751
|
Abstract
PURPOSE OF REVIEW The present review focuses on recent progress in tumour immunology and immunotherapeutic trials in malignant gliomas. RECENT FINDINGS Major advances have been made in the understanding of antitumour immunity in patients with glioma. Patients with glioblastoma can spontaneously develop antitumour activity with activated CD8+ T cells. Infiltration of myeloid suppressor cells into tumours and increased regulatory T-cell fraction appear to play a critical role in tumour tolerance, however. T-regulatory removal suppresses CD4+ T-cell proliferative defects and can induce tumour rejection in a murine model. Clinical trials using active immunotherapy with dendritic cells loaded with tumour-eluted peptides or tumour lysate have successfully induced antitumour cytotoxicity and some radiologic responses. Other promising approaches targeting the mechanisms of tolerance that could be referred to as 'corrective immunotherapy' are currently on going. SUMMARY Improvements in clinical methods and large randomized trials are now needed to prove the usefulness of cancer vaccines. Indeed, comprehensive analysis of tumour immunology and new immunization protocols suggest that immunotherapy can become an efficacious treatment in the near future. Combination with radiotherapy or chemotherapy should be investigated.
Collapse
|
752
|
Perreau VM, Bondy SC, Cotman CW, Sharman KG, Sharman EH. Melatonin treatment in old mice enables a more youthful response to LPS in the brain. J Neuroimmunol 2006; 182:22-31. [PMID: 17070935 PMCID: PMC1847646 DOI: 10.1016/j.jneuroim.2006.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/02/2006] [Accepted: 09/11/2006] [Indexed: 01/18/2023]
Abstract
Melatonin modulates the expression of a number of genes related to inflammation and immunity. Declining levels of melatonin with age may thus relate to some of the changes in immune function that occur with age. mRNA expression levels in murine CNS were measured using oligonucleotide microarrays in order to determine whether a dietary melatonin supplement may modify age-related changes in the response to an inflammatory challenge. CB6F1 male mice were fed 40-ppm melatonin for 9 weeks prior to sacrifice at 26.5 months of age, and compared with age-matched untreated controls and 4.5-month-old controls. A subset of both young and old animals was injected i.p. with lipopolysaccharide (LPS). After 3 h, total RNA was extracted from whole brain (excluding brain stem and cerebellum), and individual samples were hybridized to Affymetrix Mouse 430-2.0 arrays. Data were analyzed in Dchip and GeneSpring. Melatonin treatment markedly altered the response in gene expression of older animals subjected to an LPS challenge. These changes in general, caused the response to more closely resemble that of young animals subjected to the same LPS challenge. Thus melatonin treatment effects a major shift in the response of the CNS to an inflammatory challenge, causing a transition to a more youthful mRNA expression profile.
Collapse
|
753
|
Halder RC, Jahng A, Maricic I, Kumar V. Mini review: immune response to myelin-derived sulfatide and CNS-demyelination. Neurochem Res 2006; 32:257-62. [PMID: 17006761 DOI: 10.1007/s11064-006-9145-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/22/2006] [Indexed: 12/25/2022]
Abstract
Here we briefly review our understanding of the immune response to myelin-derived glycolipids during an inflammatory autoimmune response in the central nervous system (CNS). We focus primarily on the recognition of the self-glycolipid sulfatide by a distinct population of non-invariant NK T cells. The results of studies we have obtained so far in investigating the presentation of sulfatide by CNS-resident cells including microglia and their interactions with T cells indicate that this pathway might be successfully targeted for the treatment of autoimmune demyelination in multiple sclerosis.
Collapse
Affiliation(s)
- Ramesh C Halder
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
754
|
Nakamichi K, Saiki M, Kitani H, Kuboyama Y, Morimoto K, Takayama-Ito M, Kurane I. Suppressive effect of simvastatin on interferon-beta-induced expression of CC chemokine ligand 5 in microglia. Neurosci Lett 2006; 407:205-10. [PMID: 16978784 DOI: 10.1016/j.neulet.2006.08.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/17/2006] [Accepted: 08/20/2006] [Indexed: 11/15/2022]
Abstract
Despite the pivotal role of microglia in immune system of the brain, a growing body of evidence suggests that the excessive microglial activation provokes neuronal and glial damages, leading to neurodegenerative and neuroinflammatory disorders. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, have recently received much attention for their suppressive effects on inflammation in the central nervous system. In the current study, we have examined the statin-mediated inhibition of microglial function, especially that of chemokine production. Stimulation of microglial cells with interferon-beta (IFN-beta) resulted in the expression of CC chemokine ligand 5 (CCL5), a major chemoattractant of inflammatory cells. Microglial CCL5 response was synergistically potentiated by costimulation with IFN-beta and tumor necrosis factor-alpha (TNF-alpha). The simvastatin treatment significantly diminished the microglial CCL5 expression induced by IFN-beta alone or by IFN-beta/TNF-alpha combination. In the presence of simvastatin, the IFN-beta-induced activation of Janus kinase (Jak)-signal transducer and activator of transcription (STAT) pathway was attenuated, although this compound had little or no effect on the TNF-alpha-evoked activation of nuclear factor kappaB and c-Jun N-terminal kinase pathways. In addition, chemical inhibitor of Jak-STAT signaling significantly diminished the IFN-beta-induced expression of CCL5 in microglia. Taken together, these results suggest that simvastatin suppresses the IFN-beta-induced expression of CCL5 via down-regulation of Jak-STAT signaling pathway.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Laboratory of Neurovirology, Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
755
|
Mémet S. NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006; 72:1180-95. [PMID: 16997282 DOI: 10.1016/j.bcp.2006.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/01/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is an ubiquitously expressed dimeric molecule with post-translationally regulated activity. Its role in the immune system and host defense has been well characterized over the last two decades. In contrast, our understanding of the function of this transcription factor in the nervous system (NS) is only emerging. Given their cytoplasmic retention and nuclear translocation upon stimulus, NF-kappaB members are likely to exert an important role in transduction of signals from synaptic terminals to nucleus, to initiate transcriptional responses. This report describes recent findings deciphering the diverse functions of NF-kappaB in NS development and activity, which range from the control of cell growth, survival and inflammatory response to synaptic plasticity, behavior and cognition. Particular attention is given to the specific roles of NF-kappaB in the various cells of the NS, e.g. neurons and glia. Current knowledge of the contribution of NF-kappaB to several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases is also summarized.
Collapse
Affiliation(s)
- Sylvie Mémet
- Unité de Mycologie Moléculaire, FRE CNRS 2849, Department of Infection and Epidemiology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
756
|
Shimoda M, Jones VC, Kobayashi M, Suzuki F. Microglial cells from psychologically stressed mice as an accelerator of cerebral cryptococcosis. Immunol Cell Biol 2006; 84:551-6. [PMID: 16956390 DOI: 10.1111/j.1440-1711.2006.01466.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Severe stress decreases the resistance of hosts exposed to microbial infections. As compared with two groups of control mice (normal mice, food-and-water-deprived mice [FWD mice]), restraint-stressed mice (RST mice) were shown to be greatly susceptible to intracerebral growth of Cryptococcus neoformans. The susceptibility of FWD mice to cerebral cryptococcosis increased to the level shown in RST mice, when these groups of mice were inoculated with microglial cells from the brains of RST mice. However, the susceptibility of FWD mice to cerebral cryptococcosis was not influenced by the adoptive transfer of microglial cells from normal mice or FWD mice. Microglial cells from RST mice produced CC-chemokine ligand-2 (CCL-2/monocyte chemoattractant protein 1), but not microglial cells from FWD mice. The resistance of RST mice to cerebral cryptococcosis was improved to the extent shown in FWD mice, when they were treated with anti-CCL-2 antibody. However, the susceptibility of normal mice and FWD mice to cerebral cryptococcosis increased to that shown in RST mice, when they were treated with rCCL-2. Microglial cells from RST mice were discriminated from the same cell preparations derived from FWD mice by their abilities to produce CCL-2, to phagocytize C. neoformans cells and to express Toll-like receptor 2. These results indicate that the resistance of RST mice to cerebral cryptococcosis is diminished by CCL-2 produced by microglial cells that are influenced by restraint stress.
Collapse
Affiliation(s)
- Masae Shimoda
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-0435, USA
| | | | | | | |
Collapse
|
757
|
Li ZH, Lu J, Tay SSW, Wu YJ, Strong MJ, He BP. Mice with targeted disruption of neurofilament light subunit display formation of protein aggregation in motoneurons and downregulation of complement receptor type 3 alpha subunit in microglia in the spinal cord at their earlier age: a possible feature in pre-clinical development of neurodegenerative diseases. Brain Res 2006; 1113:200-9. [PMID: 16920084 DOI: 10.1016/j.brainres.2006.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/08/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
The pathogenesis of neurodegenerative diseases prior to the onset of symptoms is generally not clear. The present study has employed a mouse model with a lack of the low-molecular-weight neurofilament subunit (NFL-/-), in which formation of protein aggregates occurs in neurons, to investigate glial cellular reactions in the lumbar cord segments of NFL-/- mice at ages from 1 to 6 months. Age-matched C57BL/6 mice serve as the control. Apparent neurofilament positive aggregates in the cytoplasm of motoneurons have been observed in NFL-/- mice. However, there were no noticeable changes in microglial numbers and GFAP staining of astrocytes. Unexpectedly, a downregulation in expression of complement receptor type 3 alpha subunit (CD11b) was detected in the spinal cord of NFL-/- mice, while there was no obvious difference between NFL-/- and C57BL/6 mice in the CD11b staining intensity of macrophages from livers and spleens. In addition, retardation in morphological transformation from activated to amoeboid microglia in response to sciatic nerve injury, differential expressions of some cytokines in the lumbar cord segments and induction of Iba-1 (ionized calcium-binding adaptor molecule-1) expression in microglia were observed in NFL-/- mice. Our results suggest not only the existence of an inhibitory niche for CD11b expression in microglia in the lumbar cord segments of NFL-/- mice but also differential microglial reactions between earlier and later stages of neuropathogenesis. Although the real cause for such inhibition is still unknown, this effect might play a particular role in the survival of the abnormal protein aggregate-bearing motoneurons in the early development stage of neurodegeneration in the NFL-/- mice.
Collapse
Affiliation(s)
- Zhao Hui Li
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
758
|
Cassiani-Ingoni R, Cabral ES, Lünemann JD, Garza Z, Magnus T, Gelderblom H, Munson PJ, Marques A, Martin R. Borrelia burgdorferi Induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol 2006; 65:540-8. [PMID: 16783164 DOI: 10.1097/00005072-200606000-00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spirochete Borrelia burgdorferi is the agent of Lyme disease, which causes central nervous system manifestations in up to 20% of patients. We investigated the response of human brain microglial cells, glial progenitors, neurons, astrocytes, as well as peripheral blood monocytes to stimulation with B. burgdorferi. We used oligoarrays to detect changes in the expression of genes important for shaping adaptive and innate immune responses. We found that stimulation with B. burgdorferi lysate increased the expression of Toll-like receptors (TLRs) 1 and 2 in all cell types except neurons. However, despite similarities in global gene profiles of monocytes and microglia, only microglial cells responded to the stimulation with a robust increase in HLA-DR, HLA-DQ, and also coexpressed CD11-c, a dendritic cell marker. In contrast, a large number of HLA-related molecules were repressed at both the RNA and the protein levels in stimulated monocytes, whereas secretion of IL-10 and TNF-alpha was strongly induced. These results show that signaling through TLR1/2 in response to B. burgdorferi can elicit opposite immunoregulatory effects in blood and in brain immune cells, which could play a role in the different susceptibility of these compartments to infection.
Collapse
Affiliation(s)
- Riccardo Cassiani-Ingoni
- Cellular Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
759
|
Esen N, Kielian T. Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. THE JOURNAL OF IMMUNOLOGY 2006; 176:6802-11. [PMID: 16709840 PMCID: PMC2440502 DOI: 10.4049/jimmunol.176.11.6802] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microglia, the innate immune effector cells of the CNS parenchyma, express TLR that recognize conserved motifs of microorganisms referred to as pathogen-associated molecular patterns (PAMP). All TLRs identified to date, with the exception of TLR3, use a common adaptor protein, MyD88, to transduce activation signals. Recently, we reported that microglial activation in response to the Gram-positive bacterium Staphylococcus aureus was not completely attenuated following TLR2 ablation, suggesting the involvement of additional receptors. To assess the functional role of alternative TLRs in microglial responses to S. aureus and its cell wall product peptidoglycan as well as the Gram-negative PAMP LPS, we evaluated primary microglia from MyD88 knockout (KO) and wild-type mice. The induction of TNF-alpha, IL-12 p40, and MIP-2 (CXCL2) expression by S. aureus- and peptidoglycan-stimulated microglia was MyD88 dependent, as revealed by the complete inhibition of cytokine production in MyD88 KO cells. In addition, the expression of additional pattern recognition receptors, including TLR9, pentraxin-3, and lectin-like oxidized LDL receptor-1, was regulated, in part, via a MyD88-dependent manner as demonstrated by the attenuated expression of these receptors in MyD88 KO microglia. Microglial activation was only partially inhibited in LPS-stimulated MyD88 KO cells, suggesting the involvement of MyD88-independent pathways. Collectively, these findings reveal the complex mechanisms for microglia to respond to diverse bacterial pathogens, which occur via both MyD88-dependent and -independent pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/physiology
- Animals
- Cells, Cultured
- Chemokine CXCL2
- Chemokines/biosynthesis
- Enzyme Induction/immunology
- Inflammation Mediators/metabolism
- Interleukin-12/biosynthesis
- Interleukin-12 Subunit p40
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/enzymology
- Microglia/immunology
- Microglia/metabolism
- Microglia/microbiology
- Myeloid Differentiation Factor 88
- Nitric Oxide Synthase Type II/biosynthesis
- Peptidoglycan/pharmacology
- Protein Subunits/biosynthesis
- Receptors, Pattern Recognition/biosynthesis
- Receptors, Pattern Recognition/physiology
- Signal Transduction/immunology
- Staphylococcus aureus/immunology
- Staphylococcus aureus/pathogenicity
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
| | - Tammy Kielian
- Address correspondence and reprint requests to Dr. Tammy Kielian, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 846, Little Rock, AR 72205. E-mail address:
| |
Collapse
|
760
|
Veber D, Mutti E, Galmozzi E, Cedrola S, Galbiati S, Morabito A, Tredici G, La Porta CA, Scalabrino G. Increased levels of the CD40:CD40 ligand dyad in the cerebrospinal fluid of rats with vitamin B12(cobalamin)-deficient central neuropathy. J Neuroimmunol 2006; 176:24-33. [PMID: 16716410 DOI: 10.1016/j.jneuroim.2006.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/31/2006] [Accepted: 04/03/2006] [Indexed: 01/30/2023]
Abstract
The levels of the soluble (s) CD40:sCD40 ligand (L) dyad, which belongs to the tumor necrosis factor (TNF)-alpha:TNF-alpha-receptor superfamily, are significantly increased in the cerebrospinal fluid (CSF), but not the serum of cobalamin (Cbl)-deficient (Cbl-D) rats. They were normalized or significantly reduced after treatment with Cbl, transforming growth factor-beta1 or S-adenosyl-L-methionine, and the normal myelin ultrastructure of the spinal cord was concomitantly restored. The concomitance of the two beneficial effects of these treatments strongly suggests that the increases in CSF sCD40:sCD40L levels may participate in the pathogenesis of purely myelinolytic Cbl-D central neuropathy in the rat. In keeping with this, an anti-CD40 treatment prevented myelin lesions.
Collapse
Affiliation(s)
- Daniela Veber
- Institute of General Pathology and Center of Excellence on Neurodegenerative Diseases, University of Milan, via Mangiagalli 31, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
761
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 782] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
762
|
Becher B, Bechmann I, Greter M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med (Berl) 2006; 84:532-43. [PMID: 16773356 DOI: 10.1007/s00109-006-0065-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 03/02/2006] [Indexed: 12/23/2022]
Abstract
The central nervous system (CNS) is traditionally viewed as an immune privileged site in which overzealous immune cells are prevented from doing irreparable damage. It was believed that immune responses occurring within the CNS could potentially do more damage than the initial pathogenic insult itself. However, virtually every aspect of CNS tissue damage, including degeneration, tumors, infection, and of course autoimmunity, involves a significant cellular inflammatory component. While the blood-brain barrier (BBB) inhibits diffusion of hydrophilic (immune) molecules across brain capillaries, activated lymphocytes readily pass the endothelial layer of postcapillary venules without difficulty. In classic neuro-immune diseases such as multiple sclerosis or acute disseminated encephalomyelitis, it is thought that neuroantigen-reactive lymphocytes, which have escaped immune tolerance, now invade the CNS and are responsible for tissue damage, demyelination, and axonal degeneration. The developed animal model for these disorders, experimental autoimmune encephalomyelitis (EAE), reflects many aspects of the human conditions. Studies in EAE proved that auto-reactive encephalitogenic T helper (Th) cells are responsible for the onset of the disease. Th cells recognize their cognate antigen (Ag) only when presented by professional Ag-presenting cells in the context of major histocompatibility complex class II molecules. The apparent target structures of EAE immunity are myelinating oligodendrocytes, which are not capable of presenting Ag to invading encephalitogenic T cells. A compulsory third party is thus required to mediate between the attacking T cells and the myelin-expressing target. This review will discuss the recent advances in this field of research and we will discuss the journey of an auto-reactive T cell from its site of activation into perivascular spaces and further into the target tissue.
Collapse
Affiliation(s)
- Burkhard Becher
- Neurology Department, Division for Neuroimmunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
763
|
Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 2006; 8:261-79. [PMID: 16775224 PMCID: PMC1871955 DOI: 10.1215/15228517-2006-008] [Citation(s) in RCA: 460] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Little is known about the immune performance and interactions of CNS microglia/macrophages in glioma patients. We found that microglia/macrophages were the predominant immune cell infiltrating gliomas ( approximately 1% of total cells); others identified were myeloid dendritic cells (DCs), plasmacytoid DCs, and T cells. We isolated and analyzed the immune functions of CD11b/c+CD45+ glioma-infiltrating microglia/macrophages (GIMs) from postoperative tissue specimens of glioma patients. Although GIMs expressed substantial levels of Toll-like receptors (TLRs), they did not appear stimulated to produce pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin 1, or interleukin 6), and in vitro, lipopolysaccharides could bind TLR-4 but could not induce GIM-mediated T-cell proliferation. Despite surface major histocompatibility complex class II expression, they lacked expression of the costimulatory molecules CD86, CD80, and CD40 critical for T-cell activation. Ex vivo, we demonstrate a corresponding lack of effector/activated T cells, as glioma-infiltrating CD8+ T cells were phenotypically CD8+CD25-. By contrast, there was a prominent population of regulatory CD4 T cells (CD4+CD25+FOXP3+) infiltrating the tumor. We conclude that while GIMs may have a few intact innate immune functions, their capacity to be stimulated via TLRs, secrete cytokines, upregulate costimulatory molecules, and in turn activate antitumor effector T cells is not sufficient to initiate immune responses. Furthermore, the presence of regulatory T cells may also contribute to the lack of effective immune activation against malignant human gliomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy B. Heimberger
- Address correspondence and requests for reprints to Amy B. Heimberger, Department of Neurosurgery, Unit 442, The University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Houston, TX 77230-1402, USA (
)
| |
Collapse
|
764
|
Melchior B, Puntambekar SS, Carson MJ. Microglia and the control of autoreactive T cell responses. Neurochem Int 2006; 49:145-53. [PMID: 16759751 PMCID: PMC2626134 DOI: 10.1016/j.neuint.2006.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 11/28/2022]
Abstract
Microglial activation is one of the earliest and most prominent features of nearly all CNS neuropathologies often occurring prior to other indicators of overt neuropathology. Whether microglial activation in seemingly healthy CNS tissue during the early stages of several is a response to early stages of neuronal or glial distress or an early sign of microglial dysfunction causing subsequent neurodegeneration is unknown. Here we characterize and discuss how changes in the CNS microenvironment (neuronal activity/viability, glial activation) lead to specific forms of microglial activation. Specifically, we examine the potential role that TREM-2 expressing microglia may play in regulating the effector function of autoreactive T cell responses. Thus, we suggest that ubiquitous suppression of microglial activation during CNS inflammatory disorders rather than targeted manipulation of microglial activation, may in the end be maladaptive leading to incomplete remission of symptoms.
Collapse
|
765
|
Lee DY, Park KW, Jin BK. Thrombin induces neurodegeneration and microglial activation in the cortex in vivo and in vitro: proteolytic and non-proteolytic actions. Biochem Biophys Res Commun 2006; 346:727-38. [PMID: 16777064 DOI: 10.1016/j.bbrc.2006.05.174] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/24/2006] [Indexed: 12/27/2022]
Abstract
The present study evaluated the role of thrombin and its receptors in neurodegeneration and microglial activation. Immunocytochemical evidence indicated that intracortical injection of thrombin resulted in a significant loss of neurons and the activation of microglia in the rat cortex in vivo. Reverse transcription PCR and double-label immunocytochemistry further demonstrated the early and transient expression of pro-inflammatory cytokines and neurotoxic factors as well as their colocalization within activated microglia. The thrombin-induced loss of cortical neurons was partially blocked by N(G)-nitro-L-arginine methyl ester hydrochloride, a nitric oxide synthase inhibitor, and by NS-398, a cyclooxygenase-2 inhibitor, indicating that the activation of microglia is involved in the neurotoxicity of thrombin in the cortex in vivo. In addition, thrombin activated cortical microglia in culture, as indicated by the expression of several pro-inflammatory cytokines and produced cell death in microglia-free, neuron-enriched cortical cultures. However, agonist peptides for thrombin receptors, including protease-activated receptor-1 (SFLLRN), -3 (TFRGAP), and -4 (GYPGKF), failed to activate microglia and were not neurotoxic in culture. Intriguingly, morphological and biochemical evidence indicated that thrombin-induced neurotoxicity but not microglial activation was prevented by hirudin, a specific inhibitor of thrombin. Collectively, the present data suggest that a non-proteolytic activity of thrombin activates microglia and that the proteolytic activity mediates its neurotoxicity.
Collapse
Affiliation(s)
- Da Yong Lee
- Neuroscience Graduate Program and Brain Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | | | | |
Collapse
|
766
|
Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andrä M, Matsubayashi H, Sakai N, Kohsaka S, Inoue K, Nakata Y. Microglial α7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 2006; 83:1461-70. [PMID: 16652343 DOI: 10.1002/jnr.20850] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microglia perform both neuroprotective and neurotoxic functions in the brain, with this depending on their state of activation and their release of mediators. Upon P2X(7) receptor stimulation, for example, microglia release small amounts of TNF, which protect neurons, whereas LPS causes massive TNF release leading to neuroinflammation. Here we report that, in rat primary cultured microglia, nicotine enhances P2X(7) receptor-mediated TNF release, whilst suppressing LPS-induced TNF release but without affecting TNF mRNA expression via activation of alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs). In microglia, nicotine elicited a transient increase in intracellular Ca(2+) levels, which was abolished by specific blockers of alpha7 nAChRs. However, this response was independent of extracellular Ca(2+) and blocked by U73122, an inhibitor of phospholipase C (PLC), and xestospongin C, a blocker of the IP(3) receptor. Repeated experiments showed that currents were not detected in nicotine-stimulated microglia. Moreover, nicotine modulation of LPS-induced TNF release was also blocked by xestospongin C. Upon LPS stimulation, inhibition of TNF release by nicotine was associated with the suppression of JNK and p38 MAP kinase activation, which regulate the post-transcriptional steps of TNF synthesis. In contrast, nicotine did not alter any MAP kinase activation, but enhanced Ca(2+) response in P2X(7) receptor-activated microglia. In conclusion, microglial alpha7 nAChRs might drive a signaling process involving the activation of PLC and Ca(2+) release from intracellular Ca(2+) stores, rather than function as conventional ion channels. This novel alpha7 nAChR signal may be involved in the nicotine modification of microglia activation towards a neuroprotective role by suppressing the inflammatory state and strengthening the protective function.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Culture Techniques
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/physiology
- Cytoprotection/drug effects
- Cytoprotection/physiology
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Enzyme Inhibitors/pharmacology
- Gliosis/metabolism
- Gliosis/physiopathology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Lipopolysaccharides/pharmacology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Microglia/drug effects
- Microglia/metabolism
- Nicotine/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X7
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tumor Necrosis Factor-alpha/metabolism
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- Tomohisa Suzuki
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
767
|
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors expressed on cells of the innate immune system that allow for the recognition of conserved structural motifs on a wide array of pathogens, referred to as pathogen-associated molecular patterns, as well as some endogenous molecules. The recent emergence of studies examining TLRs in the central nervous system (CNS) indicates that these receptors not only play a role in innate immunity in response to infectious diseases but may also participate in CNS autoimmunity, neurodegeneration, and tissue injury. This review summarizes the experimental evidence demonstrating a role for TLRs in the context of CNS inflammation in both infectious and noninfectious conditions.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
768
|
Deng XH, Bertini G, Xu YZ, Yan Z, Bentivoglio M. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age. Neuroscience 2006; 141:645-661. [PMID: 16730918 DOI: 10.1016/j.neuroscience.2006.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 11/26/2022]
Abstract
Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement does not develop gradually since youth, but appears characterized by relatively late onset.
Collapse
Affiliation(s)
- X-H Deng
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy; Department of Anatomy and Neurobiology, Xiangya Medical College, Central South University, Changsha, Hunan, PR China
| | - G Bertini
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy
| | - Y-Z Xu
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy; Department of Anatomy and Neurobiology, Xiangya Medical College, Central South University, Changsha, Hunan, PR China
| | - Z Yan
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy
| | - M Bentivoglio
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
769
|
Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging 2006; 27:717-22. [PMID: 15890435 DOI: 10.1016/j.neurobiolaging.2005.03.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 03/01/2005] [Accepted: 03/05/2005] [Indexed: 02/01/2023]
Abstract
In normal brain aging, CNS resident macrophages exhibit increased expression of major histocompatibility complex (MHC) II expression. However, the transcriptional basis for this observation has not been clarified nor have age-related alterations in pivotal pro-inflammatory genes been characterized. Age-related mRNA alterations in MHC II, MHC II accessory molecules and several pro-inflammatory mediators were measured in older (24 months) and younger (3 months) male F344xBN F1 rats. Real time RT-PCR was utilized to measure steady state mRNA levels in hippocampus. Older as compared to younger animals exhibited increased mRNA levels of MHC II, CD86, CIITA and IFN-gamma. Furthermore, IL-10 and CD200 mRNA, molecules that down-regulate macrophage activation, was decreased in older animals. The present results indicate that normal brain aging is characterized by a shift towards a pro-inflammatory microenvironment in the CNS.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, Campus Box 345, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | |
Collapse
|
770
|
Abschuetz A, Kehl T, Geibig R, Leuchs B, Rommelaere J, Régnier-Vigouroux A. Oncolytic murine autonomous parvovirus, a candidate vector for glioma gene therapy, is innocuous to normal and immunocompetent mouse glial cells. Cell Tissue Res 2006; 325:423-36. [PMID: 16699801 DOI: 10.1007/s00441-006-0199-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
The sensitivity of brain tumour cells to wild-type or recombinant parvoviruses H1-PV and MVMp makes these agents promising candidates for gene therapy of astrocytoma. This application raises the question of whether parvoviruses exert deleterious or bystander effects on normal glial cells surrounding tumours. We addressed this question in the mouse model by using cell cultures derived from BALB/c, C57BL/6 and VM/Dk strains. Astrocytes and a large proportion of microglia cultures were competent for MVMp uptake. Infection was, however, abortive as replication-associated viral proteins synthesis took place in less than 10% of astrocytes and no progeny virions were produced. This restriction was even more pronounced for microglia in which no viral protein expression could be detected, save for a minute fraction of VM/Dk-derived cells. Infection with MVMp had no significant effect on glial cell survival and did not interfere with their immune potential. Indeed, neither the lipopolysaccharide (LPS)/interferon (IFN-gamma)-induced cytotoxicity of VM/Dk-derived microglia towards the mouse glioma (MT539MG) cell line, nor the glial cells capacity for tumour necrosis factor alpha production upon LPS stimulation or LPS/IFN-gamma stimulation were affected by infection with MVMp. Moreover, stimulation with LPS and/or IFN-gamma resulted in a decreased expression of the viral replicative and cytotoxic protein NS1. Together, our data indicate that, in the natural host, a majority of normal glial cells are not competent for MVMp replication and that the abortive infection taking place in a minor fraction of these cells fails to impede their survival and immunocompetence, giving credit to the consideration of autonomous parvoviruses for glioma therapy.
Collapse
Affiliation(s)
- Anette Abschuetz
- Infection and Cancer Program, INSERM, U701, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
771
|
Halonen SK, Woods T, McInnerney K, Weiss LM. Microarray analysis of IFN-gamma response genes in astrocytes. J Neuroimmunol 2006; 175:19-30. [PMID: 16631260 PMCID: PMC3109620 DOI: 10.1016/j.jneuroim.2006.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/06/2006] [Accepted: 02/22/2006] [Indexed: 11/27/2022]
Abstract
IFN-gamma (IFN-gamma) has been shown to activate astrocytes to acquire immune functions. In this study the effect of IFN-gamma on murine astrocytes was investigated via microarray analysis. The activating effect of IFN-gamma on the astrocyte transcriptome showed predominance toward pathways involved in adaptive immunity, initiation of the immune response and innate immunity. Previously unknown astrocytic genes expressed included members of the p47 GTPases and guanine nucleotide binding protein (GBP) families. Down-regulatory effects of IFN-gamma stimulation were confined to pathways involved in growth regulation, cell differentiation and cell adhesion. This data supports the notion that astrocytes are an important immunocompetant cell in the brain and indicate that astrocytes may have a significant role in various infectious diseases such as Toxoplasmic Encephalitis and neurological diseases with an immunological component such as Alzheimer's and autoimmune disorders.
Collapse
Affiliation(s)
- Sandra K Halonen
- Department of Microbiology, Montana State University, Bozeman, 59717, USA.
| | | | | | | |
Collapse
|
772
|
Mariani CL, Kouri JG, Streit WJ. Rejection of RG-2 gliomas is mediated by microglia and T lymphocytes. J Neurooncol 2006; 79:243-53. [PMID: 16612573 DOI: 10.1007/s11060-006-9137-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 02/14/2006] [Indexed: 12/18/2022]
Abstract
Immunotherapy holds great promise for the treatment of invasive brain tumors, and we are interested specifically in evaluating immune stimulation of microglial cells as one potential strategy. In order to better understand the tumor fighting capabilities of microglial cells, we have compared the responses of syngeneic (Fisher 344) and allogeneic (Wistar) rat strains after intracranial implantation of RG-2 gliomas. Animals were evaluated by clinical examination, magnetic resonance imaging (MRI) and immunohistochemistry for microglial and other immune cell antigens. While lethal RG-2 gliomas developed in all of the Fisher 344 rats, tumors grew variably in the Wistar strain, sometimes reaching considerable sizes, but eventually all of them regressed. Tumor regression was associated with greater numbers of T cells and CD8 positive cells and increases in MHC I and CD4 positive microglia. Our findings suggest that the combined mobilization of peripheral and CNS endogenous immune cells is required for eradicating large intracranial tumors.
Collapse
Affiliation(s)
- Christopher L Mariani
- Department of Neuroscience, College of Medicine, University of Florida, P.O. Box 100244, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
773
|
Narita M, Yoshida T, Nakajima M, Narita M, Miyatake M, Takagi T, Yajima Y, Suzuki T. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice. J Neurochem 2006; 97:1337-48. [PMID: 16606373 DOI: 10.1111/j.1471-4159.2006.03808.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study was undertaken to further investigate the role of glial cells in the development of the neuropathic pain-like state induced by sciatic nerve ligation in mice. At 7 days after sciatic nerve ligation, the immunoreactivities (IRs) of the specific astrocyte marker glial fibrillary acidic protein (GFAP) and the specific microglial marker OX-42, but not the specific oligodendrocyte marker O4, were increased on the ipsilateral side of the spinal cord dorsal horn in nerve-ligated mice compared with that on the contralateral side. Furthermore, a single intrathecal injection of activated spinal cord microglia, but not astrocytes, caused thermal hyperalgesia in naive mice. Furthermore, 5-bromo-2'-deoxyuridine (BrdU)-positive cells on the ipsilateral dorsal horn of the spinal cord were significantly increased at 7 days after nerve ligation and were highly co-localized with another microglia marker, ionized calcium-binding adaptor molecule 1 (Iba1), but neither with GFAP nor a specific neural nuclei marker, NeuN, in the spinal dorsal horn of nerve-ligated mice. The present data strongly support the idea that spinal cord astrocytes and microglia are activated under the neuropathic pain-like state, and that the proliferated and activated microglia directly contribute to the development of a neuropathic pain-like state in mice.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
774
|
le Blanc LMP, van Lieshout AWT, Adema GJ, van Riel PLCM, Verbeek MM, Radstake TRDJ. CXCL16 is elevated in the cerebrospinal fluid versus serum and in inflammatory conditions with suspected and proved central nervous system involvement. Neurosci Lett 2006; 397:145-8. [PMID: 16406320 DOI: 10.1016/j.neulet.2005.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 12/12/2022]
Abstract
In neuro-inflammatory diseases, activated T cells are thought to drive the inflammatory process. In this study, we investigated the potential role of three T cell attracting chemokines (CK) in neuro-inflammation. For this purpose, we measured levels of CXCL16, CCL17 and CCL18 in matched serum and cerebrospinal fluid (CSF) samples of patients with different neurological diseases. Interestingly, CXCL16 levels were significantly elevated in the CSF and were higher in inflammatory disease than in controls, whereas CCL17 and CCL18 were absent in the CSF. CCL18 was only elevated in serum of SLE patients. These data suggest that attraction of activated memory type T cells by CXCL16 might play an important role in the orchestration of immune responses in the central nervous system.
Collapse
Affiliation(s)
- Linda M P le Blanc
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|
775
|
Xiang Z, Chen M, Ping J, Dunn P, Lv J, Jiao B, Burnstock G. Microglial morphology and its transformation after challenge by extracellular ATP in vitro. J Neurosci Res 2006; 83:91-101. [PMID: 16323207 DOI: 10.1002/jnr.20709] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The novel morphological characteristics of N9 microglial cells and primary cultured rat microglial cells were examined using the bitotin-IB4 and streptavidin-FITC system. Numerous fine, long processes of both microglial cell preparations formed a network, beginning after 30 min in culture. Dye coupling studies did not show communication between neighbouring cells via the processes in normal conditions. The network of microglial cell processes was well formed into a 'resting state' by 16-24 hr after re-plating. After being challenged by 3 mM ATP the microglial cells were activated, became amoeboid-like cells within 2 hr and finally floated in the culture medium. The complicated network of processes did not retract to the microglial cell body. Flow cytometry analysis showed that the majority of these floating cells were alive and could recover to the resting state after ATP was removed from the culture medium.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Molecular Biology, Second Military Medical University Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
776
|
Cohly HHP, Panja A. Immunological findings in autism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 71:317-41. [PMID: 16512356 DOI: 10.1016/s0074-7742(05)71013-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immunopathogenesis of autism is presented schematically in Fig. 1. Two main immune dysfunctions in autism are immune regulation involving pro-inflammatory cytokines and autoimmunity. Mercury and an infectious agent like the measles virus are currently two main candidate environmental triggers for immune dysfunction in autism. Genetically immune dysfunction in autism involves the MHC region, as this is an immunologic gene cluster whose gene products are Class I, II, and III molecules. Class I and II molecules are associated with antigen presentation. The antigen in virus infection initiated by the virus particle itself while the cytokine production and inflammatory mediators are due to the response to the putative antigen in question. The cell-mediated immunity is impaired as evidenced by low numbers of CD4 cells and a concomitant T-cell polarity with an imbalance of Th1/Th2 subsets toward Th2. Impaired humoral immunity on the other hand is evidenced by decreased IgA causing poor gut protection. Studies showing elevated brain specific antibodies in autism support an autoimmune mechanism. Viruses may initiate the process but the subsequent activation of cytokines is the damaging factor associated with autism. Virus specific antibodies associated with measles virus have been demonstrated in autistic subjects. Environmental exposure to mercury is believed to harm human health possibly through modulation of immune homeostasis. A mercury link with the immune system has been postulated due to the involvement of postnatal exposure to thimerosal, a preservative added in the MMR vaccines. The occupational hazard exposure to mercury causes edema in astrocytes and, at the molecular level, the CD95/Fas apoptotic signaling pathway is disrupted by Hg2+. Inflammatory mediators in autism usually involve activation of astrocytes and microglial cells. Proinflammatory chemokines (MCP-1 and TARC), and an anti-inflammatory and modulatory cytokine, TGF-beta1, are consistently elevated in autistic brains. In measles virus infection, it has been postulated that there is immune suppression by inhibiting T-cell proliferation and maturation and downregulation MHC class II expression. Cytokine alteration of TNF-alpha is increased in autistic populations. Toll-like-receptors are also involved in autistic development. High NO levels are associated with autism. Maternal antibodies may trigger autism as a mechanism of autoimmunity. MMR vaccination may increase risk for autism via an autoimmune mechanism in autism. MMR antibodies are significantly higher in autistic children as compared to normal children, supporting a role of MMR in autism. Autoantibodies (IgG isotype) to neuron-axon filament protein (NAFP) and glial fibrillary acidic protein (GFAP) are significantly increased in autistic patients (Singh et al., 1997). Increase in Th2 may explain the increased autoimmunity, such as the findings of antibodies to MBP and neuronal axonal filaments in the brain. There is further evidence that there are other participants in the autoimmune phenomenon. (Kozlovskaia et al., 2000). The possibility of its involvement in autism cannot be ruled out. Further investigations at immunological, cellular, molecular, and genetic levels will allow researchers to continue to unravel the immunopathogenic mechanisms' associated with autistic processes in the developing brain. This may open up new avenues for prevention and/or cure of this devastating neurodevelopmental disorder.
Collapse
|
777
|
Monsonego A, Imitola J, Petrovic S, Zota V, Nemirovsky A, Baron R, Fisher Y, Owens T, Weiner HL. Abeta-induced meningoencephalitis is IFN-gamma-dependent and is associated with T cell-dependent clearance of Abeta in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2006; 103:5048-53. [PMID: 16549802 PMCID: PMC1458792 DOI: 10.1073/pnas.0506209103] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Indexed: 11/18/2022] Open
Abstract
Vaccination against amyloid beta-peptide (Abeta) has been shown to be successful in reducing Abeta burden and neurotoxicity in mouse models of Alzheimer's disease (AD). However, although Abeta immunization did not show T cell infiltrates in the brain of these mice, an Abeta vaccination trial resulted in meningoencephalitis in 6% of patients with AD. Here, we explore the characteristics and specificity of Abeta-induced, T cell-mediated encephalitis in a mouse model of the disease. We demonstrate that a strong Abeta-specific T cell response is critically dependent on the immunizing T cell epitope and that epitopes differ depending on MHC genetic background. Moreover, we show that a single immunization with the dominant T cell epitope Abeta10-24 induced transient meningoencephalitis only in amyloid precursor protein (APP)-transgenic (Tg) mice expressing limited amounts of IFN-gamma under an myelin basic protein (MBP) promoter. Furthermore, immune infiltrates were targeted primarily to sites of Abeta plaques in the brain and were associated with clearance of Abeta. Immune infiltrates were not targeted to the spinal cord, consistent with what was observed in AD patients vaccinated with Abeta. Using primary cultures of microglia, we show that IFN-gamma enhanced clearance of Abeta, microglia, and T cell motility, and microglia-T cell immunological synapse formation. Our study demonstrates that limited expression of IFN-gamma in the brain, as observed during normal brain aging, is essential to promote T cell-mediated immune infiltrates after Abeta immunization and provides a model to investigate both the beneficial and detrimental effects of Abeta-specific T cells.
Collapse
Affiliation(s)
- Alon Monsonego
- *National Institute of Biotechnology and Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Jaime Imitola
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115; and
| | - Sanja Petrovic
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115; and
| | - Victor Zota
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115; and
| | - Anna Nemirovsky
- *National Institute of Biotechnology and Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Rona Baron
- *National Institute of Biotechnology and Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yair Fisher
- *National Institute of Biotechnology and Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Trevor Owens
- Medical Biotechnology Centre, University of Southern Denmark, Winsloewparken 25, DK-5000 Odense C, Denmark
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115; and
| |
Collapse
|
778
|
Magnus T, Schreiner B, Korn T, Jack C, Guo H, Antel J, Ifergan I, Chen L, Bischof F, Bar-Or A, Wiendl H. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci 2006; 25:2537-46. [PMID: 15758163 PMCID: PMC6725171 DOI: 10.1523/jneurosci.4794-04.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation of the CNS is usually locally limited to avoid devastating consequences. Critical players involved in this immune regulatory process are the resident immune cells of the brain, the microglia. Interactions between the growing family of B7 costimulatory ligands and their receptors are increasingly recognized as important pathways for costimulation and/or inhibition of immune responses. Human and mouse microglial cells constitutively express B7 homolog 1 (B7-H1) in vitro. However, under inflammatory conditions [presence of interferon-gamma (IFN-gamma) or T-helper 1 supernatants], a significant upregulation of B7-H1 was detectable. Expression levels of B7-H1 protein on microglial cells were substantially higher compared with astrocytes or splenocytes. Coculture experiments of major histocompatibility complex class II-positive antigen-presenting cells (APC) with syngeneic T cells in the presence of antigen demonstrated the functional consequences of B7-H1 expression on T-cell activation. In the presence of a neutralizing anti-B7-H1 antibody, both the production of inflammatory cytokines (IFN-gamma and interleukin-2) and the upregulation of activation markers (inducible costimulatory signal) by T cells were markedly enhanced. Interestingly, this effect was clearly more pronounced when microglial cells were used as APC, compared with astrocytes or splenocytes. Furthermore, B7-H1 was highly upregulated during the course of myelin oligodendrocyte glycoprotein-induced and proteolipid protein-induced experimental allergic encephalomyelitis in vivo. Expression was predominantly localized to areas of strongest inflammation and could be colocalized with microglial cells/macrophages as well as T cells. Together, our data propose microglial B7-H1 as an important immune inhibitory molecule capable of downregulating T-cell activation in the CNS and thus confining immunopathological damage.
Collapse
MESH Headings
- Animals
- Autoimmunity/physiology
- B7-1 Antigen/biosynthesis
- B7-1 Antigen/physiology
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Coculture Techniques
- Down-Regulation/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Humans
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Tim Magnus
- Department of Neurology, University of Homburg, D-66424 Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
779
|
Park C, Lee S, Cho IH, Lee HK, Kim D, Choi SY, Oh SB, Park K, Kim JS, Lee SJ. TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia 2006; 53:248-56. [PMID: 16265667 DOI: 10.1002/glia.20278] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral infection is one of the leading causes of brain encephalitis and meningitis. Recently, it was reported that Toll-like receptor-3 (TLR3) induces a double-stranded RNA (dsRNA)-mediated inflammatory signal in the cells of the innate immune system, and studies suggested that dsRNA may induce inflammation in the central nervous system (CNS) by activating the CNS-resident glial cells. To explore further the connection between dsRNA and inflammation in the CNS, we have studied the effects of dsRNA stimulation in astrocytes. Our results show that the injection of polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, into the striatum of the mouse brain induces the activation of astrocytes and the expression of TNF-alpha, IFN-beta, and IP-10. Stimulation with poly(I:C) also induces the expression of these proinflammatory genes in primary astrocytes and in CRT-MG, a human astrocyte cell line. Furthermore, our studies on the intracellular signaling pathways reveal that poly(I:C) stimulation activates IkappaB kinase (IKK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in CRT-MG. Pharmacological inhibitors of nuclear factor-kappaB (NF-kappaB), JNK, ERK, glycogen synthase kinase-3beta (GSK-3beta), and dsRNA-activated protein kinase (PKR) inhibit the expression of IL-8 and IP-10 in astrocytes, indicating that the activation of these signaling molecules is required for the TLR3-mediated chemokine gene induction. Interestingly, the inhibition of PI3 kinase suppressed the expression of IP-10, but upregulated the expression of IL-8, suggesting differential roles for PI3 kinase, depending on the target genes. These data suggest that the TLR3 expressed on astrocytes may initiate an inflammatory response upon viral infection in the CNS.
Collapse
Affiliation(s)
- Chanhee Park
- Program in Cellular and Molecular Neuroscience and Department of Oral Physiology, College of Dentistry,Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
780
|
Wirenfeldt M, Babcock AA, Ladeby R, Lambertsen KL, Dagnaes-Hansen F, Leslie RGQ, Owens T, Finsen B. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. J Neurosci Res 2006; 82:507-14. [PMID: 16237722 DOI: 10.1002/jnr.20659] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microglia are bone marrow-derived cells that constitute a facultative macrophage population when activated by trauma or pathology in the CNS. Endogenous CNS-resident microglia as well as exogenous (immigrant) bone marrow-derived cells contribute to reactive microgliosis, raising fundamental questions about the cellular composition, kinetics, and functional characteristics of the reactive microglial cell population. Bone marrow chimeric mice reconstituted with green fluorescent protein-expressing (GFP(+)) donor bone marrow cells were subjected to entorhinal cortex lesion, resulting in selective axonal degeneration and a localized microglial reaction in the hippocampus. Flow cytometric evaluation of individually dissected hippocampi differentiated immigrant GFP(+) microglia from resident GFP(-) microglia (CD11b(+)CD45(dim)) and identified a subset of mainly resident CD11b(+) microglia that was induced to express CD34. The proportion of immigrant GFP(+) microglia (CD11b(+)CD45(dim)) increased signficantly by 3 and 5 days postlesion and reached a maximum of 13% by 7 days. These cells expressed lower CD11b levels than resident microglia, forming a distinct subpopulation on CD11b/CD45 profiles. The proportion of CD34(+)CD11b(+) microglia was significantly increased at 3 days postlesion but had normalized by 5 and 7 days, when the microglial reaction is known to be at its maximum. Our results show that distinct subpopulations of microglia respond to minor CNS injury. The heterogeneity in microglial response may have functional consequences for repair and possibly therapy.
Collapse
Affiliation(s)
- Martin Wirenfeldt
- Medical Biotechnology Center, University of Southern Denmark, Odense.
| | | | | | | | | | | | | | | |
Collapse
|
781
|
Fordyce CB, Jagasia R, Zhu X, Schlichter LC. Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 2006; 25:7139-49. [PMID: 16079396 PMCID: PMC6725234 DOI: 10.1523/jneurosci.1251-05.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.
Collapse
Affiliation(s)
- Christopher B Fordyce
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | |
Collapse
|
782
|
Perreau M, Kremer EJ. Frequency, proliferation, and activation of human memory T cells induced by a nonhuman adenovirus. J Virol 2006; 79:14595-605. [PMID: 16282459 PMCID: PMC1287557 DOI: 10.1128/jvi.79.23.14595-14605.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple human adenovirus (HAd) infections during childhood generate a memory T-cell (T(M)) response, which is the primary defense against HAd-induced morbidity. This cellular memory creates a conundrum for the potential clinical use of HAd-derived vectors: vector-mediated gene transfer is efficient in immunologically naïve mammals but will be compromised by memory immunity when using vectors derived from ubiquitous human pathogens. The potential lack of cellular and humoral memory is one reason we developed vectors from canine adenovirus serotype 2 (CAV-2). Here, we assayed human peripheral blood mononuclear cells for a T(M) response that could be stimulated by CAV-2 virion and individual capsid proteins. We found that less than half of the donors harbored a proliferating T(M) response directed against the CAV-2 virion (versus >85% against HAd5) in spite of a conserved antigenic Adenoviridae epitope in the CAV-2 hexon. When CAV-2 induced proliferation, it was 2.3- to >10-fold lower than HAd5 depending on the assay. The primary proliferating cells appeared to be memory (CD45RO+) CD4+ lymphocytes, differentiated into Th1 gamma interferon-producing cells, with a frequency that was up to 66-fold lower than that obtained for HAd5. We also compared CAV-2 to prototype HAd from five of the six human species and found that CAV-2-induced cellular proliferation was similar to that found with rare HAd serotypes. Individual CAV-2 capsid proteins also induced less proliferation than their HAd5 homologues. Our data suggest that CAV-2 vectors may be safer (i.e., less immunogenic) for gene transfer but are not without a theoretical risk in a subset of potential patients.
Collapse
|
783
|
Même W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C. Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB J 2006; 20:494-6. [PMID: 16423877 DOI: 10.1096/fj.05-4297fje] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Brain inflammation is characterized by a reactive gliosis involving the activation of astrocytes and microglia. This process, common to many brain injuries and diseases, underlies important phenotypic changes in these two glial cell types. One characteristic feature of astrocytes is their high level of intercellular communication mediated by gap junctions. Previously, we have reported that astrocyte gap junctional communication (AGJC) and the expression of connexin 43 (Cx43), the main constitutive protein of gap junctions, are inhibited in microglia (MG)-astrocyte cocultures. Here, we report that bacterial lipopolysaccharide activation of microglia increases their inhibitory effect on Cx43 expression and AGJC. This inhibition is mimicked by treating astrocyte cultures with conditioned medium harvested from activated microglia. Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were identified as being the main factors responsible for this conditioned medium-mediated activity. Interestingly, an inflammatory response characterized by MG activation and reactive astrocytes occurs in Alzheimer's disease, at sites of beta-amyloid (Abeta) deposits. We found that this peptide potentiates the inhibitory effect of a conditioned medium diluted at a concentration that is not effective per se. This potentiation is prevented by treating astrocytes with specific blockers of IL-1beta and TNF-alpha activities. Thus, the suppression of communication between astrocytes, induced by activated MG could contribute to the proposed role of reactive gliosis in this neurodegenerative disease.
Collapse
|
784
|
Powers JM, Pei Z, Heinzer AK, Deering R, Moser AB, Moser HW, Watkins PA, Smith KD. Adreno-leukodystrophy: oxidative stress of mice and men. J Neuropathol Exp Neurol 2006; 64:1067-79. [PMID: 16319717 DOI: 10.1097/01.jnen.0000190064.28559.a4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
X-linked adreno-leukodystrophy is a progressive, systemic peroxisomal disorder that affects primarily nervous system myelin and axons as well as the adrenal cortex. Several divergent clinical phenotypes can occur in the same family; thus, there is no correlation between the clinical phenotype and the mutation in the ABCD1 gene in this disease. The most urgent and unresolved clinical issue is the fulminant inflammatory (immune) demyelination of the central nervous system in which a variety of cellular participants, cytokines, and chemokines are noted. A knockout mouse model exhibits mitochondrial deficits and axonal degeneration, but not inflammatory demyelination. To determine whether oxidative stress and damage might play a pathogenic role, we assessed standard biochemical and immunohistochemical markers of such activity both in our knockout mouse model and patients. We find that oxidative stress, as judged by increased immunoreactivity for the mitochondrial manganese-superoxide dismutase, is present in the knockout mouse liver, adrenal cortex, and renal cortex, tissues that normally express high levels of ABCD1 but no evidence of oxidative damage. The brain does not exhibit either oxidative stress or damage. On the other hand, both the human adrenal cortex and brain show evidence of oxidative stress (e.g. hemoxygenase-1 and manganese-superoxide dismutase) and oxidative damage, particularly from lipid peroxidation (4-hydroxynonenal and malondialdehyde). The presence of nitrotyrosylated proteins is strong circumstantial evidence for the participation of the highly toxic peroxynitrite molecule, whereas the demonstration of interferon gamma and interleukin-12 is indicative of a TH1 response in the inflammatory demyelinative lesions of the cerebral phenotype. These differences between the adreno-leukodystrophy mouse and human patients are intriguing and may provide a clue to the phenotypic divergence in this disease.
Collapse
Affiliation(s)
- James M Powers
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
785
|
Falsig J, Pörzgen P, Lund S, Schrattenholz A, Leist M. The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. J Neurochem 2006; 96:893-907. [PMID: 16405499 DOI: 10.1111/j.1471-4159.2005.03622.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Upon injury, astrocytes assume an activated state associated with the release of inflammatory mediators. To model this, we stimulated murine primary astrocytes with a complete inflammatory cytokine mix consisting of TNF-alpha, IL-1beta and IFN-gamma. We analysed the transcriptional response of 480 genes at 4 and 16 h after stimulation on a chip designed to give a representative overview over the inflammation-relevant part of the transcriptome of macrophage-like cells. The list of the 182 genes found to be significantly regulated in astrocytes revealed an intriguing co-ordinate regulation of genes linked to the biological processes of antiviral/antimicrobial defence, antigen presentation and facilitation of leucocyte invasion. The latter group was characterized by very high up-regulations of chemokine genes. We also identified regulations of a thymidylate kinase and an interferon-regulated protein with a tetratricopeptide motive, both up to now only known from macrophages. The transcriptional regulations were confirmed on the protein level by a proteomic analysis. These findings taken together suggest that activated astrocytes in brain behave similarly in many respects to inflamed macrophages in the periphery.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/immunology
- Cell Cycle/genetics
- Cell Death/genetics
- Cells, Cultured
- Cerebral Cortex/cytology
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Cytokines/pharmacology
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay/methods
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Immunity, Innate/genetics
- Immunity, Innate/physiology
- Immunohistochemistry/methods
- Inflammation/genetics
- Inflammation/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Immunological
- Nitrites/metabolism
- Oligonucleotide Array Sequence Analysis/methods
- Pregnancy
- Proteomics/methods
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Stress, Physiological/genetics
- Time Factors
Collapse
Affiliation(s)
- Jeppe Falsig
- Institute of Neuropathology, University of Zürich, Schmelzbergstrasse 12, CH-8032 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
786
|
Gordo AC, Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D. Unconjugated bilirubin activates and damages microglia. J Neurosci Res 2006; 84:194-201. [PMID: 16612833 DOI: 10.1002/jnr.20857] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microglia are the resident immune cells of the brain and are the principal source of cytokines produced during central nervous system inflammation. We have previously shown that increased levels of unconjugated bilirubin (UCB), which can be detrimental to the central nervous system during neonatal life, induce the secretion of inflammatory cytokines and glutamate by astrocytes. Nevertheless, the effect of UCB on microglia has never been investigated. Hence, the main goal of the present study was to evaluate whether UCB leads to microglial activation and to the release of the cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6. Additionally, we investigated the effects of UCB on glutamate efflux and cell death. The results showed that UCB induces morphological changes characteristic of activated microglia and the release of high levels of TNF-alpha, IL-1beta, and IL-6 in a concentration-dependent manner. In addition, UCB triggered extracellular accumulation of glutamate and an increased cell death by apoptosis and necrosis. These results demonstrate, for the first time, that UCB is toxic to microglial cells and point to microglia as an important target of UCB in the central nervous system. Moreover, they suggest that UCB-induced cytokine production, by mediating cell injury, can further contribute to exacerbate neurototoxicity. Interestingly, microglia cells are much more responsive to UCB than astrocytes. Collectively, these data indicate that microglia may play an important role in the pathogenesis of encephalopathy during severe hyperbilirubinemia.
Collapse
Affiliation(s)
- Ana C Gordo
- Centro de Patogénese Molecular-UBMBE, Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
787
|
Is There Any Role for Innate Immunity in the Pathogenesis of Bacterial and Abacterial Meningitis? INFECTIOUS DISEASES IN CLINICAL PRACTICE 2006. [DOI: 10.1097/01.idc.0000189268.02303.a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
788
|
Gómez-Nicola D, Doncel-Pérez E, Nieto-Sampedro M. Regulation by GD3 of the proinflammatory response of microglia mediated by interleukin-15. J Neurosci Res 2006; 83:754-62. [PMID: 16477650 DOI: 10.1002/jnr.20777] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interleukin (IL)-15-dependent immune responses of murine microglia were strongly affected by low concentrations of the ganglioside GD3. The ganglioside binding to IL-15 inhibited the proinflammatory effects of the cytokine, reducing IL-15-dependent T-cell proliferation as well as mRNA expression for IL-15Ralpha, p65, and NFATc2 in the N13 murine microglial cell line. Treatment of primary murine microglial cultures with GD3 abolished IL-15 production, without affecting cellular viability, but decreased the production of nitric oxide, a direct sensor of inflammation and nuclear factor-kappaB activity. We conclude that low doses of GD3 could inhibit specific proinflammatory mechanisms and modulate the inflammatory environment, leading to a less reactive scene. Microglial cells are one of the main actors in the inflammatory events that follow CNS trauma or an autoimmune disease episode, modulating the internal production of cytokines, growth factors, and other homeostatic molecules that may determine the evolution and outcome of tissue damage. Proinflammatory cytokines have a relevant role in the initial events, and modulation of their activity by gangliosides could cut down their harmful effects and interfere with invasion of the CNS by peripheral immune cells. The antiinflammatory properties of GD3 could be significant in the treatment of pain subsequent to CNS damage.
Collapse
Affiliation(s)
- Diego Gómez-Nicola
- Neural Plasticity Department, Instituto Ramón y Cajal de Neurobiología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
789
|
Bessis A, Béchade C, Bernard D, Roumier A. Microglial control of neuronal death and synaptic properties. Glia 2006; 55:233-8. [PMID: 17106878 DOI: 10.1002/glia.20459] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microglia have long been characterized by their immune function in the nervous system and are still mainly considered in a beneficial versus detrimental dialectic. However a review of literature enables to shed novel lights on microglial function under physiological conditions. It is now relevant to position these cells as full time partners of neuronal function and more specifically of synaptogenesis and developmental apoptosis. Indeed, microglia can actively control neuronal death. It has actually been shown in retina that microglial nerve growth factor (NGF) is necessary for the developmental apoptosis to occur. Similarly, in cerebellum, microglia induces developmental Purkinje cells death through respiratory burst. Furthermore, in spinal cord, microglial TNFalpha commits motoneurons to a neurotrophic dependent developmental apoptosis. Microglia can also control synaptogenesis. This is suggested by the fact that a mutation in KARAP/DAP12, a key protein of microglial activation impacts synaptic functions in hippocampus, and synapses protein content. In addition it has been now demonstrated that microglial brain-derived neurotrophin factor (BDNF) directly regulates synaptic properties in spinal cord. In conclusion, microglia can control neuronal function under physiological conditions and it is known that neuronal activity reciprocally controls microglial activation. We will discuss the importance of this cross-talk which allows microglia to orchestrate the balance between synaptogenesis and neuronal death occurring during development or injuries.
Collapse
Affiliation(s)
- Alain Bessis
- Biologie Cellulaire de la Synapse, Inserm U789, Ecole Normale Supérieure, 46 rue d'Ulm 75005 Paris, France.
| | | | | | | |
Collapse
|
790
|
Thomas DM, Francescutti-Verbeem DM, Kuhn DM. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J 2005; 20:515-7. [PMID: 16384912 DOI: 10.1096/fj.05-4873fje] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microglia are the resident antigen-presenting cells within the central nervous system (CNS), and they serve immune-like functions in protecting the brain against injury and invading pathogens. By contrast, activated microglia can secrete numerous reactants that damage neurons. The pathogenesis of various neurodegenerative diseases has been associated with microglial activation, but the signaling pathways that program a neuronally protective or destructive phenotype in microglia are not known. To increase the understanding of microglial activation, microarray analysis was used to profile the transcriptome of BV-2 microglial cells after activation. Microglia were activated by lipopolysaccharide, the HIV neurotoxic protein TAT, and dopamine quinone, each of which has been linked to dopamine neuronal damage. We identified 210 of 9882 genes whose expression was differentially regulated by all activators (116 increased and 94 decreased in expression). Gene ontology analysis assigned up-regulated genes to a number of specific biological processes and molecular functions, including immune response, inflammation, and cytokine/chemokine activity. Genes down-regulated in expression contribute to conditions that are permissive of microglial migration, lowered adhesion to matrix, lessened phagocytosis, and reduction in receptors that oppose chemotaxis and inflammation. These results elaborate a broad profile of microglial genes whose expression is altered by conditions associated with both neurodegenerative diseases and microglial activation.
Collapse
Affiliation(s)
- David M Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | |
Collapse
|
791
|
Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2005; 2:29. [PMID: 16343349 PMCID: PMC1352348 DOI: 10.1186/1742-2094-2-29] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 12/12/2005] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), multiple sclerosis (MS), and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2). METHODS In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-gamma using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA) analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Abeta1-42 peptide using a phagocytosis assay. RESULTS We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-gamma-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-gamma-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-alpha and nitric oxide production induced either by IFN-gamma or Abeta peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Abeta1-42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Jared Ehrhart
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Demian Obregon
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Takashi Mori
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
- Institute of Medical Science, Saitama Medical School, Saitama 350-8550, Japan
| | - Huayan Hou
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Nan Sun
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Yun Bai
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
- Department of Molecular Genetics, the Third Medical University, Chongqing, China
| | - Thomas Klein
- Department of Medical Microbiology and Immunology, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Francisco Fernandez
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Jun Tan
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
- Department of Medical Microbiology and Immunology, University of South Florida College of Medicine, Tampa, FL 33613, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33613, USA
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - R Douglas Shytle
- Neuroimmunlogy Laboratory, Silver Child Development Center, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33613, USA
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, Tampa, FL 33613, USA
| |
Collapse
|
792
|
Zhou J, Fonseca MI, Kayed R, Hernandez I, Webster SD, Yazan O, Cribbs DH, Glabe CG, Tenner AJ. Novel Abeta peptide immunogens modulate plaque pathology and inflammation in a murine model of Alzheimer's disease. J Neuroinflammation 2005; 2:28. [PMID: 16332263 PMCID: PMC1326209 DOI: 10.1186/1742-2094-2-28] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 12/07/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease, a common dementia of the elder, is characterized by accumulation of protein amyloid deposits in the brain. Immunization to prevent this accumulation has been proposed as a therapeutic possibility, although adverse inflammatory reactions in human trials indicate the need for novel vaccination strategies. METHOD Here vaccination with novel amyloid peptide immunogens was assessed in a transgenic mouse model displaying age-related accumulation of fibrillar plaques. RESULTS Immunization with any conformation of the amyloid peptide initiated at 12 months of age (at which time fibrillar amyloid has just begun to accumulate) showed significant decrease in total and fibrillar amyloid deposits and in glial reactivity relative to control transgenic animals. In contrast, there was no significant decrease in amyloid deposition or glial activation in mice in which vaccination was initiated at 16 months of age, despite the presence of similar levels anti-Abeta antibodies in young and old animals vaccinated with a given immunogen. Interestingly, immunization with an oligomeric conformation of Abeta was equally as effective as other amyloid peptides at reducing plaque accumulation. However, the antibodies generated by immunization with the oligomeric conformation of Abeta have more limited epitope reactivity than those generated by fAbeta, and the microglial response was significantly less robust. CONCLUSION These results suggest that a more specific immunogen such as oligomeric Abeta can be designed that achieves the goal of depleting amyloid while reducing potential detrimental inflammatory reactions. In addition, the data show that active immunization of older Tg2576 mice with any amyloid conformation is not as efficient at reducing amyloid accumulation and related pathology as immunization of younger mice, and that serum anti-amyloid antibody levels are not quantitatively related to reduced amyloid-associated pathology.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Maria I Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rakez Kayed
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Irma Hernandez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | - Ozkan Yazan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - David H Cribbs
- Department of Neurology, University of California, Irvine, College of Medicine, Irvine, CA 92697, USA
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697, USA
| | - Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697, USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Institute for Brain Aging and Dementia, University of California, Irvine, CA 92697, USA
- Center for Immunology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
793
|
Donnou S, Fisson S, Mahe D, Montoni A, Couez D. Identification of new CNS-resident macrophage subpopulation molecular markers for the discrimination with murine systemic macrophages. J Neuroimmunol 2005; 169:39-49. [PMID: 16169092 DOI: 10.1016/j.jneuroim.2005.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 07/27/2005] [Indexed: 12/30/2022]
Abstract
A controversial issue in neurobiology concerns the respective functions of central nervous system (CNS)-resident macrophages and systemic infiltrating macrophages morphologically and phenotypically similar during most of CNS injury processes. In a previous work, we isolated sixteen mRNAs differentially expressed between two microglial EOC clones. By studying their pattern of expression, we found that three of them were not expressed in peripheral macrophages, even after stimulation with IFNgamma, TNFalpha or IL10. These three molecules are physiologically expressed by murine adult microglia and could be used to evaluate in vivo their discriminative potential toward CNS-infiltrating macrophages during inflammatory events.
Collapse
Affiliation(s)
- Sabrina Donnou
- Laboratoire de Biologie Moléculaire, Immunologie et Thérapeutique des Cancers (UPRES EA 3140), CHU, bâtiment Monteclair, 4 rue Larrey, 49033 ANGERS cedex 01, France
| | | | | | | | | |
Collapse
|
794
|
Choi SH, Lee DY, Chung ES, Hong YB, Kim SU, Jin BK. Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J Neurochem 2005; 95:1755-65. [PMID: 16219027 DOI: 10.1111/j.1471-4159.2005.03503.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study shows that activation of microglial NADPH oxidase and production of reactive oxygen species (ROS) is associated with thrombin-induced degeneration of nigral dopaminergic neurons in vivo. Seven days after thrombin injection in the rat substantia nigra (SN), tyrosine hydroxylase immunocytochemistry showed a significant loss of nigral dopaminergic neurons. This cell death was accompanied by localization of terminal deoxynucleotidyl transferase-mediated fluorecein UTP nick-end labelling (TUNEL) staining within dopaminergic neurons. This neurotoxicity was antagonized by the semisynthetic tetracycline derivative, minocycline, and the observed neuroprotective effects were associated with the ability of minocycline to suppress NADPH oxidase-derived ROS production and pro-inflammatory cytokine expression, including interleukin-1beta and inducible nitric oxide synthase, from activated microglia. These results suggest that microglial NADPH oxidase may be a viable target for neuroprotection against oxidative damage.
Collapse
Affiliation(s)
- Sang H Choi
- Neuroscience Graduate Program and Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
795
|
Abstract
The enteric nervous system is composed of both neurons and glia. Recent evidence indicates that enteric glia-which vastly outnumber enteric neurons-are actively involved in the control of gastrointestinal functions: they contain neurotransmitter precursors, have the machinery for uptake and degradation of neuroligands, and express neurotransmitter-receptors which makes them well suited as intermediaries in enteric neurotransmission and information processing in the ENS. Novel data further suggest that enteric glia have an important role in maintaining the integrity of the mucosal barrier of the gut. Finally, enteric glia may also serve as a link between the nervous and immune systems of the gut as indicated by their potential to synthesize cytokines, present antigen and respond to inflammatory insults. The role of enteric glia in human disease has not yet been systematically studied, but based on the available evidence it is predictable that enteric glia are involved in the etiopathogenesis of various pathological processes in the gut, particularly such with neuroinflammatory or neurodegenerative components.
Collapse
Affiliation(s)
- A Rühl
- Department of Human Biology, Technical University of Munich, Germany.
| |
Collapse
|
796
|
Abstract
Autism is a complex neurodevelopmental disorder of early onset that is highly variable in its clinical presentation. Although the causes of autism in most patients remain unknown, several lines of research support the view that both genetic and environmental factors influence the development of abnormal cortical circuitry that underlies autistic cognitive processes and behaviors. The role of the immune system in the development of autism is controversial. Several studies showing peripheral immune abnormalities support immune hypotheses, however until recently there have been no immune findings in the CNS. We recently demonstrated the presence of neuroglial and innate neuroimmune system activation in brain tissue and cerebrospinal fluid of patients with autism, findings that support the view that neuroimmune abnormalities occur in the brain of autistic patients and may contribute to the diversity of the autistic phenotypes. The role of neuroglial activation and neuroinflammation are still uncertain but could be critical in maintaining, if not also in initiating, some of the CNS abnormalities present in autism. A better understanding of the role of neuroinflammation in the pathogenesis of autism may have important clinical and therapeutic implications.
Collapse
Affiliation(s)
- Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
797
|
Hinkerohe D, Smikalla D, Haghikia A, Heupel K, Haase CG, Dermietzel R, Faustmann PM. Effects of cytokines on microglial phenotypes and astroglial coupling in an inflammatory coculture model. Glia 2005; 52:85-97. [PMID: 15920725 DOI: 10.1002/glia.20223] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytokines play an important role in the onset, regulation, and propagation of immune and inflammatory responses within the central nervous system (CNS). The main source of cytokines in the CNS are microglial cells. Under inflammatory conditions, microglial cells are capable of producing pro- and antiinflammatory cytokines, which convey essential impact on the glial and neuronal environment. One paramount functional feature of astrocytes is their ability to form a functionally coupled syncytium. The structural link, which is responsible for the syncytial behavior of astrocytes, is provided by gap junctions. The present study was performed to evaluate the influence of inflammation related cytokines on an astroglial/microglial inflammatory model. Primary astrocytic cultures of newborn rats were cocultured with either 5% (M5) or 30% (M30) microglial cells and were incubated with the following proinflammatory cytokines: tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), interferon-gamma (IFN-gamma), and the antiinflammatory cytokines transforming growth factor-beta1 (TGF-beta1) and IFN-beta. Under these conditions, i.e., incubation with the inflammatory cytokines and the high fraction of microglia (M30), microglial cells revealed a significant increase of activated round phagocytotic cells accompanied by a reduction of astroglial connexin 43 (Cx43) expression, a reduced functional coupling together with depolarization of the membrane resting potential (MRP). When the antiinflammatory mediator TGF-beta1 was added to proinflammatory altered M30 cocultures, a reversion of microglial activation and reconstitution of functional coupling together with recovery of the astroglial MRP was achieved. Finally IFN-beta, added to M5 cocultures was able to prevent the effects of the proinflammatory cytokines TNF-alpha, IL-1beta, and IFN-gamma.
Collapse
Affiliation(s)
- Daniel Hinkerohe
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
798
|
Kanno M, Suzuki S, Fujiwara T, Yokoyama A, Sakamoto A, Takahashi H, Imai Y, Tanaka J. Functional expression of CCL6 by rat microglia: a possible role of CCL6 in cell-cell communication. J Neuroimmunol 2005; 167:72-80. [PMID: 16087246 DOI: 10.1016/j.jneuroim.2005.06.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 06/20/2005] [Indexed: 02/02/2023]
Abstract
There is growing evidence that chemokines play important roles in the immune surveillance of central nervous system (CNS). In the CNS, microglia are primary immune effector cells and secrete various chemokines in response to their microenvironment. Using the RT-PCR procedure and indirect immunofluorescence analysis, we found that CCL6 (known as C10/MRP-1 in mouse) was expressed in rat primary microglia without any stimulation, but not in primary astrocytes, although both cell types expressed CCR1 mRNA, which is a receptor for CCL6. Furthermore, immunohistochemical analysis demonstrated that microglia produced CCL6 protein in a normal brain, suggesting that microglia may be the primary source of CCL6 in a normal brain. Recombinant rat CCL6 mediated the migration of microglia and astrocytes in vitro. The CCL6-mediated cell migration was blocked by treating the cells with LY294002, a PI3-kinase inhibitor and Western blot analysis showed that the phosphorylation of Akt could be induced by treating microglia with a recombinant CCL6, suggesting that CCL6 functions by activating the PI3-kinase/Akt pathway. A proinflammatory cytokine, interferon-gamma enhanced the expression of both CCL6 mRNA and protein in microglia, while other proinflammatory cytokines, interleukin-6 and tumor necrosis factor-alpha and an anti-inflammatory cytokine, transforming growth factor-beta exerted no effect on CCL6 expression in microglia. These findings suggest that CCL6 may be a mediator released by microglia for cell-cell communication under physiological as well as pathological conditions of CNS.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Blotting, Western/methods
- Cell Communication/physiology
- Cell Count/methods
- Cells, Cultured
- Chemokines, CC/genetics
- Chemokines, CC/pharmacology
- Chemokines, CC/physiology
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Chromones/pharmacology
- Cloning, Molecular/methods
- Cytokines/pharmacology
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Fluorescent Antibody Technique/methods
- Gene Expression/drug effects
- Gene Expression/physiology
- Interferon-gamma/metabolism
- Interleukin-6/metabolism
- Lectins/metabolism
- Mice
- Microglia/drug effects
- Microglia/metabolism
- Morpholines/pharmacology
- Prosencephalon/cytology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Time Factors
- Tissue Distribution
- Transforming Growth Factor beta/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Motoko Kanno
- Division of Molecular and Cellular Physiology, Department of Molecular and Cellular Biology, School of Medicine, Ehime University, Toon City, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
799
|
Sikorski CW, Lesniak MS. Immunotherapy for malignant glioma: current approaches and future directions. Neurol Res 2005; 27:703-16. [PMID: 16197807 DOI: 10.1179/016164105x49481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Traditional therapies for the treatment of malignant glioma have failed to make appreciable gains regarding patient outcome in the last decade. Therefore, immunotherapeutic approaches have become increasingly popular in the treatment of this cancer. This article reviews general immunology of the central nervous system and the immunobiology of malignant glioma to provide a foundation for understanding the rationale behind current glioma immunotherapies. A review of currently implemented immunological treatments is then provided with special attention paid to the use of vaccines, gene therapy, cytokines, dendritic cells and viruses. Insights into future and developing avenues of glioma immunotherapy, such as novel delivery systems, are also discussed.
Collapse
Affiliation(s)
- Christian W Sikorski
- Division of Neurosurgery, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, Illinois 60637, USA
| | | |
Collapse
|
800
|
Nakamichi K, Saiki M, Sawada M, Yamamuro Y, Morimoto K, Kurane I. Double-stranded RNA stimulates chemokine expression in microglia through vacuolar pH-dependent activation of intracellular signaling pathways. J Neurochem 2005; 95:273-83. [PMID: 16181431 DOI: 10.1111/j.1471-4159.2005.03354.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During neurotropic virus infection, microglia act as a source of chemokines, thereby regulating the recruitment of peripheral leukocytes and the multicellular immune response within the CNS. Herein, we present a comprehensive study on the chemokine production by microglia in response to double-stranded RNA (dsRNA), a conserved molecular pattern of virus infection. Transcriptional analyses of chemokine genes revealed that dsRNA strongly induces the expression of CXC chemokine ligand 10 (CXCL10) and CC chemokine ligand 5 (CCL5) in microglia. We also observed that the dsRNA stimulation triggered the activation of signaling pathways mediated by nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK). The microglial CXCL10 response to dsRNA was induced via NF-kappaB, p38, and JNK pathways, whereas the dsRNA-induced CCL5 production was dependent on JNK, but not on the other signal-transducing molecules tested. In addition, the acidic environment of intracellular vesicles was required for the activation of cellular signaling in response to dsRNA. Taken together, these results suggest that the recognition of dsRNA structure selectively induces the CXCL10 and CCL5 responses in microglia through vacuolar pH-dependent activation of NF-kappaB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|