701
|
The content of favorable and unfavorable polyunsaturated fatty acids found in commonly eaten fish. ACTA ACUST UNITED AC 2008; 108:1178-85. [PMID: 18589026 DOI: 10.1016/j.jada.2008.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 01/08/2008] [Indexed: 11/21/2022]
Abstract
Changes in diet during the past century have caused a marked increase in consumption of saturated fatty acids and n-6 polyunsaturated fatty acids (PUFAs) with a concomitant decrease in the intake of n-3 PUFAs. Increased fish consumption has been shown to be the only realistic way to increase dietary quantities of beneficial long-chain n-3 PUFAs such as eicosapentaenoic acid and docosahexaenoic acid and re-establish more balanced n-6:n-3 ratios in the diets of human beings. Our objective in this research was to characterize some of the relevant fatty acid chemistry of commonly consumed fish, with a particular focus on the four most commonly consumed farmed fish. To do this, 30 commonly consumed farmed and wild fish were collected from supermarkets and wholesalers throughout the United States. Fatty acid composition of samples from these fish was determined using gas chromatography. The 30 samples studied contained n-3 PUFAs ranging from fish having almost undetectable levels to fish having nearly 4.0 g n-3 PUFA per 100 g fish. The four most commonly farmed fish, Atlantic salmon, trout, tilapia, and catfish, were more closely examined. This analysis revealed that trout and Atlantic salmon contained relatively high concentrations of n-3 PUFA, low n-6:n-3 ratios, and favorable saturated fatty acid plus monounsaturated fatty acid to PUFA ratios. In contrast, tilapia (the fastest growing and most widely farmed fish) and catfish have much lower concentrations of n-3 PUFA, very high ratios of long chain n-6 to long chain n-3 PUFAs, and high saturated fatty acid plus monounsaturated fatty acid to PUFA ratios. Taken together, these data reveal that marked changes in the fishing industry during the past decade have produced widely eaten fish that have fatty acid characteristics that are generally accepted to be inflammatory by the health care community.
Collapse
|
702
|
Zapata-Gonzalez F, Rueda F, Petriz J, Domingo P, Villarroya F, Diaz-Delfin J, de Madariaga MA, Domingo JC. Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPARγ:RXR heterodimers: comparison with other polyunsaturated fatty acids. J Leukoc Biol 2008; 84:1172-82. [DOI: 10.1189/jlb.1007688] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
703
|
Medeiros R, Rodrigues GB, Figueiredo CP, Rodrigues EB, Grumman A, Menezes-de-Lima O, Passos GF, Calixto JB. Molecular mechanisms of topical anti-inflammatory effects of lipoxin A(4) in endotoxin-induced uveitis. Mol Pharmacol 2008; 74:154-61. [PMID: 18413658 DOI: 10.1124/mol.108.046870] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Lipoxin A(4) (LXA(4)) is a lipid mediator that plays an important role in inflammation resolution. We assessed the anti-inflammatory effect of LXA(4) on endotoxin-induced uveitis (EIU) in rats. The inflammatory cell number and levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), prostaglandin E(2) (PGE(2)), and protein, as well as expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF), in the anterior chamber of the eye were determined 24 h after lipopolysaccharide (LPS; 200 mug/paw) intradermal injection. The immunohistochemical reactivities of nuclear factor-kappaB (NF-kappaB) and c-Jun were also examined. Topical LXA(4) (1-10 ng/eye) pretreatment decreased the number of inflammatory cells and the protein leakage into the aqueous humor (AqH). In addition, topical LXA(4) (10 ng/eye) inhibited the LPS-induced production of IL-1beta, TNF-alpha, and PGE(2), and expression of COX-2 and VEGF. A decreased activation of NF-kappaB and c-Jun was also found in LXA(4)-treated eyes. It is very interesting that an anti-inflammatory effect was achieved even when LXA(4) (10 ng/eye) was applied topically after LPS challenge, as indicated by the reduction in the cellular and protein extravasations into the AqH. Moreover, topical treatment of corticosteroid prednisolone (200 mug/eye) beginning before or after LPS injection reduced all of the molecular and biochemical alterations promoted on EIU rats in an efficacy similar to that of LXA(4). Together, the present results provide clear evidence that pharmacological activation of LXA(4) signaling pathway potently reduces the EIU in rats. Therefore, LXA(4) stable analogs could represent promising agents for the management of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Rodrigo Medeiros
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Bloco D, CCB, Caixa Postal 476, CEP 88049-900, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
704
|
Grice CA, Tays KL, Savall BM, Wei J, Butler CR, Axe FU, Bembenek SD, Fourie AM, Dunford PJ, Lundeen K, Coles F, Xue X, Riley JP, Williams KN, Karlsson L, Edwards JP. Identification of a potent, selective, and orally active leukotriene a4 hydrolase inhibitor with anti-inflammatory activity. J Med Chem 2008; 51:4150-69. [PMID: 18588282 DOI: 10.1021/jm701575k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
LTA 4H is a ubiquitously distributed 69 kDa zinc-containing cytosolic enzyme with both hydrolase and aminopeptidase activity. As a hydrolase, LTA 4H stereospecifically catalyzes the transformation of the unstable epoxide LTA 4 to the diol LTB 4, a potent chemoattractant and activator of neutrophils and a chemoattractant of eosinophils, macrophages, mast cells, and T cells. Inhibiting the formation of LTB 4 is expected to be beneficial in the treatment of inflammatory diseases such as inflammatory bowel disease (IBD), asthma, and atherosclerosis. We developed a pharmacophore model using a known inhibitor manually docked into the active site of LTA 4H to identify a subset of compounds for screening. From this work we identified a series of benzoxazole, benzthiazole, and benzimidazole inhibitors. SAR studies resulted in the identification of several potent inhibitors with an appropriate cross-reactivity profile and excellent PK/PD properties. Our efforts focused on further profiling JNJ 27265732, which showed encouraging efficacy in a disease model relevant to IBD.
Collapse
Affiliation(s)
- Cheryl A Grice
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
705
|
Planagumà A, Kazani S, Marigowda G, Haworth O, Mariani TJ, Israel E, Bleecker ER, Curran-Everett D, Erzurum SC, Calhoun WJ, Castro M, Chung KF, Gaston B, Jarjour NN, Busse WW, Wenzel SE, Levy BD. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Crit Care Med 2008; 178:574-82. [PMID: 18583575 DOI: 10.1164/rccm.200801-061oc] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Airway inflammation is common in severe asthma despite antiinflammatory therapy with corticosteroids. Lipoxin A(4) (LXA(4)) is an arachidonic acid-derived mediator that serves as an agonist for resolution of inflammation. OBJECTIVES Airway levels of LXA(4), as well as the expression of lipoxin biosynthetic genes and receptors, in severe asthma. METHODS Samples of bronchoalveolar lavage fluid were obtained from subjects with asthma and levels of LXA(4) and related eicosanoids were measured. Expression of lipoxin biosynthetic genes was determined in whole blood, bronchoalveolar lavage cells, and endobronchial biopsies by quantitative polymerase chain reaction, and leukocyte LXA(4) receptors were monitored by flow cytometry. MEASUREMENTS AND MAIN RESULTS Individuals with severe asthma had significantly less LXA(4) in bronchoalveolar lavage fluids (11.2 +/- 2.1 pg/ml) than did subjects with nonsevere asthma (150.1 +/- 38.5 pg/ml; P < 0.05). In contrast, levels of cysteinyl leukotrienes were increased in both asthma cohorts compared with healthy individuals. In severe asthma, 15-lipoxygenase-1 mean expression was decreased fivefold in bronchoalveolar lavage cells. In contrast, 15-lipoxgenase-1 was increased threefold in endobronchial biopsies, but expression of both 5-lipoxygenase and 15-lipoxygenase-2 in these samples was decreased. Cyclooxygenase-2 expression was decreased in all anatomic compartments sampled in severe asthma. Moreover, LXA(4) receptor gene and protein expression were significantly decreased in severe asthma peripheral blood granulocytes. CONCLUSIONS Mechanisms underlying pathological airway responses in severe asthma include lipoxin underproduction with decreased expression of lipoxin biosynthetic enzymes and receptors. Together, these results indicate that severe asthma is characterized, in part, by defective lipoxin counterregulatory signaling circuits.
Collapse
Affiliation(s)
- Anna Planagumà
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
706
|
Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol 2008; 9:873-9. [PMID: 18568027 DOI: 10.1038/ni.1627] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/27/2008] [Indexed: 12/14/2022]
Abstract
Interleukin 23 (IL-23) is integral to the pathogenesis of chronic inflammation. The resolution of acute inflammation is an active process mediated by specific signals and mediators such as resolvin E1 (RvE1). Here we provide evidence that RvE1, in nanogram quantities, promoted the resolution of inflammatory airway responses in part by directly suppressing the production of IL-23 and IL-6 in the lung. Also contributing to the pro-resolution effects of RvE1 treatment were higher concentrations of interferon-gamma in the lungs of RvE1-treated mice. Our findings indicate a pivotal function for IL-23 and IL-6, which promote the survival and differentiation of IL-17-producing T helper cells, in maintaining inflammation and also identify an RvE1-initiated resolution program for allergic airway responses.
Collapse
|
707
|
Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 2008; 22:3595-606. [PMID: 18559988 DOI: 10.1096/fj.08-112201] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is now recognized as an inflammatory disease involving the vascular wall. Recent results indicate that acute inflammation does not simply passively resolve as previously assumed but is actively terminated by a homeostatic process that is governed by specific lipid-derived mediators initiated by lipoxygenases. Experiments with animals and humans support a proinflammatory role for the 5-lipoxygenase system. In contrast, results from animal experiments show a range of responses with the 12/15-lipoxygenase pathways in atherosclerosis. To date, the only two clinical epidemiology human studies both support an antiatherogenic role for 12/15-lipoxygenase downstream actions. We tested the hypothesis that atherosclerosis results from a failure in the resolution of local inflammation by analyzing apolipoprotein E-deficient mice with 1) global leukocyte 12/15-lipoxygenase deficiency, 2) normal enzyme expression, or 3) macrophage-specific 12/15-lipoxygenase overexpression. Results from these indicate that 12/15-lipoxygenase expression protects mice against atherosclerosis via its role in the local biosynthesis of lipid mediators, including lipoxin A(4), resolvin D1, and protectin D1. These mediators exert potent agonist actions on macrophages and vascular endothelial cells that can control the magnitude of the local inflammatory response. Taken together, these findings suggest that a failure of local endogenous resolution mechanisms may underlie the unremitting inflammation that fuels atherosclerosis.
Collapse
Affiliation(s)
- Aksam J Merched
- Department of Molecular and Cellular Biology, Baylor College of Medicine and St. Luke's Episcopal Hospital, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
708
|
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7:489-503. [PMID: 18511927 DOI: 10.1038/nrd2589] [Citation(s) in RCA: 1301] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipids are vital components of many biological processes and crucial in the pathogenesis of numerous common diseases, but the specific mechanisms coupling intracellular lipids to biological targets and signalling pathways are not well understood. This is particularly the case for cells burdened with high lipid storage, trafficking and signalling capacity such as adipocytes and macrophages. Here, we discuss the central role of lipid chaperones--the fatty acid-binding proteins (FABPs)--in lipid-mediated biological processes and systemic metabolic homeostasis through the regulation of diverse lipid signals, and highlight their therapeutic significance. Pharmacological agents that modify FABP function may provide tissue-specific or cell-type-specific control of lipid signalling pathways, inflammatory responses and metabolic regulation, potentially providing a new class of drugs for diseases such as obesity, diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
709
|
Dragin N, Shi Z, Madan R, Karp CL, Sartor MA, Chen C, Gonzalez FJ, Nebert DW. Phenotype of the Cyp1a1/1a2/1b1-/- triple-knockout mouse. Mol Pharmacol 2008; 73:1844-56. [PMID: 18372398 PMCID: PMC2735564 DOI: 10.1124/mol.108.045658] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Crossing the Cyp1a1/1a2(-/-) double-knockout mouse with the Cyp1b1(-/-) single-knockout mouse, we generated the Cyp1a1/1a2/1b1(-/-) triple-knockout mouse. In this triple-knockout mouse, statistically significant phenotypes (with incomplete penetrance) included slower weight gain and greater risk of embryolethality before gestational day 11, hydrocephalus, hermaphroditism, and cystic ovaries. Oral benzo[a]pyrene (BaP) daily for 18 days in the Cyp1a1/1a2(-/-) produced the same degree of marked immunosuppression as seen in the Cyp1a1(-/-) mouse; we believe this reflects the absence of intestinal CYP1A1. Oral BaP-treated Cyp1a1/1a2/1b1(-/-) mice showed the same "rescued" response as that seen in the Cyp1a1/1b1(-/-) mouse; we believe this reflects the absence of CYP1B1 in immune tissues. Urinary metabolite profiles were dramatically different between untreated triple-knockout and wild-type; principal components analysis showed that the shifts in urinary metabolite patterns in oral BaP-treated triple-knockout and wild-type mice were also strikingly different. Liver microarray cDNA differential expression (comparing triple-knockout with wild-type) revealed at least 89 genes up- and 62 genes down-regulated (P-value < or = 0.00086). Gene Ontology "classes of genes" most perturbed in the untreated triple-knockout (compared with wild-type) include lipid, steroid, and cholesterol biosynthesis and metabolism; nucleosome and chromatin assembly; carboxylic and organic acid metabolism; metal-ion binding; and ion homeostasis. In the triple-knockout compared with the wild-type mice, response to zymosan-induced peritonitis was strikingly exaggerated, which may well reflect down-regulation of Socs2 expression. If a single common molecular pathway is responsible for all of these phenotypes, we suggest that functional effects of the loss of all three Cyp1 genes could be explained by perturbations in CYP1-mediated eicosanoid production, catabolism and activities.
Collapse
Affiliation(s)
- Nadine Dragin
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | |
Collapse
|
710
|
Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC. Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. J Lipid Res 2008; 49:1990-2000. [PMID: 18503030 DOI: 10.1194/jlr.m800200-jlr200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory lipid mediators derived from arachidonic acid (AA) and docosahexaenoic acid (DHA) modify the pathophysiology of brain ischemia. The goal of this work was to investigate the formation of eicosanoids and docosanoids generated from AA and DHA, respectively, during no-flow cerebral ischemia. Rats were subjected to head-focused microwave irradiation 5 min following decapitation (complete ischemia) or prior to decapitation (controls). Brain lipids were extracted and analyzed by reverse-phase liquid chromatography-tandem mass spectrometry. After complete ischemia, brain AA, DHA, and docosapentaenoic acid concentrations increased 18-, 5- and 4-fold compared with controls, respectively. Prostaglandin E(2) (PGE(2)) and PGD(2) could not be detected in control microwaved rat brain, suggesting little endogenous PGE(2)/D(2) production in the brain in the absence of experimental manipulation. Concentrations of thromboxane B(2), E(2)/D(2)-isoprostanes, 5-hydroxyeicosatetraenoic acid (5-HETE), 5-oxo-eicosatetraenoic acid, and 12-HETE were significantly elevated in ischemic brains. In addition, DHA products such as mono-, di- and trihydroxy-DHA were detected in control and ischemic brains. Monohydroxy-DHA, identified as 17-hydroxy-DHA and thought to be the immediate precursor of neuroprotectin D(1), was 6.5-fold higher in ischemic than in control brain. The present study demonstrated increased formation of eicosanoids, E(2)/D(2)-IsoPs, and docosanoids following cerebral ischemia. A balance of these lipid mediators may mediate immediate events of ischemic injury and recovery.
Collapse
Affiliation(s)
- Santiago E Farias
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
711
|
Aid S, Langenbach R, Bosetti F. Neuroinflammatory response to lipopolysaccharide is exacerbated in mice genetically deficient in cyclooxygenase-2. J Neuroinflammation 2008; 5:17. [PMID: 18489773 PMCID: PMC2409311 DOI: 10.1186/1742-2094-5-17] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 05/19/2008] [Indexed: 11/21/2022] Open
Abstract
Background Cyclooxygenases (COX) -1 and -2 are key mediators of the inflammatory response in the central nervous system. Since COX-2 is inducible by inflammatory stimuli, it has been traditionally considered as the most appropriate target for anti-inflammatory drugs. However, the specific roles of COX-1 and COX-2 in modulating a neuroinflammatory response are unclear. Recently, we demonstrated that COX-1 deficient mice show decreased neuroinflammatory response and neuronal damage in response to lipopolysaccharide (LPS). Methods In this study, we investigated the role of COX-2 in the neuroinflammatory response to intracerebroventricular-injected LPS (5 μg), a model of direct activation of innate immunity, using COX-2 deficient (COX-2-/-) and wild type (COX-2+/+) mice, as well as COX-2+/+ mice pretreated for 6 weeks with celecoxib, a COX-2 selective inhibitor. Results Twenty-four hours after LPS injection, COX-2-/- mice showed increased neuronal damage, glial cell activation, mRNA and protein expression of markers of inflammation and oxidative stress, such as cytokines, chemokines, iNOS and NADPH oxidase. Brain protein levels of IL-1β, NADPH oxidase subunit p67phox, and phosphorylated-signal transducer and activator of transcription 3 (STAT3) were higher in COX-2-/- and in celecoxib-treated mice, compared to COX-2+/+ mice. The increased neuroinflammatory response in COX-2-/- mice was likely mediated by the upregulation of STAT3 and suppressor of cytokine signaling 3 (SOCS3). Conclusion These results show that inhibiting COX-2 activity can exacerbate the inflammatory response to LPS, possibly by increasing glial cells activation and upregulating the STAT3 and SOCS3 pathways in the brain.
Collapse
Affiliation(s)
- Saba Aid
- Brain Physiology and Metabolism Section, National Institute on Aging, NIH, 9000 Memorial Drive, Bldg 9 Room 1S126, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
712
|
Machado FS, Esper L, Dias A, Madan R, Gu Y, Hildeman D, Serhan CN, Karp CL, Aliberti J. Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6. J Exp Med 2008; 205:1077-86. [PMID: 18411340 PMCID: PMC2373840 DOI: 10.1084/jem.20072416] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 03/19/2008] [Indexed: 01/01/2023] Open
Abstract
Innate immune signaling is critical for the development of protective immunity. Such signaling is, perforce, tightly controlled. Lipoxins (LXs) are eicosanoid mediators that play key counterregulatory roles during infection. The molecular mechanisms underlying LX-mediated control of innate immune signaling are of interest. In this study, we show that LX and aspirin (ASA)-triggered LX (ATL) inhibit innate immune signaling by inducing suppressor of cytokine signaling (SOCS) 2-dependent ubiquitinylation and proteasome-mediated degradation of TNF receptor-associated factor (TRAF) 2 and TRAF6, which are adaptor molecules that couple TNF and interleukin-1 receptor/Toll-like receptor family members to intracellular signaling events. LX-mediated degradation of TRAF6 inhibits proinflammatory cytokine production by dendritic cells. This restraint of innate immune signaling can be ablated by inhibition of proteasome function. In vivo, this leads to dysregulated immune responses, accompanied by increased mortality during infection. Proteasomal degradation of TRAF6 is a central mechanism underlying LX-driven immune counterregulation, and a hitherto unappreciated mechanism of action of ASA. These findings suggest a new molecular target for drug development for diseases marked by dysregulated inflammatory responses.
Collapse
Affiliation(s)
- Fabiana S Machado
- Divisions of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
713
|
Hallett JM, Leitch AE, Riley NA, Duffin R, Haslett C, Rossi AG. Novel pharmacological strategies for driving inflammatory cell apoptosis and enhancing the resolution of inflammation. Trends Pharmacol Sci 2008; 29:250-7. [DOI: 10.1016/j.tips.2008.03.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/30/2022]
|
714
|
Multiple roles of phospholipase A2 during lung infection and inflammation. Infect Immun 2008; 76:2259-72. [PMID: 18411286 DOI: 10.1128/iai.00059-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
715
|
Chiang N, Schwab JM, Fredman G, Kasuga K, Gelman S, Serhan CN. Anesthetics impact the resolution of inflammation. PLoS One 2008; 3:e1879. [PMID: 18382663 PMCID: PMC2268966 DOI: 10.1371/journal.pone.0001879] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 02/21/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Local and volatile anesthetics are widely used for surgery. It is not known whether anesthetics impinge on the orchestrated events in spontaneous resolution of acute inflammation. Here we investigated whether a commonly used local anesthetic (lidocaine) and a widely used inhaled anesthetic (isoflurane) impact the active process of resolution of inflammation. METHODS AND FINDINGS Using murine peritonitis induced by zymosan and a systems approach, we report that lidocaine delayed and blocked key events in resolution of inflammation. Lidocaine inhibited both PMN apoptosis and macrophage uptake of apoptotic PMN, events that contributed to impaired PMN removal from exudates and thereby delayed the onset of resolution of acute inflammation and return to homeostasis. Lidocaine did not alter the levels of specific lipid mediators, including pro-inflammatory leukotriene B(4), prostaglandin E(2) and anti-inflammatory lipoxin A(4), in the cell-free peritoneal lavages. Addition of a lipoxin A(4) stable analog, partially rescued lidocaine-delayed resolution of inflammation. To identify protein components underlying lidocaine's actions in resolution, systematic proteomics was carried out using nanospray-liquid chromatography-tandem mass spectrometry. Lidocaine selectively up-regulated pro-inflammatory proteins including S100A8/9 and CRAMP/LL-37, and down-regulated anti-inflammatory and some pro-resolution peptides and proteins including IL-4, IL-13, TGF-â and Galectin-1. In contrast, the volatile anesthetic isoflurane promoted resolution in this system, diminishing the amplitude of PMN infiltration and shortening the resolution interval (Ri) approximately 50%. In addition, isoflurane down-regulated a panel of pro-inflammatory chemokines and cytokines, as well as proteins known to be active in cell migration and chemotaxis (i.e., CRAMP and cofilin-1). The distinct impact of lidocaine and isoflurane on selective molecules may underlie their opposite actions in resolution of inflammation, namely lidocaine delayed the onset of resolution (T(max)), while isoflurane shortened resolution interval (Ri). CONCLUSIONS Taken together, both local and volatile anesthetics impact endogenous resolution program(s), altering specific resolution indices and selective cellular/molecular components in inflammation-resolution. Isoflurane enhances whereas lidocaine impairs timely resolution of acute inflammation.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jan M. Schwab
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabrielle Fredman
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kie Kasuga
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Simon Gelman
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
716
|
Barton GM. A calculated response: control of inflammation by the innate immune system. J Clin Invest 2008; 118:413-20. [PMID: 18246191 DOI: 10.1172/jci34431] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a rapid yet coordinated response that can lead to the destruction of microbes and host tissue. Triggers capable of inducing an inflammatory response include tissue damage and infection by pathogenic and nonpathogenic microbes. Each of these triggers represents a qualitatively distinct stress to the host immune system, yet our understanding of whether they are interpreted as such remains poor. Accumulating evidence suggests that recognition of these distinct stimuli converges on many of the same receptors of the innate immune system. Here I provide an overview of these innate receptors and suggest that the innate immune system can interpret the context of an inflammatory trigger and direct inflammation accordingly.
Collapse
Affiliation(s)
- Gregory M Barton
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA.
| |
Collapse
|
717
|
Abstract
Signalling lipids such as eicosanoids, phosphoinositides, sphingolipids and fatty acids control important cellular processes, including cell proliferation, apoptosis, metabolism and migration. Extracellular signals from cytokines, growth factors and nutrients control the activity of a key set of lipid-modifying enzymes: phospholipases, prostaglandin synthase, 5-lipoxygenase, phosphoinositide 3-kinase, sphingosine kinase and sphingomyelinase. These enzymes and their downstream targets constitute a complex lipid signalling network with multiple nodes of interaction and cross-regulation. Imbalances in this network contribute to the pathogenesis of human disease. Although the function of a particular signalling lipid is traditionally studied in isolation, this review attempts a more integrated overview of the key role of these signalling lipids in inflammation, cancer and metabolic disease, and discusses emerging strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthias P Wymann
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
718
|
McCulloch CV, Morrow V, Milasta S, Comerford I, Milligan G, Graham GJ, Isaacs NW, Nibbs RJB. Multiple roles for the C-terminal tail of the chemokine scavenger D6. J Biol Chem 2008; 283:7972-82. [PMID: 18201974 DOI: 10.1074/jbc.m710128200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D6 is a heptahelical receptor that suppresses inflammation and tumorigenesis by scavenging extracellular pro-inflammatory CC chemokines. Previous studies suggested this is dependent on constitutive trafficking of stable D6 protein to and from the cell surface via recycling endosomes. By internalizing chemokine each time it transits the cell surface, D6 can, over time, remove large quantities of these inflammatory mediators. We have investigated the role of the conserved 58-amino acid C terminus of human D6, which, unlike the rest of the protein, shows no clear homology to other heptahelical receptors. We show that, in human HEK293 cells, a serine cluster in this region controls the constitutive phosphorylation, high stability, and intracellular trafficking itinerary of the receptor and drives green fluorescent protein-tagged beta-arrestins to membranes at, and near, the cell surface. Unexpectedly, however, these properties, and the last 44 amino acids of the C terminus, are dispensable for D6 internalization and effective scavenging of the chemokine CCL3. Even in the absence of the last 58 amino acids, D6 still initially internalizes CCL3 but, surprisingly, exposure to ligand inhibits subsequent CCL3 uptake by this mutant. Progressive scavenging is therefore abrogated. We conclude that the heptahelical body of D6 on its own can engage the endocytotic machinery of HEK293 cells but that the C terminus is indispensable for scavenging because it prevents initial chemokine engagement of D6 from inhibiting subsequent chemokine uptake.
Collapse
Affiliation(s)
- Clare V McCulloch
- Division of Immunology, Infection and Inflammation, Glasgow University, Glasgow G12 8TA, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
719
|
Nauta AJ, Engels F, Knippels LM, Garssen J, Nijkamp FP, Redegeld FA. Mechanisms of allergy and asthma. Eur J Pharmacol 2008; 585:354-60. [PMID: 18410921 DOI: 10.1016/j.ejphar.2008.02.094] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 01/07/2023]
Abstract
Allergies are the result of an inappropriate reaction against innocuous environmental proteins. The prevalence and severity of allergic diseases has increased dramatically during the last decade in developed countries. Allergen-specific T helper (Th) cells play a pivotal role in the pathogenesis of allergic hypersensitivity reactions. These Th cells activate a complex immune reaction that triggers the release of potent mediators and enhances the recruitment of inflammatory cells, which in turn elicit an inflammatory response that leads to the clinical symptoms of allergic disease. The current therapies for allergic diseases focus primarily on control of symptoms and suppression of inflammation, without affecting the underlying cause. However, the knowledge about the pathophysiology of allergic diseases has substantially increased, offering new opportunities for therapeutic intervention. In this review, we will focus on current insights into the mechanism of allergic reactions.
Collapse
|
720
|
Sierra S, Lara-Villoslada F, Comalada M, Olivares M, Xaus J. Dietary eicosapentaenoic acid and docosahexaenoic acid equally incorporate as decosahexaenoic acid but differ in inflammatory effects. Nutrition 2008; 24:245-54. [DOI: 10.1016/j.nut.2007.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 11/21/2007] [Accepted: 11/27/2007] [Indexed: 12/22/2022]
|
721
|
Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, Harhaj EW. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9:254-62. [PMID: 18246070 DOI: 10.1038/ni1563] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 01/10/2008] [Indexed: 12/18/2022]
Abstract
The ubiquitin-editing enzyme A20 is a critical negative regulator of inflammation and cytokine-mediated activation of the transcription factor NF-kappaB; however, little is known about the mechanisms of A20-mediated inactivation of signaling intermediates such as RIP1. Here we demonstrate that the regulatory molecule TAX1BP1 recruited the E3 ligase Itch to A20 via two 'PPXY' motifs. Itch was essential for the termination of tumor necrosis factor receptor signaling by controlling A20-mediated recruitment and inactivation of RIP1. Furthermore, the Tax oncoprotein of human T cell leukemia virus type I targeted this complex for inactivation by disrupting the interaction among TAX1BP1, A20 and Itch. Thus, our studies show a previously unappreciated complexity of A20 substrate recognition and inactivation whereby TAX1BP1 and Itch function as essential subunits of an A20 ubiquitin-editing complex.
Collapse
Affiliation(s)
- Noula Shembade
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
722
|
Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol 2008; 153 Suppl 1:S200-15. [PMID: 17965751 PMCID: PMC2268040 DOI: 10.1038/sj.bjp.0707489] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/31/2007] [Accepted: 09/01/2007] [Indexed: 01/23/2023] Open
Abstract
Complete resolution of an acute inflammatory response and its return to homeostasis are essential for healthy tissues. Here, we overview ongoing efforts to characterize cellular and molecular mechanisms that govern the resolution of self-limited inflammation. Systematic temporal analyses of evolving inflammatory exudates using mediator lipidomics-informatics, proteomics, and cellular trafficking with murine resolving exudates demonstrate novel endogenous pathways of local-acting mediators that share both anti-inflammatory and pro-resolving properties. In murine systems, resolving-exudate leukocytes switch their phenotype to actively generate new families of mediators from major omega-3 fatty acids EPA and DHA termed resolvins and protectins. Recent advances on their biosynthesis and actions are reviewed with a focus on the E-series resolvins (RvE1, RvE2), D series resolvins (RvD1, RvD2) and the protectins including neuroprotectin D1/protectin D1 (NPD1/PD1) as well as their aspirin-triggered epimeric forms. Members of each new family demonstrate potent stereo-specific actions, joining the lipoxins as endogenous local signals that govern resolution and endogenous anti-inflammation mechanisms. In addition to their origins and roles in resolution biology in the immune system, recent findings indicate that these new mediator families also display potent protective actions in lung, kidney, and eye as well as enhance microbial clearance. Thus, these endogenous agonists of resolution pathways constitute a novel genus of chemical mediators that possess pro-resolving, anti-inflammatory, and antifibrotic as well as host-directed antimicrobial actions. These may be useful in the design of new therapeutics and treatments for diseases with the underlying trait of uncontrolled inflammation and redox organ stress.
Collapse
Affiliation(s)
- C N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | | |
Collapse
|
723
|
Hikiji H, Takato T, Shimizu T, Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res 2008; 47:107-26. [DOI: 10.1016/j.plipres.2007.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/29/2007] [Accepted: 12/04/2007] [Indexed: 12/11/2022]
|
724
|
Whatling C, McPheat W, Herslöf M. The potential link between atherosclerosis and the 5-lipoxygenase pathway: investigational agents with new implications for the cardiovascular field. Expert Opin Investig Drugs 2008; 16:1879-93. [PMID: 18041998 DOI: 10.1517/13543784.16.12.1879] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The 5-lipoxygenase pathway is responsible for the production of leukotrienes--inflammatory lipid mediators that have a role in innate immunity, but that can also have pathological effects in inflammatory diseases. Recently, a potential link between leukotriene production and atherosclerosis has been proposed. The expression of leukotriene biosynthetic enzymes and leukotriene receptors has been identified in coronary and carotid atherosclerotic plaques, and the levels of biosynthetic enzymes have been correlated with the clinical symptoms of unstable plaques. Genetic variants in 5-lipoxygenase pathway genes have also been associated with a relative risk of developing myocardial infarction and stroke. On the basis of these discoveries, antileukotriene compounds are now being evaluated for the treatment of cardiovascular disease. Several tool compounds have been shown to limit the progression of lesion development in preclinical models of atherosclerosis, and three compounds, including two drugs previously developed for asthma, are undergoing clinical trials in patients with acute coronary syndromes.
Collapse
Affiliation(s)
- Carl Whatling
- AstraZeneca R&D Mölndal, Bioscience Department, Pepparedsleden 1, 431 83 Mölndal, Sweden.
| | | | | |
Collapse
|
725
|
Haworth O, Levy BD. Endogenous lipid mediators in the resolution of airway inflammation. Eur Respir J 2008; 30:980-92. [PMID: 17978156 DOI: 10.1183/09031936.00005807] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute inflammation in the lung is fundamentally important to host defence, but chronic or excessive inflammation leads to several common respiratory diseases, including asthma and acute respiratory distress syndrome. The resolution of inflammation is an active process. In health, events at the onset of acute inflammation establish biosynthetic circuits for specific chemical mediators that later serve as agonists to orchestrate a return to tissue homeostasis. In addition to an overabundance of pro-inflammatory stimuli, pathological inflammation can also result from defects in resolution signalling. The understanding of anti-inflammatory, pro-resolution molecules and their counter-regulatory signalling pathways is providing new insights into the molecular pathophysiology of lung disease and opportunities for the design of therapeutic strategies. In the present review, the growing family of lipid mediators of resolution is examined, including lipoxins, resolvins, protectins, cyclopentenones and presqualene diphosphate. Roles are uncovered for these compounds, or their structural analogues, in regulating airway inflammation.
Collapse
Affiliation(s)
- O Haworth
- Pulmonary and Critical Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
726
|
Affiliation(s)
- Joseph P Mizgerd
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
727
|
Cezar-de-Mello PFT, Vieira AM, Nascimento-Silva V, Villela CG, Barja-Fidalgo C, Fierro IM. ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. Br J Pharmacol 2008; 153:956-65. [PMID: 18193074 DOI: 10.1038/sj.bjp.0707650] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is the most important proangiogenic protein. We have demonstrated that ATL-1, a synthetic analogue of aspirin-triggered lipoxin A(4), inhibits VEGF-induced endothelial cell (EC) migration. In the present study, we investigated the effects of ATL-1 in several other actions stimulated by VEGF. METHODS Human umbilical vein ECs were treated with ATL-1 for 30 min before stimulation with VEGF. Cell proliferation was measured by thymidine incorporation. Adherent cells were determined by fluorescence intensity using a Multilabel counter. Expression and activity of matrix metalloproteinases (MMP) were analysed by western blot and zymography. KEY RESULTS ATL-1 inhibited EC adhesion to fibronectin via interaction with its specific receptor. Furthermore, VEGF-induced MMP-9 activity and expression were reduced by pretreatment with ATL-1. Because the transcription factor NF-kappaB has been implicated in VEGF-mediated MMP expression and EC proliferation, we postulated that ATL-1 might modulate the NF-kappaB pathway and, indeed, ATL-1 inhibited NF-kappaB nuclear translocation. Pretreatment of EC with ATL-1 strongly decreased VEGF-dependent phosphorylation of phosphainositide 3-kinase (PI3-K) and extracellular signal-regulated kinase-2 (ERK-2), two signalling kinases involved in EC proliferation. Inhibition of VEGF-induced EC proliferation by ATL-1 was antagonized by sodium orthovanadate, suggesting that this inhibitory activity was mediated by a protein tyrosine phosphatase. This was confirmed by showing that ATL-1 inhibition of VEGF receptor-2 (VEGFR-2) phosphorylation correlates with SHP-1 association with VEGFR-2. CONCLUSIONS AND IMPLICATIONS The synthetic 15-epi-lipoxin analogue, ATL-1, is a highly potent molecule exerting its effects on multiple steps of the VEGF-induced angiogenesis.
Collapse
Affiliation(s)
- P F T Cezar-de-Mello
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
728
|
4-Hydroxydocosahexaenoic acid, a potent peroxisome proliferator-activated receptor gamma agonist alleviates the symptoms of DSS-induced colitis. Biochem Biophys Res Commun 2008; 367:566-72. [PMID: 18191038 DOI: 10.1016/j.bbrc.2007.12.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 12/31/2007] [Indexed: 01/12/2023]
Abstract
(5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) and antidiabetic agent as has been previously reported. As PPARgamma agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages. In addition, 4-OHDHA-treated mice when compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of 4-OHDHA-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). These results suggest that 4-OHDHA has potentially clinically useful anti-inflammatory effects mediated by suppression of inflammatory gene expression.
Collapse
|
729
|
Design and synthesis of benzo-lipoxin A4 analogs with enhanced stability and potent anti-inflammatory properties. Bioorg Med Chem Lett 2008; 18:1382-7. [PMID: 18249111 DOI: 10.1016/j.bmcl.2008.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/31/2007] [Accepted: 01/03/2008] [Indexed: 12/26/2022]
Abstract
A new class of chemically and metabolically stable lipoxin analogs featuring a replacement of the tetraene unit of native LXA(4) with a substituted benzo-fused ring system have been designed and studied. These molecules were readily synthesized via a convergent synthetic route involving iterative palladium-mediated cross-coupling, and exhibit enhanced chemical stability, as well as resistance to metabolic inactivation via eicosanoid oxido-reductase. These new LX analogs were evaluated in a model of acute inflammation and were shown to exhibit potent anti-inflammatory properties, significantly decreasing neutrophil infiltration in vivo. The most potent among these was compound 9 (o-[9,12]-benzo-15-epi-LXA(4) methyl ester. Taken together, these findings help identify a new class of stable and easily prepared LX analogs that may serve as novel tools and as promising leads for new anti-inflammatory agents with improved therapeutic profile.
Collapse
|
730
|
Abstract
The popular view that all lipid mediators are pro-inflammatory arises largely from the finding that nonsteroidal anti-inflammatory drugs block the biosynthesis of prostaglandins. The resolution of inflammation was widely held as a passive event until recently, with the characterization of novel biochemical pathways and lipid-derived mediators that are actively turned on in resolution and that possess potent anti-inflammatory and proresolving actions. A lipid-mediator informatics approach was employed to systematically identify new families of endogenous local-acting mediators from omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) in resolving exudates, which also contain lipoxins and aspirin-triggered lipoxins generated from arachidonic acid. Given their potent bioactions, these new chemical mediator families were termed resolvins and protectins. Here, we review the recent advances in our understanding of the biosynthesis and stereospecific actions of these new proresolving mediators, which have also proven to be organ protective and antifibrotic.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
731
|
Abstract
The respiratory mucosa is responsible for gas exchange and is therefore, of necessity, exposed to airborne pathogens, allergens, and foreign particles. It has evolved a multi-faceted, physical and immune defense system to ensure that in the majority of instances, potentially injurious invaders are repelled. Inflammation, predominantly mediated by effector cells of the granulocyte lineage including neutrophils and eosinophils, is a form of immune defense. Where inflammation proves unable to remove an inciting stimulus, chronic inflammatory disease may supervene because of the potential for tissue damage conferred by the presence of large numbers of frustrated, activated granulocytes. Successful recovery from inflammatory disease and resolution of inflammation rely on the clearance of these cells. Ideally, they should undergo apoptosis prior to phagocytosis by macrophage, dendritic, or epithelial cells. The outcome of inflammation can have serious sequelae for the integrity of the respiratory mucosa leading to disease. Therapeutic strategies to drive resolution of inflammation may be directed at the induction of granulocyte apoptosis and the enhancement of granulocyte clearance.
Collapse
|
732
|
Abstract
Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-alpha and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-alpha and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice. Eicosapentaenoic acid supplementation provided improvement in schizophrenia patients, while the combination of (eicosapentaenoic acid + docosahexaenoic acid) provided benefit in bipolar disorders. The ketogenic diet where >90% of calories are derived from fat is an effective treatment for epilepsy. Understanding cytokine-induced changes in lipid metabolism will promote novel concepts and steer towards bench-to-bedside transition for therapies.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI
- William S. Middleton Veterans Affairs Hospital, Madison, WI
| | - J. F. Hatcher
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
733
|
Hasturk H, Kantarci A, Goguet-Surmenian E, Blackwood A, Andry C, Serhan CN, Van Dyke TE. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:7021-9. [PMID: 17982093 DOI: 10.4049/jimmunol.179.10.7021] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resolvin E1 (RvE1) is a potent proresolving mediator of inflammation derived from omega-3 eicosapentaenoic acid that acts locally to stop leukocyte recruitment and promote resolution. RvE1 displays potent counter-regulatory and tissue-protective actions in vitro and in vivo. Periodontal disease is a local inflammatory disease initiated by bacteria characterized by neutrophil-mediated tissue injury followed by development of a chronic immune lesion. In this study, we report the treatment of established periodontitis using RvE1 as a monotherapy in rabbits compared with structurally related lipids PGE(2) and leukotriene B(4). PGE(2) and leukotriene B(4) each enhanced development of periodontitis and worsened the severity of disease. Promotion of resolution of inflammation as a therapeutic target with RvE1 resulted in complete restoration of the local lesion, and reduction in the systemic inflammatory markers C-reactive protein and IL-1beta. This report is the first to show that resolution of inflammation by a naturally occurring endogenous lipid mediator results in complete regeneration of pathologically lost tissues, including bone.
Collapse
Affiliation(s)
- Hatice Hasturk
- Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, Boston University, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
734
|
Haas-Stapleton EJ, Lu Y, Hong S, Arita M, Favoreto S, Nigam S, Serhan CN, Agabian N. Candida albicans modulates host defense by biosynthesizing the pro-resolving mediator resolvin E1. PLoS One 2007; 2:e1316. [PMID: 18091990 PMCID: PMC2134765 DOI: 10.1371/journal.pone.0001316] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 11/08/2007] [Indexed: 01/13/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen of humans that resides commensally on epithelial surfaces, but can cause inflammation when pathogenic. Resolvins are a class of anti-inflammatory lipids derived from omega-3 polyunsaturated fatty acids (PUFA) that attenuate neutrophil migration during the resolution phase of inflammation. In this report we demonstrate that C. albicans biosynthesizes resolvins that are chemically identical to those produced by human cells. In contrast to the trans-cellular biosynthesis of human Resolvin E1 (RvE1), RvE1 biosynthesis in C. albicans occurs in the absence of other cellular partners. C. albicans biosynthesis of RvE1 is sensitive to lipoxygenase and cytochrome P450 monoxygenase inhibitors. We show that 10nM RvE1 reduces neutrophil chemotaxis in response to IL-8; 1nM RvE1 enhanced phagocytosis of Candida by human neutrophils, as well as intracellular ROS generation and killing, while having no direct affect on neutrophil motility. In a mouse model of systemic candidiasis, RvE1 stimulated clearance of the fungus from circulating blood. These results reveal an inter-species chemical signaling system that modulates host immune functions and may play a role in balancing host carriage of commensal and pathogenic C. albicans.
Collapse
Affiliation(s)
- Eric J. Haas-Stapleton
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States of America
| | - Yan Lu
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Song Hong
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Makoto Arita
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Silvio Favoreto
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States of America
| | - Santosh Nigam
- Eicosanoid and Lipid Research Division, Centre for Experimental Gynecology and Breast Research, Charité-University Medical Centre Benjamin Franklin, Berlin, Germany
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nina Agabian
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
735
|
Resolving the problem of persistence in the switch from acute to chronic inflammation. Proc Natl Acad Sci U S A 2007; 104:20647-8. [PMID: 18093938 DOI: 10.1073/pnas.0710633105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
736
|
Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2007; 77:67-77. [PMID: 17869078 DOI: 10.1016/j.plefa.2007.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/12/2007] [Accepted: 08/01/2007] [Indexed: 01/02/2023]
Abstract
Chronic inflammation plays a major role in atherogenesis and understanding the role of inflammation and its resolution will offer novel approaches to interfere with atherogenesis. The 15(S)-lipoxygenase (15-LOX) plays a janus-role in inflammation with pro-inflammatory and anti-inflammatory effects in cell cultures and primary cells and even opposite effects on atherosclerosis in two different animal species. There is evidence for a pro-atherosclerotic effect of 15-LOX including the direct contribution to LDL oxidation and to the recruitment of monocytes to the vessel wall, its role in angiotensin II mediated mechanisms and in vascular smooth muscle cell proliferation. In contrast to the pro-atherosclerotic effects of 15-LOX, there is also a broad line of evidence that 15-LOX metabolites of arachidonic and linoleic acid have anti-inflammatory effects. The 15-LOX arachidonic acid metabolite 15-HETE inhibits superoxide production and polymorphonuclear neutrophil (PMN) migration across cytokine-activated endothelium and can be further metabolized to the anti-inflammatory lipoxins. These promote vasorelaxation in the aorta and counteract the action of most other pro-inflammatory factors like leukotrienes and prostanoids. Anti-atherogenic properties are also reported for the linoleic acid oxidation product 13-HODE through inhibition of adhesion of several blood cells to the endothelium. Furthermore, there is evidence that 15-LOX is involved in the metabolism of the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) leading to a family of anti-inflammatory resolvins and protectins. From these cell culture and animal studies the role of the 15-LOX in human atherosclerosis cannot be predicted. However, recent genetic studies characterized the 15-LOX haplotypes in Caucasians and discovered a functional polymorphism in the human 15-LOX promoter. This will now allow large studies to investigate an association of 15-LOX with coronary artery disease and to answer the question whether 15-LOX is pro- or anti-atherogenic in humans.
Collapse
Affiliation(s)
- Jonas Wittwer
- Institute of Clinical Chemistry, Center for Integrative Human Physiology, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | | |
Collapse
|
737
|
Schultz H, Weiss JP. The bactericidal/permeability-increasing protein (BPI) in infection and inflammatory disease. Clin Chim Acta 2007; 384:12-23. [PMID: 17678885 PMCID: PMC2695927 DOI: 10.1016/j.cca.2007.07.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/23/2007] [Accepted: 07/03/2007] [Indexed: 11/28/2022]
Abstract
Gram-negative bacteria (GNB) and their endotoxin present a constant environmental challenge. Endotoxins can potently signal mobilization of host defenses against invading GNB but also potentially induce severe pathophysiology, necessitating controlled initiation and resolution of endotoxin-induced inflammation to maintain host integrity. The bactericidal/permeability-increasing protein (BPI) is a pluripotent protein expressed, in humans, mainly neutrophils. BPI exhibits strong antimicrobial activity against GNB and potent endotoxin-neutralizing activity. BPI mobilized with neutrophils in response to invading GNB can promote intracellular and extracellular bacterial killing, endotoxin neutralization and clearance, and delivery of GNB outer membrane antigens to dendritic cells. Tissue expression by dermal fibroblasts and epithelia could further amplify local levels of BPI and local interaction with GNB and endotoxin, helping to constrain local tissue infection and inflammation and prevent systemic infection and systemic inflammation. This review article focuses on the structural and functional properties of BPI with respect to its contribution to host defense during GNB infections and endotoxin-induced inflammation and the genesis of autoantibodies against BPI that can blunt BPI activity and potentially contribute to chronic inflammatory disease.
Collapse
Affiliation(s)
- Hendrik Schultz
- Division of Infectious Diseases, University of Iowa, and Iowa City VAMC, USA, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
738
|
Abstract
BACKGROUND Regular use of aspirin reduces the risk of a colorectal neoplasm, but the mechanism by which aspirin affects carcinogenesis in the colon is not well understood. METHODS We estimated cyclooxygenase-2 (COX-2) expression by immunohistochemical assay of sections from paraffin-embedded colorectal-cancer specimens from two large cohorts of participants who provided data on aspirin use from a questionnaire every 2 years. We applied Cox regression to a competing-risks analysis to compare the effects of aspirin use on the relative risk of colorectal cancer in relation to the expression of COX-2 in the tumor. RESULTS During 2,446,431 person-years of follow-up of 82,911 women and 47,363 men, we found 636 incident colorectal cancers that were accessible for determination of COX-2 expression. Of the tumors, 423 (67%) had moderate or strong COX-2 expression. The effect of aspirin use differed significantly in relation to COX-2 expression (P for heterogeneity=0.02). Regular aspirin use conferred a significant reduction in the risk of colorectal cancers that overexpressed COX-2 (multivariate relative risk, 0.64; 95% confidence interval [CI], 0.52 to 0.78), whereas regular aspirin use had no influence on tumors with weak or absent expression of COX-2 (multivariate relative risk, 0.96; 95% CI, 0.73 to 1.26). The age-standardized incidence rate for cancers that overexpressed COX-2 was 37 per 100,000 person-years among regular aspirin users, as compared with 56 per 100,000 person-years among those who did not use aspirin regularly; in contrast, the rate for cancers with weak or absent COX-2 expression was 27 per 100,000 person-years among regular aspirin users, as compared with 28 per 100,000 person-years among nonregular aspirin users. CONCLUSIONS Regular use of aspirin appears to reduce the risk of colorectal cancers that overexpress COX-2 but not the risk of colorectal cancers with weak or absent expression of COX-2.
Collapse
Affiliation(s)
- Andrew T Chan
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
739
|
Berliner JA, Zimman A. Future of ToxicologyLipidomics, an Important Emerging Area for Toxicologists: Focus on Lipid Oxidation Products. Chem Res Toxicol 2007; 20:849-53. [PMID: 17489606 DOI: 10.1021/tx7000652] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Judith A Berliner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, 13-229 CHS, 650 Charles Young South, Los Angeles, California 90095-1732, USA. jberliner@ mednet.ucla.edu
| | | |
Collapse
|
740
|
|