701
|
Lin L, Lemieux GA, Enogieru OJ, Giacomini KM, Ashrafi K. Neural production of kynurenic acid in Caenorhabditis elegans requires the AAT-1 transporter. Genes Dev 2020; 34:1033-1038. [PMID: 32675325 PMCID: PMC7397858 DOI: 10.1101/gad.339119.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
In this study, Lin et al. investigated the mechanisms that import kyneurine (Kyn), a prescursor to kynurenic acid (KynA), which links peripheral metabolic status to neural functions including learning and memory, into the nervous system. They provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production. Kynurenic acid (KynA) levels link peripheral metabolic status to neural functions including learning and memory. Since neural KynA levels dampen learning capacity, KynA reduction has been proposed as a therapeutic strategy for conditions of cognitive deficit such as neurodegeneration. While KynA is generated locally within the nervous system, its precursor, kynurenine (Kyn), is largely derived from peripheral resources. The mechanisms that import Kyn into the nervous system are poorly understood. Here, we provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production.
Collapse
Affiliation(s)
- Lin Lin
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - George A Lemieux
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Osatohanmwen Jessica Enogieru
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
702
|
Zhang Q, Sun Y, He Z, Xu Y, Li X, Ding J, Lu M, Hu G. Kynurenine regulates NLRP2 inflammasome in astrocytes and its implications in depression. Brain Behav Immun 2020; 88:471-481. [PMID: 32283293 DOI: 10.1016/j.bbi.2020.04.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Increased kynurenine (Kyn) metabolized from tryptophan (Try) is a biomarker in the immune dysfunction of depression. However, the mechanism by which Kyn change promotes depression is poorly defined. Astrocytes are involved in the neuroinflammation of depression. Among the numerous inflammatory cytokines, interleukin-1β (IL-1β) produced by astrocytic Nod-like receptor protein (NLRP) inflammasome is crucial in the pathogenesis of depression. In the present study, Kyn was shown to be a proinflammatory metabolite in the neuroimmune signaling network mediating depressive-like behavior. First, in chronic mild stress (CMS)-induced depressive mice, the level of Kyn notably increased in the hippocampus, accompanied by the activation of astrocytic NLRP2 inflammasome. Kyn treatment specifically upregulated Nod-like receptor protein 2 (NLPR2) expression in primary mouse astrocytes. Kyn + ATP activated NLRP2 inflammasome, evidenced by increased caspase-1 expression and IL-1β release. After Kyn treatment, nuclear factor kappa-B (NF-κB) could translocate to the nucleus and bind the promoter of NLRP2, subsequently increased NLRP2 transcription in cultured astrocytes in vitro. Intraperitoneal injection of Kyn activated NLRP2 inflammasome in astrocytes of hippocampus in mice, while NLRP2 knockdown in astrocytes abolished depressive-like behaviors in mice induced by Kyn, suggesting the critical role of NLRP2 in Kyn-induced depression. These findings demonstrate a novel mechanism that Kyn upregulates NLRP2 in an NF-κB-dependent pathway and provide a new strategy for treatment of depression.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yiming Sun
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhang He
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Ying Xu
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xueting Li
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
703
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol 2020; 219:jcb.201907022. [PMID: 31690618 PMCID: PMC7039202 DOI: 10.1083/jcb.201907022] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Perturbations in cellular metabolism are ubiquitous in cancer. Here Reina-Campos et al. review the role of one-carbon metabolism in tumorigenesis. The serine glycine and one-carbon pathway (SGOCP) is a crucially important metabolic network for tumorigenesis, of unanticipated complexity, and with implications in the clinic. Solving how this network is regulated is key to understanding the underlying mechanisms of tumor heterogeneity and therapy resistance. Here, we review its role in cancer by focusing on key enzymes with tumor-promoting functions and important products of the SGOCP that are of physiological relevance for tumorigenesis. We discuss the regulatory mechanisms that coordinate the metabolic flux through the SGOCP and their deregulation, as well as how the actions of this metabolic network affect other cells in the tumor microenvironment, including endothelial and immune cells.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
704
|
Abstract
Purpose of Review A better understanding of the key molecules/pathways underlying the pathophysiology of depression and schizophrenia may contribute to novel therapeutic strategies. In this review, we have discussed the recent developments on the role of inflammatory pathways in the pathogenesis of depression and schizophrenia. Recent Findings Inflammation is an innate immune response that can be triggered by various factors, including pathogens, stress and injury. Under normal conditions, the inflammatory responses quiet after pathogen clearance and tissue repair. However, abnormal long-term or chronic inflammation can lead to damaging effects. Accumulating evidence suggest that dysregulated inflammation is linked to the pathogenesis of neuropsychiatric disorders. In this review, we have discussed the roles of complement system, infiltration of peripheral immune cells into the central nervous system (CNS), the gut-brain axis, and the kynurenine pathway in depression and schizophrenia. Summary There is a large body of compelling evidence on the role of inflammatory pathways in depression and schizophrenia. Although most of these findings show their roles in the pathophysiology of the above disorders, additional studies are warranted to investigate the therapeutic potential of various immune signaling targets discussed in this article.
Collapse
|
705
|
Geng J, Weitz AC, Dornevil K, Hendrich MP, Liu A. Kinetic and Spectroscopic Characterization of the Catalytic Ternary Complex of Tryptophan 2,3-Dioxygenase. Biochemistry 2020; 59:2813-2822. [PMID: 32659080 DOI: 10.1021/acs.biochem.0c00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first step of the kynurenine pathway for l-tryptophan (l-Trp) degradation is catalyzed by heme-dependent dioxygenases, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase. In this work, we employed stopped-flow optical absorption spectroscopy to study the kinetic behavior of the Michaelis complex of Cupriavidus metallidurans TDO (cmTDO) to improve our understanding of oxygen activation and initial oxidation of l-Trp. On the basis of the stopped-flow results, rapid freeze-quench (RFQ) experiments were performed to capture and characterize this intermediate by Mössbauer spectroscopy. By incorporating the chlorite dismutase-chlorite system to produce high concentrations of solubilized O2, we were able to capture the Michaelis complex of cmTDO in a nearly quantitative yield. The RFQ-Mössbauer results confirmed the identity of the Michaelis complex as an O2-bound ferrous species. They revealed remarkable similarities between the electronic properties of the Michaelis complex and those of the O2 adduct of myoglobin. We also found that the decay of this reactive intermediate is the rate-limiting step of the catalytic reaction. An inverse α-secondary substrate kinetic isotope effect was observed with a kH/kD of 0.87 ± 0.03 when (indole-d5)-l-Trp was employed as the substrate. This work provides an important piece of spectroscopic evidence of the chemical identity of the Michaelis complex of bacterial TDO.
Collapse
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kednerlin Dornevil
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Aimin Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
706
|
Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver's seat. Signal Transduct Target Ther 2020; 5:124. [PMID: 32651356 PMCID: PMC7351732 DOI: 10.1038/s41392-020-00235-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer cells must rewire cellular metabolism to satisfy the demands of unbridled growth and proliferation. As such, most human cancers differ from normal counterpart tissues by a plethora of energetic and metabolic reprogramming. Transcription factors of the MYC family are deregulated in up to 70% of all human cancers through a variety of mechanisms. Oncogenic levels of MYC regulates almost every aspect of cellular metabolism, a recently revisited hallmark of cancer development. Meanwhile, unrestrained growth in response to oncogenic MYC expression creates dependency on MYC-driven metabolic pathways, which in principle provides novel targets for development of effective cancer therapeutics. In the current review, we summarize the significant progress made toward understanding how MYC deregulation fuels metabolic rewiring in malignant transformation.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Rongfu Tu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Hudan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Guoliang Qing
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Frontier Science Center for Immunology & Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
707
|
Joisten N, Walzik D, Metcalfe AJ, Bloch W, Zimmer P. Physical Exercise as Kynurenine Pathway Modulator in Chronic Diseases: Implications for Immune and Energy Homeostasis. Int J Tryptophan Res 2020; 13:1178646920938688. [PMID: 32684749 PMCID: PMC7346690 DOI: 10.1177/1178646920938688] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence highlights the substantial role of the kynurenine pathway in various physiological systems and pathological conditions. Physical exercise has been shown to impact the kynurenine pathway in response to both single (acute) and multiple (chronic) exercise training stimuli. In this perspective article, we briefly outline the current knowledge concerning exercise-induced modulations of the kynurenine pathway and discuss underlying mechanisms. Furthermore, we expose the potential involvement of exercise-induced kynurenine pathway modulations on energy homeostasis (eg, through de novo synthesis of NAD+) and finally suggest how these modulations may contribute to exercise-induced benefits in the prevention and treatment of chronic diseases.
Collapse
Affiliation(s)
- Niklas Joisten
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - David Walzik
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - Alan J Metcalfe
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
708
|
Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, Croker BP, Michailidis G, Garrett TJ, Mohamadzadeh M, Morel L. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med 2020; 12:eaax2220. [PMID: 32641487 PMCID: PMC7739186 DOI: 10.1126/scitranslmed.aax2220] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. It has been postulated that gut microbial dysbiosis may be one of the mechanisms involved in SLE pathogenesis. Here, we demonstrate that the dysbiotic gut microbiota of triple congenic (TC) lupus-prone mice (B6.Sle1.Sle2.Sle3) stimulated the production of autoantibodies and activated immune cells when transferred into germfree congenic C57BL/6 (B6) mice. Fecal transfer to B6 mice induced autoimmune phenotypes only when the TC donor mice exhibited autoimmunity. Autoimmune pathogenesis was mitigated by horizontal transfer of the gut microbiota between co-housed lupus-prone TC mice and control congenic B6 mice. Metabolomic screening identified an altered distribution of tryptophan metabolites in the feces of TC mice including an increase in kynurenine, which was alleviated after antibiotic treatment. Low dietary tryptophan prevented autoimmune pathology in TC mice, whereas high dietary tryptophan exacerbated disease. Reducing dietary tryptophan altered gut microbial taxa in both lupus-prone TC mice and control B6 mice. Consequently, fecal transfer from TC mice fed a high tryptophan diet, but not a low tryptophan diet, induced autoimmune phenotypes in germfree B6 mice. The interplay of gut microbial dysbiosis, tryptophan metabolism and host genetic susceptibility in lupus-prone mice suggest that aberrant tryptophan metabolism may contribute to autoimmune activation in this disease.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Byron P Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
709
|
Wang YP, Li JT, Qu J, Yin M, Lei QY. Metabolite sensing and signaling in cancer. J Biol Chem 2020; 295:11938-11946. [PMID: 32641495 DOI: 10.1074/jbc.rev119.007624] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Metabolites are not only substrates in metabolic reactions, but also signaling molecules controlling a wide range of cellular processes. Discovery of the oncometabolite 2-hydroxyglutarate provides an important link between metabolic dysfunction and cancer, unveiling the signaling function of metabolites in regulating epigenetic and epitranscriptomic modifications, genome integrity, and signal transduction. It is now known that cancer cells remodel their metabolic network to support biogenesis, caused by or resulting in the dysregulation of various metabolites. Cancer cells can sense alterations in metabolic intermediates to better coordinate multiple biological processes and enhance cell metabolism. Recent studies have demonstrated that metabolite signaling is involved in the regulation of malignant transformation, cell proliferation, epithelial-to-mesenchymal transition, differentiation blockade, and cancer stemness. Additionally, intercellular metabolite signaling modulates inflammatory response and immunosurveillance in the tumor microenvironment. Here, we review recent advances in cancer-associated metabolite signaling. An in depth understanding of metabolite signaling will provide new opportunities for the development of therapeutic interventions that target cancer.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Medical Epigenetics, and Shanghai Medical College, Fudan University, Shanghai, China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tao Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Medical Epigenetics, and Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Qu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Medical Epigenetics, and Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Medical Epigenetics, and Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Medical Epigenetics, and Shanghai Medical College, Fudan University, Shanghai, China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
710
|
Yu Y, Zhang G, Han T, Huang H. Analysis of the pharmacological mechanism of Banxia Xiexin decoction in treating depression and ulcerative colitis based on a biological network module. BMC Complement Med Ther 2020; 20:199. [PMID: 32600331 PMCID: PMC7325019 DOI: 10.1186/s12906-020-02988-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The network pharmacology method was used to predict the active components of Banxia Xiexin decoction, its targets and the key signalling pathways that are activated in the treatment of depression and ulcerative colitis to explore the common mechanism. METHODS The active components and targets of Banxia Xiexin decoction were obtained by searching the ETCM,TCMSP and TCMIP database. The disease targets of depression and ulcerative colitis were obtained by combining the following the DisGeNET, OMIM,Drugbank,CTD and PharmGKB disease databases. The drug and disease target genes were obtained from the intersection of the herbal medicine targets and the disease targets and were imported into the STRING platform for the analysis of PPI network. The network modules were constructed using Cytoscape software. An analysis of the functional annotations of GO terms and KEGG signalling pathways was performed for each network module. Then, the tissue distribution, sub-cellular distribution and protein attributes of the key targets in the pathway were analysed by the BioGPS, Genecards and DisGeNET databases. RESULTS The mechanism of Banxia Xiexin Decoction in the treatment of depression and ulcerative colitis is related to drug reaction, steroid metabolism, lipid metabolism, inflammatory response, oxidative stress response, cell response to lipopolysaccharide, insulin secretion regulation, estradiol response and other biological functions, mainly through the regulation of 5-hydroxytryptamine synaptic, arachidonic acid metabolism, HIF-1 signaling pathway and NF-kappa B signaling pathway can achieve the effect of same treatment for different diseases. CONCLUSIONS The mechanism of Banxia Xiexin Decoction in treating different diseases involves direct or indirect correlation of multiple signal pathways, mainly involved in drug metabolism and lipid metabolism, but also through comprehensive intervention of the body's nervous system, immune system, digestive system and other systems. The effective components of Banxia Xiexin Decoction are mainly act on eight key target proteins (such as ALB, IL6, VEGFA, TNF, PTGS2, MAPK1, STAT3, EGFR) to carry out multi-target effect mechanism, biological mechanism of treating different diseases with the same treatment, and related mechanism of overall treatment, which provide theoretical reference for further research on the material basis and mechanism of Banxiaxiexin decoction on antidepressant and prevention and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Ying Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Gong Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Tao Han
- Graduate Office of Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Hailiang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| |
Collapse
|
711
|
Sun Y, Baptista LC, Roberts LM, Jumbo-Lucioni P, McMahon LL, Buford TW, Carter CS. The Gut Microbiome as a Therapeutic Target for Cognitive Impairment. J Gerontol A Biol Sci Med Sci 2020; 75:1242-1250. [PMID: 31811292 PMCID: PMC7302188 DOI: 10.1093/gerona/glz281] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Declining cognitive functions in older individuals have enormous emotional, clinical, and public health consequences. Thus, therapeutics for preserving function and keeping older adults living independently are imperative. Aging is associated dysbiosis, defined as a loss of number and diversity in gut microbiota, which has been linked with various aspects of cognitive functions. Therefore, the gut microbiome has the potential to be an important therapeutic target for symptoms of cognitive impairment. In this review, we summarize the current literature regarding the potential for gut-targeted therapeutic strategies for prevention/treatment of the symptoms of cognitive impairment. Specifically, we discuss four primary therapeutic strategies: wild-type and genetically modified probiotics, fecal microbiota transplantation, physical exercise, and high-fiber diets and specifically link these therapies to reducing inflammation. These strategies may hold promise as treatment paradigm symptoms related to cognitive impairment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liliana C Baptista
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa M Roberts
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patricia Jumbo-Lucioni
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Homewood, Alabama
| | - Lori L McMahon
- Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, School of Medicine.,Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas W Buford
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
712
|
The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020; 107:234-256. [PMID: 32553197 DOI: 10.1016/j.neuron.2020.06.002] [Citation(s) in RCA: 1174] [Impact Index Per Article: 234.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Depression represents the number one cause of disability worldwide and is often fatal. Inflammatory processes have been implicated in the pathophysiology of depression. It is now well established that dysregulation of both the innate and adaptive immune systems occur in depressed patients and hinder favorable prognosis, including antidepressant responses. In this review, we describe how the immune system regulates mood and the potential causes of the dysregulated inflammatory responses in depressed patients. However, the proportion of never-treated major depressive disorder (MDD) patients who exhibit inflammation remains to be clarified, as the heterogeneity in inflammation findings may stem in part from examining MDD patients with varied interventions. Inflammation is likely a critical disease modifier, promoting susceptibility to depression. Controlling inflammation might provide an overall therapeutic benefit, regardless of whether it is secondary to early life trauma, a more acute stress response, microbiome alterations, a genetic diathesis, or a combination of these and other factors.
Collapse
|
713
|
Tryptophan Metabolism, Regulatory T Cells, and Inflammatory Bowel Disease: A Mini Review. Mediators Inflamm 2020; 2020:9706140. [PMID: 32617076 PMCID: PMC7306093 DOI: 10.1155/2020/9706140] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract resulting from the homeostasis imbalance of intestinal microenvironment, immune dysfunction, environmental and genetic factors, and so on. This disease is associated with multiple immune cells including regulatory T cells (Tregs). Tregs are a subset of T cells regulating the function of various immune cells to induce immune tolerance and maintain intestinal immune homeostasis. Tregs are correlated with the initiation and progression of IBD; therefore, strategies that affect the differentiation and function of Tregs may be promising for the prevention of IBD-associated pathology. It is worth noting that tryptophan (Trp) metabolism is effective in inducing the differentiation of Tregs through microbiota-mediated degradation and kynurenine pathway (KP), which is important for maintaining the function of Tregs. Interestingly, patients with IBD show Trp metabolism disorder in the pathological process, including changes in the concentrations of Trp and its metabolites and alteration in the activities of related catalytic enzymes. Thus, manipulation of Treg differentiation through Trp metabolism may provide a potential target for prevention of IBD. The purpose of this review is to highlight the relationship between Trp metabolism and Treg differentiation and the role of this interaction in the pathogenesis of IBD.
Collapse
|
714
|
Du Y, Gao XR, Peng L, Ge JF. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 2020; 6:e04097. [PMID: 32529075 PMCID: PMC7276434 DOI: 10.1016/j.heliyon.2020.e04097] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nutritional and microbiological psychiatry, especially the contribution of the gut microbiota to depression, has become a promising research field over the past several decades. An imbalance in the "microbiota-gut-brain axis", which reflects the constant bidirectional communication between the central nervous system and the gastrointestinal tract, has been used as a hypothesis to interpret the pathogenesis of depression. Alterations in gut microbiota composition could increase the permeability of the gut barrier, activate systemic inflammation and immune responses, regulate the release and efficacy of monoamine neurotransmitters, alter the activity and function of the hypothalamic-pituitary-adrenal (HPA) axis, and modify the abundance of brain-derived neurotrophic factor (BDNF), eventually leading to depression. In this article, we review changes in gut microbiota in depressive states, the association between these changes and depression-like behavior, the potential mechanism linking gut microbiota disruptions and depression, and preliminary attempts at using gut microbiota intervention for the treatment of depression. In summary, although the link between gut microbiota and depression and the potential mechanism have been discussed, a more detailed mechanistic understanding is needed to fully realize the importance of the microbiota-gut-brain axis in depression. Future efforts should aim to determine the potential causative mechanisms, which will require further animal and clinical research as well as the development of analytical approaches.
Collapse
Affiliation(s)
- Yu Du
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Peng
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
715
|
DCyFIR: a high-throughput CRISPR platform for multiplexed G protein-coupled receptor profiling and ligand discovery. Proc Natl Acad Sci U S A 2020; 117:13117-13126. [PMID: 32434907 DOI: 10.1073/pnas.2000430117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
More than 800 G protein-coupled receptors (GPCRs) comprise the largest class of membrane receptors in humans. While there is ample biological understanding and many approved drugs for prototypic GPCRs, most GPCRs still lack well-defined biological ligands and drugs. Here, we report our efforts to tap the potential of understudied GPCRs by developing yeast-based technologies for high-throughput clustered regularly interspaced short palindromic repeats (CRISPR) engineering and GPCR ligand discovery. We refer to these technologies collectively as Dynamic Cyan Induction by Functional Integrated Receptors, or DCyFIR. A major advantage of DCyFIR is that GPCRs and other assay components are CRISPR-integrated directly into the yeast genome, making it possible to decode ligand specificity by profiling mixtures of GPCR-barcoded yeast strains in a single tube. To demonstrate the capabilities of DCyFIR, we engineered a yeast strain library of 30 human GPCRs and their 300 possible GPCR-Gα coupling combinations. Profiling of these 300 strains, using parallel (DCyFIRscreen) and multiplex (DCyFIRplex) DCyFIR modes, recapitulated known GPCR agonism with 100% accuracy, and identified unexpected interactions for the receptors ADRA2B, HCAR3, MTNR1A, S1PR1, and S1PR2. To demonstrate DCyFIR scalability, we profiled a library of 320 human metabolites and discovered several GPCR-metabolite interactions. Remarkably, many of these findings pertained to understudied pharmacologically dark receptors GPR4, GPR65, GPR68, and HCAR3. Experiments on select receptors in mammalian cells confirmed our yeast-based observations, including our discovery that kynurenic acid activates HCAR3 in addition to GPR35, its known receptor. Taken together, these findings demonstrate the power of DCyFIR for identifying ligand interactions with prototypic and understudied GPCRs.
Collapse
|
716
|
Hajsl M, Hlavackova A, Broulikova K, Sramek M, Maly M, Dyr JE, Suttnar J. Tryptophan Metabolism, Inflammation, and Oxidative Stress in Patients with Neurovascular Disease. Metabolites 2020; 10:metabo10050208. [PMID: 32438592 PMCID: PMC7281607 DOI: 10.3390/metabo10050208] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a leading cause of major vascular events, myocardial infarction, and ischemic stroke. Tryptophan (TRP) catabolism was recognized as an important player in inflammation and immune response having together with oxidative stress (OS) significant effects on each phase of atherosclerosis. The aim of the study is to analyze the relationship of plasma levels of TRP metabolites, inflammation, and OS in patients with neurovascular diseases (acute ischemic stroke (AIS), significant carotid artery stenosis (SCAS)) and in healthy controls. Blood samples were collected from 43 patients (25 with SCAS, 18 with AIS) and from 25 healthy controls. The concentrations of twelve TRP metabolites, riboflavin, neopterin (NEO, marker of inflammation), and malondialdehyde (MDA, marker of OS) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Concentrations of seven TRP metabolites (TRP, kynurenine (KYN), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), anthranilic acid (AA), melatonin (MEL), tryptamine (TA)), NEO, and MDA were significantly different in the studied groups. Significantly lower concentrations of TRP, KYN, 3-HAA, MEL, TA, and higher MDA concentrations were found in AIS compared to SCAS patients. MDA concentration was higher in both AIS and SCAS group (p < 0.001, p = 0.004, respectively) compared to controls, NEO concentration was enhanced (p < 0.003) in AIS. MDA did not directly correlate with TRP metabolites in the study groups, except for 1) a negative correlation with kynurenine acid and 2) the activity of kynurenine aminotransferase in AIS patients (r = -0.552, p = 0.018; r = -0.504, p = 0.033, respectively). In summary, TRP metabolism is clearly more deregulated in AIS compared to SCAS patients; the effect of TRP metabolites on OS should be further elucidated.
Collapse
Affiliation(s)
- Martin Hajsl
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, 50002 Hradec Kralove, Czech Republic
| | - Alzbeta Hlavackova
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
| | - Karolina Broulikova
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, 50002 Hradec Kralove, Czech Republic
| | - Martin Sramek
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic;
| | - Martin Maly
- Department of Medicine, First Faculty of Medicine, Charles University in Prague and the Military University Hospital, 16902 Prague, Czech Republic; (M.H.); (K.B.); (M.M.)
| | - Jan E. Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
| | - Jiri Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic; (A.H.); (J.E.D.)
- Correspondence:
| |
Collapse
|
717
|
Przewłócka K, Folwarski M, Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Kaczor JJ. Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients 2020; 12:nu12051451. [PMID: 32443396 PMCID: PMC7285193 DOI: 10.3390/nu12051451] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive training may limit physiological muscle adaptation through chronic oxidative stress and inflammation. Improper diet and overtraining may also disrupt intestinal homeostasis and in consequence enhance inflammation. Altogether, these factors may lead to an imbalance in the gut ecosystem, causing dysregulation of the immune system. Therefore, it seems to be important to optimize the intestinal microbiota composition, which is able to modulate the immune system and reduce oxidative stress. Moreover, the optimal intestinal microbiota composition may have an impact on muscle protein synthesis and mitochondrial biogenesis and function, as well as muscle glycogen storage. Aproperly balanced microbiome may also reduce inflammatory markers and reactive oxygen species production, which may further attenuate macromolecules damage. Consequently, supplementation with probiotics may have some beneficial effect on aerobic and anaerobic performance. The phenomenon of gut-muscle axis should be continuously explored to function maintenance, not only in athletes.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Marcin Folwarski
- Departmentof Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | | | | | - Jan Jacek Kaczor
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-516-191-109
| |
Collapse
|
718
|
Chang PV. Chemical Mechanisms of Colonization Resistance by the Gut Microbial Metabolome. ACS Chem Biol 2020; 15:1119-1126. [PMID: 31895538 DOI: 10.1021/acschembio.9b00813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The gut microbiome, the collection of 100 trillion microorganisms that resides in the intestinal lumen, plays major roles in modulating host physiology. One well-established function of the gut microbiota is that of colonization resistance or the ability of the microbial collective to protect the host against enteric pathogens. Although evidence suggests that these microbes may outcompete some pathogens, there remains a lack of mechanistic understanding that underlies this competitive exclusion. In recent years, there has been great interest in small-molecule metabolites that are produced by the gut microbiota and in understanding how these molecules regulate host-pathogen interactions. In this review, we briefly summarize these findings by focusing on several classes of metabolites that mediate this important process. Understanding these host-microbe interactions in the gut may lead to identification of potential candidates for the development of prophylactics and therapeutics for many infectious diseases that are impacted by the gut microbiome.
Collapse
Affiliation(s)
- Pamela V. Chang
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interactions & Disease, and Cornell Center for Immunology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
719
|
Kudo T, Prentzell MT, Mohapatra SR, Sahm F, Zhao Z, Grummt I, Wick W, Opitz CA, Platten M, Green EW. Constitutive Expression of the Immunosuppressive Tryptophan Dioxygenase TDO2 in Glioblastoma Is Driven by the Transcription Factor C/EBPβ. Front Immunol 2020; 11:657. [PMID: 32477324 PMCID: PMC7239998 DOI: 10.3389/fimmu.2020.00657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Catabolism of the essential amino acid tryptophan is a key metabolic pathway contributing to the immunosuppressive tumor microenvironment and therefore a viable drug target for cancer immunotherapy. In addition to the rate-limiting enzyme indoleamine-2,3-dioxygenase-1 (IDO1), tryptophan catabolism via tryptophan-2,3-dioxygenase (TDO2) is a feature of many tumors, particularly malignant gliomas. The pathways regulating TDO2 in tumors are poorly understood; using unbiased promoter and gene expression analyses, we identify a distinct CCAAT/enhancer-binding protein β (C/EBPβ) binding site in the promoter of TDO2 essential for driving constitutive TDO2 expression in glioblastoma cells. Using The Cancer Genome Atlas (TCGA) data, we find that C/EBPβ expression is correlated with TDO2, and both are enriched in malignant glioma of the mesenchymal subtype and associated with poor patient outcome. We determine that TDO2 expression is sustained mainly by the LAP isoform of CEBPB and interleukin-1β, which activates TDO2 via C/EBPβ in a mitogen-activated protein kinase (MAPK) kinase-dependent fashion. In summary, we provide evidence for a novel regulatory and therapeutically targetable pathway of immunosuppressive tryptophan degradation in a subtype of glioblastoma with a particularly poor prognosis.
Collapse
Affiliation(s)
- Takumi Kudo
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mirja T Prentzell
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soumya R Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zhongliang Zhao
- DKTK Division Molecular Biology of the Cell, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Grummt
- DKTK Division Molecular Biology of the Cell, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- DKTK CCU Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Edward W Green
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
720
|
Affiliation(s)
- Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
721
|
Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv Nutr 2020; 11:709-723. [PMID: 31825083 PMCID: PMC7231603 DOI: 10.1093/advances/nmz127] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
The gut-brain axis (GBA) is a bilateral communication network between the gastrointestinal (GI) tract and the central nervous system. The essential amino acid tryptophan contributes to the normal growth and health of both animals and humans and, importantly, exerts modulatory functions at multiple levels of the GBA. Tryptophan is the sole precursor of serotonin, which is a key monoamine neurotransmitter participating in the modulation of central neurotransmission and enteric physiological function. In addition, tryptophan can be metabolized into kynurenine, tryptamine, and indole, thereby modulating neuroendocrine and intestinal immune responses. The gut microbial influence on tryptophan metabolism emerges as an important driving force in modulating tryptophan metabolism. Here, we focus on the potential role of tryptophan metabolism in the modulation of brain function by the gut microbiota. We start by outlining existing knowledge on tryptophan metabolism, including serotonin synthesis and degradation pathways of the host, and summarize recent advances in demonstrating the influence of the gut microbiota on tryptophan metabolism. The latest evidence revealing those mechanisms by which the gut microbiota modulates tryptophan metabolism, with subsequent effects on brain function, is reviewed. Finally, the potential modulation of intestinal tryptophan metabolism as a therapeutic option for brain and GI functional disorders is also discussed.
Collapse
Affiliation(s)
- Kan Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chun-long Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Wei-yun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China,Address correspondence to WZ (e-mail: )
| |
Collapse
|
722
|
Stotland AB, Spivia W, Orosco A, Andres AM, Gottlieb RA, Van Eyk JE, Parker SJ. MitoPlex: A targeted multiple reaction monitoring assay for quantification of a curated set of mitochondrial proteins. J Mol Cell Cardiol 2020; 142:1-13. [PMID: 32234390 PMCID: PMC7347090 DOI: 10.1016/j.yjmcc.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Mitochondria are the major source of cellular energy (ATP), as well as critical mediators of widespread functions such as cellular redox balance, apoptosis, and metabolic flux. The organelles play an especially important role in the maintenance of cardiac homeostasis; their inability to generate ATP following impairment due to ischemic damage has been directly linked to organ failure. Methods to quantify mitochondrial content are limited to low throughput immunoassays, measurement of mitochondrial DNA, or relative quantification by untargeted mass spectrometry. Here, we present a high throughput, reproducible and quantitative mass spectrometry multiple reaction monitoring based assay of 37 proteins critical to central carbon chain metabolism and overall mitochondrial function termed 'MitoPlex'. We coupled this protein multiplex with a parallel analysis of the central carbon chain metabolites (219 metabolite assay) extracted in tandem from the same sample, be it cells or tissue. In tests of its biological applicability in cells and tissues, "MitoPlex plus metabolites" indicated profound effects of HMG-CoA Reductase inhibition (e.g., statin treatment) on mitochondria of i) differentiating C2C12 skeletal myoblasts, as well as a clear opposite trend of statins to promote mitochondrial protein expression and metabolism in heart and liver, while suppressing mitochondrial protein and ii) aspects of metabolism in the skeletal muscle obtained from C57Bl6 mice. Our results not only reveal new insights into the metabolic effect of statins in skeletal muscle, but present a new high throughput, reliable MS-based tool to study mitochondrial dynamics in both cell culture and in vivo models.
Collapse
Affiliation(s)
- Aleksandr B Stotland
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Weston Spivia
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Amanda Orosco
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Allen M Andres
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Roberta A Gottlieb
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Sarah J Parker
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America.
| |
Collapse
|
723
|
Martin KS, Azzolini M, Lira Ruas J. The kynurenine connection: how exercise shifts muscle tryptophan metabolism and affects energy homeostasis, the immune system, and the brain. Am J Physiol Cell Physiol 2020; 318:C818-C830. [DOI: 10.1152/ajpcell.00580.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tryptophan catabolism through the kynurenine pathway generates a variety of bioactive metabolites. Physical exercise can modulate kynurenine pathway metabolism in skeletal muscle and thus change the concentrations of select compounds in peripheral tissues and in the central nervous system. Here we review recent advances in our understanding of how exercise alters tryptophan-kynurenine metabolism in muscle and its subsequent local and distal effects. We propose that the effects of kynurenine pathway metabolites on skeletal muscle, adipose tissue, immune system, and the brain suggest that some of these compounds could qualify as exercise-induced myokines. Indeed, some of the more recently discovered biological activities for kynurenines include many of the best-known benefits of exercise: improved energy homeostasis, promotion of an anti-inflammatory environment, and neuroprotection. Finally, by considering the tissue expression of the different membrane and cytosolic receptors for kynurenines, we discuss known and potential biological activities for these tryptophan metabolites.
Collapse
Affiliation(s)
- Kyle S. Martin
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Michele Azzolini
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Jorge Lira Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
724
|
Acute hypertrophic but not maximal strength loading transiently enhances the kynurenine pathway towards kynurenic acid. Eur J Appl Physiol 2020; 120:1429-1436. [PMID: 32306154 PMCID: PMC7237519 DOI: 10.1007/s00421-020-04375-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Purpose Due to distinct immuno- and neuro-modulatory properties, growing research interest focuses on exercise-induced alterations of the kynurenine (KYN) pathway in healthy and clinical populations. To date, knowledge about the impact of different acute strength exercise modalities on the KYN pathway is scarce. Therefore, we investigated the acute effects of hypertrophic (HYP) compared to maximal (MAX) strength loadings on the KYN pathway regulation. Methods Blood samples of twelve healthy males (mean age and weight: 23.5 ± 3.2 years; 77.5 ± 7.5 kg) were collected before (T0), immediately after (T1), and 1 h after completion (T2) of HYP (5 sets with 10 repetitions at 80% of 1RM) and MAX (15 sets with 1RM) loadings performed in a randomized cross-over design. Serum concentrations of tryptophan (TRP), KYN, kynurenic acid (KA), and quinolinic acid (QA) were assessed using high-performance liquid chromatography. Results The KA/KYN ratio increased from T0 to T1 (p = 0.01) and decreased from T1 to T2 (p = 0.011) in HYP, while it was maintained within MAX. Compared to MAX, serum concentrations of KA were greater in HYP at T1 (p = 0.014). Moreover, the QA/KA ratio was significantly lower in HYP than in MAX at T1 (p = 0.002). Conclusion Acute HYP loading led to increases in the metabolic flux yielding KA, thereby possibly promoting immunosuppression and neuroprotection. Our findings emphasize the potential of acute HYP exercise as short-term modulator of KYN pathway downstream to KA in healthy males and need to be proven in other samples. Electronic supplementary material The online version of this article (10.1007/s00421-020-04375-9) contains supplementary material, which is available to authorized users.
Collapse
|
725
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
726
|
Ninomiya S, Nakamura N, Nakamura H, Mizutani T, Kaneda Y, Yamaguchi K, Matsumoto T, Kitagawa J, Kanemura N, Shiraki M, Hara T, Shimizu M, Tsurumi H. Low Levels of Serum Tryptophan Underlie Skeletal Muscle Atrophy. Nutrients 2020; 12:nu12040978. [PMID: 32244785 PMCID: PMC7230402 DOI: 10.3390/nu12040978] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia is a poor prognosis factor in some cancer patients, but little is known about the mechanisms by which malignant tumors cause skeletal muscle atrophy. Tryptophan metabolism mediated by indoleamine 2,3-dioxygenase is one of the most important amino acid changes associated with cancer progression. Herein, we demonstrate the relationship between skeletal muscles and low levels of tryptophan. A positive correlation was observed between the volume of skeletal muscles and serum tryptophan levels in patients with diffuse large B-cell lymphoma. Low levels of tryptophan reduced C2C12 myoblast cell proliferation and differentiation. Fiber diameters in the tibialis anterior of C57BL/6 mice fed a tryptophan-deficient diet were smaller than those in mice fed a standard diet. Metabolomics analysis revealed that tryptophan-deficient diet downregulated glycolysis in the gastrocnemius and upregulated the concentrations of amino acids associated with the tricarboxylic acid cycle. The weights and muscle fiber diameters of mice fed the tryptophan-deficient diet recovered after switching to the standard diet. Our data showed a critical role for tryptophan in regulating skeletal muscle mass. Thus, the tryptophan metabolism pathway may be a promising target for preventing or treating skeletal muscle atrophies.
Collapse
Affiliation(s)
- Soranobu Ninomiya
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
- Correspondence: ; Tel.: +81-58-230-6313; Fax: +81-58-230-6310
| | - Nobuhiko Nakamura
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Hiroshi Nakamura
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Taku Mizutani
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Yuto Kaneda
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Kimihiro Yamaguchi
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Takuro Matsumoto
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Junichi Kitagawa
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Nobuhiro Kanemura
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Makoto Shiraki
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Takeshi Hara
- Department of Hematology, Matsunami General Hospital, Gifu 5016062, Japan;
| | - Masahito Shimizu
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
| | - Hisashi Tsurumi
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 5011194, Japan; (N.N.); (H.N.); (T.M.); (Y.K.); (K.Y.); (J.K.); (N.K.); (M.S.); (M.S.); (H.T.)
- Department of Hematology, Matsunami General Hospital, Gifu 5016062, Japan;
| |
Collapse
|
727
|
Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:223-237. [PMID: 32076145 DOI: 10.1038/s41575-019-0258-z] [Citation(s) in RCA: 1141] [Impact Index Per Article: 228.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
A key role of the gut microbiota in the establishment and maintenance of health, as well as in the pathogenesis of disease, has been identified over the past two decades. One of the primary modes by which the gut microbiota interacts with the host is by means of metabolites, which are small molecules that are produced as intermediate or end products of microbial metabolism. These metabolites can derive from bacterial metabolism of dietary substrates, modification of host molecules, such as bile acids, or directly from bacteria. Signals from microbial metabolites influence immune maturation, immune homeostasis, host energy metabolism and maintenance of mucosal integrity. Alterations in the composition and function of the microbiota have been described in many studies on IBD. Alterations have also been described in the metabolite profiles of patients with IBD. Furthermore, specific classes of metabolites, notably bile acids, short-chain fatty acids and tryptophan metabolites, have been implicated in the pathogenesis of IBD. This Review aims to define the key classes of microbial-derived metabolites that are altered in IBD, describe the pathophysiological basis of these associations and identify future targets for precision therapeutic modulation.
Collapse
|
728
|
Quintas G, Reche X, Sanjuan-Herráez JD, Martínez H, Herrero M, Valle X, Masa M, Rodas G. Urine metabolomic analysis for monitoring internal load in professional football players. Metabolomics 2020; 16:45. [PMID: 32222832 DOI: 10.1007/s11306-020-01668-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The design of training programs for football players is not straightforward due to intra- and inter-individual variability that leads to different physiological responses under similar training loads. OBJECTIVE To study the association between the external load, defined by variables obtained using electronic performance tracking systems (EPTS), and the urinary metabolome as a surrogate of the metabolic adaptation to training. METHODS Urine metabolic and EPTS data from 80 professional football players collected in an observational longitudinal study were analyzed by ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry and assessed by partial least squares (PLS) regression. RESULTS PLS models identified steroid hormone metabolites, hypoxanthine metabolites, acetylated amino acids, intermediates in phenylalanine metabolism, tyrosine, tryptophan metabolites, and riboflavin among the most relevant variables associated with external load. Metabolic network analysis identified enriched pathways including steroid hormone biosynthesis and metabolism of tyrosine and tryptophan. The ratio of players showing a deviation from the PLS model of adaptation to exercise was higher among those who suffered a muscular lesion compared to those who did not. CONCLUSIONS There was a significant association between the external load and the urinary metabolic profile, with alteration of biochemical pathways associated with long-term adaptation to training. Future studies should focus on the validation of these findings and the development of metabolic models to identify professional football players at risk of developing muscular injuries.
Collapse
Affiliation(s)
- Guillermo Quintas
- Health & Biomedicine Unit, Leitat Technological Center, Terrassa, Spain.
| | - Xavier Reche
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain
| | | | | | | | - Xavier Valle
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain
| | - Marc Masa
- Health & Biomedicine Unit, Leitat Technological Center, Terrassa, Spain
| | - Gil Rodas
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain.
- Barça Innovation Hub, Barcelona, Spain.
| |
Collapse
|
729
|
Gong QY, Yang MJ, Yang LF, Chen ZG, Jiang M, Peng B. Metabolic modulation of redox state confounds fish survival against Vibrio alginolyticus infection. Microb Biotechnol 2020; 13:796-812. [PMID: 32212318 PMCID: PMC7664012 DOI: 10.1111/1751-7915.13553] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/18/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vibrio alginolyticus threatens both humans and marine animals, but hosts respond to V. alginolyticus infection is not fully understood. Here, functional metabolomics was adopted to investigate the metabolic differences between the dying and surviving zebrafish upon V. alginolyticus infection. Tryptophan was identified as the most crucial metabolite, whose abundance was decreased in the dying group but increased in the survival group as compared to control group without infection. Concurrently, the dying zebrafish displayed excessive immune response and produced higher level of reactive oxygen species (ROS). Interestingly, exogenous tryptophan reverted dying rate through metabolome re‐programming, thereby enhancing the survival from V. alginolyticus infection. It is preceded by the following mechanism: tryptophan fluxed into the glycolysis and tricarboxylic acid cycle (TCA cycle), promoted adenosine triphosphate (ATP) production and further increased the generation of NADPH. Meanwhile, tryptophan decreased NADPH oxidation. These together ameliorate ROS, key molecules in excessive immune response. This is further supported by the event that the inhibition of pyruvate metabolism and TCA cycle by inhibitors decreased D. reiro survival. Thus, our data indicate that tryptophan is a key metabolite for the host to fight against V. alginolyticus infection, representing an alternative strategy to treat bacterial infection in an antibiotic‐independent way.
Collapse
Affiliation(s)
- Qi-Yang Gong
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Man-Jun Yang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China
| | - Li-Fen Yang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhuang-Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ming Jiang
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes School of Life Sciences, Center for Proteomics and Metabolomics, Sun Yat-sen University, Guangzhou, 510006, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
730
|
Rådmark L, Hanson LM, Montgomery S, Bojner Horwitz E, Osika W. Mind and body exercises (MBE), prescribed antidepressant medication, physical exercise and depressive symptoms - a longitudinal study. J Affect Disord 2020; 265:185-192. [PMID: 32090740 DOI: 10.1016/j.jad.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 01/21/2023]
Abstract
AIMS Earlier studies show that participation in mind and body exercises (MBE) is cross-sectionally associated with high levels of depressive symptoms and antidepressants. This study investigates the longitudinal interrelationship between depressive symptoms, MBE and antidepressants. METHODS 3269 men and 4318 women aged 24-74 years participated in the Swedish Longitudinal Occupational Survey of Health (SLOSH). Measures of MBE practice and depressive symptoms were drawn from the SLOSH questionnaire, data on prescription drugs were obtained from the Swedish Prescribed Drug Register. Structural Equation Modeling (SEM) was used to analyze temporal relationships. RESULTS Both MBE practice and antidepressants in 2012 was associated with higher levels of depressive symptoms two years later. Depressive symptoms in turn were associated with higher levels of later MBE practice and antidepressants. These relationships seemed to be explained by confounding by indication and were of higher magnitude for antidepressants than for MBE. CONCLUSION Overall, SEM analysis shows that MBE and antidepressant treatment were both bi-directionally associated with depressive symptoms over time. Part of the explanation is likely to be confounding by indication: those with symptoms of depression more likely to undertake treatment, and MBE alone may be more common among those with less severe depression. The results clarify some of our findings from earlier studies and give some important, new information on what people are doing to manage depressive symptoms on a societal level, regarding self-care, medication, and the combination of both.
Collapse
Affiliation(s)
- L Rådmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Social Sustainability, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden.
| | | | - S Montgomery
- Clinical Epidemiology and Biostatistics, Örebro University, Örebro, Sweden; Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology and Public Health, University College London, UK
| | - E Bojner Horwitz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Social Sustainability, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Music, Pedagogy and Society, Royal College of Music, Stockholm, Sweden
| | - W Osika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Social Sustainability, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Sweden.
| |
Collapse
|
731
|
Sacramento JJD, Goldberg DP. Oxidation of an indole substrate by porphyrin iron(iii) superoxide: relevance to indoleamine and tryptophan 2,3-dioxygenases. Chem Commun (Camb) 2020; 56:3089-3092. [PMID: 32052805 PMCID: PMC7065957 DOI: 10.1039/c9cc10019a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reaction of FeIII(O2˙-)(TPP) with 2,3-dimethylindole at -40 °C gives the ring-opened, dioxygenated N-(2-acetyl-phenyl)-acetamide product. The reaction was monitored in situ by low-temperature UV-vis and 1H NMR spectroscopies. This work demonstrates that a discrete iron(iii)(superoxo) porphyrin is competent to carry out indole oxidation, as proposed for the tryptophan and indoleamine 2,3-dioxygenases.
Collapse
Affiliation(s)
- Jireh Joy D Sacramento
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
732
|
Mukerji SS, Misra V, Lorenz DR, Chettimada S, Keller K, Letendre S, Ellis RJ, Morgello S, Parker RA, Gabuzda D. Low Neuroactive Steroids Identifies a Biological Subtype of Depression in Adults with Human Immunodeficiency Virus on Suppressive Antiretroviral Therapy. J Infect Dis 2020; 223:1601-1611. [PMID: 32157292 PMCID: PMC8136979 DOI: 10.1093/infdis/jiaa104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background The prevalence and mortality risk of depression in people with human immunodeficiency virus (HIV) infection receiving antiretroviral therapy (ART) is higher than in the general population, yet biomarkers for therapeutic targeting are unknown. In the current study, we aimed to identify plasma metabolites associated with depressive symptoms in people with HIV receiving ART. Methods This is a prospective study of ART-treated HIV-infected adults with or without depressive symptoms assessed using longitudinal Beck Depression Inventory scores. Plasma metabolite profiling was performed in 2 independent cohorts (total n = 99) using liquid and gas chromatography and tandem mass spectrometry. Results Participants with depressive symptoms had lower neuroactive steroids (dehydroepiandrosterone sulfate [DHEA-S], androstenediols, and pregnenolone sulfate) compared with those without depressive symptoms. The cortisol/DHEA-S ratio, an indicator of hypothalamic-pituitary-adrenal axis imbalance, was associated with depressive symptoms (P < .01) because of low DHEA-S levels, whereas cortisol was similar between groups. The odds of having depressive symptoms increased with higher cortisol/DHEA-S ratios (adjusted odds ratio, 2.5 per 1-unit increase in z score; 95% confidence interval, 1.3–4.7), independent of age and sex. The kynurenine-to-tryptophan ratio showed no significant associations. Conclusions These findings suggest that altered neuroactive steroid metabolism may contribute to the pathophysiological mechanisms of depression in ART-treated HIV-infected adults, representing a potential biological pathway for therapeutic targeting.
Collapse
Affiliation(s)
- Shibani S Mukerji
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vikas Misra
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David R Lorenz
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Kiana Keller
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Scott Letendre
- University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Ronald J Ellis
- University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Susan Morgello
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Dana Gabuzda
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
733
|
Effects of tryptophan, serotonin, and kynurenine on ischemic heart diseases and its risk factors: a Mendelian Randomization study. Eur J Clin Nutr 2020; 74:613-621. [PMID: 32132674 DOI: 10.1038/s41430-020-0588-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/05/2019] [Accepted: 02/07/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Tryptophan is an essential amino acid that must be obtained from dietary items, such as dairy products, eggs, nuts, legumes, and grains, which are rich in tryptophan. It has also been suggested as a dietary supplement to improve mental health. Observationally plasma tryptophan is inversely associated with ischemic heart disease (IHD), however, its main metabolites, serotonin, and kynurenine are positively associated with IHD, which makes the effects of tryptophan difficult to infer. This study aimed to obtain less-confounded estimates of the associations of tryptophan and physiologically related factors (serotonin and kynurenine) with IHD, its risk factors and depression. SUBJECTS/METHODS We used a two-sample Mendelian Randomization study design. We used genetic instruments independently associated with tryptophan, serotonin, and kynurenine metabolites applied to a meta-analysis of the UK Biobank SOFT CAD study with the CARDIoGRAMplusC4D consortium (cases n ≤ 76,014 and controls n ≤ 264,785), and other consortia for risk factors including diabetes, lipids, and blood pressure, as well as for depression. We combined genetic variant-specific estimates using inverse variance weighting, with MR-Egger, the weighted median and MR-PRESSO as sensitivity analyses. RESULTS Tryptophan and serotonin were not associated with IHD. Kynurenine was nominally and positively associated with IHD (odds ratio 1.57 per standard deviation, 95% confidence interval 1.05-2.33) but not after correction for multiple comparisons. Associations with IHD risk factors and depression were null. CONCLUSIONS We cannot exclude the possibility that one of the main metabolites of tryptophan, kynurenine, might be positively associated with IHD. Further studies are needed to confirm any association and underlying mechanism.
Collapse
|
734
|
|
735
|
Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020; 12:nu12030622. [PMID: 32121049 PMCID: PMC7146449 DOI: 10.3390/nu12030622] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing age, the immune system undergoes a remodeling process, termed immunosenescence, which is accompanied by considerable shifts in leukocyte subpopulations and a decline in various immune cell functions. Clinically, immunosenescence is characterized by increased susceptibility to infections, a more frequent reactivation of latent viruses, decreased vaccine efficacy, and an increased prevalence of autoimmunity and cancer. Physiologically, the immune system has some adaptive strategies to cope with aging, while in some settings, maladaptive responses aggravate the speed of aging and morbidity. While a lack of physical activity, decreased muscle mass, and poor nutritional status facilitate immunosenescence and inflammaging, lifestyle factors such as exercise and dietary habits affect immune aging positively. This review will discuss the relevance and mechanisms of immunoprotection through physical activity and specific exercise interventions. In the second part, we will focus on the effect of dietary interventions through the supplementation of the essential amino acid tryptophan, n-3 polyunsaturated fatty acids, and probiotics (with a special focus on the kynurenine pathway).
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
- Correspondence:
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria;
| |
Collapse
|
736
|
Hagiwara A, Nakamura Y, Nishimoto R, Ueno S, Miyagi Y. Induction of tryptophan hydroxylase in the liver of s.c. tumor model of prostate cancer. Cancer Sci 2020; 111:1218-1227. [PMID: 31997472 PMCID: PMC7156786 DOI: 10.1111/cas.14333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Enhanced degradation of tryptophan (Trp) and thus decreased plasma Trp levels are common in several types of cancers. Although it is well known that Trp catabolism is induced in the tumor microenvironment by the enzymes expressed in cancer cells, immune cells, or both, few studies have examined systemic Trp catabolism in cancer pathophysiology. The present study aimed to evaluate Trp catabolism in both tumor and peripheral tissues using tumor‐engrafted Copenhagen rats that were s.c. inoculated with AT‐2 rat prostate cancer cells negative for expression of Trp catabolic enzymes. Liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) metabolomics showed significantly decreased plasma Trp levels in AT‐2 engrafted rats, accompanied by increased kynurenine/Trp ratios in spleen and thymus and serotonin levels in liver and thymus. Quantitative PCR and enzymatic activity assays showed indoleamine‐2, 3‐dioxygenase, an inducible enzyme that catalyzes Trp to kynurenine, was increased in tumor tissues, whereas tryptophan‐2,3‐dioxygenase, a major Trp catabolic enzyme that regulates systemic level of Trp, tended to be increased in the liver of AT‐2 engrafted rats. Furthermore, tryptophan hydroxylase‐1 (TPH1), an enzyme that catalyzes the reaction of Trp to serotonin, was significantly increased in liver and spleen of AT‐2 engrafted rats. Further histochemical analysis revealed that the induction of TPH1 in the liver could be attributed to infiltration of mast cells. A similar phenomenon was observed with nonneoplastic liver samples from colorectal cancer patients. These results suggested that Trp catabolism toward serotonin synthesis might be induced in peripheral remote tissues in cancer, which could have a pathophysiological effect on cancer.
Collapse
Affiliation(s)
- Asami Hagiwara
- Material & Technology Solutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki City, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Divisiosn, Kanagawa Cancer Center Research Institute, Kanagawa Cancer Center, Yokohama City, Japan
| | - Rumi Nishimoto
- Material & Technology Solutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki City, Japan
| | - Satoko Ueno
- Material & Technology Solutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki City, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Divisiosn, Kanagawa Cancer Center Research Institute, Kanagawa Cancer Center, Yokohama City, Japan
| |
Collapse
|
737
|
Tao X, Yan M, Wang L, Zhou Y, Wang Z, Xia T, Liu X, Pan R, Chang Q. Homeostasis Imbalance of Microglia and Astrocytes Leads to Alteration in the Metabolites of the Kynurenine Pathway in LPS-Induced Depressive-Like Mice. Int J Mol Sci 2020; 21:1460. [PMID: 32098023 PMCID: PMC7073050 DOI: 10.3390/ijms21041460] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
In the pathology-oriented study of depression, inflammation hypothesis has received increasing attention for recent years. To mimic the depressive state caused by inflammation, rodents injected intraperitoneally with lipopolysaccharide (LPS) are usually used to stimulate an immune response. However, the dose of LPS that causes depressive-like behavior varies widely across many literatures. Previous study has uncovered the non-linearity in the dose-effect relationship for the depressive-like behavior induced by LPS administration, while the reason for this is still unclear. The present study aims to investigate the underlying mechanisms of this non-linear dose-dependent relationship. Four groups of mice were injected intraperitoneally with different doses of LPS (0, 0.32, 0.8, and 2 mg/kg). The tail suspension test was conducted to evaluate the depressive-like behavior within 23-25 h after the LPS administration. The neuroplasticity was assessed by the levels of related proteins, TrkB and PSD-95, and by the quantification of neurons using Nissl staining. The levels of the two metabolites of the kynurenine (KYN) pathway, 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA), in the brain were analyzed by LC-MS/MS. Activation of microglia and astrocytes in the brain were also determined by immunohistochemistry and western blotting, respectively. The results showed that, compared with the control group, the mice in the 0.8 mg/kg LPS-treated group exhibited a remarkable increase of immobility time in the tail suspension test. The neuroplasticity of mice in the 0.8 mg/kg LPS-treated group was also significantly reduced. The neurotoxic metabolite, 3-HK, was accumulated significantly in the hippocampus of the 0.8 mg/kg LPS-treated mice. Surprisingly, the 2 mg/kg LPS-treated mice did not exhibit a remarkable change of 3-HK but expressed increased KYNA significantly, which is neuroprotective. Furthermore, the activation of microglia and astrocytes, which were recognized as the primary source of 3-HK and KYNA, respectively, corresponded to the content of these two metabolites of the KYN pathway in each group. Consequently, it was speculated that the homeostasis of different glial cells could lead to a non-linear dose-dependent behavior by regulating the KYN pathway in the LPS-induced depressive-like mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
738
|
Wyckelsma VL, Lindkvist W, Venckunas T, Brazaitis M, Kamandulis S, Pääsuke M, Ereline J, Westerblad H, Andersson DC. Kynurenine aminotransferase isoforms display fiber-type specific expression in young and old human skeletal muscle. Exp Gerontol 2020; 134:110880. [PMID: 32068089 DOI: 10.1016/j.exger.2020.110880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Conversion of kynurenine (KYN) to kynurenic acid (KYNA) is the main pathway for free tryptophan degradation in skeletal muscle and has emerged as an important mechanism of how exercise is linked to promotion of mental health. Metabolism of KYN to KYNA mainly depends on the expression of kynurenine aminotransferases (KATs) that is under control of the mitochondria biogenesis regulator PGC-1α. We therefore hypothesized that expression of KATs would vary between muscle fibers that differ in mitochondrial content, i.e. oxidative type I vs more glycolytic type II muscle fibers. Moreover, we tested the hypothesis that KAT expression differs with age. Single muscle fibers were isolated from biopsies taken from the vastus lateralis muscle in young and old healthy subjects. In young and old subjects the abundance of KAT I, KAT III and KAT IV was greater in Type I than Type II fibers without age-dependent difference in the KAT isoform expressions. The link to mitochondrial content was further seen as the expression of KAT IV correlated to mitochondrial cytochrome c oxidase IV (COX IV) abundance in both fiber types. In conclusion, we describe for the first time the expression pattern of KAT isoforms with respect to specific fiber types and age in human skeletal muscle.
Collapse
Affiliation(s)
- V L Wyckelsma
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - W Lindkvist
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - T Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - M Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - S Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - M Pääsuke
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Estonia
| | - J Ereline
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Estonia
| | - H Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - D C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Heart, Vascular and Neurology Theme, Section for Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
739
|
Szűcs E, Stefanucci A, Dimmito MP, Zádor F, Pieretti S, Zengin G, Vécsei L, Benyhe S, Nalli M, Mollica A. Discovery of Kynurenines Containing Oligopeptides as Potent Opioid Receptor Agonists. Biomolecules 2020; 10:biom10020284. [PMID: 32059524 PMCID: PMC7072329 DOI: 10.3390/biom10020284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Kynurenine (kyn) and kynurenic acid (kyna) are well-defined metabolites of tryptophan catabolism collectively known as "kynurenines", which exert regulatory functions in host-microbiome signaling, immune cell response, and neuronal excitability. Kynurenine containing peptides endowed with opioid receptor activity have been isolated from natural organisms; thus, in this work, novel opioid peptide analogs incorporating L-kynurenine (L-kyn) and kynurenic acid (kyna) in place of native amino acids have been designed and synthesized with the aim to investigate the biological effect of these modifications. The kyna-containing peptide (KA1) binds selectively the m-opioid receptor with a Ki = 1.08 ± 0.26 (selectivity ratio m/d/k = 1:514:10000), while the L-kyn-containing peptide (K6) shows a mixed binding affinity for m, d, and k-opioid receptors, with efficacy and potency (Emax = 209.7 + 3.4%; LogEC50 = -5.984 + 0.054) higher than those of the reference compound DAMGO. This novel oligopeptide exhibits a strong antinociceptive effect after i.c.v. and s.c. administrations in in vivo tests, according to good stability in human plasma (t1/2 = 47 min).
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
- Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dómtér 10, H-6720 Szeged, Hungary
| | - Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
- Correspondence:
| | - Marilisa Pia Dimmito
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
| | - Stefano Pieretti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42250 Konya, Turkey;
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary; (E.S.); (F.Z.); (S.B.)
| | - Marianna Nalli
- Laboratory affiliated with the Institute Pasteur Italy-Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy;
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (M.P.D.); (A.M.)
| |
Collapse
|
740
|
A surrogate analyte-based LC-MS/MS method for the determination of 5-hydroxytryptamine, kynurenine and tryptophan. Bioanalysis 2020; 12:129-142. [PMID: 32026711 DOI: 10.4155/bio-2019-0267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: The metabolism of tryptophan (TRP) through kynurenine (KYN) and 5-hydroxytryptamine (5-HT) pathways is linked to various diseases such as neurological diseases and cancer. The levels of 5-HT, KYN, TRP can be used as indicators for the diagnosis of various diseases in clinical and scientific research. Experimental: Since 5-HT, KYN, TRP are both endogenous molecules in biological samples, it is difficult to obtain a 'real blank sample'. A surrogate analyte-based LC-MS/MS method was chosen, using 5-HT-d4, KYN-d4 and TRP-d5 as surrogate analytes to replace the authentic analytes 5-HT, KYN and TRP, respectively. Theophylline was selected as the internal standard (IS). Results: The method was applied to quantification 5-HT, KYN and TRP of plasma, liver, colon, brain and verified to be acceptable in terms of linearity, precision, accuracy, matrix effect, recovery efficiency and stability.
Collapse
|
741
|
Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:3848-3857. [PMID: 32024760 DOI: 10.1073/pnas.1918215117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.
Collapse
|
742
|
Colle R, Masson P, Verstuyft C, Fève B, Werner E, Boursier-Neyret C, Walther B, David DJ, Boniface B, Falissard B, Chanson P, Corruble E, Becquemont L. Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: A case-control study. Psychiatry Clin Neurosci 2020; 74:112-117. [PMID: 31599111 DOI: 10.1111/pcn.12944] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
AIM Tryptophan is the sole precursor of both peripherally and centrally produced serotonin and kynurenine. In depressed patients, tryptophan, serotonin, kynurenine, and their metabolite levels remain unclear. Therefore, peripheral tryptophan and metabolites of serotonin and kynurenine were investigated extensively in 173 patients suffering from a current major depressive episode (MDE) and compared to 214 healthy controls (HC). METHODS Fasting plasma levels of 11 peripheral metabolites were quantified: tryptophan, serotonin pathway (serotonin, its precursor 5-hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid), and kynurenine pathway (kynurenine and six of its metabolites: anthranilic acid, kynurenic acid, nicotinamide, picolinic acid, xanthurenic acid, and 3-hydroxyanthranilic acid). RESULTS Sixty (34.7%) patients were antidepressant-drug free. Tryptophan levels did not differ between MDE patients and HC. Serotonin and its precursor (5-hydroxytryptophan) levels were lower in MDE patients than in HC, whereas, its metabolite (5-hydroxyindoleacetic acid) levels were within the standard range. Kynurenine and four of its metabolites (kynurenic acid, nicotinamide, picolinic acid, and xanthurenic acid) were lower in MDE patients. CONCLUSION Whilst the results of this study demonstrate an association between the metabolites studied and depression, conclusions about causality cannot be made. This study uses the largest ever sample of MDE patients, with an extensive assessment of peripheral tryptophan metabolism in plasma. These findings provide new insights into the peripheral signature of MDE. The reasons for these changes should be further investigated. These results might suggest new antidepressant therapeutic strategies.
Collapse
Affiliation(s)
- Romain Colle
- INSERM UMR-1178, CESP, Faculté de Médecine Paris-Sud, Paris-Saclay University, Le Kremlin Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Perrine Masson
- Pharmacokinetics Center, Technologie Servier, Orléans, France
| | - Céline Verstuyft
- INSERM UMR-1178, CESP, Faculté de Médecine Paris-Sud, Paris-Saclay University, Le Kremlin Bicêtre, France.,Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Bruno Fève
- Service d'endocrinologie, Hôpital Saint-Antoine, Assistance Publique Hôpitaux de Paris, Paris, France.,Sorbonne Université, INSERM UMR S_938, Centre de Recherche Saint-Antoine, Paris, France
| | - Erwan Werner
- Pharmacokinetics Center, Technologie Servier, Orléans, France
| | | | - Bernard Walther
- Pharmacokinetics Center, Technologie Servier, Orléans, France
| | - Denis J David
- INSERM UMR-1178, CESP, Faculté de Médecine Paris-Sud, Paris-Saclay University, Le Kremlin Bicêtre, France
| | - Bruno Boniface
- INSERM UMR-1178, CESP, Faculté de Médecine Paris-Sud, Paris-Saclay University, Le Kremlin Bicêtre, France
| | - Bruno Falissard
- INSERM UMR-1178, CESP, Faculté de Médecine Paris-Sud, Paris-Saclay University, Le Kremlin Bicêtre, France.,Département de Biostatistiques, Paris-Sud University, Hôpital Paul Brousse, Assistance Publique Hôpitaux de Paris, Villejuif, France
| | - Philippe Chanson
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin Bicêtre, F-94275, and INSERM 1185, Faculté de Médecine Paris-Sud, Paris-Sud University, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Emmanuelle Corruble
- INSERM UMR-1178, CESP, Faculté de Médecine Paris-Sud, Paris-Saclay University, Le Kremlin Bicêtre, France.,Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Laurent Becquemont
- INSERM UMR-1178, CESP, Faculté de Médecine Paris-Sud, Paris-Saclay University, Le Kremlin Bicêtre, France.,Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
743
|
Naganuma M, Sugimoto S, Fukuda T, Mitsuyama K, Kobayashi T, Yoshimura N, Ohi H, Tanaka S, Andoh A, Ohmiya N, Saigusa K, Yamamoto T, Morohoshi Y, Ichikawa H, Matsuoka K, Hisamatsu T, Watanabe K, Mizuno S, Abe T, Suzuki Y, Kanai T. Indigo naturalis is effective even in treatment-refractory patients with ulcerative colitis: a post hoc analysis from the INDIGO study. J Gastroenterol 2020; 55:169-180. [PMID: 31529220 DOI: 10.1007/s00535-019-01625-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/01/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND We recently reported the efficacy of indigo naturalis (IN) in patients with active ulcerative colitis (UC) in a randomized controlled trial (INDIGO study). However, few studies have been conducted to investigate whether IN is effective even in treatment-refractory cases, such as in those with steroid dependency and anti-TNF refractoriness. METHODS In the INDIGO study, 86 patients with active UC were randomly assigned to an IN group (0.5-2.0 g daily) or placebo group. The rate of clinical response (CR), mucosal healing (MH), and change in fecal calprotectin (FCP) levels was compared between refractory [patients with steroid-dependent disease, previous use of anti-TNF-α, and concomitant use of immunomodulators (IM)] and non-refractory patients. We also analyzed factors predicting CR and MH at week 8. RESULTS The rates of CR of IN group were significantly higher than placebo group, even in patients with steroid-dependent disease (p < 0.001), previous use of anti-TNF-α (p = 0.002), and concomitant use of IM (p = 0.013). The rates of MH in IN group were significantly higher than in placebo group in patients with steroid-dependent disease (p = 0.009). In the IN group, median FCP levels, at week 8, were significantly lower than baseline in patients with steroid-dependent disease and patients with the previous use of anti-TNF-α (p < 0.001, respectively). Multivariate analysis indicated that the previous use of anti-TNF-α was not a predictive factor for CR and MH at week 8. CONCLUSIONS In a sub-analysis of data from a randomized placebo-controlled trial, we found that IN may be useful even in patients with steroid-dependent disease and patients with the previous use of anti-TNF-α.
Collapse
Affiliation(s)
- Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Shinya Sugimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomohiro Fukuda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Naoki Yoshimura
- Department of Internal Medicine, Division of IBD, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Hidehisa Ohi
- Department of Gastroenterology, Imamura Hospital, Kagoshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Keiichiro Saigusa
- Department of Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | | | - Yuichi Morohoshi
- Department of Medicine, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Hitoshi Ichikawa
- Department of Gastroenterology, Tokai University Hachioji Hospital, Hachioji, Japan
| | - Katsuyoshi Matsuoka
- Department of Gastroenterology, Toho University Sakura Medical Center, Sakura, Japan.,Department of Internal Medicine, Toho University Sakura Medical Center, Sakura, Japan
| | - Tadakazu Hisamatsu
- The Third Department of Internal Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenji Watanabe
- Department of Intestinal Inflammation Research, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinta Mizuno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takayuki Abe
- Department of Preventive Medicine and Public Health, Biostatistics Unit at Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Yasuo Suzuki
- Inflammatory Bowel Disease Center, Toho University Sakura Medical Center, Sakura, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | |
Collapse
|
744
|
Wessells KR, Hinnouho GM, Barffour MA, Arnold CD, Kounnavong S, Kewcharoenwong C, Lertmemongkolchai G, Schuster GU, Stephensen CB, Hess SY. Impact of Daily Preventive Zinc or Therapeutic Zinc Supplementation for Diarrhea on Plasma Biomarkers of Environmental Enteric Dysfunction among Rural Laotian Children: A Randomized Controlled Trial. Am J Trop Med Hyg 2020; 102:415-426. [PMID: 31889508 PMCID: PMC7008314 DOI: 10.4269/ajtmh.19-0584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Environmental enteric dysfunction (EED) may be ameliorated by zinc supplementation. The objective of this study was to investigate the impact of different forms of zinc supplementation on biomarkers of EED (i.e., plasma citrulline, kynurenine, and tryptophan concentrations and the kynurenine:tryptophan [KT] ratio) among young Laotian children. In a double-blind randomized controlled trial, 3,407 children aged 6-23 months were randomized into one of four groups: daily preventive zinc dispersible tablets (PZ; 7 mg zinc), daily multiple micronutrient powders (MNP; 10 mg zinc, 6 mg iron, and 13 other micronutrients), therapeutic zinc supplements for diarrhea treatment (TZ; 20 mg/day for 10 days), or daily placebo powder, and followed up for ∼36 weeks. Plasma samples at baseline and endline for 359 children were analyzed for citrulline, kynurenine, and tryptophan concentrations. At baseline, the prevalence of stunting and zinc deficiency was 37% and 76.5%, respectively. The mean plasma citrulline, kynurenine, and tryptophan concentrations were 24.6 ± 5.4 µmol/L, 3.27 ± 0.83 µmol/L, and 72.3 ± 12.9 µmol/L, respectively; the mean KT ratio (×1,000) was 45.9 ± 12.0. At endline, neither plasma citrulline, kynurenine, or tryptophan concentrations, nor the KT ratio differed among intervention groups (P > 0.05). In this population, PZ, MNP, and TZ had no overall effect on plasma concentrations of citrulline, kynurenine, and tryptophan, or the KT ratio. The need remains to better understand the etiology of EED, and the development of biomarkers to diagnose EED and evaluate the impact of interventions.
Collapse
Affiliation(s)
- K. Ryan Wessells
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| | - Guy-Marino Hinnouho
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| | - Maxwell A. Barffour
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
- Public Health Program, College of Health and Human Services, Missouri State University, Springfield, Missouri
| | - Charles D. Arnold
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| | - Sengchanh Kounnavong
- Lao Tropical and Public Health Institute, Vientiane, Lao People’s Democratic Republic
| | - Chidchamai Kewcharoenwong
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - Ganjana Lertmemongkolchai
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - Gertrud U. Schuster
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
- Agricultural Research Service, Western Human Nutrition Research Center, US Department of Agriculture, Davis, California
| | - Charles B. Stephensen
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
- Agricultural Research Service, Western Human Nutrition Research Center, US Department of Agriculture, Davis, California
| | - Sonja Y. Hess
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, Davis, California
| |
Collapse
|
745
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
746
|
Beijers RJ, Gosker HR, Sanders KJ, de Theije C, Kelders M, Clarke G, Cryan JF, van den Borst B, Schols AM. Resveratrol and metabolic health in COPD: A proof-of-concept randomized controlled trial. Clin Nutr 2020; 39:2989-2997. [PMID: 31996311 DOI: 10.1016/j.clnu.2020.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Patients with COPD are often characterized by disturbed metabolic health which is reflected in altered body composition. Current studies in healthy subjects suggest that resveratrol improves metabolic health by enhancing muscle mitochondrial function and adipose tissue morphology. The primary objective was to investigate the effect of four weeks resveratrol supplementation on muscle mitochondrial function in patients with COPD. Secondary objectives were to investigate the effect of resveratrol on adipose tissue inflammatory and metabolic gene expression, systemic inflammation and body composition in patients with COPD. METHODS In a double-blind randomized placebo-controlled proof-of-concept study, 21 COPD patients (FEV1: 53 ± 15% predicted; age: 67 ± 9 years and BMI: 24.5 ± 3.3 kg/m2) received resveratrol (150 mg/day) or placebo for four weeks. Before and after intervention, blood samples, quadriceps muscle and subcutaneous abdominal fat biopsies were obtained for metabolic and inflammatory profiling. Body composition was assessed by dual energy X-ray absorptiometry. RESULTS Muscle mitochondrial biogenesis regulators AMPK, SIRT1 and PGC-1α as well as mitochondrial respiration, Oxphos complexes, oxidative enzyme activities and kynurenine aminotransferases were not improved by resveratrol. Plasma high-sensitive C-reactive protein and kynurenine did not change after resveratrol supplementation. Adipose tissue inflammatory markers were unaffected by resveratrol, while markers of glycolysis and lipolysis were significantly increased compared to placebo supplementation. Body weight decreased after resveratrol supplementation (resveratrol -0.95 ± 1.01 kg vs placebo -0.16 ± 0.66 kg, p = 0.049) due to a reduction in lean mass (resveratrol -1.79 ± 1.67 kg vs 0.37 ± 0.86 kg, p = 0.026). CONCLUSION We do not confirm previously reported positive effects of resveratrol on skeletal muscle mitochondrial function in patients with COPD, but show an unexpected decline in lean mass. CLINICAL TRIAL REGISTRY Clinicaltrials.gov NCT02245932.
Collapse
Affiliation(s)
- Rosanne Jhcg Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Harry R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Karin Jc Sanders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Chiel de Theije
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Marco Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Gerard Clarke
- APC Microbiome Ireland & Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Bram van den Borst
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Annemie Mwj Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
747
|
Lund A, Nordrehaug JE, Slettom G, Solvang SEH, Pedersen EKR, Midttun Ø, Ulvik A, Ueland PM, Nygård O, Giil LM. Plasma kynurenines and prognosis in patients with heart failure. PLoS One 2020; 15:e0227365. [PMID: 31923223 PMCID: PMC6953806 DOI: 10.1371/journal.pone.0227365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Metabolites of the kynurenine pathway (mKP) relate to important aspects of heart failure pathophysiology, such as inflammation, energy-homeostasis, apoptosis, and oxidative stress. We aimed to investigate whether mKP predict mortality in patients with heart failure. METHODS The study included 202 patients with heart failure (73.8% with coronary artery disease (CAD)), propensity score matched to 384 controls without heart disease, and 807 controls with CAD (71%). All underwent coronary angiography and ventriculography at baseline. Plasma mKP, pyridoxal 5'phosphate (PLP) and CRP were measured at baseline. Case-control differences were assessed by logistic regression and survival by Cox regression, adjusted for age, gender, smoking, diabetes, ejection fraction, PLP, eGFR and CRP. Effect measures are reported per standard deviation increments. RESULTS Higher plasma levels of kynurenine, 3- hydroxykynurenine (HK), quinolinic acid (QA), the kynurenine-tryptophan-ratio (KTR) and the ratio of HK to xanthurenic acid (HK/XA) were detected in heart failure compared to both control groups. The mortality rate per 1000 person-years was 55.5 in patients with heart failure, 14.6 in controls without heart disease and 22.2 in CAD controls. QA [HR 1.80, p = 0.013], HK [HR 1.77, p = 0.005], HK/XA [HR 1.67, p < 0.001] and KTR [HR 1.55, p = 0.009] were associated with increased mortality in patients with heart failure, while XA [HR 0.68-0.80, p = 0.013-0.037] were associated with lower mortality in all groups. HK and HK/XA had weak associations with increased mortality in CAD-controls. CONCLUSION Elevated plasma levels of mKP and metabolite ratios are associated with increased mortality, independent of CAD, in patients with heart failure.
Collapse
Affiliation(s)
- Anders Lund
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Grete Slettom
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Stein-Erik Hafstad Solvang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Eva Kristine Ringdal Pedersen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Lasse Melvaer Giil
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| |
Collapse
|
748
|
|
749
|
Wu Y, Mai N, Weng X, Liang J, Ning Y. Changes of Altruistic Behavior and Kynurenine Pathway in Late-Life Depression. Front Psychiatry 2020; 11:338. [PMID: 32425830 PMCID: PMC7212401 DOI: 10.3389/fpsyt.2020.00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Depressive patients show less altruistic behavior. While, older adults present higher tendencies for altruism than younger adults. Depression and age are two of the influencing factors of altruism, kynurenine (KYN), and its metabolites. However, the characteristics of altruism in late-life depression (LLD) and its possible underlying mechanism have not been studied. OBJECTIVE We aimed to explore the characteristics of altruism in LLD patients and its neurobiological mechanism and structural brain network. We investigated whether the levels of metabolites in kynurenine pathway (KP) and white matter (WM) network topological features would influence the altruistic behavior in LLD patients. METHODS Thirty-four LLD patients and 36 heathy controls (HCs) were included. Altruism was evaluated by the Dictator Game (DG) paradigm. Serum concentrations of KP metabolites were detected by the liquid chromatography-tandem mass spectrometry method. The topological features of the WM network were calculated from diffusion tensor imaging data in conjunction with graph-theoretical analysis. RESULTS The LLD participants exhibited a higher level of altruism and WM global network properties than the HCs. Kynurenic acid to kynurenine (KYNA/KYN) ratio was associated with the DG performance in LLD group. KYNA/KYN ratio was associated with the WM network properties in HC group. CONCLUSIONS KYN metabolism played an important role in altruistic behavior in LLD.
Collapse
Affiliation(s)
- Yujie Wu
- School of Psychology, South China Normal University, Guangzhou, China.,Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Naikeng Mai
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xuchu Weng
- School of Psychology, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jiuxing Liang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuping Ning
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
750
|
Al Saedi A, Sharma S, Summers MA, Nurgali K, Duque G. The multiple faces of tryptophan in bone biology. Exp Gerontol 2020; 129:110778. [DOI: 10.1016/j.exger.2019.110778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
|