701
|
Xue B, Liu D, Song M, Zhao G, Cao Y, Yan G, Dai J, Hu Y. Leukemia inhibitory factor promotes the regeneration of rat uterine horns with full-thickness injury. Wound Repair Regen 2019; 27:477-487. [PMID: 31107586 DOI: 10.1111/wrr.12729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 11/28/2022]
Abstract
Severe uterine injuries may lead to infertility or pregnancy complications. There is a lack of effective methods to restore the structure and function of seriously injured uteri. Leukemia inhibitory factor (LIF), which plays a crucial role in blastocyst implantation, promotes the process of regeneration after injury in several different tissues. In this study, we explored the effect of LIF on the regeneration of rat uterine horns following full-thickness injury. One hundred and twenty four female Sprague-Dawley rats were assigned to three groups, including a sham-operated group (n = 34 uterine horns), a PBS/collagen group (n = 90 uterine horns), and a LIF/collagen group (n = 124 uterine horns). The regenerated uterine horns were collected at 1, 2, 4, 8, or 12 weeks after the surgery. The results showed that LIF/collagen scaffolds increased the number of endometrial cells and neovascularization 2 weeks after uterine full-thickness defect in excision sites (p < 0.001 vs PBS/collagen). Eight weeks after the surgery, the number of endometrial glands was dramatically higher in the LIF/collagen scaffolds group (35.2 ± 4.1/field) than in the PBS/collagen scaffolds (15.1 ± 1.4/field). The percentage of a-smooth muscle actin (a-SMA)-positive areas in the LIF/collagen scaffolds (88.8% ± 9.8%) was also significantly higher than that in the PBS/collagen group (52.9% ± 3.7%). Moreover, LIF improved the pregnancy rate and fetus number. We also found that LIF inhibited the infiltration of inflammatory cells and down-regulated the pro-inflammatory cytokine IL-12 expression while up-regulating the anti-inflammatory cytokine IL-10 expression in the injured part of the uterine horns. Our results indicate that LIF promotes regeneration of the uterus after injury, and this is at least partially due to its immunomodulatory properties. In addition, it is worth to explore further the possibility for LIF/collagen to be an alternative therapeutic approach for uterine damage in the clinic in near future.
Collapse
Affiliation(s)
- Bai Xue
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Rd., Nanjing, 210008, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, 210008, China
| | - Minmin Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, 210008, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, 210008, China
| | - Yun Cao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, 210008, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, 210008, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, 100190, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Rd., Nanjing, 210008, China.,Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing, 210008, China
| |
Collapse
|
702
|
Vasconcelos DP, de Torre-Minguela C, Gomez AI, Águas AP, Barbosa MA, Pelegrín P, Barbosa JN. 3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages. Acta Biomater 2019; 91:123-134. [PMID: 31003033 DOI: 10.1016/j.actbio.2019.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Chitosan (Ch) is used in different biomedical applications to promote tissue repair. However, tissue injury caused by biomaterial implantation lead to the release of danger signals that engage different inflammatory pathways on the host. Different implanted materials activate the inflammasome leading to the modulation of the immune response. Here we have studied how macroscopic biomaterials, Ch scaffolds with different chemical composition: 4% or 15% degree of acetylation (DA) modulate the activation of the NLRP3 inflammasome in vitro. For that, we assessed the NLRP3 inflammasome in bone marrow derived mouse macrophages (BMDM) and human macrophages cultured within 3D Ch scaffolds. We found that both Ch scaffolds did not trigger the NLRP3 inflammasome activation in macrophages. Furthermore, BMDMs and human macrophages cultured in both Ch scaffolds presented a reduction in the number of apoptosis-associated speck-like protein containing a caspase activating recruitment domain (ASC) specks and in IL-1β release upon classical NLRP3 inflammasome stimulation. We also found a decrease in proIL-1β in BMDMs after priming with LPS when cultured in Ch scaffolds with DA 4% DA after priming with LPS when compared to Ch scaffolds with 15% DA or to macrophages cultured in cell-culture plates. Our results shows that 3D Ch scaffolds with different DA impair NLRP3 inflammasome priming and activation. STATEMENT OF SIGNIFICANCE: In this research work we have assessed the role of the NLRP3 inflammasome in the macrophage response to 3D chitosan scaffolds with different degrees of acetylation (DA). To our knowledge this is the first work that demonstrates the modulatory capacity of 3D porous chitosan scaffolds in the NLRP3 inflammasome activation, because our results show that Ch scaffolds impair NLRP3 inflammasome assembly in macrophages. Interestingly, our results are in contrast with studies reported in the literature that indicate that chitosan is a powerful activator of the NLRP3 inflammasome in nanoscale chitosan products. Our studies that were performed in large scale chitosan scaffolds, stress out that the process of phagocytosis is pivotal in inflammasome assembly and activation, are rather important since they clearly illustrate the different role of the inflammasome in the biological response to large scale and nanoscale biomaterials.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carlos de Torre-Minguela
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain
| | - Ana I Gomez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain
| | - Artur P Águas
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; UMIB - Unit for Multidisciplinary Biomedical Research of ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain.
| | - Judite N Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
703
|
Phillipson M, Kubes P. The Healing Power of Neutrophils. Trends Immunol 2019; 40:635-647. [PMID: 31160208 DOI: 10.1016/j.it.2019.05.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 11/28/2022]
Abstract
Neutrophils promptly accumulate in large numbers at sites of tissue injury. Injuries to the skin or mucosae disrupt barriers against the external environment, and the bactericidal actions of neutrophils are important in preventing microbial invasion. Neutrophils have also been associated with exacerbated inflammation, for example in non-healing wounds or in conditions such as inflammatory bowel disease (IBD). However, additional neutrophil functions important for angiogenesis and tissue restoration have been uncovered in models of sterile and ischemic injury, as well as in tumors. These functions are also relevant in healing skin and mucosal wounds, and can be impaired in conditions associated with non-healing wounds, such as diabetes. Here, we discuss our current understanding of neutrophil contributions to healing, and how the latter can be compromised in disease.
Collapse
Affiliation(s)
- Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Paul Kubes
- Snyder Institute of Infection, Immunity, and Inflammation, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
704
|
de Kerckhove M, Tanaka K, Umehara T, Okamoto M, Kanematsu S, Hayashi H, Yano H, Nishiura S, Tooyama S, Matsubayashi Y, Komatsu T, Park S, Okada Y, Takahashi R, Kawano Y, Hanawa T, Iwasaki K, Nozaki T, Torigoe H, Ikematsu K, Suzuki Y, Tanaka K, Martin P, Shimokawa I, Mori R. Targeting miR-223 in neutrophils enhances the clearance of Staphylococcus aureus in infected wounds. EMBO Mol Med 2019; 10:emmm.201809024. [PMID: 30171089 PMCID: PMC6180296 DOI: 10.15252/emmm.201809024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Argonaute 2 bound mature microRNA (Ago2-miRNA) complexes are key regulators of the wound inflammatory response and function in the translational processing of target mRNAs. In this study, we identified four wound inflammation-related Ago2-miRNAs (miR-139-5p, miR-142-3p, miR-142-5p, and miR-223) and show that miR-223 is critical for infection control. miR-223 Y/- mice exhibited delayed sterile healing with prolonged neutrophil activation and interleukin-6 expression, and markedly improved repair of Staphylococcus aureus-infected wounds. We also showed that the expression of miR-223 was regulated by CCAAT/enhancer binding protein alpha in human neutrophils after exposure to S. aureus peptides. Treatment with miR-223 Y/--derived neutrophils, or miR-223 antisense oligodeoxynucleotides in S. aureus-infected wild-type wounds markedly improved the healing of these otherwise chronic, slow healing wounds. This study reveals how miR-223 regulates the bactericidal capacity of neutrophils at wound sites and indicates that targeting miR-223 might be of therapeutic benefit for infected wounds in the clinic.
Collapse
Affiliation(s)
- Maiko de Kerckhove
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Tanaka
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Plastic and Reconstructive Surgery, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Plastic and Reconstructive Surgery, Ehime Prefectural Center Hospital, Ehime, Japan
| | - Takahiro Umehara
- Department of Forensic Pathology and Science, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Momoko Okamoto
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Immunology and Rheumatology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sotaro Kanematsu
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Hayashi
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroki Yano
- Department of Plastic and Reconstructive Surgery, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Soushi Nishiura
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shiho Tooyama
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yutaka Matsubayashi
- Schools of Biochemistry and Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK.,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Toshimitsu Komatsu
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Seongjoon Park
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Rina Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yayoi Kawano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takehisa Hanawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Keisuke Iwasaki
- Department of Pathology, Sasebo City General Hospital, Sasebo Nagasaki, Japan
| | - Tadashige Nozaki
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Hirakata Osaka, Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Science, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Katsumi Tanaka
- Department of Plastic and Reconstructive Surgery, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Paul Martin
- Schools of Biochemistry and Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
705
|
Jr da Costa Fernandes C, Pinto TS, Kang HR, de Magalhães Padilha P, Koh IHJ, Constantino VRL, Zambuzzi WF. Layered Double Hydroxides Are Promising Nanomaterials for Tissue Bioengineering Application. ACTA ACUST UNITED AC 2019; 3:e1800238. [PMID: 32648675 DOI: 10.1002/adbi.201800238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/01/2019] [Indexed: 01/07/2023]
Abstract
Layered double hydroxides (LDHs) have emerged as promising nanomaterials for human health and although it has achieved some progress on this matter, their application within bioengineering is not fully addressed. This prompted to subject fibroblasts to two compositions of LDHs (Mg2 Al-Cl and Zn2 Al-Cl), considering an acute response. First, LDH particles are addressed by scanning electron microscopy, and no significant effect of the cell culture medium on the shape of LDHs particles is reported although it seems to adsorb some soluble proteins as proposed by energy-dispersive X-ray analysis. These LDHs release magnesium, zinc, and aluminum, but there is no cytotoxic or biocompatibility effects. The data show interference to fibroblast adhesion by driving the reorganization of actin-based cytoskeleton, preliminarily to cell cycle progression. Additionally, these molecular findings are validated by performing a functional wound-healing assay, which is accompanied by a dynamic extracellular matrix remodeling in response to the LDHs. Altogether, the results show that LDHs nanomaterials modulate cell adhesion, proliferation, and migration, delineating new advances on the biomaterial field applied in the context of soft tissue bioengineering, which must be explored in health disorders, such as wound healing in burn injuries.
Collapse
Affiliation(s)
- Célio Jr da Costa Fernandes
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Thaís Silva Pinto
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ha Ram Kang
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Pedro de Magalhães Padilha
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ivan Hong Jun Koh
- Departamento de Cirurgia, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| | - Willian F Zambuzzi
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| |
Collapse
|
706
|
The antioxidant and DNA-repair enzyme apurinic/apyrimidinic endonuclease 1 limits the development of tubulointerstitial fibrosis partly by modulating the immune system. Sci Rep 2019; 9:7823. [PMID: 31127150 PMCID: PMC6534557 DOI: 10.1038/s41598-019-44241-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that controls the cellular response to oxidative stress and possesses DNA-repair functions. It has important roles in the progression and outcomes of various diseases; however, its function and therapeutic prospects with respect to kidney injury are unknown. To study this, we activated APE1 during kidney injury by constructing an expression vector (pCAG-APE1), using an EGFP expression plasmid (pCAG-EGFP) as a control. We performed unilateral ureteral obstruction (UUO) as a model of tubulointerstitial fibrosis on ICR mice before each vector was administrated via retrograde renal vein injection. In this model, pCAG-APE1 injection did not produce any adverse effects and significantly reduced histological end points including fibrosis, inflammation, tubular injury, and oxidative stress, as compared to those parameters after pCAG-EGFP injection. qPCR analysis showed significantly lower expression of Casp3 and inflammation-related genes in pCAG-APE1-injected animals compared to those in pCAG-EGFP-injected UUO kidneys. RNA-Seq analyses showed that the major transcriptional changes in pCAG-APE1-injected UUO kidneys were related to immune system processes, metabolic processes, catalytic activity, and apoptosis, leading to normal kidney repair. Therefore, APE1 suppressed renal fibrosis, not only via antioxidant and DNA-repair functions, but also partly by modulating the immune system through multiple pathways including Il6, Tnf, and chemokine families. Thus, therapeutic APE1 modulation might be beneficial for the treatment of renal diseases.
Collapse
|
707
|
Hashemi SS, Mohammadi AA, Kabiri H, Hashempoor MR, Mahmoodi M, Amini M, Mehrabani D. The healing effect of Wharton's jelly stem cells seeded on biological scaffold in chronic skin ulcers: A randomized clinical trial. J Cosmet Dermatol 2019; 18:1961-1967. [PMID: 31127705 DOI: 10.1111/jocd.12931] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic wound or nonhealing ulcer is essentially a wound that does not progress normally through the wound healing process. This study assessed the healing effect of umbilical cord Wharton's jelly stem cells seeded on biological scaffold in chronic skin ulcers. MATERIALS AND METHODS In a randomized clinical trial, five patients between 30 and 60 years with chronic diabetic wounds were enrolled. To cover the wounds, acellular amniotic membrane seeded with Wharton's jelly mesenchymal stem cells (WJSCs) was used for 9 days, every 3 days with a follow-up of 1 month. The percentage and time of wound healing and the size of wound were recorded for each patient. RESULTS In treated patients, the wound healing time and wound size significantly decreased, and after 6 and 9 days, the wound size significantly declined (P < 0.002). CONCLUSION As WJSCs seeded on amniotic membrane could significantly accelerate the healing effect in chronic diabetic wounds, they can be an alternative source in tissue engineering and repair of chronic ulcers.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Kabiri
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahdokht Mahmoodi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Amini
- Minimal Invasive Laparascopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Rohan Gene Cell Tech Center, Shiraz, Iran
| |
Collapse
|
708
|
Sirbu D, Luli S, Leslie J, Oakley F, Benniston AC. Enhanced in vivo Optical Imaging of the Inflammatory Response to Acute Liver Injury in C57BL/6 Mice Using a Highly Bright Near-Infrared BODIPY Dye. ChemMedChem 2019; 14:995-999. [PMID: 30920173 DOI: 10.1002/cmdc.201900181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 03/07/2024]
Abstract
Delving deeper is possible in whole-body in vivo imaging using a super-bright membrane-targeting BODIPY dye (BD). The dye was used to monitor homing of ex vivo fluorescently labelled neutrophils to an injured liver of dark-pigmented C57BL/6 mice. In vivo imaging system (IVIS) data conclusively showed an enhanced signal intensity and a higher signal-to-noise ratio in mice receiving neutrophils labelled with the BD dye relative to those labelled with a gold standard dye at 2 h post in vivo administration of fluorescently labelled cells. Fluorescence-activated cell sorting (FACS) confirmed that BD is nontoxic, and an exceptional cell labelling dye that opens up precision deep-organ in vivo imaging of inflammation in mice routinely used for biomedical research. The origin of enhanced performance is identified with the molecular structure and the distinct localisation of the dye within cells that enable remarkable changes in its optical parameters.
Collapse
Affiliation(s)
- Dumitru Sirbu
- Molecular Photonics Laboratory, Chemistry-School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Institution of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Institution of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institution of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew C Benniston
- Molecular Photonics Laboratory, Chemistry-School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
709
|
Gene expression profiling distinguishes prefibrotic from overtly fibrotic myeloproliferative neoplasms and identifies disease subsets with distinct inflammatory signatures. PLoS One 2019; 14:e0216810. [PMID: 31071164 PMCID: PMC6534080 DOI: 10.1371/journal.pone.0216810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) share similar molecular characteristics in that they frequently harbor hotspot mutations in JAK2, CALR or MPL, leading to activated JAK/STAT signaling. However, these MPN have distinct symptoms, morphology, and natural histories, including different tendencies to progress to fibrosis. Although the role of inflammation in tissue fibrosis is well recognized, inflammatory gene expression in bone marrows involved by MPN has been understudied. We analyzed the expression of inflammatory genes by directly measuring RNA transcript abundance in bone marrow biopsies of 108 MPN patients. Unsupervised analyses identified gene expression patterns that distinguish prefibrotic (grade 1–2) MPN from overtly fibrotic (grade 2–3) MPN with high sensitivity and specificity in two independent cohorts. Furthermore, prefibrotic and overtly fibrotic MPN are separable into subsets with different activities in biological pathways linked to inflammation, including cytokines, chemokines, interferon response, and toll-like receptor signaling. In conclusion, this study demonstrates that MPN with overt fibrosis is associated with significant inflammatory gene upregulation in the bone marrow, revealing potential roles for multiple pro-inflammatory signaling networks in the development of myelofibrosis and suggesting potential therapeutic mechanisms to alleviate this process in the bone marrow microenvironment.
Collapse
|
710
|
Royce SG, Patel KP, Mao W, Zhu D, Lim R, Samuel CS. Serelaxin enhances the therapeutic effects of human amnion epithelial cell-derived exosomes in experimental models of lung disease. Br J Pharmacol 2019; 176:2195-2208. [PMID: 30883698 DOI: 10.1111/bph.14666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE There is growing interest in stem cell-derived exosomes for their therapeutic and regenerative benefits given their manufacturing and regulatory advantages over cell-based therapies. As existing fibrosis impedes the viability and efficacy of stem cell/exosome-based strategies for treating chronic diseases, here we tested the effects of the anti-fibrotic drug, serelaxin, on the therapeutic efficacy of human amnion epithelial cell (AEC)-derived exosomes in experimental lung disease. EXPERIMENTAL APPROACH Female Balb/c mice were subjected to either the 9.5-week model of ovalbumin and naphthalene (OVA/NA)-induced chronic allergic airway disease (AAD) or 3-week model of bleomycin (BLM)-induced pulmonary fibrosis; then administered increasing concentrations of AEC-exosomes (5 μg or 25μg), with or without serelaxin (0.5mg/kg/day) for 7-days. 1x106 AECs co-administered with serelaxin over the corresponding time-period were included for comparison in both models, as was pirfenidone-treatment of the BLM model. Control groups received saline/corn oil or saline, respectively. KEY RESULTS Both experimental models presented with significant tissue inflammation, remodelling, fibrosis and airway/lung dysfunction at the time-points studied. While AEC-exosome (5 μg or 25μg)-administration alone demonstrated some benefits in each model, serelaxin was required for AEC-exosomes (25μg) to rapidly normalise chronic AAD-induced airway fibrosis and airway reactivity, and BLM-induced lung inflammation, epithelial damage and subepithelial/basement membrane fibrosis. Combining serelaxin with AEC-exosomes (25μg) also demonstrated broader protection compared to co-administration of serelaxin with 1x106 AECs or pirfenidone. CONCLUSIONS AND IMPLICATIONS Serelaxin enhanced the therapeutic efficacy of AEC-exosomes in treating basement membrane-induced fibrosis and related airway dysfunction.
Collapse
Affiliation(s)
- Simon G Royce
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Medicine, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Krupesh P Patel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - WeiYi Mao
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
711
|
Svedberg FR, Brown SL, Krauss MZ, Campbell L, Sharpe C, Clausen M, Howell GJ, Clark H, Madsen J, Evans CM, Sutherland TE, Ivens AC, Thornton DJ, Grencis RK, Hussell T, Cunoosamy DM, Cook PC, MacDonald AS. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat Immunol 2019; 20:571-580. [PMID: 30936493 PMCID: PMC8381729 DOI: 10.1038/s41590-019-0352-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.
Collapse
Affiliation(s)
- Freya R Svedberg
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Maria Z Krauss
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Campbell
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Catherine Sharpe
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Maryam Clausen
- AstraZeneca, Discovery Sciences IMED, Gothenburg, Sweden
| | - Gareth J Howell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Howard Clark
- Department of Child Health, Division of Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jens Madsen
- Department of Child Health, Division of Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher M Evans
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tara E Sutherland
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alasdair C Ivens
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David J Thornton
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
712
|
Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun 2019; 10:1850. [PMID: 31015429 PMCID: PMC6478854 DOI: 10.1038/s41467-019-09709-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Macrophage (Mϕ)-fibroblast interactions coordinate tissue repair after injury whereas miscommunications can result in pathological healing and fibrosis. We show that contracting fibroblasts generate deformation fields in fibrillar collagen matrix that provide far-reaching physical cues for Mϕ. Within collagen deformation fields created by fibroblasts or actuated microneedles, Mϕ migrate towards the force source from several hundreds of micrometers away. The presence of a dynamic force source in the matrix is critical to initiate and direct Mϕ migration. In contrast, collagen condensation and fiber alignment resulting from fibroblast remodelling activities or chemotactic signals are neither required nor sufficient to guide Mϕ migration. Binding of α2β1 integrin and stretch-activated channels mediate Mϕ migration and mechanosensing in fibrillar collagen ECM. We propose that Mϕ mechanosense the velocity of local displacements of their substrate, allowing contractile fibroblasts to attract Mϕ over distances that exceed the range of chemotactic gradients. Macrophages play an important role in wound healing but the guidance cues driving macrophages to sites of repair are still not clear. Here the authors discover that macrophages are attracted to contracting fibroblasts by responding to locally sensed displacements of collagen fibres.
Collapse
|
713
|
Identification and Complete Stereochemical Assignments of the New Resolvin Conjugates in Tissue Regeneration in Human Tissues that Stimulate Proresolving Phagocyte Functions and Tissue Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:950-966. [PMID: 29571326 DOI: 10.1016/j.ajpath.2018.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
Resolvin conjugates in tissue regeneration (RCTRs) are new chemical signals that accelerate resolution of inflammation, infection, and tissue regeneration. Herein, using liquid chromatography-tandem mass spectrometry-based metabololipidomics, we identified RCTRs in human spleen, lymph node, bone marrow, and brain. In human spleen incubated with Staphylococcus aureus, endogenous RCTRs were increased along with conversion of deuterium-labeled docosahexaenoic acid, conferring pathway activation. Physical and biological properties of endogenous RCTRs were matched with those prepared by total organic synthesis. The complete stereochemical assignment of bioactive RCTR1 is 8R-glutathionyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, RCTR2 is 8R-cysteinylglycinyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, and RCTR3 is 8R-cysteinyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid. These stereochemically defined RCTRs stimulated human macrophage phagocytosis, efferocytosis, and planaria tissue generation. Proteome profiling demonstrated that RCTRs regulated both proinflammatory and anti-inflammatory cytokines with human macrophages. In microfluidic chambers, the three RCTRs limited human polymorphonuclear cell migration. In hind-limb ischemia-reperfusion-initiated organ injury, both RCTR2 and RCTR3 reduced polymorphonuclear cell infiltration into lungs. In infectious peritonitis, RCTR1 shortened the resolution intervals. Each RCTR (1 nmol/L) accelerated planaria tissue regeneration by approximately 0.5 days, with direct comparison to both maresin and protectin CTRs. Together, these results identify a new bioactive RCTR (ie, RCTR3) in human tissues and establish the complete stereochemistry and rank-order potencies of three RCTRs in vivo. Moreover, RCTR1, RCTR2, and RCTR3 each exert potent anti-inflammatory and proresolving actions with human leukocytes.
Collapse
|
714
|
LaCanna R, Liccardo D, Zhang P, Tragesser L, Wang Y, Cao T, Chapman HA, Morrisey EE, Shen H, Koch WJ, Kosmider B, Wolfson MR, Tian Y. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J Clin Invest 2019; 129:2107-2122. [PMID: 30985294 DOI: 10.1172/jci125014] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Alveolar epithelium plays a pivotal role in protecting the lungs from inhaled infectious agents. Therefore, the regenerative capacity of the alveolar epithelium is critical for recovery from these insults in order to rebuild the epithelial barrier and restore pulmonary functions. Here, we show that sublethal infection of mice with Streptococcus pneumoniae, the most common pathogen of community-acquired pneumonia, led to exclusive damage in lung alveoli, followed by alveolar epithelial regeneration and resolution of lung inflammation. We show that surfactant protein C-expressing (SPC-expressing) alveolar epithelial type II cells (AECIIs) underwent proliferation and differentiation after infection, which contributed to the newly formed alveolar epithelium. This increase in AECII activities was correlated with increased nuclear expression of Yap and Taz, the mediators of the Hippo pathway. Mice that lacked Yap/Taz in AECIIs exhibited prolonged inflammatory responses in the lung and were delayed in alveolar epithelial regeneration during bacterial pneumonia. This impaired alveolar epithelial regeneration was paralleled by a failure to upregulate IκBa, the molecule that terminates NF-κB-mediated inflammatory responses. These results demonstrate that signals governing resolution of lung inflammation were altered in Yap/Taz mutant mice, which prevented the development of a proper regenerative niche, delaying repair and regeneration of alveolar epithelium during bacterial pneumonia.
Collapse
Affiliation(s)
- Ryan LaCanna
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniela Liccardo
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peggy Zhang
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren Tragesser
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tongtong Cao
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter J Koch
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Beata Kosmider
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marla R Wolfson
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
715
|
Ganse B, Böhle F, Pastor T, Gueorguiev B, Altgassen S, Gradl G, Kim BS, Modabber A, Nebelung S, Hildebrand F, Knobe M. Microcirculation After Trochanteric Femur Fractures: A Prospective Cohort Study Using Non-invasive Laser-Doppler Spectrophotometry. Front Physiol 2019; 10:236. [PMID: 30967785 PMCID: PMC6442516 DOI: 10.3389/fphys.2019.00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
Proximal femur fractures represent a major healthcare problem in the aging society. High rates of post-operative infections are linked to risk factors that seem to affect local microcirculation. Patterns and time courses of alterations in microcirculation have, however, not been previously investigated. The aim of this prospective cohort study was to evaluate perioperative changes in microcirculation after trochanteric femur fractures using non-invasive laser-Doppler spectrophotometry to analyze how oxygen saturation (SO2), hemoglobin content (Hb) and blood flow changed before and after surgery, and how these parameters were altered by implant type, gender, smoking, diabetes and age. Measurements were separately recorded for nine locations around the greater trochanter in 2, 8, and 15 mm depths, before surgery and 8, 24, 48 h, 4, 7, and 12 days after surgery in 48 patients. Three implants were compared: Dynamic Hip Screw, Gamma3 Nail, and Percutaneous Compression Plate. Surgery resulted in significant differences between the healthy and injured leg in SO2, Hb and flow. Each parameter showed comparable values for both legs prior to surgery. Significantly higher values in SO2 and flow were registered in women compared to men before and after surgery. Smoking caused significant increases in SO2, Hb, and flow only in the superficial layer of the skin after surgery. Diabetes decreased blood flow at 2 and 8 mm depth and increased SO2 at 8 and 15 mm depth after surgery. Age revealed a significant negative correlation with flow. The ability to increase the flow rate after surgery decreased with age. Comparison of implants indicated the minimally invasive implant PCCP altered microcirculation less than the DHS or the Gamma3 nail. Overall, the proximal femur fracture alone did not alter local skin microcirculation significantly in a way comparable to the effect caused by surgery. In conclusion, microcirculation after proximal femur fractures is highly affected by surgery, gender, smoking, diabetes, age and implant in ways specified in this study.
Collapse
Affiliation(s)
- Bergita Ganse
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Franziska Böhle
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Tatjana Pastor
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | | | - Simon Altgassen
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Gertraud Gradl
- LVR Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bong-Sung Kim
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Sven Nebelung
- Department of Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Matthias Knobe
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
716
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
717
|
Ng-Blichfeldt JP, de Jong T, Kortekaas RK, Wu X, Lindner M, Guryev V, Hiemstra PS, Stolk J, Königshoff M, Gosens R. TGF-β activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L14-L28. [PMID: 30969812 DOI: 10.1152/ajplung.00400.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-induced fibroblast-to-myofibroblast differentiation contributes to remodeling in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, but whether this impacts the ability of fibroblasts to support lung epithelial repair remains little explored. We pretreated human lung fibroblasts [primary (phFB) or MRC5 cells] with recombinant human TGF-β to induce myofibroblast differentiation, then cocultured them with adult mouse lung epithelial cell adhesion molecule-positive cells (EpCAM+) to investigate their capacity to support epithelial organoid formation in vitro. While control phFB and MRC5 lung fibroblasts supported organoid formation of mouse EpCAM+ cells, TGF-β pretreatment of both phFB and MRC5 impaired organoid-supporting ability. We performed RNA sequencing of TGF-β-treated phFB, which revealed altered expression of key Wnt signaling pathway components and Wnt/β-catenin target genes, and modulated expression of secreted factors involved in mesenchymal-epithelial signaling. TGF-β profoundly skewed the transcriptional program induced by the Wnt/β-catenin activator CHIR99021. Supplementing organoid culture media recombinant hepatocyte growth factor or fibroblast growth factor 7 promoted organoid formation when using TGF-β pretreated fibroblasts. In conclusion, TGF-β-induced myofibroblast differentiation results in Wnt/β-catenin pathway skewing and impairs fibroblast ability to support epithelial repair likely through multiple mechanisms, including modulation of secreted growth factors.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands.,Lung Repair and Regeneration Unit, Helmholtz-Zentrum München, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research , Munich , Germany
| | - Tristan de Jong
- European Research Institute for Biology of Ageing, University Medical Centre Groningen, University of Groningen , Groningen , The Netherlands
| | - Rosa K Kortekaas
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands
| | - Xinhui Wu
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands
| | - Michael Lindner
- Translational Lung Research and CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center , Munich , Germany
| | - Victor Guryev
- European Research Institute for Biology of Ageing, University Medical Centre Groningen, University of Groningen , Groningen , The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center , Leiden , The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center , Leiden , The Netherlands
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum München, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research , Munich , Germany.,Translational Lung Research and CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center , Munich , Germany.,Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado , Aurora, Colorado
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
718
|
Zaiss DM, Minutti CM, Knipper JA. Immune- and non-immune-mediated roles of regulatory T-cells during wound healing. Immunology 2019; 157:190-197. [PMID: 30866049 DOI: 10.1111/imm.13057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
The immune system has a well-established contribution to tissue homeostasis and wound healing. However, in many cases immune responses themselves can cause severe tissue damage. Thus, the question arose to which extent cells of the immune system directly contribute to the process of wound healing and to which extent the resolution of excessive immune responses may indirectly contribute to wound healing. FoxP3-expressing CD4 T-cells, so-called regulatory T-cells (Tregs ), have an important contribution in the regulation of immune responses; and, in recent years, it has been suggested that Tregs next to an immune-regulatory, 'damage-limiting' function may also have an immune-independent 'damage-resolving' direct role in wound healing. In particular, the release of the epidermal growth factor-like growth factor Amphiregulin by tissue-resident Tregs during wound repair suggested such a function. Our recent findings have now revealed that Amphiregulin induces the local release of bio-active transforming growth factor (TGF)β, a cytokine involved both in immune regulation as well as in the process of wound repair. In light of these findings, we discuss whether, by locally activating TGFβ, Treg -derived Amphiregulin may contribute to both wound repair and immune suppression. Furthermore, we propose that Treg -derived Amphiregulin in an autocrine way may enable an IL-33-mediated survival and expansion of tissue-resident Tregs upon injury. Furthermore, Treg -derived Amphiregulin may contribute to a constitutive, low-level release of bio-active TGFβ within tissues, leading to continuous tissue regeneration and to an immune-suppressive environment, which may keep inflammation-prone tissues in an homeostatic state.
Collapse
Affiliation(s)
- Dietmar M Zaiss
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Carlos M Minutti
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.,Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Johanna A Knipper
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
719
|
Fibroblasts stimulate macrophage migration in interconnected extracellular matrices through tunnel formation and fiber alignment. Biomaterials 2019; 209:88-102. [PMID: 31030083 DOI: 10.1016/j.biomaterials.2019.03.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
In vivo, macrophages and fibroblasts navigate through and remodel the three-dimensional (3D) extra-cellular matrix (ECM). The orientation of fibers, the porosity, and degree of cross-linking can change the interconnectivity of the ECM and affect cell migration. In turn, migrating cells can alter their microenvironment. To study the relationships between ECM interconnectivity and migration of cells, we assembled collagen hydrogels with dense (DCN) or with loosely interconnected networks (LCN). We find that in DCNs, RAW 264.7 macrophages in monocultures were virtually stationary. In DCN co-cultures, Balb/c 3T3 fibroblasts created tunnels that provided conduits for macrophage migration. In LCNs, fibroblasts aligned fibers up to a distance of 100 μm, which provided tracks for macrophages. Intra-cellular and extra-cellular fluorescent fragments of internalized and degraded collagen were detected inside both cell types as well as around their cell peripheries. Macrophages expressed higher levels of urokinase-type plasminogen activator receptor associated protein (uPARAP)/mannose receptor 1 (CD206) compared to α2β1 indicating that collagen internalization in these cells occurred primarily via integrin-independent mechanisms. Network remodeling indicated by higher Young's modulus was observed in fibroblast monocultures as a result of TGF-β secretion. This work unveils new roles for fibroblasts in forming tunnels in networked ECM to modulate macrophage migration.
Collapse
|
720
|
Preti M, Vieira-Baptista P, Digesu GA, Bretschneider CE, Damaser M, Demirkesen O, Heller DS, Mangir N, Marchitelli C, Mourad S, Moyal-Barracco M, Peremateu S, Tailor V, Tarcan T, De EJB, Stockdale CK. The Clinical Role of LASER for Vulvar and Vaginal Treatments in Gynecology and Female Urology: An ICS/ISSVD Best Practice Consensus Document. J Low Genit Tract Dis 2019; 23:151-160. [PMID: 30789385 PMCID: PMC6462818 DOI: 10.1097/lgt.0000000000000462] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this best practice document, we propose recommendations for the use of LASER for gynecologic and urologic conditions such as vulvovaginal atrophy, urinary incontinence, vulvodynia, and lichen sclerosus based on a thorough literature review. Most of the available studies are limited by their design; for example, they lack a control group, patients are not randomized, follow-up is short term, series are small, LASER is not compared with standard treatments, and most studies are industry sponsored. Because of these limitations, the level of evidence for the use of LASER in the treatment of these conditions remains low and does not allow for definitive recommendations for its use in routine clinical practice. Histological evidence is commonly reported as proof of tissue regeneration after LASER treatment. However, the histological changes noted can also be consistent with reparative changes after a thermal injury rather than necessarily representing regeneration or restoration of function. The use of LASER in women with vulvodynia or lichen sclerosus should not be recommended in routine clinical practice. There is no biological plausibility or safety data on its use on this population of women. The available clinical studies do not present convincing data regarding the efficacy of LASER for the treatment of vaginal atrophy or urinary incontinence. Also, although short-term complications seem to be uncommon, data concerning long-term outcomes are lacking. Therefore, at this point, LASER is not recommended for routine treatment of the aforementioned conditions unless part of well-designed clinical trials or with special arrangements for clinical governance, consent, and audit.
Collapse
Affiliation(s)
- Mario Preti
- Department of Obstetrics and Gynecology, University of Torino, Torino, Italy
| | - Pedro Vieira-Baptista
- Hospital Lusíadas Porto
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
| | | | - Carol Emi Bretschneider
- Center for Urogynecology and Pelvic Reconstructive Surgery, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic
| | - Margot Damaser
- Center for Urogynecology and Pelvic Reconstructive Surgery, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic
- Glickman Urological and Kidney Institute and Department of Biomedical Engineering Lerner Research Institute, Cleveland Clinic
- Advanced Platform Technology Center Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Oktay Demirkesen
- Istanbul University Cerrahpaşa Faculty of Medicine, Department of Urology, Istanbul, Turkey
| | - Debra S Heller
- Department of Pathology & Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ
| | - Naside Mangir
- Kroto Research Institute, Department of Material Science and Engineering, University of Sheffield
- Royal Hallamshire Hospital, Department of Urology, Sheffield, UK
| | - Claudia Marchitelli
- Department of Gynecology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Sherif Mourad
- Ain Shams University, Department of Urology, Cairo, Egypt
| | | | - Sol Peremateu
- Department of Gynecology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Visha Tailor
- Imperial College Healthcare, Department of Urogynaecology, London, UK
| | - Tufan Tarcan
- Marmara University School of Medicine, Department of Urology, Istanbul, Turkey
| | - Elise J B De
- Department of Urology, Massachusetts General Hospital-Harvard Medical School Boston, MA
| | | |
Collapse
|
721
|
Shen Y, Song J, Wang Y, Chen Z, Zhang L, Yu J, Zhu D, Zhong M. M2 macrophages promote pulmonary endothelial cells regeneration in sepsis-induced acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:142. [PMID: 31157263 DOI: 10.21037/atm.2019.02.47] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Macrophages can polarize to M2 phenotype to decrease inflammation and encourage tissue repair. Nonetheless, its role in sepsis-induced acute lung injury and its effect on endothelial cells (ECs) regeneration remains unknown. The aim of the current study was to explore the impact of M2 macrophages on pulmonary ECs proliferation in sepsis-induced acute lung injury. Methods We co-cultured mouse lung microvascular endothelial cells (MLMVECs) with M2 macrophages following LPS challenge. M2 macrophages were intratracheally transplanted into mice subjected to cecal ligation and puncture (CLP). We further performed cytokine array for the supernatant from M2 macrophages and serum from mice subjected with CLP. Results We found both co-culture with M2 macrophages and treating with supernatant from M2 macrophages increased ECs viability following LPS challenge. Intratracheal transplantation of M2 macrophages markedly promoted pulmonary ECs proliferation, manifesting as attenuation of lung microvascular permeability and lung tissue edema, as well as improvement of survival rate. We further found that CXCL12, IL-1ra, TIMP-1, IL-4, and CXCL1 were increased in the supernatant of M2 macrophages in vitro. G-CSF and Complement Component 5a (C5/C5a) were increased in the serum of the M2-transplanted mice. Conclusions The present study suggested M2 macrophages could promote ECs proliferation in sepsis-induced ALI through secretion of anti-inflammatory cytokines and growth factors.
Collapse
Affiliation(s)
- Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China.,Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jieqiong Song
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yingqin Wang
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Zhenglong Chen
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Lin Zhang
- Center of Emergency and Intensive Care Unit, Jinshan Hospital Fudan University, Shanghai 201508, China
| | - Jie Yu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Duming Zhu
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| |
Collapse
|
722
|
Abstract
PURPOSE OF REVIEW This review will cover what is known regarding exosomes and allergy, and furthermore discuss novel mechanism of exosome-mediated immune modulation and metabolic regulation via the transfer of mitochondria. RECENT FINDINGS Exosomes are nano-sized extracellular vesicles (EVs) derived from the endosome that play a direct role in governing physiological and pathological conditions by transferring bioactive cargo such as proteins, enzymes, nucleic acids (miRNA, mRNA, DNA), and metabolites. Recent evidence suggest that exosomes may signal in autocrine but, most importantly, in paracrine and endocrine manner, being taken up by neighboring cells or carried to distant sites. Exosomes also mediate immunogenic responses, such as antigen presentation and inflammation. In asthma and allergy, exosomes facilitate cross-talk between immune and epithelial cells, and drive site-specific inflammation through the generation of pro-inflammatory mediators like leukotrienes. Recent studies suggest that myeloid cell-generated exosomes transfer mitochondria to lymphocytes. Exosomes are nano-sized mediators of the immune system which can modulate responses through antigen presentation, and the transfer of pro- and anti-inflammatory mediators. In addition to conventional mechanisms of immune modulation, exosomes may act as a novel courier of functional mitochondria that is capable of modulating the recipient cells bioenergetics, resulting in altered cellular responses. The transfer of mitochondria and modulation of bioenergetics may result in immune activation or dampening depending on the context.
Collapse
Affiliation(s)
- K P Hough
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, 1900 University Boulevard, THT-433, Birmingham, AL, 35294, USA
| | - J S Deshane
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, 1900 University Boulevard, THT-433, Birmingham, AL, 35294, USA.
| |
Collapse
|
723
|
Cippà PE, Liu J, Sun B, Kumar S, Naesens M, McMahon AP. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat Commun 2019; 10:1157. [PMID: 30858375 PMCID: PMC6411919 DOI: 10.1038/s41467-019-09092-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
The mechanisms initiating late immune responses to an allograft are poorly understood. Here we show, via transcriptome analysis of serial protocol biopsies from kidney transplants, that the initial responses to kidney injury correlate with a late B lymphocyte signature relating to renal dysfunction and fibrosis. With a potential link between dysfunctional repair and immunoreactivity, we investigate the immunological consequences of dysfunctional repair examining chronic disease in mouse kidneys 18 months after a bilateral ischemia/reperfusion injury event. In the absence of foreign antigens, a sustained immune response involving both innate and adaptive immune systems accompanies a transition to chronic kidney damage. At late stages, B lymphocytes exhibite an antigen-driven proliferation, selection and maturation into broadly-reacting antibody-secreting cells. These findings reveal a previously unappreciated role for dysfunctional tissue repair in local immunomodulation that may have particular relevance to transplant-associated immunobiology.
Collapse
Affiliation(s)
- Pietro E Cippà
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA.
- Division of Nephrology, Regional Hospital Lugano, Lugano, 6900, Switzerland.
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA
| | - Bo Sun
- Molecular and Computational Biology, University of Southern California, Los Angeles, 90089-2910, CA, USA
| | - Sanjeev Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA.
| |
Collapse
|
724
|
Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, Enyati N, Pasia G, Maesincee D, Ocon V, Abdulridha M, Longo VD. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019; 26:2704-2719.e6. [PMID: 30840892 PMCID: PMC6528490 DOI: 10.1016/j.celrep.2019.02.019] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary interventions are potentially effective therapies for inflammatory bowel diseases (IBDs). We tested the effect of 4-day fasting-mimicking diet (FMD) cycles on a chronic dextran sodium sulfate (DSS)-induced murine model resulting in symptoms and pathology associated with IBD. These FMD cycles reduced intestinal inflammation, increased stem cell number, stimulated protective gut microbiota, and reversed intestinal pathology caused by DSS, whereas water-only fasting increased regenerative and reduced inflammatory markers without reversing pathology. Transplants of Lactobacillus or fecal microbiota from DSS- and FMD-treated mice reversed DSS-induced colon shortening, reduced inflammation, and increased colonic stem cells. In a clinical trial, three FMD cycles reduced markers associated with systemic inflammation. The effect of FMD cycles on microbiota composition, immune cell profile, intestinal stem cell levels and the reversal of pathology associated with IBD in mice, and the anti-inflammatory effects demonstrated in a clinical trial show promise for FMD cycles to ameliorate IBD-associated inflammation in humans.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Inyoung Choi
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Gerardo Navarrete
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Nobel Enyati
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA
| | - Gab Pasia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Daral Maesincee
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Vanessa Ocon
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Maya Abdulridha
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano 20139, Italy.
| |
Collapse
|
725
|
Sugimoto MA, Vago JP, Perretti M, Teixeira MM. Mediators of the Resolution of the Inflammatory Response. Trends Immunol 2019; 40:212-227. [DOI: 10.1016/j.it.2019.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
726
|
Wlaschek M, Singh K, Sindrilaru A, Crisan D, Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic Biol Med 2019; 133:262-275. [PMID: 30261274 DOI: 10.1016/j.freeradbiomed.2018.09.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Chronic wounds pose a stern challenge to health care systems with growing incidence especially in the aged population. In the presence of increased iron concentrations, recruitment of monocytes from the circulation and activation towards ROS and RNS releasing M1 macrophages together with the persistence of senescent fibroblasts at the wound site are significantly enhanced. This unrestrained activation of pro-inflammatory macrophages and senescent fibroblasts has increasingly been acknowledged as main driver causing non-healing wounds. In a metaphor, macrophages act like stage directors of wound healing, resident fibroblasts constitute main actors and increased iron concentrations are decisive parts of the libretto, and - if dysregulated - are responsible for the development of non-healing wounds. This review will focus on recent cellular and molecular findings from chronic venous leg ulcers and diabetic non-healing wounds both constituting the most common pathologies often resulting in limb amputations of patients. This not only causes tremendous suffering and loss of life quality, but is also associated with an increase in mortality and a major socio-economic burden. Despite recent advances, the underlying molecular mechanisms are not completely understood. Overwhelming evidence shows that reactive oxygen species and the transition metal and trace element iron at pathological concentrations are crucially involved in a complex interplay between cells of different histogenetic origin and their extracellular niche environment. This interplay depends on a variety of cellular, non-cellular biochemical and cell biological mechanisms. Here, we will highlight recent progress in the field of iron-dependent regulation of macrophages and fibroblasts and related pathologies linked to non-healing chronic wounds.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Diana Crisan
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
727
|
Costa-Almeida R, Reis RL, Gomes ME. Metabolic Disease Epidemics: Emerging Challenges in Regenerative Medicine. Trends Endocrinol Metab 2019; 30:147-149. [PMID: 30704823 DOI: 10.1016/j.tem.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
The interplay between cell/tissue damage caused by metabolic dysfunction and regenerative potential remains elusive. The tissue engineering and regenerative medicine (TERM) field is now facing a worldwide epidemic of obesity. This Forum article uncovers prospective questions to be addressed in TERM toward the development of effective regenerative therapies adjusted to these new demands.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
728
|
The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019; 16:145-159. [PMID: 30482910 DOI: 10.1038/s41575-018-0082-x] [Citation(s) in RCA: 632] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its inflammatory and often progressive subtype nonalcoholic steatohepatitis (NASH) are becoming the leading cause of liver-related morbidity and mortality worldwide, and a primary indication for liver transplantation. The pathophysiology of NASH is multifactorial and not yet completely understood; however, innate immunity is a major contributing factor in which liver-resident macrophages (Kupffer cells) and recruited macrophages play a central part in disease progression. In this Review, we assess the evidence for macrophage involvement in the development of steatosis, inflammation and fibrosis in NASH. In this process, not only the polarization of liver macrophages towards a pro-inflammatory phenotype is important, but adipose tissue macrophages, especially in the visceral compartment, also contribute to disease severity and insulin resistance. Macrophage activation is mediated by factors such as endotoxins and translocated bacteria owing to increased intestinal permeability, factors released from damaged or lipoapoptotic hepatocytes, as well as alterations in gut microbiota and defined nutritional components, including certain free fatty acids, cholesterol and their metabolites. Reflecting the important role of macrophages in NASH, we also review studies investigating drugs that target macrophage recruitment to the liver, macrophage polarization and their inflammatory effects as potential treatment options for patients with NASH.
Collapse
|
729
|
Caputa G, Flachsmann LJ, Cameron AM. Macrophage metabolism: a wound-healing perspective. Immunol Cell Biol 2019; 97:268-278. [PMID: 30779212 DOI: 10.1111/imcb.12237] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are a critical component of the innate immune response, and compose the first response to perturbations in tissue homeostasis. Their unique ability to dynamically integrate diverse stimuli underlies their important role in the healing response from first insult to re-establishment of tissue homeostasis. While the roles of macrophages in tissue repair have been well-described in vitro and in vivo, the influence of cellular metabolism on macrophage function during tissue repair remains an unexplored area of immunometabolism. In this review, we will explore the unique metabolic requirements of inflammatory and anti-inflammatory macrophages and the potential contribution of macrophage metabolism to each phase of wound healing.
Collapse
Affiliation(s)
- George Caputa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Lea J Flachsmann
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alanna M Cameron
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
730
|
Libidibia ferrea Fruit Crude Extract and Fractions Show Anti-Inflammatory, Antioxidant, and Antinociceptive Effect In Vivo and Increase Cell Viability In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6064805. [PMID: 30915148 PMCID: PMC6409062 DOI: 10.1155/2019/6064805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/08/2019] [Accepted: 02/03/2019] [Indexed: 01/11/2023]
Abstract
Background Libidibia ferrea (L. ferrea) is found throughout the northeastern region of Brazil, where it has been used in folk medicine with beneficial effects on many inflammatory disorders. Purpose This study investigated the phytochemical composition of the crude extract and fractions of L. ferrea fruit and evaluated its anti-inflammatory and antinociceptive activities in vivo and effect on cell viability in vitro. Methods Characterization of polyphenols present in crude extract (CE), hydroalcoholic fractions of 20-80% ethanol (CE20, CE40, CE60, and CE80), aqueous fraction (AqF), and ethyl acetate (EAF) fractions of L. ferrea fruit was performed by chromatographic analysis. Anti-inflammatory activity was evaluated by using a carrageenan-induced peritonitis model submitted to a leukocyte migration assay and myeloperoxidase activity (MPO) analysis. Total glutathione and malondialdehyde (MDA) levels were assessed to evaluate the oxidative stress level. Antinociceptive activity was evaluated by acetic acid-induced abdominal writhing and hot plate test. In vitro cell viability was determined by using MTT assay in a mouse embryonic fibroblast cell line (3T3 cells). Results Chromatography revealed the presence of ellagic acid content in EAF (3.06), CE (2.96), and CE40 (2.89). Gallic acid was found in EAF (12.03), CE 20 (4.43), and CE (3.99). L. ferrea crude extract and all fractions significantly reduced leukocyte migration and MPO activity (p<0.001). L. ferrea antioxidant effect was observed through high levels of total glutathione and reduction of MDA levels (p<0.001). Acetic acid-induced nociception was significantly inhibited after administration of L. ferrea crude extract and all fractions (p<0.001). Crude extract and all fractions significantly increased the viability of the 3T3 cell line (p<0.05). Conclusions The appropriate extraction procedure preserves the chemical components of L. ferrea fruit, such as gallic acid and ellargic acid. Crude extract and fractions of L. ferrea fruit exhibited anti-inflammatory, antioxidant, antinociceptive activities in vivo and enhanced cell viability in vitro.
Collapse
|
731
|
Puttur F, Gregory LG, Lloyd CM. Airway macrophages as the guardians of tissue repair in the lung. Immunol Cell Biol 2019; 97:246-257. [PMID: 30768869 DOI: 10.1111/imcb.12235] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
The lungs present a challenging immunological dilemma for the host. Anatomically positioned at the environmental interface, they are constantly exposed to antigens, pollutants and microbes, while simultaneously facilitating vital gas exchange. Remarkably, the lungs maintain a functionally healthy state, ignoring harmless inhaled proteins, adapting to toxic environmental insults and limiting immune responses to allergens and pathogenic microbes. This functional strategy of environmental adaptation maintains immune defense, reduces tissue damage, and promotes and sustains lung immune tolerance. At steady state, airway macrophages produce low levels of cytokines, and suppress the induction of innate and adaptive immunity. These cells are primary initiators of lung innate immunity and possess high phagocytic activity to clear particulate antigens and apoptotic cell debris from the airways to regulate the response to infection and inflammation. In response to epithelial injury, resident and recruited macrophages drive tissue repair. In this review, we will focus on the functional importance of macrophages in tissue homeostasis and inflammation in the lung and highlight how environmental cues alter the plasticity and function of lung airway macrophages. We will also discuss mechanisms employed by pulmonary macrophages to promote resolution of tissue inflammation, and how and when this balance is perturbed, they contribute to pathological remodeling in acute and chronic infections and diseases such as asthma, idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Franz Puttur
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Lisa G Gregory
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Clare M Lloyd
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
732
|
Morales RA, Allende ML. Peripheral Macrophages Promote Tissue Regeneration in Zebrafish by Fine-Tuning the Inflammatory Response. Front Immunol 2019; 10:253. [PMID: 30891030 PMCID: PMC6413720 DOI: 10.3389/fimmu.2019.00253] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
The role of macrophages during regeneration in zebrafish has been well-documented. Nevertheless, new evidence indicates that zebrafish macrophages are a heterogeneous population of cells, and that they can play different roles during immune responses and in tissue restoration after damage and infection. In this work, we first aimed to classify zebrafish macrophages according to their distribution in the larva during homeostasis and after tissue damage, distinguishing peripheral, and hematopoietic tissue resident macrophages. We discovered differences between the migratory behavior of these two macrophage populations both before and after tissue damage, triggered by the amputation of the tail fin. Further, we found a specific role for peripheral tissue-resident macrophages, and we propose that these cells contribute to tail fin regeneration by down-regulating inflammatory mediators such as interleukin-1b (il1b) and by diminishing reactive oxygen species (ROS) in the damage site. Our work suggests that specific macrophage populations recruited after tissue damage in zebrafish larvae can display different functions during both inflammation and tissue regeneration.
Collapse
Affiliation(s)
- Rodrigo A Morales
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
733
|
Saldaña L, Bensiamar F, Vallés G, Mancebo FJ, García-Rey E, Vilaboa N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019; 10:58. [PMID: 30760316 PMCID: PMC6375172 DOI: 10.1186/s13287-019-1156-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunoregulatory capacity of mesenchymal stem cells (MSC) is triggered by the inflammatory environment, which changes during tissue repair. Macrophages are essential in mediating the inflammatory response after injury and can adopt a range of functional phenotypes, exhibiting pro-inflammatory and anti-inflammatory activities. An accurate characterization of MSC activation by the inflammatory milieu is needed for improving the efficacy of regenerative therapies. In this work, we investigated the immunomodulatory functions of MSC primed with factors secreted from macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype. We focused on the role of TNF-α and IL-10, prototypic pro-inflammatory and anti-inflammatory cytokines, respectively, as priming factors for MSC. METHODS Secretion of immunoregulatory mediators from human MSC primed with media conditioned by human macrophages polarized toward a pro-inflammatory or an anti-inflammatory phenotype was determined. Immunomodulatory potential of primed MSC on polarized macrophages was studied using indirect co-cultures. Involvement of TNF-α and IL-10 in priming MSC and of PGE2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Collagen hydrogels were used to study MSC and macrophages interactions in a more physiological environment. RESULTS Priming MSC with media conditioned by pro-inflammatory or anti-inflammatory macrophages enhanced their immunomodulatory potential through increased PGE2 secretion. We identified the pro-inflammatory cytokine TNF-α as a priming factor for MSC. Notably, the anti-inflammatory IL-10, mainly produced by pro-resolving macrophages, potentiated the priming effect of TNF-α. Collagen hydrogels acted as instructive microenvironments for MSC and macrophages functions and their crosstalk. Culturing macrophages on hydrogels stimulated anti-inflammatory versus pro-inflammatory cytokine secretion. Encapsulation of MSC within hydrogels increased PGE2 secretion and potentiated immunomodulation on macrophages, attenuating macrophage pro-inflammatory state and sustaining anti-inflammatory activation. Priming with inflammatory factors conferred to MSC loaded in hydrogels greater immunomodulatory potential, promoting anti-inflammatory activity of macrophages. CONCLUSIONS Factors secreted by pro-inflammatory and anti-inflammatory macrophages activated the immunomodulatory potential of MSC. This was partially attributed to the priming effect of TNF-α and IL-10. Immunoregulatory functions of primed MSC were enhanced after encapsulation in hydrogels. These findings may provide insight into novel strategies to enhance MSC immunoregulatory potency.
Collapse
Affiliation(s)
- Laura Saldaña
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Fátima Bensiamar
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Gema Vallés
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco J. Mancebo
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Eduardo García-Rey
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| |
Collapse
|
734
|
Preti M, Vieira-Baptista P, Digesu GA, Bretschneider CE, Damaser M, Demirkesen O, Heller DS, Mangir N, Marchitelli C, Mourad S, Moyal-Barracco M, Peremateu S, Tailor V, Tarcan T, De EJB, Stockdale CK. The clinical role of LASER for vulvar and vaginal treatments in gynecology and female urology: An ICS/ISSVD best practice consensus document. Neurourol Urodyn 2019; 38:1009-1023. [PMID: 30742321 DOI: 10.1002/nau.23931] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The clinical role of LASER for vulvar and vaginal treatments in gynecology and female urology is controversial. AIMS In this best practice document, we propose recommendations for the use of LASER for gynecologic and urologic conditions such as vulvovaginal atrophy, urinary incontinence, vulvodynia, and lichen sclerosus based on a thorough literature review. MATERIALS & METHODS This project was developed between January and September 2018. The development of this document followed the ICS White Paper Standard Operating Procedures. RESULTS Most of the available studies are limited by their design; for example they lack a control group, patients are not randomized, follow up is short term, series are small, LASER is not compared with standard treatments, and studies are industry sponsored. Due to these limitations, the level of evidence for the use of LASER in the treatment of these conditions remains low and does not allow for definitive recommendations for its use in routine clinical practice. Histological evidence is commonly reported as proof of tissue regeneration following LASER treatment. However, the histological changes noted can also be consistent with reparative changes after a thermal injury rather than necessarily representing regeneration or restoration of function. The use of LASER in women with vulvodynia or lichen sclerosus should not be recommended in routine clinical practice. There is no biological plausibility or safety data on its use on this population of women. DISCUSSION The available clinical studies do not present convincing data regarding the efficacy of LASER for the treatment of vaginal atrophy or urinary incontinence. Also, while short-term complications seem to be uncommon, data concerning long-term outcomes are lacking. CONCLUSION At this point, LASER is not recommended for routine treatment of the aforementioned conditions unless part of well-designed clinical trials or with special arrangements for clinical governance, consent, and audit.
Collapse
Affiliation(s)
- Mario Preti
- Department of Obstetrics and Gynecology, University of Torino, Torino, Italy
| | - Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Porto, Portugal.,Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
| | | | - Carol Emi Bretschneider
- Center for Urogynecology and Pelvic Reconstructive Surgery, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio
| | - Margot Damaser
- Center for Urogynecology and Pelvic Reconstructive Surgery, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio.,Glickman Urological and Kidney Institute and Department of Biomedical Engineering Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Oktay Demirkesen
- Faculty of Medicine, Department of Urology, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Debra S Heller
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Naside Mangir
- Kroto Research Institute, Department of Material Science and Engineering, University of Sheffield, Sheffield, UK.,Department of Urology, Royal Hallamshire Hospital, Sheffield, UK
| | - Claudia Marchitelli
- Department of Gynecology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Sherif Mourad
- Department of Urology, Massachusetts General Hospital-Harvard Medical School Boston, Boston, Massachusetts
| | | | - Sol Peremateu
- Department of Gynecology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Visha Tailor
- Department of Urogynaecology, Imperial College Healthcare, London, UK
| | - Tufan Tarcan
- Department of Urology, Ain Shams University, Cairo, Egypt
| | - Elise J B De
- Department of Urology, Marmara University School of Medicine, Istanbul, Turkey
| | - Colleen K Stockdale
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
735
|
Aromatic constituents from Ganoderma lucidum and their neuroprotective and anti-inflammatory activities. Fitoterapia 2019; 134:58-64. [PMID: 30763720 DOI: 10.1016/j.fitote.2019.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
Five new aromatic compounds, designed as lucidumins A-D (1-4) and lucidimine E (9), along with seven known aromatic compounds (5-8, 10-12) were isolated from Ganoderma lucidum. Their structures were determined by spectroscopic method. Bioactive evaluation showed that compounds 2-4 and 6-10 displayed remarkable neuroprotective activities against corticosterone-induced PC12 cell damage, with the cell viability ranging from 69.99% to 126.00%; and compounds 1-4, 9 and 10 exhibited significant anti-inflammatory activities against LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, with IC50 values ranging from 4.68 to 15.49 μM. In particular, compound 10 showed remarkable neuroprotection with EC50 value of 2.49 ± 0.12 μM, and potent anti-inflammation with IC50 value of 4.68 ± 0.09 μM.
Collapse
|
736
|
Bagnati M, Moreno-Moral A, Ko JH, Nicod J, Harmston N, Imprialou M, Game L, Gil J, Petretto E, Behmoaras J. Systems genetics identifies a macrophage cholesterol network associated with physiological wound healing. JCI Insight 2019; 4:e125736. [PMID: 30674726 PMCID: PMC6413785 DOI: 10.1172/jci.insight.125736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
Among other cells, macrophages regulate the inflammatory and reparative phases during wound healing but genetic determinants and detailed molecular pathways that modulate these processes are not fully elucidated. Here, we took advantage of normal variation in wound healing in 1,378 genetically outbred mice, and carried out macrophage RNA-sequencing profiling of mice with extreme wound healing phenotypes (i.e., slow and fast healers, n = 146 in total). The resulting macrophage coexpression networks were genetically mapped and led to the identification of a unique module under strong trans-acting genetic control by the Runx2 locus. This macrophage-mediated healing network was specifically enriched for cholesterol and fatty acid biosynthetic processes. Pharmacological blockage of fatty acid synthesis with cerulenin resulted in delayed wound healing in vivo, and increased macrophage infiltration in the wounded skin, suggesting the persistence of an unresolved inflammation. We show how naturally occurring sequence variation controls transcriptional networks in macrophages, which in turn regulate specific metabolic pathways that could be targeted in wound healing.
Collapse
Affiliation(s)
- Marta Bagnati
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | | | - Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | - Jérôme Nicod
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Martha Imprialou
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| | - Laurence Game
- Genomics Laboratory, Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Jesus Gil
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore, Singapore
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom (UK)
| |
Collapse
|
737
|
Martins R, Carlos AR, Braza F, Thompson JA, Bastos-Amador P, Ramos S, Soares MP. Disease Tolerance as an Inherent Component of Immunity. Annu Rev Immunol 2019; 37:405-437. [PMID: 30673535 DOI: 10.1146/annurev-immunol-042718-041739] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.
Collapse
Affiliation(s)
- Rui Martins
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | - Faouzi Braza
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | | | | - Susana Ramos
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | | |
Collapse
|
738
|
Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W, He Q. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1241-1251. [PMID: 30813005 DOI: 10.1016/j.msec.2019.01.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Studies have demonstrated that scaffolds, a component of bone tissue engineering, play an indispensable role in bone repair. However, these scaffolds involving ex-vivo cultivated cells seeded have disadvantages in clinical practice, such as limited autologous cells, time-consuming cell expansion procedures, low survival rate and immune-rejection issues. To overcome these disadvantages, recent focus has been placed on the design of functionalized cell-free scaffolds, instead of cell-seeded scaffolds, that can reduplicate the natural self-healing events of bone fractures, such as inflammation, cell recruitment, vascularization, and osteogenic differentiation. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of functionalized cell-free scaffolds for bone repair. In this review, the self-healing processes were highlighted, and approaches for the functionalization were summarized. Also, ongoing efforts and breakthroughs in the field of functionalization for bone defect repair were discussed. Finally, a brief summery and new perspectives for functionalization strategies were presented to provide guidelines for further efforts in the design of bioinspired cell-free scaffolds.
Collapse
Affiliation(s)
- Li Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongwei Lu
- Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Yulan Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Jiangming Luo
- Center of Joint Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Qingyi He
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
739
|
Yu Y, Tang J, Su J, Cui J, Xie X, Chen F. Integrative Analysis of MicroRNAome, Transcriptome, and Proteome during the Limb Regeneration of Cynops orientalis. J Proteome Res 2019; 18:1088-1098. [DOI: 10.1021/acs.jproteome.8b00778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| | - Jie Tang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Shaanxi Institute of Zoology, 88 Xingqing Road, Xi’an 710032, PR China
| | - Jiaojiao Su
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
| | - Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| | - Xin Xie
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, PR China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Xi’an 710069, PR China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi’an 710069, PR China
| |
Collapse
|
740
|
Specialized Pro-resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:45-64. [PMID: 31562621 DOI: 10.1007/978-3-030-21735-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After myocardial infarction, splenic leukocytes direct biosynthesis of specialized pro-resolving mediators (SPMs) that are essential for the resolution of inflammation and tissue repair. In a laboratory environment, after coronary ligation of healthy risk free rodents (young adult mice) leukocytes biosynthesize SPMs with induced activity of lipoxygenases and cyclooxygenases, which facilitate cardiac repair. Activated monocytes/macrophages drive the biosynthesis of SPMs following experimental myocardial infarction in mice during the acute heart failure. In the presented review, we provided the recent updates on SPMs (resolvins, lipoxins and maresins) in cardiac repair that may serve as novel therapeutics for future heart failure therapy/management. We incorporated the underlying causes of non-resolving inflammation following cardiac injury if superimposed with obesity, hypertension, diabetes, disrupted circadian rhythm, co-medication (painkillers or oncological therapeutics), and/or aging that may delay or impair the biosynthesis of SPMs, intensifying pathological remodeling in heart failure.
Collapse
|
741
|
Shang W, Chen G, Li Y, Zhuo Y, Wang Y, Fang Z, Yu Y, Ren H. Static Magnetic Field Accelerates Diabetic Wound Healing by Facilitating Resolution of Inflammation. J Diabetes Res 2019; 2019:5641271. [PMID: 31886281 PMCID: PMC6915019 DOI: 10.1155/2019/5641271] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired wound healing is commonly encountered in patients with diabetes mellitus, which may lead to severe outcomes such as amputation, if untreated timely. Macrophage plays a critical role in the healing process including the resolution phase. Although magnetic therapy is known to improve microcirculation, its effect on wound healing remains uncertain. In the present study, we found that 0.6 T static magnetic field (SMF) significantly accelerated wound closure and elevated reepithelialization and revascularization in diabetic mice. Notably, SMF promoted the wound healing by skewing the macrophage polarization towards M2 phenotype, thus facilitating the resolution of inflammation. In addition, SMF upregulated anti-inflammatory gene expression via activating STAT6 and suppressing STAT1 in macrophage. Taken together, our results indicate that SMF may be a promising adjuvant therapeutic tool for treating diabetic wounds.
Collapse
Affiliation(s)
- Wenlong Shang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guilin Chen
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yinxiu Li
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujuan Zhuo
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhong Wang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhicai Fang
- Heye Health Industrial Research Institute of Zhejiang Heye Health Technology, Anji, Zhejiang 313300, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiwen Ren
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
742
|
Thomas N, Gurvich C, Kulkarni J. Sex Differences in Aging and Associated Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:57-76. [PMID: 31493222 DOI: 10.1007/978-3-030-25650-0_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aging is a natural process defined by the gradual, time-dependent decline of biological and behavioural functions, for which individuals of the same chronological age show variability. The capacity of biological systems to continuously adjust for optimal functioning despite ever changing environments is essential for healthy aging, and variability in these adaptive homeostatic mechanisms may reflect such heterogeneity in the aging process. With an ever-increasing aging population, interest in biomarkers of aging is growing. Although no universally accepted definition of biomarkers of healthy aging exists, mediators of homeostasis are consistently used as measures of the aging process. As important sex differences are known to underlie many of these systems, it is imperative to consider that this may reflect, to some extent, the sex differences observed in aging and age-related disease states. This chapter aims to outline sex differences in key homeostatic domains thought to be associated with the pathophysiology of aging, often proposed as biomarkers of aging and age-related disease states. This includes considering sex-based differences and hormonal status with regards to the gonadal and adrenal endocrine systems and immune function.
Collapse
Affiliation(s)
- Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
743
|
Trained Innate Immunity and Its Implications for Mucosal Immunity and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:11-26. [PMID: 31732931 DOI: 10.1007/978-3-030-28524-1_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The long-standing dogma that immunological memory is the exclusive prerogative of the adaptive immune system has been challenged by emerging evidence that innate immunity can also maintain memory of past events. Such immunological imprinting takes two forms, trained innate immunity and tolerance. Trained immunity involves metabolic and epigenetic adaptations in innate immune cells and their progenitors in the bone marrow upon exposure to certain microbial and/or inflammatory stimuli so that the "trained" cells would be poised to respond much faster and stronger to a subsequent challenge (e.g., a new infection that is not necessarily the same as the earlier one). Conversely, tolerance leads to attenuated immune responses to secondary stimuli. This review focuses on trained immunity and discusses evidence for its existence from lower organisms to humans, its mechanistic underpinnings, and its translational ramifications. Although trained immunity can be considered as an evolutionarily conserved beneficial response against reinfections, in the setting of modern societies with high prevalence of chronic mucosal and systemic inflammatory diseases, trained immunity could also promote maladaptive immune responses that aggravate pathology. Thus, depending on context, innate immune memory could be therapeutically manipulated using defined agonists to either promote innate immune responses (particularly useful for the treatment of infections or chemotherapy-induced myelosuppression) or suppress excessive inflammation in inflammatory and autoimmune diseases.
Collapse
|
744
|
The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration. Acta Biomater 2019; 83:1-12. [PMID: 30273748 DOI: 10.1016/j.actbio.2018.09.056] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/05/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The development of new biomaterials to be used in tissue engineering applications is creating new solutions for a range of healthcare problems. The trend in biomaterials research has shifted from biocompatible "immune-evasive" biomaterials to "immune-interactive" materials that modulate the inflammatory response supporting implant integration as well as improving healing and tissue regeneration. Inflammasomes are large intracellular multiprotein complexes that are key players in host defence during innate immune responses and assemble after recognition of pathogens or danger signals. The process of biomaterial implantation causes injury to tissues that will consequently release danger signals that could be sensed by the inflammasome. There are increasing evidences that the inflammasome has a role in several inflammatory processes, from pathogen clearance to chronic inflammation or tissue repair. Thus, modulation of the inflammasome activity appears as an important target in the development of effective approaches in regenerative medicine. In this review, we discuss the main points of the current understanding on the host response to implanted biomaterials and how the paradigm of "immune-evasive" biomaterials has shifted over the last years; the significance of the inflammasome in the inflammatory response to biomaterials; and the growing idea that the immune system is of key importance in an effective tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: We herein discuss the main points of the current understanding on the host response to implanted biomaterials and how the paradigm of "immune-evasive" biomaterials has shifted to "immune-interactive" over the last years; the significance of the inflammasome in the inflammatory response to biomaterials; and the growing idea that the immune system is of key importance in an effective tissue repair and regeneration, supporting the emerging concept of Regenerative Immunology. The inflammasome is a recent and central concept in immunology research. Since the beginning of this century the inflammasome is viewed as key platform of the innate immune response. We believe that, successful modulation of the inflammasome activity will become a milestone in the fields of tissue engineering and regenerative medicine.
Collapse
|
745
|
Mazutti da Silva SM, Rezende Costa CR, Martins Gelfuso G, Silva Guerra EN, de Medeiros Nóbrega YK, Gomes SM, Pic-Taylor A, Fonseca-Bazzo YM, Silveira D, Magalhães PDO. Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves. Molecules 2018; 24:molecules24010002. [PMID: 30577426 PMCID: PMC6337431 DOI: 10.3390/molecules24010002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
The use of natural oils in topical pharmaceutical preparations has usually presented safe agents for the improvement of human health. Based on research into the immense potential of wound management and healing, we aimed to validate the use of topical natural products by studying the ability of the essential oil of Eugenia dysenterica DC leaves (oEd) to stimulate in vitro skin cell migration. Skin cytotoxicity was evaluated using a fibroblast cell line (L929) by MTT assay. The oil chemical profile was investigated by GC-MS. Moreover, the inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in the macrophage cell line (RAW 264.7) tested. The Chick Chorioallantoic Membrane (CAM) assay was used to evaluate the angiogenic activity and irritating potential of the oil. The oEd induces skin cell migration in a scratch assay at a concentration of 542.2 µg/mL. α-humulene and β-caryophyllene, the major compounds of this oil, as determined by GC-MS, may partly explain the migration effect. The inhibition of nitric oxide by oEd and α-humulene suggested an anti-inflammatory effect. The CAM assay showed that treatment with oEd ≤ 292 µg/mL did not cause skin injury, and that it can promote angiogenesis in vivo. Hence, these results indicate the feasibility of the essential oil of Eugenia dysenterica DC leaves to developed dermatological products capable of helping the body to repair damaged tissue.
Collapse
Affiliation(s)
- Sandra Márcia Mazutti da Silva
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | | | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Campus Universitario Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, 70910-900 Brasília, Brazil.
| | - Yanna Karla de Medeiros Nóbrega
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Sueli Maria Gomes
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Genetics and Morphology Department, Institute of Biological Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Yris Maria Fonseca-Bazzo
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Damaris Silveira
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Pérola de Oliveira Magalhães
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| |
Collapse
|
746
|
Li XJ, Huang FZ, Wan Y, Li YS, Zhang WK, Xi Y, Tian GH, Tang HB. Lipopolysaccharide Stimulated the Migration of NIH3T3 Cells Through a Positive Feedback Between β-Catenin and COX-2. Front Pharmacol 2018; 9:1487. [PMID: 30618773 PMCID: PMC6305731 DOI: 10.3389/fphar.2018.01487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 12/04/2018] [Indexed: 02/03/2023] Open
Abstract
How β-catenin/COX-2 contribute to inflammation-induced fibroblasts migration remains poorly understood. Therefore, in this study, lipopolysaccharide (LPS) was used as a stimulus to accelerate the migration of NIH3T3 cells, which mimicked the tissue repair process. LPS treatment increased the cell migration in concentration-and time-dependent manner. And NS398, a COX-2 inhibitor, inhibited LPS-induced NIH3T3 cells migration. DKK-1, an antagonist of the Wnt/β-catenin signaling, also inhibited that migration. However, TWS119, an inducer of β-catenin via GSK-3β, increased the cell migration. LPS or TWS119 treatment increased COX-2, β-catenin, TGF-β1, and HMGB-1 expressions, and that could be attenuated by NS398 or DKK-1 addition. LPS induced the PGE2 production, and PGE2 increased the expression and nuclear translocation of β-catenin, while EP2 blocker, AH6809, alleviated those effects. TWS119 increased the luciferase activity in the COX-2 promoter. In conclusion, LPS stimulated the NIH3T3 fibroblasts migration through a positive feedback between β-catenin and COX-2, in which PGE2, EP2, TGF-β1, and HMGB-1 played as signal molecules.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Feng-Zhen Huang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yan Wan
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yu-Sang Li
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wei Kevin Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yang Xi
- School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Gui-Hua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - He-Bin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Research Institute of Huazhong University of Science and Technology, Shenzhen, China
| |
Collapse
|
747
|
Stierli S, Napoli I, White IJ, Cattin AL, Monteza Cabrejos A, Garcia Calavia N, Malong L, Ribeiro S, Nihouarn J, Williams R, Young KM, Richardson WD, Lloyd AC. The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population. Development 2018; 145:dev170316. [PMID: 30413560 PMCID: PMC6307893 DOI: 10.1242/dev.170316] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Salome Stierli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilaria Napoli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian J White
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne-Laure Cattin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anthony Monteza Cabrejos
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Noelia Garcia Calavia
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Liza Malong
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sara Ribeiro
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Julie Nihouarn
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Richard Williams
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
- UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
748
|
Galloway DA, Blandford SN, Berry T, Williams JB, Stefanelli M, Ploughman M, Moore CS. miR-223 promotes regenerative myeloid cell phenotype and function in the demyelinated central nervous system. Glia 2018; 67:857-869. [PMID: 30548333 DOI: 10.1002/glia.23576] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
In the injured central nervous system, myeloid cells, including macrophages and microglia, are key contributors to both myelin injury and repair. This immense plasticity emphasizes the need to further understand the precise molecular mechanisms that contribute to the dynamic regulation of myeloid cell polarization and function. Herein, we demonstrate that miR-223 is upregulated in multiple sclerosis (MS) patient monocytes and the alternatively-activated and tissue-regenerating M2-polarized human macrophages and microglia. Using miR-223 knock-out mice, we observed that miR-223 is dispensable for maximal pro-inflammatory responses, but is required for efficient M2-associated phenotype and function, including phagocytosis. Using the lysolecithin animal model, we further demonstrate that miR-223 is required to efficiently clear myelin debris and promote remyelination. These results suggest miR-223 constrains neuroinflammation while also promoting repair, a finding of important pathophysiological relevance to MS as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Stephanie N Blandford
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Tangyne Berry
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Mark Stefanelli
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
749
|
Harrison OJ, Linehan JL, Shih HY, Bouladoux N, Han SJ, Smelkinson M, Sen SK, Byrd AL, Enamorado M, Yao C, Tamoutounour S, Van Laethem F, Hurabielle C, Collins N, Paun A, Salcedo R, O'Shea JJ, Belkaid Y. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 2018; 363:science.aat6280. [PMID: 30523076 DOI: 10.1126/science.aat6280] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Barrier tissues are primary targets of environmental stressors and are home to the largest number of antigen-experienced lymphocytes in the body, including commensal-specific T cells. We found that skin-resident commensal-specific T cells harbor a paradoxical program characterized by a type 17 program associated with a poised type 2 state. Thus, in the context of injury and exposure to inflammatory mediators such as interleukin-18, these cells rapidly release type 2 cytokines, thereby acquiring contextual functions. Such acquisition of a type 2 effector program promotes tissue repair. Aberrant type 2 responses can also be unleashed in the context of local defects in immunoregulation. Thus, commensal-specific T cells co-opt tissue residency and cell-intrinsic flexibility as a means to promote both local immunity and tissue adaptation to injury.
Collapse
Affiliation(s)
- Oliver J Harrison
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Jonathan L Linehan
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Shurjo K Sen
- Leidos Biomedical Research Inc., Basic Science Program, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Allyson L Byrd
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Chen Yao
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Samira Tamoutounour
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Francois Van Laethem
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Charlotte Hurabielle
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.,Inserm Unité 976, Hôpital Saint-Louis, Paris, France
| | - Nicholas Collins
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Andrea Paun
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Rosalba Salcedo
- Cancer and Inflammation Program, National Cancer Institute, Bethesda, MD 20892, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. .,NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
750
|
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64:1-17. [PMID: 28802833 PMCID: PMC5832503 DOI: 10.1016/j.mam.2017.08.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
While protective, the acute inflammatory response when uncontrolled can lead to further tissue damage and chronic inflammation that is now widely recognized to play important roles in many commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, metabolic syndrome, and many other diseases of significant public health concern. The ideal response to initial challenges of the host is complete resolution of the acute inflammatory response, which is now recognized to be a biosynthetically active process governed by specialized pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and complete stereochemical assignments of the major SPM are established, and new profiling procedures have recently been introduced to document the activation of these pathways in vivo with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, where we've recently identified new molecules that communicate during resolution of inflammation to activate tissue regeneration in model organisms. This review presents an update on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration (RCTR), are reviewed here. The identification, structural elucidation and the pathways and biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue regeneration via endogenous pathways and molecules in the resolution metabolome.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|