AC 2011; 195:27-40. [PMID: 21949414 PMCID: PMC3187705 DOI: 10.1083/jcb.201107093] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A nuclear pool of partially spliced Clk1/4 pre-mRNAs matures in response to stress and induces SR protein phosphorylation and activation. It has been assumed that premessenger ribonucleic acids (RNAs; pre-mRNAs) are spliced cotranscriptionally in the process of gene expression. However, in this paper, we report that splicing of Clk1/4 mRNAs is suspended in tissues and cultured cells and that intermediate forms retaining specific introns are abundantly pooled in the nucleus. Administration of the Cdc2-like kinase–specific inhibitor TG003 increased the level of Clk1/4 mature mRNAs by promoting splicing of the intron-retaining RNAs. Under stress conditions, splicing of general pre-mRNAs was inhibited by dephosphorylation of SR splicing factors, but exposure to stresses, such as heat shock and osmotic stress, promoted the maturation of Clk1/4 mRNAs. Clk1/4 proteins translated after heat shock catalyzed rephosphorylation of SR proteins, especially SRSF4 and SRSF10. These findings suggest that Clk1/4 expression induced by stress-responsive splicing serves to maintain the phosphorylation state of SR proteins.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
739
|
Abstract
Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.
Collapse
|
740
|
Richardson DN, Rogers MF, Labadorf A, Ben-Hur A, Guo H, Paterson AH, Reddy ASN. Comparative analysis of serine/arginine-rich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing. PLoS One 2011; 6:e24542. [PMID: 21935421 PMCID: PMC3173450 DOI: 10.1371/journal.pone.0024542] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/12/2011] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing (AS) of pre-mRNA is a fundamental molecular process that generates diversity in the transcriptome and proteome of eukaryotic organisms. SR proteins, a family of splicing regulators with one or two RNA recognition motifs (RRMs) at the N-terminus and an arg/ser-rich domain at the C-terminus, function in both constitutive and alternative splicing. We identified SR proteins in 27 eukaryotic species, which include plants, animals, fungi and "basal" eukaryotes that lie outside of these lineages. Using RNA recognition motifs (RRMs) as a phylogenetic marker, we classified 272 SR genes into robust sub-families. The SR gene family can be split into five major groupings, which can be further separated into 11 distinct sub-families. Most flowering plants have double or nearly double the number of SR genes found in vertebrates. The majority of plant SR genes are under purifying selection. Moreover, in all paralogous SR genes in Arabidopsis, rice, soybean and maize, one of the two paralogs is preferentially expressed throughout plant development. We also assessed the extent of AS in SR genes based on a splice graph approach (http://combi.cs.colostate.edu/as/gmap_SRgenes). AS of SR genes is a widespread phenomenon throughout multiple lineages, with alternative 3' or 5' splicing events being the most prominent type of event. However, plant-enriched sub-families have 57%-88% of their SR genes experiencing some type of AS compared to the 40%-54% seen in other sub-families. The SR gene family is pervasive throughout multiple eukaryotic lineages, conserved in sequence and domain organization, but differs in gene number across lineages with an abundance of SR genes in flowering plants. The higher number of alternatively spliced SR genes in plants emphasizes the importance of AS in generating splice variants in these organisms.
Collapse
Affiliation(s)
- Dale N. Richardson
- Department of Bioinformatics and Population Genetics, Universität zu Köln, Köln, Germany
| | - Mark F. Rogers
- Computer Science Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam Labadorf
- Computer Science Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Asa Ben-Hur
- Computer Science Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Anireddy S. N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
741
|
Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas. EMBO J 2011; 30:4084-97. [PMID: 21915099 PMCID: PMC3209773 DOI: 10.1038/emboj.2011.259] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/05/2011] [Indexed: 12/11/2022] Open
Abstract
This study reveals two alternative splicing events that contribute to the development of glioma. HnRNPH is shown to control production of a pro-survival splice variant of the death-domain adaptor protein IG20-MADD and the motility-enhancing isoform of the RON receptor tyrosine kinase. In tumours, aberrant splicing generates variants that contribute to multiple aspects of tumour establishment, progression and maintenance. We show that in glioblastoma multiforme (GBM) specimens, death-domain adaptor protein Insuloma-Glucagonoma protein 20 (IG20) is consistently aberrantly spliced to generate an antagonist, anti-apoptotic isoform (MAP-kinase activating death domain protein, MADD), which effectively redirects TNF-α/TRAIL-induced death signalling to promote survival and proliferation instead of triggering apoptosis. Splicing factor hnRNPH, which is upregulated in gliomas, controls this splicing event and similarly mediates switching to a ligand-independent, constitutively active Recepteur d′Origine Nantais (RON) tyrosine kinase receptor variant that promotes migration and invasion. The increased cell death and the reduced invasiveness caused by hnRNPH ablation can be rescued by the targeted downregulation of IG20/MADD exon 16- or RON exon 11-containing variants, respectively, using isoform-specific knockdown or splicing redirection approaches. Thus, hnRNPH activity appears to be involved in the pathogenesis and progression of malignant gliomas as the centre of a splicing oncogenic switch, which might reflect reactivation of stem cell patterns and mediates multiple key aspects of aggressive tumour behaviour, including evasion from apoptosis and invasiveness.
Collapse
|
742
|
Busch A, Hertel KJ. Evolution of SR protein and hnRNP splicing regulatory factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:1-12. [PMID: 21898828 DOI: 10.1002/wrna.100] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The splicing of pre-mRNAs is an essential step of gene expression in eukaryotes. Introns are removed from split genes through the activities of the spliceosome, a large ribonuclear machine that is conserved throughout the eukaryotic lineage. While unicellular eukaryotes are characterized by less complex splicing, pre-mRNA splicing of multicellular organisms is often associated with extensive alternative splicing that significantly enriches their proteome. The alternative selection of splice sites and exons permits multicellular organisms to modulate gene expression patterns in a cell type-specific fashion, thus contributing to their functional diversification. Alternative splicing is a regulated process that is mainly influenced by the activities of splicing regulators, such as SR proteins or hnRNPs. These modular factors have evolved from a common ancestor through gene duplication events to a diverse group of splicing regulators that mediate exon recognition through their sequence-specific binding to pre-mRNAs. Given the strong correlations between intron expansion, the complexity of pre-mRNA splicing, and the emergence of splicing regulators, it is argued that the increased presence of SR and hnRNP proteins promoted the evolution of alternative splicing through relaxation of the sequence requirements of splice junctions.
Collapse
Affiliation(s)
- Anke Busch
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA
| | | |
Collapse
|
743
|
Abstract
Serine-arginine (SR) proteins commonly designate a family of eukaryotic RNA binding proteins containing a protein domain composed of several repeats of the arginine-serine dipeptide, termed the arginine-serine (RS) domain. This protein family is involved in essential nuclear processes such as constitutive and alternative splicing of mRNA precursors. Besides participating in crucial activities in the nuclear compartment, several SR proteins are able to shuttle between the nucleus and the cytoplasm and to exert regulatory functions in the latter compartment. This review aims at discussing the properties of shuttling SR proteins with particular emphasis on their nucleo-cytoplasmic traffic and their cytoplasmic functions. Indeed, recent findings have unravelled the complex regulation of SR protein nucleo-cytoplasmic distribution and the diversity of cytoplasmic mechanisms in which these proteins are involved.
Collapse
Affiliation(s)
- Laure Twyffels
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|
744
|
Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat Immunol 2011; 12:853-60. [PMID: 21822258 PMCID: PMC3597344 DOI: 10.1038/ni.2081] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 06/30/2011] [Indexed: 12/21/2022]
Abstract
Interleukin 17 (IL-17) promotes the expression of chemokines and cytokines via the induction of gene transcription and post-transcriptional stabilization of mRNA. We show here that IL-17 enhanced the stability of chemokine CXCL1 mRNA and other mRNAs through a pathway that involved the adaptor Act1, the adaptors TRAF2 or TRAF5 and the splicing factor SF2 (also known as alternative splicing factor (ASF)). TRAF2 and TRAF5 were necessary for IL-17 to signal the stabilization of CXCL1 mRNA. Furthermore, IL-17 promoted the formation of complexes of TRAF5-TRAF2, Act1 and SF2 (ASF). Overexpression of SF2 (ASF) shortened the half-life of CXCL1 mRNA, whereas depletion of SF2 (ASF) prolonged it. SF2 (ASF) bound chemokine mRNA in unstimulated cells, whereas the SF2 (ASF)-mRNA interaction was much lower after stimulation with IL-17. Our findings define an IL-17-induced signaling pathway that links to the stabilization of selected mRNA species through Act1, TRAF2-TRAF5 and the RNA-binding protein SF2 (ASF).
Collapse
Affiliation(s)
- Dongxu Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
745
|
Reddy ASN, Shad Ali G. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:875-89. [PMID: 21766458 DOI: 10.1002/wrna.98] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Global analyses of splicing of precursor messenger RNAs (pre-mRNAs) have revealed that alternative splicing (AS) is highly pervasive in plants. Despite the widespread occurrence of AS in plants, the mechanisms that control splicing and the roles of splice variants generated from a gene are poorly understood. Studies on plant serine/arginine-rich (SR) proteins, a family of highly conserved proteins, suggest their role in both constitutive splicing and AS of pre-mRNAs. SR proteins have a characteristic domain structure consisting of one or two RNA recognition motifs at the N-terminus and a C-terminal RS domain rich in arginine/serine dipeptides. Plants have many more SR proteins compared to animals including several plant-specific subfamilies. Pre-mRNAs of plant SR proteins are extensively alternatively spliced to increase the transcript complexity by about six-fold. Some of this AS is controlled in a tissue- and development-specific manner. Furthermore, AS of SR pre-mRNAs is altered by various stresses, raising the possibility of rapid reprogramming of the whole transcriptome by external signals through regulation of the splicing of these master regulators of splicing. Most SR splice variants contain a premature termination codon and are degraded by up-frameshift 3 (UPF3)-mediated nonsense-mediated decay (NMD), suggesting a link between NMD and regulation of expression of the functional transcripts of SR proteins. Limited functional studies with plant SRs suggest key roles in growth and development and plant responses to the environment. Here, we discuss the current status of research on plant SRs and some promising approaches to address many unanswered questions about plant SRs.
Collapse
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| | | |
Collapse
|
746
|
Fitzgerald KD, Semler BL. Re-localization of cellular protein SRp20 during poliovirus infection: bridging a viral IRES to the host cell translation apparatus. PLoS Pathog 2011; 7:e1002127. [PMID: 21779168 PMCID: PMC3136463 DOI: 10.1371/journal.ppat.1002127] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 05/02/2011] [Indexed: 12/14/2022] Open
Abstract
Poliovirus IRES-mediated translation requires the functions of certain canonical as well as non-canonical factors for the recruitment of ribosomes to the viral RNA. The interaction of cellular proteins PCBP2 and SRp20 in extracts from poliovirus-infected cells has been previously described, and these two proteins were shown to function synergistically in viral translation. To further define the mechanism of ribosome recruitment for the initiation of poliovirus IRES-dependent translation, we focused on the role of the interaction between cellular proteins PCBP2 and SRp20. Work described here demonstrates that SRp20 dramatically re-localizes from the nucleus to the cytoplasm of poliovirus-infected neuroblastoma cells during the course of infection. Importantly, SRp20 partially co-localizes with PCBP2 in the cytoplasm of infected cells, corroborating our previous in vitro interaction data. In addition, the data presented implicate the presence of these two proteins in viral translation initiation complexes. We show that in extracts from poliovirus-infected cells, SRp20 is associated with PCBP2 bound to poliovirus RNA, indicating that this interaction occurs on the viral RNA. Finally, we generated a mutated version of SRp20 lacking the RNA recognition motif (SRp20ΔRRM) and found that this protein is localized similar to the full length SRp20, and also partially co-localizes with PCBP2 during poliovirus infection. Expression of this mutated version of SRp20 results in a ∼100 fold decrease in virus yield for poliovirus when compared to expression of wild type SRp20, possibly via a dominant negative effect. Taken together, these results are consistent with a model in which SRp20 interacts with PCBP2 bound to the viral RNA, and this interaction functions to recruit ribosomes to the viral RNA in a direct or indirect manner, with the participation of additional protein-protein or protein-RNA interactions. Picornaviruses are positive-sense RNA viruses that cause diseases ranging from the common cold to poliomyelitis. Poliovirus is one of the most extensively studied members of the Picornaviridae family. However, a complete understanding of the mechanism by which the viral RNA genome directs the synthesis of its protein products is lacking. Poliovirus usurps the host cell translation machinery to initiate viral polyprotein synthesis via a mechanism distinct from the cellular cap-binding, ribosome scanning model of translation. This allows the virus to down-regulate host cell translation while providing an advantage for its own gene expression. Owing to its small genome size, poliovirus utilizes host cell proteins to facilitate the recruitment of the translation machinery, a process that is still not completely defined. Previous work highlighted the importance of two particular host cell RNA binding proteins in poliovirus translation. Here we employ imaging techniques, fractionation assays, and RNA binding experiments to further examine the specific role these proteins play in poliovirus translation. We also generated a truncated version of one of the proteins and observed a dramatic effect on virus growth, highlighting its significance during poliovirus infection and supporting our model for bridging the cellular translation apparatus to viral RNA.
Collapse
Affiliation(s)
- Kerry D. Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
| | - Bert L. Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
747
|
Hossain MA, Rodriguez CM, Johnson TL. Key features of the two-intron Saccharomyces cerevisiae gene SUS1 contribute to its alternative splicing. Nucleic Acids Res 2011; 39:8612-27. [PMID: 21749978 PMCID: PMC3201863 DOI: 10.1093/nar/gkr497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alternative pre-mRNA splicing allows dramatic expansion of the eukaryotic proteome and facilitates cellular response to changes in environmental conditions. The Saccharomyces cerevisiae gene SUS1, which encodes a protein involved in mRNA export and histone H2B deubiquitination, contains two introns; non-canonical sequences in the first intron contribute to its retention, a common form of alternative splicing in plants and fungi. Here we show that the pattern of SUS1 splicing changes in response to environmental change such as temperature elevation, and the retained intron product is subject to nonsense-mediated decay. The activities of different splicing factors determine the pattern of SUS1 splicing, including intron retention and exon skipping. Unexpectedly, removal of the 3′ intron is affected by splicing of the upstream intron, suggesting that cross-exon interactions influence intron removal. Production of different SUS1 isoforms is important for cellular function, as we find that the temperature sensitivity and histone H2B deubiquitination defects observed in sus1Δ cells are only partially suppressed by SUS1 cDNA, but SUS1 that is able to undergo splicing complements these phenotypes. These data illustrate a role for S. cerevisiae alternative splicing in histone modification and cellular function and reveal important mechanisms for splicing of yeast genes containing multiple introns.
Collapse
Affiliation(s)
- Munshi Azad Hossain
- Division of Biological Sciences, Molecular Biology Section, University of California, San Diego, CA 92093-0377, USA
| | | | | |
Collapse
|
748
|
Gargani M, Valentini A, Pariset L. A novel point mutation within the EDA gene causes an exon dropping in mature RNA in Holstein Friesian cattle breed affected by X-linked anhidrotic ectodermal dysplasia. BMC Vet Res 2011; 7:35. [PMID: 21740563 PMCID: PMC3224562 DOI: 10.1186/1746-6148-7-35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/08/2011] [Indexed: 12/14/2022] Open
Abstract
Background X-linked anhidrotic ectodermal dysplasia is a disorder characterized by abnormal development of tissues and organs of ectodermal origin caused by mutations in the EDA gene. The bovine EDA gene encodes the ectodysplasin A, a membrane protein expressed in keratinocytes, hair follicles and sweat glands, which is involved in the interactions between cell and cell and/or cell and matrix. Four mutations causing ectodermal dysplasia in cattle have been described so far. Results We identified a new single nucleotide polymorphism (SNP) at the 9th base of exon 8 in the EDA gene in two calves of Holstein Friesian cattle breed affected by ectodermal dysplasia. This SNP is located in the exonic splicing enhancer (ESEs) recognized by SRp40 protein. As a consequence, the spliceosome machinery is no longer able to recognize the sequence as exonic and causes exon skipping. The mutation determines the deletion of the entire exon (131 bp) in the RNA processing, causing a severe alteration of the protein structure and thus the disease. Conclusion We identified a mutation, never described before, that changes the regulation of alternative splicing in the EDA gene and causes ectodermal dysplasia in cattle. The analysis of the SNP allows the identification of carriers that can transmit the disease to the offspring. This mutation can thus be exploited for a rational and efficient selection of unequivocally healthy cows for breeding.
Collapse
Affiliation(s)
- Maria Gargani
- Department for Innovation in Biological, Agro-Food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | | | | |
Collapse
|
749
|
LAMMER kinase Kic1 is involved in pre-mRNA processing. Exp Cell Res 2011; 317:2308-20. [PMID: 21745468 DOI: 10.1016/j.yexcr.2011.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 01/03/2023]
Abstract
The LAMMER kinases are conserved through evolution. They play vital roles in cell growth/differentiation, development, and metabolism. One of the best known functions of the kinases in animal cells is the regulation of pre-mRNA splicing. Kic1 is the LAMMER kinase in fission yeast Schizosaccharomyces pombe. Despite the reported pleiotropic effects of kic1+ deletion/overexpression on various cellular processes the involvement of Kic1 in splicing remains elusive. In this study, we demonstrate for the first time that Kic1 not only is required for efficient splicing but also affects mRNA export, providing evidence for the conserved roles of LAMMER kinases in the unicellular context of fission yeast. Consistent with the hypothesis of its direct participation in multiple steps of pre-mRNA processing, Kic1 is predominantly present in the nucleus during interphase. In addition, the kinase activity of Kic1 plays a role in modulating its own cellular partitioning. Interestingly, Kic1 expression oscillates in a cell cycle-dependent manner and the peak level coincides with mitosis and cytokinesis, revealing a potential mechanism for controlling the kinase activity during the cell cycle. The novel information about the in vivo functions and regulation of Kic1 offers insights into the conserved biological roles fundamental to LAMMER kinases in eukaryotes.
Collapse
|
750
|
Grellscheid SN, Dalgliesh C, Rozanska A, Grellscheid D, Bourgeois CF, Stévenin J, Elliott DJ. Molecular design of a splicing switch responsive to the RNA binding protein Tra2β. Nucleic Acids Res 2011; 39:8092-104. [PMID: 21724598 PMCID: PMC3185414 DOI: 10.1093/nar/gkr495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tra2β regulates a number of splicing switches including activation of the human testis-specific exon HIPK3-T in the Homeodomain Interacting Protein Kinase 3 gene. By testing HIPK3-T exons of different intrinsic strengths, we found Tra2β most efficiently activated splicing inclusion of intrinsically weak exons, although these were spliced at a lower overall level. Both the RRM and N-terminal RS-rich region of Tra2β were required for splicing activation. Bioinformatic searches for splicing enhancers and repressors mapped four physically distinct exonic splicing enhancers (ESEs) within HIPK3-T, each containing the known Tra2β AGAA-rich binding site. Surprisingly disruption of each single ESE prevented Tra2β-mediated activation, although single mutated exons could still bind Tra2β protein by gel shifts and functional splicing analyses. Titration experiments indicate an additive model of HIPK3-T splicing activation, requiring availability of an array of four distinct ESEs to enable splicing activation. To enable this efficient Tra2β-mediated splicing switch to operate, a closely adjacent downstream and potentially competitive stronger 5'-splice site is actively repressed. Our data indicate that a novel arrangement of multiple mono-specific AGAA-rich ESEs coupled to a weak 5'-splice site functions as a responsive gauge. This gauge monitors changes in the specific nuclear concentration of the RNA binding protein Tra2β, and co-ordinately regulates HIPK3-T exon splicing inclusion.
Collapse
|