751
|
The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury. Brain Res 2018; 1697:10-20. [DOI: 10.1016/j.brainres.2018.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
|
752
|
Varenicline reduces DNA damage, tau mislocalization and post surgical cognitive impairment in aged mice. Neuropharmacology 2018; 143:217-227. [PMID: 30273594 DOI: 10.1016/j.neuropharm.2018.09.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Postoperative cognitive dysfunction (POCD) occurs more frequently in elderly patients undergoing major surgery. Age associated cholinergic imbalance may exacerbate postoperative systemic and neuroinflammation, but the effect nicotinic acetylcholine receptor (nAchR) stimulation on the development of POCD remains unclear. Aged male C57BL/6N mice (18 months old) underwent a midline laparotomy or were exposed to sevoflurane anesthesia alone (4-5%), with or without concomitant varenicline, a partial nAchR, at 1 mg/kg/day. Laparotomy increased pro-inflammatory cytokines in the liver and hippocampus (IL-1β and MCP-1) and induced a decline in cognitive performance, indicated by lower discrimination index in the Novel Object Recognition test, greater error number and longer escape latency in the Y-maze test. Glia activation, aberrant tau phosphorylation (AT8) and accumulation of phosphorylated H2AX in the hippocampus were detectable up to postoperative day 14, with neuronal apoptosis seen in the hippocampus. Perioperative varenicline attenuated the cognitive decline and associated tau protein mislocalization, DNA damage and neuronal apoptosis. The modulation of JAK2/STAT3 signaling may play a critical role in this process. Neuroinflammation, tau phosphorylation and DNA damage contribute to the development of cognitive dysfunction following laparotomy. Cholinergic stimulation by varenicline attenuated these changes through preventing the mislocalization of phosphorylated tau and DNA damage.
Collapse
|
753
|
Goyal K, Konar A, Kumar BSH, Koul V. Lactoferrin-conjugated pH and redox-sensitive polymersomes based on PEG-S-S-PLA-PCL-OH boost delivery of bacosides to the brain. NANOSCALE 2018; 10:17781-17798. [PMID: 30215650 DOI: 10.1039/c8nr03828g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, engineered lactoferrin (Lf)-conjugated pH and redox-sensitive polymersomes derived from the triblock copolymer polyethylene glycol-S-S-polylactic acid-polycaprolactone (PEG-S-S-PLA-PCL-OH) have been used to deliver bacosides to the brain. Bacosides are classified as triterpenoid saponins and are used in Indian Ayurveda for reversal of amnesia; however, no study has extensively demonstrated their efficacy as a nano-formulation in an animal model. The polymer was synthesized by ring opening polymerization of lactide and ε-caprolactone. The nanoparticles obtained by nanoprecipitation showed a core-shell morphology, with an average size of 110 nm, by transmission electron microscopy (TEM). The colloidal stability, hemocompatibility and cytocompatibility of the polymersomes proved their biocompatibility. pH and disulfide linkages in the polymeric chain accelerated the disintegration of the polymersomes at pH 6.6 and at pH 6.6 with glutathione (GSH) in comparison to pH 7.4, supporting their degradation behavior. Supermagnetic iron oxide nanoparticles (SPIONs, 74.99 μg mg-1 polymer) encapsulated into the polymersomes demonstrated their uptake in a mouse model by MRI. Furthermore, bacosides encapsulated in the polymersomes (10% loading) showed significant memory loss reversal in chemically induced amnesic mice, supported by the gene expression profiles of Arc, BDNF and CREB as well as by histopathology.
Collapse
Affiliation(s)
- Kritika Goyal
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, India.
| | | | | | | |
Collapse
|
754
|
Liang B, Zhang L, Barbera G, Fang W, Zhang J, Chen X, Chen R, Li Y, Lin DT. Distinct and Dynamic ON and OFF Neural Ensembles in the Prefrontal Cortex Code Social Exploration. Neuron 2018; 100:700-714.e9. [PMID: 30269987 DOI: 10.1016/j.neuron.2018.08.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023]
Abstract
The medial prefrontal cortex (mPFC) is important for social behavior, but the mechanisms by which mPFC neurons code real-time social exploration remain largely unknown. Here we utilized miniScopes to record calcium activities from hundreds of excitatory neurons in the mPFC while mice freely explored restrained social targets in the absence or presence of the psychedelic drug phencyclidine (PCP). We identified distinct and dynamic ON and OFF neural ensembles that displayed opposing activities to code real-time behavioral information. We further illustrated that ON and OFF ensembles tuned to social exploration carried information of salience and novelty for social targets. Finally, we showed that dysfunctions in these ensembles were associated with abnormal social exploration elicited by PCP. Our findings underscore the importance of mPFC ON and OFF neural ensembles for proper exploratory behavior, including social exploration, and pave the way for future studies elucidating neural circuit dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Bo Liang
- Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Lifeng Zhang
- Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Wenting Fang
- Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA; Department of Neurology, Union Hospital, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jing Zhang
- Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA; Fujian Institute of Geriatrics, Union Hospital, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaochun Chen
- Department of Neurology, Union Hospital, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100 N. Greene Street, Baltimore, MD 21205, USA
| | - Yun Li
- Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA; Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, USA.
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, NIH, 333 Cassell Drive, Baltimore, MD 21224, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
755
|
Stefanoska K, Bertz J, Volkerling AM, van der Hoven J, Ittner LM, Ittner A. Neuronal MAP kinase p38α inhibits c-Jun N-terminal kinase to modulate anxiety-related behaviour. Sci Rep 2018; 8:14296. [PMID: 30250211 PMCID: PMC6155170 DOI: 10.1038/s41598-018-32592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Modulation of behavioural responses by neuronal signalling pathways remains incompletely understood. Signalling via mitogen-activated protein (MAP) kinase cascades regulates multiple neuronal functions. Here, we show that neuronal p38α, a MAP kinase of the p38 kinase family, has a critical and specific role in modulating anxiety-related behaviour in mice. Neuron-specific p38α-knockout mice show increased levels of anxiety in behaviour tests, yet no other behavioural, cognitive or motor deficits. Using CRISPR-mediated deletion of p38α in cells, we show that p38α inhibits c-Jun N-terminal kinase (JNK) activity, a function that is specific to p38α over other p38 kinases. Consistently, brains of neuron-specific p38α-knockout mice show increased JNK activity. Inhibiting JNK using a specific blood-brain barrier-permeable inhibitor reduces JNK activity in brains of p38α-knockout mice to physiological levels and reverts anxiety behaviour. Thus, our results suggest that neuronal p38α negatively regulates JNK activity that is required for specific modulation of anxiety-related behaviour.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander M Volkerling
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.,Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
756
|
Provensi G, Costa A, Izquierdo I, Blandina P, Passani MB. Brain histamine modulates recognition memory: possible implications in major cognitive disorders. Br J Pharmacol 2018; 177:539-556. [PMID: 30129226 DOI: 10.1111/bph.14478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022] Open
Abstract
Several behavioural tests have been developed to study and measure emotionally charged or emotionally neutral memories and how these may be affected by pharmacological, dietary or environmental manipulations. In this review, we describe the experimental paradigms used in preclinical studies to unravel the brain circuits involved in the recognition and memorization of environmentally salient stimuli devoid of strong emotional value. In particular, we focus on the modulatory role of the brain histaminergic system in the elaboration of recognition memory that is based on the judgement of the prior occurrence of an event, and it is believed to be a critical component of human declarative memory. The review also addresses questions that may help improve the treatment of impaired declarative memory described in several affective and neuropsychiatric disorders such as ADHD, Alzheimer's disease and major neurocognitive disorder. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Costa
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrizio Blandina
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Beatrice Passani
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
757
|
Angiopoietin/Tie2 Axis Regulates the Age-at-Injury Cerebrovascular Response to Traumatic Brain Injury. J Neurosci 2018; 38:9618-9634. [PMID: 30242049 DOI: 10.1523/jneurosci.0914-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/15/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Although age-at-injury influences chronic recovery from traumatic brain injury (TBI), the differential effects of age on early outcome remain understudied. Using a male murine model of moderate contusion injury, we investigated the underlying mechanism(s) regulating the distinct response between juvenile and adult TBI. We demonstrate similar biomechanical and physical properties of naive juvenile and adult brains. However, following controlled cortical impact (CCI), juvenile mice displayed reduced cortical lesion formation, cell death, and behavioral deficits at 4 and 14 d. Analysis of high-resolution laser Doppler imaging showed a similar loss of cerebral blood flow (CBF) in the ipsilateral cortex at 3 and 24 h post-CCI, whereas juvenile mice showed enhanced subsequent restoration at 2-4 d compared with adults. These findings correlated with reduced blood-brain barrier (BBB) disruption and increased perilesional vessel density. To address whether an age-dependent endothelial cell (EC) response affects vessel stability and tissue outcome, we magnetically isolated CD31+ ECs from sham and injured cortices and evaluated mRNA expression. Interestingly, we found increased transcripts for BBB stability-related genes and reduced expression of BBB-disrupting genes in juveniles compared with adults. These differences were concomitant with significant changes in miRNA-21-5p and miR-148a levels. Accompanying these findings was robust GFAP immunoreactivity, which was not resolved by day 35. Importantly, pharmacological inhibition of EC-specific Tie2 signaling abolished the juvenile protective effects. These findings shed new mechanistic light on the divergent effects that age plays on acute TBI outcome that are both spatial and temporal dependent.SIGNIFICANCE STATEMENT Although a clear "window of susceptibility" exists in the developing brain that could deter typical developmental trajectories if exposed to trauma, a number of preclinical models have demonstrated evidence of early recovery in younger patients. Our findings further demonstrate acute neuroprotection and improved restoration of cerebral blood flow in juvenile mice subjected to cortical contusion injury compared with adults. We also demonstrate a novel role for endothelial cell-specific Tie2 signaling in this age-related response, which is known to promote barrier stability, is heightened in the injured juvenile vasculature, and may be exploited for therapeutic interventions across the age spectrum following traumatic brain injury.
Collapse
|
758
|
Pan S, Wu Y, Pei L, Li S, Song L, Xia H, Wang Y, Yu Y, Yang X, Shu H, Zhang J, Yuan S, Shang Y. BML-111 Reduces Neuroinflammation and Cognitive Impairment in Mice With Sepsis via the SIRT1/NF-κB Signaling Pathway. Front Cell Neurosci 2018; 12:267. [PMID: 30186119 PMCID: PMC6110933 DOI: 10.3389/fncel.2018.00267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023] Open
Abstract
Sepsis is a life-threatening state of organ dysfunction caused by infection and which can induce severe neurological disorders that lead to neuroinflammation and cognitive impairment. Inflammation has been reported to cause neuronal apoptosis in sepsis, which can finally lead to cognitive impairment. Previous studies have suggested that BML-111 can exhibit anti-inflammatory and proresolution activities. Additionally, silent information regulator 1 (SIRT1) can inhibit the NF-κB signaling pathway in an inflammation state. However, the role of the SIRT1/NF-κB signaling pathway in the protective effects of BML-111 against sepsis-induced neuroinflammation and cognitive impairment remains unclear. This study aimed to determine the effects of BML-111 on neuroinflammation and cognitive impairment induced by sepsis. Male C57BL/6J mice were subjected to cecal ligation and puncture (CLP) or a sham operation. BML-111 was administered via intracerebroventricular injection (0.1 mg/kg) immediately after CLP. Boc-2 (50 μg/kg) was administered intracerebroventricularly 30 min before CLP, and EX527 (10 μg) was administered every 2 days for a total of three times before CLP, also intracerebroventricularly. Some of the surviving mice underwent open-field, novel-object-recognition, and fear-conditioning behavioral tests at 7 days after surgery. Some of the other surviving mice were killed at 24 h after surgery to assess synaptic damage (PSD95 and Synapsin1), markers of inflammation [tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β], cytoplasmic p65, nuclear p65, Ac- NF-κB and SIRT1. At 48 h after CLP, TUNEL and glia-activation by immunofluorescence investigations were performed on a separate cohort of surviving animals. The results suggested that sepsis resulted in cognitive impairment, which was accompanied by the decreased the expression of PSD95 and Synapsin1, increased amount of TUNEL-positive cells and the activation of glias, increased production of TNF-α and IL-1β, increased expression of nuclear p65, Ac- NF-κB, and decreased expression of SIRT1 and cytoplasmic p65. It is especially notable that these abnormalities could be reduced by BML-111 treatment. EX527, an SIRT1 inhibitor, abolished the effects of BML-111. These results demonstrate that BML-111 can reduce the neuroinflammation and cognitive impairment induced by sepsis via SIRT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengnan Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
759
|
Increased Synthesis of Chondroitin Sulfate Proteoglycan Promotes Adult Hippocampal Neurogenesis in Response to Enriched Environment. J Neurosci 2018; 38:8496-8513. [PMID: 30126967 DOI: 10.1523/jneurosci.0632-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chondroitin sulfate proteoglycan (CSPG) is a candidate regulator of embryonic neurogenesis. The aim of this study was to specify the functional significance of CSPG in adult hippocampal neurogenesis using male mice. Here, we showed that neural stem cells and neuronal progenitors in the dentate gyrus were covered in part by CSPG. Pharmacological depletion of CSPG in the dentate gyrus reduced the densities of neuronal progenitors and newborn granule cells. 3D reconstruction of newborn granule cells showed that their maturation was inhibited by CSPG digestion. The novel object recognition test revealed that CSPG digestion caused cognitive memory impairment. Western blot analysis showed that expression of β-catenin in the dentate gyrus was decreased by CSPG digestion. The amount of CSPG in the dentate gyrus was increased by enriched environment (EE) and was decreased by forced swim stress. In addition, EE accelerated the recovery of CSPG expression in the dentate gyrus from the pharmacological depletion and promoted the restoration of granule cell production. Conversely, the densities of newborn granule cells were also decreased in mice that lacked chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGalNAcT1), a key enzyme for CSPG synthesis (T1KO mice). The capacity of EE to promote granule cell production and improve cognitive memory was impaired in T1KO mice. These findings indicate that CSPG is involved in the regulation of adult hippocampal neurogenesis and suggest that increased synthesis of CSPG by CSGalNacT1 may mediate promotion of granule cell production and improvement of cognitive memory in response to EE.SIGNIFICANCE STATEMENT Chondroitin sulfate proteoglycan (CSPG) is a candidate regulator of embryonic neurogenesis. Here, we specified the role of CSPG in adult neurogenesis in the mouse hippocampus. Digestion of CSPG in the dentate gyrus impaired granule cell production and cognitive memory. Enriched environment (EE) promoted the recovery of CSPG expression and granule cell production from the CSPG digestion. Additionally, adult neurogenesis was impaired in mice that lacked a key enzyme for CSPG synthesis (T1KO mice). The capacity of EE to promote granule cell production and cognitive memory was impaired in T1KO mice. Altogether, these findings indicate that CSPG underlies adult hippocampal neurogenesis and suggest that increased synthesis of CSPG may mediate promotion of granule cell production in response to EE.
Collapse
|
760
|
Targeting the Mouse Ventral Hippocampus in the Intrahippocampal Kainic Acid Model of Temporal Lobe Epilepsy. eNeuro 2018; 5:eN-NWR-0158-18. [PMID: 30131968 PMCID: PMC6102375 DOI: 10.1523/eneuro.0158-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
Here we describe a novel mouse model of temporal lobe epilepsy (TLE) that moves the site of kainate injection from the rodent dorsal hippocampus (corresponding to the human posterior hippocampus) to the ventral hippocampus (corresponding to the human anterior hippocampus). We compare the phenotypes of this new model—with respect to seizures, cognitive impairment, affective deficits, and histopathology—to the standard dorsal intrahippocampal kainate model. Our results demonstrate that histopathological measures of granule cell dispersion and mossy fiber sprouting maximize near the site of kainate injection. Somewhat surprisingly, both the dorsal and ventral models exhibit similar spatial memory impairments in addition to similar electrographic and behavioral seizure burdens. In contrast, we find a more pronounced affective (anhedonic) phenotype specifically in the ventral model. These results demonstrate that the ventral intrahippocampal kainic acid model recapitulates critical pathologies of the dorsal model while providing a means to further study affective phenotypes such as depression in TLE.
Collapse
|
761
|
Nelson NG, Suhaidi FA, Law WX, Liang NC. Chronic moderate alcohol drinking alters insulin release without affecting cognitive and emotion-like behaviors in rats. Alcohol 2018; 70:11-22. [PMID: 29709884 DOI: 10.1016/j.alcohol.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Abstract
Because the consumption of alcoholic beverages prevails in society, its effects on diabetes risk is a subject of interest. Extant literature on this issue often disagrees. Here, we probed the effects of chronic moderate ethanol consumption on glucose metabolism in rats. The effect of chronic moderate alcohol drinking on depression- and anxiety-like behaviors and memory was also explored. Adolescent male and female Long-Evans rats consumed saccharin-sweetened 5% (1 week) and 10% ethanol (7 weeks) under a 7.5-h/day (Monday-Friday) access schedule. This exposure was followed by sucrose preference and elevated plus maze (EPM) tests during an intervening week, before a 6-week intermittent-access (Monday, Wednesday, Friday) to 20% unsweetened ethanol in a 2-bottle choice drinking paradigm was implemented (EtOH). A free-feeding control group received water (Water). Our prior work revealed that voluntary ethanol consumption decreases food intake in rats. Hence, a second control group that received water was mildly food-restricted (FR), and their average body weight was matched to that of the EtOH group. During the week following week 6 of intermittent-access to 20% ethanol, rats were submitted to sucrose preference, EPM, and novel object recognition (NOR) tests. Insulin response to a glucose load was subsequently assessed via an oral glucose tolerance test (OGTT). Rats attained and maintained blood ethanol concentrations of ∼55 mg/dL that correlated with the dose of sweetened 10% ethanol ingested. Relative to intake by Water controls, EtOH rats consumed less chow. There was no body weight difference between both groups. Neither sex of EtOH rats showed increased depression- and anxiety-like behaviors, as respectively measured by sucrose preference and EPM, nor did they show deficit in object recognition memory during abstinence. Male EtOH rats, however, showed signs of reduced general activity on the EPM. During OGTT, male EtOH rats showed a time-dependent potentiation of insulin release for proper glucose clearance. Such an effect was not observed in females. This landmark study shows that chronic moderate alcohol consumption can have negative metabolic consequences in the absence of overt behavioral deficits, especially in males.
Collapse
Affiliation(s)
- Nnamdi G Nelson
- Neuroscience Program and Department of Psychology, University of Illinois at Urbana, Champaign, IL, United States
| | - Faten A Suhaidi
- Neuroscience Program and Department of Psychology, University of Illinois at Urbana, Champaign, IL, United States
| | - Wen Xuan Law
- Neuroscience Program and Department of Psychology, University of Illinois at Urbana, Champaign, IL, United States
| | - Nu-Chu Liang
- Neuroscience Program and Department of Psychology, University of Illinois at Urbana, Champaign, IL, United States.
| |
Collapse
|
762
|
Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain Behav Immun 2018; 72:101-113. [PMID: 29885943 DOI: 10.1016/j.bbi.2018.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022] Open
Abstract
The neuronal innate immune system recognizes endogenous danger signals and regulates neuronal development and function. Toll-like receptor 7 (TLR7), one of the TLRs that trigger innate immune responses in neurons, controls neuronal morphology. To further assess the function of TLR7 in the brain, we applied next generation sequencing to investigate the effect of Tlr7 deletion on gene expression in hippocampal and cortical mixed cultures and on mouse behaviors. Since previous in vivo study suggested that TLR7 is more critical for neuronal morphology at earlier developmental stages, we analyzed two time-points (4 and 18 DIV) to represent young and mature neurons, respectively. At 4 DIV, Tlr7 KO neurons exhibited reduced expression of genes involved in neuronal development, synaptic organization and activity and behaviors. Some of these Tlr7-regulated genes are also associated with multiple neurological and neuropsychiatric diseases. TLR7-regulated transcriptomic profiles differed at 18 DIV. Apart from neuronal genes, genes related to glial cell development and differentiation became sensitive to Tlr7 deletion at 18 DIV. Moreover, Tlr7 KO mice exhibited altered behaviors in terms of anxiety, aggression, olfaction and contextual fear memory. Electrophysiological analysis further showed an impairment of long-term potentiation in Tlr7 KO hippocampus. Taken together, these results indicate that TLR7 regulates neural development and brain function, even in the absence of infectious or pathogenic molecules. Our findings strengthen evidence for the role of the neuronal innate immune system in fine-tuning neuronal morphology and activity and implicate it in neuropsychiatric disorders.
Collapse
|
763
|
Zhang M, Qian C, Zheng ZG, Qian F, Wang Y, Thu PM, Zhang X, Zhou Y, Tu L, Liu Q, Li HJ, Yang H, Li P, Xu X. Jujuboside A promotes Aβ clearance and ameliorates cognitive deficiency in Alzheimer's disease through activating Axl/HSP90/PPARγ pathway. Theranostics 2018; 8:4262-4278. [PMID: 30128052 PMCID: PMC6096387 DOI: 10.7150/thno.26164] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 01/20/2023] Open
Abstract
Rationale: It has been reported that peroxisome proliferator activated receptor γ (PPARγ) level decreases significantly in the brains of Alzheimer's disease (AD) patients and mice models, while the mechanism is unclear. This study aims to unravel the mechanism that amyloid β (Aβ) decreases PPARγ and attempted to discover lead compound that preserves PPARγ. Methods: In APP/PS1 transgenic mice and Aβ treated microglia, the interaction between HSP90 and PPARγ were analyzed by western blot. Using a PPRE (PPARγ responsive element) containing reporter cell line, compounds that activate PPARγ activity were identified. After genetic ablation or pharmacological inhibition of potential target pathways, the target of jujuboside A (JuA) was discovered through Axl/HSP90β. After oral administration or intrathecal injection, the anti-AD activity of JuA was evaluated by Morris water maze (MWM) test and object recognition test. Soluble Aβ42 levels and plaque numbers after JuA treatment were detected by thioflavin S staining, and the activation of microglia was assayed by immunofluorescence staining against Iba-1. Results: We found that Aβ stress decreased heat shock protein 90 β (HSP90β), subsequently reduced the abundance of PPARγ, and down-regulated Aβ clearance-related genes in BV2 cells and primary microglia. We identified that JuA stimulated the expression of HSP90β, strengthened the interaction between HSP90β and PPARγ, preserved PPARγ levels, and thus effectively promoted the clearance of Aβ42. We demonstrated that JuA increased HSP90β expression through Axl/ERK pathway. JuA significantly ameliorated cognitive deficiency in APP/PS1 transgenic mice, meanwhile, JuA significantly reduced the soluble Aβ42 levels and plaque numbers in the brain. Notably, the therapeutic effects of JuA were dampened by R428, an Axl inhibitor. Conclusions: This study suggests that the up-regulation of HSP90β by JuA through Axl is a potential therapeutic strategy to facilitate Aβ42 clearance and ameliorate cognitive deficiency in AD.
Collapse
Affiliation(s)
- Mu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Cheng Qian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Fei Qian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yanyan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yaping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Lifan Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Qingling Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Metabolic Disease, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| |
Collapse
|
764
|
Assessing spatial pattern separation in rodents using the object pattern separation task. Nat Protoc 2018; 13:1763-1792. [DOI: 10.1038/s41596-018-0013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
765
|
You R, Ho YS, Hung CHL, Liu Y, Huang CX, Chan HN, Ho SL, Lui SY, Li HW, Chang RCC. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part Fibre Toxicol 2018; 15:28. [PMID: 29970116 PMCID: PMC6029039 DOI: 10.1186/s12989-018-0263-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
Background Silica nanoparticles (SiO2-NPs) are naturally enriched and broadly utilized in the manufacturing industry. While previous studies have demonstrated toxicity in neuronal cell lines after SiO2-NPs exposure, the role of SiO2-NPs in neurodegeneration is largely unknown. Here, we evaluated the effects of SiO2-NPs-exposure on behavior, neuropathology, and synapse in young adult mice and primary cortical neuron cultures. Results Male C57BL/6 N mice (3 months old) were exposed to either vehicle (sterile PBS) or fluorescein isothiocyanate (FITC)-tagged SiO2-NPs (NP) using intranasal instillation. Behavioral tests were performed after 1 and 2 months of exposure. We observed decreased social activity at both time points as well as anxiety and cognitive impairment after 2 months in the NP-exposed mice. NP deposition was primarily detected in the medial prefrontal cortex and the hippocampus. Neurodegeneration-like pathological changes, including reduced Nissl staining, increased tau phosphorylation, and neuroinflammation, were also present in the brains of NP-exposed mice. Furthermore, we observed NP-induced impairment in exocytosis along with decreased synapsin I and increased synaptophysin expression in the synaptosome fractions isolated from the frontal cortex as well as primary neuronal cultures. Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were also activated in the frontal cortex of NP-exposed mice. Moreover, inhibition of ERK activation prevented NP-mediated changes in exocytosis in cultured neurons, highlighting a key role in the changes induced by NP exposure. Conclusions Intranasal instillation of SiO2-NPs results in mood dysfunction and cognitive impairment in young adult mice and causes neurodegeneration-like pathology and synaptic changes via ERK activation. Electronic supplementary material The online version of this article (10.1186/s12989-018-0263-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Present address: Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Clara Hiu-Ling Hung
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Yan Liu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chun-Xia Huang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Hei-Nga Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - See-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Sheung-Yeung Lui
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China. .,School of Biomedical Sciences, Rm. L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
766
|
Song L, Pei L, Hu L, Pan S, Xiong W, Liu M, Wu Y, Shang Y, Yao S. Death-associated protein kinase 1 mediates interleukin-1β production through regulating inlfammasome activation in Bv2 microglial cells and mice. Sci Rep 2018; 8:9930. [PMID: 29967321 PMCID: PMC6028446 DOI: 10.1038/s41598-018-27842-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
Interleukin-1β (IL-1β) plays a crucial role in mediating inflammation and innate immunity response in the central nervous system. Death-associated protein kinase 1 (DAPK1) was shown to be involved in several cellular processes. Here, we investigated the effects of DAPK1 on IL-1β production in microglial cells. We used a combination of in vitro (Bv2 microglial cell cultures) and in vivo (mice injected with amyloid-β (Aβ)) techniques to address the role of caspase-1 activation in release of IL-1β. DAPK1 involvement was postulated through genetic approaches and pharmacological blockade of this enzyme. We found that Aβ25-35 stimulation induced IL-1β production and caspase-1 activation in LPS-primed Bv2 cells and mice. DAPK1 knockdown and catalytic activity inhibition reduced IL-1β maturation and caspase-1 activation, nevertheless, DAPK1 overexpression attenuated these effects. Aβ25-35-induced lysosomal cathepsin B leakage was required for DAPK1 activation. Furthermore, repeated DAPK1 inhibitor treatment ameliorated the memory impairment in Aβ25-35-injected mice. Taken together, our findings suggest that DAPK1 facilitates Aβ25-35-induced IL-1β production through regulating caspase-1 activation in microglial cells.
Collapse
Affiliation(s)
- Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical Collge, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lisha Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
767
|
Hao S, Gao J, Wang H, Zhang Y, Pavlov A, Ge H, Yang Z. AG-1031 and AG-1503 improve cognitive deficits by promoting apoptosis and inhibiting autophagy in C6 glioma model rats. Brain Res 2018; 1699:1-8. [PMID: 29935156 DOI: 10.1016/j.brainres.2018.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023]
Abstract
High-grade gliomas (HGGs; grades III and IV) are the most common and aggressive adult primary brain tumors, and their invasive nature ranks them the fourth in the incidence of cancer death. In our previous study, we found that AG-1031 and AG-1503 showed inhibitory effects on several cancer cell lines. In this study, C6 glioma-bearing rats were treated with AG-1031 or AG-1503. Western blot results of autophagy-associated protein (LC3 II/I, Beclin-1) and apoptosis-associated proteins (caspase-3, Bcl-2, Bax) revealed that AG-1031 could activate apoptotic signal pathway via inhibiting autophagy process in cancer cells. HE staining indicated that the tumor volumes were significantly decreased in AG-1031 and AG-1503 treated rats compared to non-treated C6 glioma-bearing rats. Meanwhile, AG-1031 and AG-1503 significantly decreased the expression of VEGF, a marker of invasion ability of tumor, in tumor tissue. The novel object recognition test showed that cognitive functions in C6 glioma-bearing rats were considerably damaged, whereas AG-1031 and AG-1503 significantly impeded the cognitive impairment. AG-1031 and AG-1503 efficiently alleviated the glioma-induced impairments of long-term potentiation (LTP), which was damaged in C6 glioma-bearing rats. Furthermore, AG-1031 and AG-1503 augmented the expression of synaptophysin (SYP), which were decreased in glioma rats. In conclusion, our results suggest that AG-1031 and AG-1503 can inhibit the expansion of glioma, and improve the cognitive impairment caused by glioma in glioma-bearing rats.
Collapse
Affiliation(s)
- Shuang Hao
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jing Gao
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hui Wang
- College of Mathematics, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- AscentGene, Inc., 900 Clopper Road, Gaithersburg, MD 20878, USA
| | - Andrey Pavlov
- AscentGene, Inc., 900 Clopper Road, Gaithersburg, MD 20878, USA
| | - Hui Ge
- AscentGene, Inc., 900 Clopper Road, Gaithersburg, MD 20878, USA.
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
768
|
Behavioral and neurochemical characterization of the mlh mutant mice lacking otoconia. Behav Brain Res 2018; 359:958-966. [PMID: 29913187 DOI: 10.1016/j.bbr.2018.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 01/28/2023]
Abstract
Otoconia are crucial for the correct processing of positional information and orientation. Mice lacking otoconia cannot sense the direction of the gravity vector and cannot swim properly. This study aims to characterize the behavior of mergulhador (mlh), otoconia-deficient mutant mice. Additionally, the central catecholamine levels were evaluated to investigate possible correlations between behaviors and central neurotransmitters. A sequence of behavioral tests was used to evaluate the parameters related to the general activity, sensory nervous system, psychomotor system, and autonomous nervous system, in addition to measuring the acquisition of spatial and declarative memory, anxiety-like behavior, motor coordination, and swimming behavior of the mlh mutant mice. As well, the neurotransmitter levels in the cerebellum, striatum, frontal cortex, and hippocampus were measured. Relative to BALB/c mice, the mutant mlh mice showed 1) reduced locomotor and rearing behavior, increased auricular and touch reflexes, decreased motor coordination and increased micturition; 2) decreased responses in the T-maze and aversive wooden beam tests; 3) increased time of immobility in the tail suspension test; 4) no effects in the elevated plus maze or object recognition test; 5) an inability to swim; and 6) reduced turnover of dopaminergic system in the cerebellum, striatum, and frontal cortex. Thus, in our mlh mutant mice, otoconia deficiency reduced the motor, sensory and spatial learning behaviors likely by impairing balance. We did not rule out the role of the dopaminergic system in all behavioral deficits of the mlh mutant mice.
Collapse
|
769
|
Soga R, Shiramatsu TI, Takahashi H. Preference test of sound among multiple alternatives in rats. PLoS One 2018; 13:e0197361. [PMID: 29897906 PMCID: PMC5999090 DOI: 10.1371/journal.pone.0197361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Conditioned place preference (CPP) tests in rodents have been well established to measure preference induced by secondary reinforcing properties, but conventional assays are not sensitive enough to measure innate, weak preference, or the primary reinforcing property of a conditioned stimulus. We designed a novel CPP assay with better sensitivity and efficiency in quantifying and ranking preference of particular sounds among multiple alternatives. Each test tone was presented according to the location of free-moving rats in the arena, where assignment of location to each tone changed in every 20-s session. We demonstrated that our assay was able to rank tone preference among 4 alternatives within 12.5 min (125 s (habituation) + 25 s/sessions × 25 sessions). In order to measure and rank sound preference, we attempted to use sojourn times with each test sound ([Formula: see text]), and a preference index (PI) based on transition matrices of initial and end sounds in every session. Both [Formula: see text] and PI revealed similar trends of innate preference in which rats preferred test conditions in the following order: silence, 40-, 20-, then 10-kHz tones. Further, rats exhibited a change in preference after an classical conditioning of the 20-kHz tone with a rewarding microstimulation of the dopaminergic system. We also demonstrated that PI was a more robust and sensitive indicator than [Formula: see text] when the locomotion activity level of rats became low due to habituation to the assay repeated over sessions. Thus, our assay offers a novel method of evaluating auditory preference that is superior to conventional CPP assays, offering promising prospects in the field of sensory neuroscience.
Collapse
Affiliation(s)
- Ryo Soga
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Hirokazu Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
770
|
Ferreira E, Bignoux MJ, Otgaar TC, Tagliatti N, Jovanovic K, Letsolo BT, Weiss SFT. LRP/LR specific antibody IgG1-iS18 impedes neurodegeneration in Alzheimer's disease mice. Oncotarget 2018; 9:27059-27073. [PMID: 29930750 PMCID: PMC6007457 DOI: 10.18632/oncotarget.25473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/08/2018] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta (Aβ) plaque and neurofibrillary tangle formation. We have shown in vitro, that knock-down and blockade of the 37 kDa/67 kDa Laminin Receptor (LRP/LR) resulted in reduced Aβ induced cytotoxicity and Aβ accumulation. In order to test the effect of blocking LRP/LR on Aβ formation and AD associated symptoms, AD transgenic mice received the anti-LRP/LR specific antibody, IgG1-iS18 through intranasal administration. We show that this treatment resulted in an improvement in memory, and decreased Aβ plaque formation. Moreover, a significant decrease in Aβ42 protein expression with a concomitant increase in amyloid precursor protein (APP) and telomerase reverse transcriptase (mTERT) levels was observed. These data recommend IgG1-iS18 as a potentially powerful therapeutic antibody for AD treatment.
Collapse
Affiliation(s)
- Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Nicolas Tagliatti
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Katarina Jovanovic
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Present address: UCL Institute of Ophthalmology, London, UK
| | - Boitelo T Letsolo
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
771
|
Kahl A, Anderson CJ, Qian L, Voss H, Manfredi G, Iadecola C, Zhou P. Neuronal expression of the mitochondrial protein prohibitin confers profound neuroprotection in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:1010-1020. [PMID: 28714328 PMCID: PMC5999007 DOI: 10.1177/0271678x17720371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitochondrial protein prohibitin (PHB) has emerged as an important modulator of neuronal survival in different injury modalities . We previously showed that viral gene transfer of PHB protects CA1 neurons from delayed neurodegeneration following transient forebrain ischemia through mitochondrial mechanisms. However, since PHB is present in all cell types, it is not known if its selective expression in neurons is protective, and if the protection occurs also in acute focal ischemic brain injury, the most common stroke type in humans. Therefore, we generated transgenic mice overexpressing human PHB1 specifically in neurons (PHB1 Tg). PHB1 Tg mice and littermate controls were subjected to transient middle cerebral artery occlusion (MCAo). Infarct volume and sensory-motor impairment were assessed three days later. Under the control of a neuronal promoter (CaMKIIα), PHB1 expression was increased by 50% in the forebrain and hippocampus in PHB1 Tg mice. The brain injury produced by MCAo was reduced by 63 ± 11% in PHB1 Tg mice compared to littermate controls. This reduction was associated with improved sensory-motor performance, suggesting that the salvaged brain remains functional. Approaches to enhance PHB expression may be useful to ameliorate the devastating impact of cerebral ischemia on the brain.
Collapse
Affiliation(s)
- Anja Kahl
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Corey J Anderson
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Liping Qian
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Henning Voss
- 2 Department of Radiology, Weill Cornell Medicine, NY, USA
| | - Giovanni Manfredi
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Costantino Iadecola
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Ping Zhou
- 1 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| |
Collapse
|
772
|
Zhu H, Wang N, Yao L, Chen Q, Zhang R, Qian J, Hou Y, Guo W, Fan S, Liu S, Zhao Q, Du F, Zuo X, Guo Y, Xu Y, Li J, Xue T, Zhong K, Song X, Huang G, Xiong W. Moderate UV Exposure Enhances Learning and Memory by Promoting a Novel Glutamate Biosynthetic Pathway in the Brain. Cell 2018; 173:1716-1727.e17. [PMID: 29779945 DOI: 10.1016/j.cell.2018.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/21/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Sunlight exposure is known to affect mood, learning, and cognition. However, the molecular and cellular mechanisms remain elusive. Here, we show that moderate UV exposure elevated blood urocanic acid (UCA), which then crossed the blood-brain barrier. Single-cell mass spectrometry and isotopic labeling revealed a novel intra-neuronal metabolic pathway converting UCA to glutamate (GLU) after UV exposure. This UV-triggered GLU synthesis promoted its packaging into synaptic vesicles and its release at glutamatergic terminals in the motor cortex and hippocampus. Related behaviors, like rotarod learning and object recognition memory, were enhanced after UV exposure. All UV-induced metabolic, electrophysiological, and behavioral effects could be reproduced by the intravenous injection of UCA and diminished by the application of inhibitor or short hairpin RNA (shRNA) against urocanase, an enzyme critical for the conversion of UCA to GLU. These findings reveal a new GLU biosynthetic pathway, which could contribute to some of the sunlight-induced neurobehavioral changes.
Collapse
Affiliation(s)
- Hongying Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China; Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Ning Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Lei Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Qi Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Ran Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Junchao Qian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031 Hefei, China
| | - Yiwen Hou
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Weiwei Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Sijia Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
| | - Qiaoyun Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Feng Du
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Xin Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Yujun Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Yan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Kai Zhong
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China; High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031 Hefei, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China
| | - Guangming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China.
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, 230026 Hefei, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China.
| |
Collapse
|
773
|
Huang C, Irwin MG, Wong GTC, Chang RCC. Evidence of the impact of systemic inflammation on neuroinflammation from a non-bacterial endotoxin animal model. J Neuroinflammation 2018; 15:147. [PMID: 29776428 PMCID: PMC5960121 DOI: 10.1186/s12974-018-1163-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic inflammation induces neuroinflammation and cellular changes such as tau phosphorylation to impair cognitive function, including learning and memory. This study uses a single model, laparotomy without any pathogen, to characterize these changes and their responses to anti-inflammatory treatment in the intermediate term. METHODS In a two-part experiment, wild-type C57BL/6N mice (male, 3 month old, 25 ± 2 g) were subjected to sevoflurane anesthesia alone or to a laparotomy. Cognitive performance, systemic and neuroinflammatory responses, and tau phosphorylation were evaluated on postoperative days (POD) 1, 3, and 14. The effect of perioperative ibuprofen intervention (60 mg/kg) on these changes was then assessed. RESULTS Mice in the laparotomy group displayed memory impairment up to POD 14 with initial high levels of inflammatory cytokines in the liver, frontal cortex (IL-1β, IL-6, and TNF-α), and hippocampus (IL-1β and IL-8). On POD 14, although most circulating and resident cytokine levels returned to normal, a significant number of microglia and astrocytes remained activated in the frontal cortex and microglia in the hippocampus, as well as abnormal tau phosphorylation in these two brain regions. Perioperative ibuprofen improved cognitive performance, attenuated systemic inflammation and glial activation, and suppressed the abnormal tau phosphorylation both in the frontal cortex and hippocampus. CONCLUSIONS Our results suggest that (1) cognitive dysfunction is associated with an unbalanced pro-inflammatory and anti-inflammatory response, tauopathy, and gliosis; (2) cognitive dysfunction, gliosis, and tauopathy following laparotomy can persist well beyond the immediate postoperative period; and (3) anti-inflammatory drugs can act rapidly to attenuate inflammatory responses in the brain and negatively modulate neuropathological changes to improve cognition. These findings may have implications for the duration of therapeutic strategies aimed at curtaining cognitive dysfunction following surgery.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.,Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Room L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Michael Garnet Irwin
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Room L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
774
|
Gogliotti RG, Senter RK, Fisher NM, Adams J, Zamorano R, Walker AG, Blobaum AL, Engers DW, Hopkins CR, Daniels JS, Jones CK, Lindsley CW, Xiang Z, Conn PJ, Niswender CM. mGlu 7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Sci Transl Med 2018; 9:9/403/eaai7459. [PMID: 28814546 DOI: 10.1126/scitranslmed.aai7459] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. The cognitive impairments seen in mouse models of RTT correlate with deficits in long-term potentiation (LTP) at Schaffer collateral (SC)-CA1 synapses in the hippocampus. Metabotropic glutamate receptor 7 (mGlu7) is the predominant mGlu receptor expressed presynaptically at SC-CA1 synapses in adult mice, and its activation on GABAergic interneurons is necessary for induction of LTP. We demonstrate that pathogenic mutations in MECP2 reduce mGlu7 protein expression in brain tissue from RTT patients and in MECP2-deficient mouse models. In rodents, this reduction impairs mGlu7-mediated control of synaptic transmission. We show that positive allosteric modulation of mGlu7 activity restores LTP and improves contextual fear learning, novel object recognition, and social memory. Furthermore, mGlu7 positive allosteric modulation decreases apneas in Mecp2+/- mice, suggesting that mGlu7 may be a potential therapeutic target for multiple aspects of the RTT phenotype.
Collapse
Affiliation(s)
- Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca K Senter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey Adams
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Rocio Zamorano
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam G Walker
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren W Engers
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Corey R Hopkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA. .,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
775
|
Lhuissier E, Aury-Landas J, Bouet V, Bazille C, Repesse Y, Freret T, Boumédiene K, Baugé C. Evaluation of the impact of S-adenosylmethionine-dependent methyltransferase inhibitor, 3-deazaneplanocin A, on tissue injury and cognitive function in mice. Oncotarget 2018; 9:20698-20708. [PMID: 29755682 PMCID: PMC5945538 DOI: 10.18632/oncotarget.25062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Cancer patients display cognitive impairment due, at least partly, to the treatments. Additionally, chemotherapeutic treatments can lead to organ injury, limiting their use, and are likely to have negative impacts on patients’ quality of life. The aim of this study was to investigate the toxicity of 3-Deazaneplanocin A (DZNep) on several tissues and organs, as well as on cognitive functions. DZNep is an inhibitor of S-adenosylmethionine-dependent methyltransferase (in particular of the histone methyltransferase EZH2) which showed antitumoral functions in preclinical trials but whose effects on behavior and on organs (side effects) are not known. Chronic injections of DZNep were performed intraperitoneally in male NMRI mice (2 mg/kg; i.p.; three times per week) during 8 weeks. A follow-up of body weight was assessed during all experiments. Histological analysis were performed on several organs. EZH2 expression and H3K27me3 were assayed by western-blot. Several behavioral tests were performed during treatment and 2 weeks after. A particular focus was made on spontaneous locomotor activity, cognitive functions (spontaneous alternation and recognition memory), and anxiety- and depression-related behavior. Hematological modifications were also assessed. Chronic DZNep treatment transiently reduced animal growth. It had no effect on most organs but provoked a reversible splenomegaly, and persistent testis reduction and erythropoiesis. DZNep administration did not alter animal behavior. In conclusion, this study is encouraging for the use of DZNep for cancer treatment. Indeed, it has no effect on animal behavior, conferring an advantageous safety, and induces irreversible side effects limited on testis which are unfortunately found in most chemotherapy treatments.
Collapse
Affiliation(s)
| | | | | | - Céline Bazille
- Normandie Univ, UNICAEN, BioConnecT, Caen, France.,CHU de Caen, Service d'Anatomie Pathologie, Caen, France
| | - Yohann Repesse
- Normandie Univ, UNICAEN, INSERM, EFS, PhIND, Caen, France.,CHU de Caen, Hématologie biologique, Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, COMETE, Caen, France.,Normandie Univ, UNICAEN, CURB-BRP, Caen, France
| | | | | |
Collapse
|
776
|
Gallegos CE, Baier CJ, Bartos M, Bras C, Domínguez S, Mónaco N, Gumilar F, Giménez MS, Minetti A. Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition Memory. Neurotox Res 2018; 34:363-374. [PMID: 29611151 DOI: 10.1007/s12640-018-9894-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 01/18/2023]
Abstract
Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.
Collapse
Affiliation(s)
- Cristina Eugenia Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina.
| | - Carlos Javier Baier
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Sergio Domínguez
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Nina Mónaco
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - María Sofía Giménez
- Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, IMIBIO-SL, CONICET, San Luis, Argentina
| | - Alejandra Minetti
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
777
|
Paderin NM, Popov SV. The effect of dietary pectins on object recognition memory, depression-like behaviour, and il-6 in mouse hippocampi. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
778
|
Modulation of Tau Isoforms Imbalance Precludes Tau Pathology and Cognitive Decline in a Mouse Model of Tauopathy. Cell Rep 2018; 23:709-715. [DOI: 10.1016/j.celrep.2018.03.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/07/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
|
779
|
Scafidi J, Ritter J, Talbot BM, Edwards J, Chew LJ, Gallo V. Age-Dependent Cellular and Behavioral Deficits Induced by Molecularly Targeted Drugs Are Reversible. Cancer Res 2018; 78:2081-2095. [PMID: 29559476 DOI: 10.1158/0008-5472.can-17-2254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/12/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Newly developed targeted anticancer drugs inhibit signaling pathways commonly altered in adult and pediatric cancers. However, as these pathways are also essential for normal brain development, concerns have emerged of neurologic sequelae resulting specifically from their application in pediatric cancers. The neural substrates and age dependency of these drug-induced effects in vivo are unknown, and their long-term behavioral consequences have not been characterized. This study defines the age-dependent cellular and behavioral effects of these drugs on normally developing brains and determines their reversibility with post-drug intervention. Mice at different postnatal ages received short courses of molecularly targeted drugs in regimens analagous to clinical treatment. Analysis of rapidly developing brain structures important for sensorimotor and cognitive function showed that, while adult administration was without effect, earlier neonatal administration of targeted therapies attenuated white matter oligodendroglia and hippocampal neuronal development more profoundly than later administration, leading to long-lasting behavioral deficits. This functional impairment was reversed by rehabilitation with physical and cognitive enrichment. Our findings demonstrate age-dependent, reversible effects of these drugs on brain development, which are important considerations as treatment options expand for pediatric cancers.Significance: Targeted therapeutics elicit age-dependent long-term consequences on the developing brain that can be ameliorated with environmental enrichment. Cancer Res; 78(8); 2081-95. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph Scafidi
- Neurology, Children's National Health System, Washington, D.C. .,Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Jonathan Ritter
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Brooke M Talbot
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Jorge Edwards
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, D.C
| |
Collapse
|
780
|
Shih YH, Wu SY, Yu M, Huang SH, Lee CW, Jiang MJ, Lin PY, Yang TT, Kuo YM. Hypertension Accelerates Alzheimer's Disease-Related Pathologies in Pigs and 3xTg Mice. Front Aging Neurosci 2018; 10:73. [PMID: 29615895 PMCID: PMC5869211 DOI: 10.3389/fnagi.2018.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies suggest there is an association between midlife hypertension and increased risk of late-life Alzheimer’s disease (AD). However, whether hypertension accelerates the onset of AD or is a distinct disease that becomes more prevalent with age (comorbidity) remains unclear. This study aimed to test the possible relationship between hypertension and AD pathogenesis. Two animal models were used in this study. For the first model, 7-month-old Lanyu-miniature-pigs were given the abdominal aortic constriction operation to induce hypertension and their AD-related pathologies were assessed at 1, 2, and 3 months after the operation. The results showed that hypertension was detected since 1 month after the operation in the pigs. Levels of Aβ, amyloid precursor protein, RAGE, phosphorylated tau and activated GSK3β in the hippocampi increased at 3 months after the operation. For the second model, 3xTg mice at the ages of 2, 5, and 7 months were subjected to the “two-kidney-one-clip” operation to induce hypertension. One month after the operation, blood pressure was significantly increased in the 3xTg mice in any age. Aβ, amyloid plaque load, and phosphorylated tau levels increased in the operated mice. Furthermore, the operation also induced shrinkage in the dendritic arbor of hippocampal dentate gyrus granule neurons, leakage in the blood-brain barrier, activation in microglia, and impairment in the hippocampus-dependent learning and memory in the 3xTg mice. In conclusion, hypertension accelerates the onset of AD. Blood pressure control during midlife may delay the onset of AD.
Collapse
Affiliation(s)
- Yao-Hsiang Shih
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Megan Yu
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Sheng-Huai Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Meei-Jyh Jiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Yen Lin
- Cardiovascular Research Center, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Ting Yang
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
781
|
Mashoodh R, Habrylo IB, Gudsnuk KM, Pelle G, Champagne FA. Maternal modulation of paternal effects on offspring development. Proc Biol Sci 2018; 285:20180118. [PMID: 29514964 PMCID: PMC5879637 DOI: 10.1098/rspb.2018.0118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 01/22/2023] Open
Abstract
The paternal transmission of environmentally induced phenotypes across generations has been reported to occur following a number of qualitatively different exposures and appear to be driven, at least in part, by epigenetic factors that are inherited via the sperm. However, previous studies of paternal germline transmission have not addressed the role of mothers in the propagation of paternal effects to offspring. We hypothesized that paternal exposure to nutritional restriction would impact male mate quality and subsequent maternal reproductive investment with consequences for the transmission of paternal germline effects. In the current report, using embryo transfer in mice, we demonstrate that sperm factors in adult food restricted males can influence growth rate, hypothalamic gene expression and behaviour in female offspring. However, under natural mating conditions females mated with food restricted males show increased pre- and postnatal care, and phenotypic outcomes observed during embryo transfer conditions are absent or reversed. We demonstrate that these compensatory changes in maternal investment are associated with a reduced mate preference for food restricted males and elevated gene expression within the maternal hypothalamus. Therefore, paternal experience can influence offspring development via germline inheritance, but mothers can serve as a modulating factor in determining the impact of paternal influences on offspring development.
Collapse
Affiliation(s)
- Rahia Mashoodh
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Ireneusz B Habrylo
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
| | - Kathryn M Gudsnuk
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
| | - Geralyn Pelle
- Columbia University Medical Center, 650 W 168 St, New York, NY 10032, USA
| | - Frances A Champagne
- Department of Psychology, Columbia University, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York, NY 10027, USA
- Department of Psychology, University of Texas at Austin, 108 E Dean Keeton St, Austin, TX 78712, USA
| |
Collapse
|
782
|
Belblidia H, Leger M, Abdelmalek A, Quiedeville A, Calocer F, Boulouard M, Jozet-Alves C, Freret T, Schumann-Bard P. Characterizing age-related decline of recognition memory and brain activation profile in mice. Exp Gerontol 2018. [PMID: 29524468 DOI: 10.1016/j.exger.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks.
Collapse
Affiliation(s)
- Hassina Belblidia
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France; Université des Sciences et de la Technologie Houari Boumediene USTHB, Département de biologie, Laboratoire de Neurosciences Comportementales et Cognitives, 16111 Alger, Algeria; Université M'hamed Bougara UMBB, Faculté des Sciences, 35000 Boumerdès, Algeria
| | - Marianne Leger
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Abdelouadoud Abdelmalek
- Université des Sciences et de la Technologie Houari Boumediene USTHB, Département de biologie, Laboratoire de Neurosciences Comportementales et Cognitives, 16111 Alger, Algeria
| | - Anne Quiedeville
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Floriane Calocer
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Michel Boulouard
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | | | - Thomas Freret
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Pascale Schumann-Bard
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France.
| |
Collapse
|
783
|
AD-Related N-Terminal Truncated Tau Is Sufficient to Recapitulate In Vivo the Early Perturbations of Human Neuropathology: Implications for Immunotherapy. Mol Neurobiol 2018; 55:8124-8153. [PMID: 29508283 DOI: 10.1007/s12035-018-0974-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The NH2tau 26-44 aa (i.e., NH2htau) is the minimal biologically active moiety of longer 20-22-kDa NH2-truncated form of human tau-a neurotoxic fragment mapping between 26 and 230 amino acids of full-length protein (htau40)-which is detectable in presynaptic terminals and peripheral CSF from patients suffering from AD and other non-AD neurodegenerative diseases. Nevertheless, whether its exogenous administration in healthy nontransgenic mice is able to elicit a neuropathological phenotype resembling human tauopathies has not been yet investigated. We explored the in vivo effects evoked by subchronic intracerebroventricular (i.c.v.) infusion of NH2htau or its reverse counterpart into two lines of young (2-month-old) wild-type mice (C57BL/6 and B6SJL). Six days after its accumulation into hippocampal parenchyma, significant impairment in memory/learning performance was detected in NH2htau-treated group in association with reduced synaptic connectivity and neuroinflammatory response. Compromised short-term plasticity in paired-pulse facilitation paradigm (PPF) was detected in the CA3/CA1 synapses from NH2htau-impaired animals along with downregulation in calcineurin (CaN)-stimulated pCREB/c-Fos pathway(s). Importantly, these behavioral, synaptotoxic, and neuropathological effects were independent from the genetic background, occurred prior to frank neuronal loss, and were specific because no alterations were detected in the control group infused with its reverse counterpart. Finally, a 2.0-kDa peptide which biochemically and immunologically resembles the injected NH2htau was endogenously detected in vivo, being present in hippocampal synaptosomal preparations from AD subjects. Given that the identification of the neurotoxic tau species is mandatory to develop a more effective tau-based immunological approach, our evidence can have important translational implications for cure of human tauopathies.
Collapse
|
784
|
Perez-Rando M, Castillo-Gomez E, Bueno-Fernandez C, Nacher J. The TrkB agonist 7,8-dihydroxyflavone changes the structural dynamics of neocortical pyramidal neurons and improves object recognition in mice. Brain Struct Funct 2018; 223:2393-2408. [PMID: 29500536 DOI: 10.1007/s00429-018-1637-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/20/2018] [Indexed: 01/17/2023]
Abstract
BDNF and its receptor TrkB have important roles in neurodevelopment, neural plasticity, learning, and memory. Alterations in TrkB expression have been described in different CNS disorders. Therefore, drugs interacting with TrkB, specially agonists, are promising therapeutic tools. Among them, the recently described 7,8-dihydroxyflavone (DHF), an orally bioactive compound, has been successfully tested in animal models of these diseases. Recent studies have shown the influence of this drug on the structure of pyramidal neurons, specifically on dendritic spine density. However, there is no information yet on how DHF may alter the structural dynamics of these neurons (i.e., real-time study of the addition/elimination of dendritic spines and axonal boutons). To gain knowledge on these effects of DHF, we have performed a real-time analysis of spine and axonal dynamics in pyramidal neurons of barrel cortex, using cranial windows and 2-photon microscopy during a chronic oral treatment with this drug. After confirming TrkB expression in these neurons, we found that DHF increased the gain rates of spines and axonal boutons, as well as improved object recognition memory. These results help to understand how the activation of the BDNF-TrkB system can improve basic behavioral tasks through changes in the structural dynamics of pyramidal neurons. Moreover, they highlight DHF as a promising therapeutic vector for certain brain disorders in which this system is altered.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Cell Biology Department, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr. Moliner, 50, Burjassot, 46100, Spain
| | - Esther Castillo-Gomez
- Neurobiology Unit, Cell Biology Department, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr. Moliner, 50, Burjassot, 46100, Spain. .,CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain. .,Department of Medicine, School of Medical Sciences, Universitat Jaume I, Vicente Sos Banyat s/n, 12071, Castellón de la Plana, Spain.
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Cell Biology Department, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr. Moliner, 50, Burjassot, 46100, Spain
| | - Juan Nacher
- Neurobiology Unit, Cell Biology Department, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Dr. Moliner, 50, Burjassot, 46100, Spain. .,CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain. .,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
785
|
Popper B, Demleitner A, Bolivar VJ, Kusek G, Snyder-Keller A, Schieweck R, Temple S, Kiebler MA. Staufen2 deficiency leads to impaired response to novelty in mice. Neurobiol Learn Mem 2018; 150:107-115. [PMID: 29496644 DOI: 10.1016/j.nlm.2018.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Staufen2 (Stau2) is a double-stranded RNA-binding protein (RBP) involved in posttranscriptional gene expression control in neurons. In flies, staufen contributes to learning and long-term memory formation. To study the impact of mammalian Stau2 on behavior, we generated a novel gene-trap mouse model that yields significant constitutive downregulation of Stau2 (Stau2GT). In order to investigate the effect of Stau2 downregulation on hippocampus-dependent behavior, we performed a battery of behavioral assays, i.e. open field, novel object recognition/location (NOR/L) and Barnes maze. Stau2GT mice displayed reduced locomotor activity in the open field and altered novelty preference in the NOR and NOL paradigms. Adult Stau2GT male mice failed to discriminate between familiar and newly introduced objects but showed enhanced spatial novelty detection. Additionally, we observed deficits in discriminating different spatial contexts in a Barnes maze assay. Together, our data suggest that Stau2 contributes to novelty preference and explorative behavior that is a driver for proper spatial learning in mice.
Collapse
Affiliation(s)
- Bastian Popper
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany; Biomedical Center (BMC), Core Facility Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Antonia Demleitner
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Valerie J Bolivar
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, University at Albany School of Public Health, State University of New York, Albany, NY, USA
| | - Gretchen Kusek
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY, USA
| | - Abigail Snyder-Keller
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, University at Albany School of Public Health, State University of New York, Albany, NY, USA
| | - Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany.
| | - Sally Temple
- Neural Stem Cell Institute, Regenerative Research Foundation, Rensselaer, NY, USA
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
786
|
Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, Zhang Y, Moritoh K, O'Connell JF, Baptiste BA, Stevnsner TV, Mattson MP, Bohr VA. NAD + supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A 2018; 115:E1876-E1885. [PMID: 29432159 PMCID: PMC5828618 DOI: 10.1073/pnas.1718819115] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Emerging findings suggest that compromised cellular bioenergetics and DNA repair contribute to the pathogenesis of Alzheimer's disease (AD), but their role in disease-defining pathology is unclear. We developed a DNA repair-deficient 3xTgAD/Polβ+/- mouse that exacerbates major features of human AD including phosphorylated Tau (pTau) pathologies, synaptic dysfunction, neuronal death, and cognitive impairment. Here we report that 3xTgAD/Polβ+/- mice have a reduced cerebral NAD+/NADH ratio indicating impaired cerebral energy metabolism, which is normalized by nicotinamide riboside (NR) treatment. NR lessened pTau pathology in both 3xTgAD and 3xTgAD/Polβ+/- mice but had no impact on amyloid β peptide (Aβ) accumulation. NR-treated 3xTgAD/Polβ+/- mice exhibited reduced DNA damage, neuroinflammation, and apoptosis of hippocampal neurons and increased activity of SIRT3 in the brain. NR improved cognitive function in multiple behavioral tests and restored hippocampal synaptic plasticity in 3xTgAD mice and 3xTgAD/Polβ+/- mice. In general, the deficits between genotypes and the benefits of NR were greater in 3xTgAD/Polβ+/- mice than in 3xTgAD mice. Our findings suggest a pivotal role for cellular NAD+ depletion upstream of neuroinflammation, pTau, DNA damage, synaptic dysfunction, and neuronal degeneration in AD. Interventions that bolster neuronal NAD+ levels therefore have therapeutic potential for AD.
Collapse
Affiliation(s)
- Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Sofie Lautrup
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
- Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Stephanie Cordonnier
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Yue Wang
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Eduardo Zavala
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Kanako Moritoh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Jennifer F O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Tinna V Stevnsner
- Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224;
- Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
787
|
Bang E, Lee B, Park JO, Jang Y, Kim A, Kim S, Shin HS. The Improving Effect of HL271, a Chemical Derivative of Metformin, a Popular Drug for Type II Diabetes Mellitus, on Aging-induced Cognitive Decline. Exp Neurobiol 2018. [PMID: 29535569 PMCID: PMC5840461 DOI: 10.5607/en.2018.27.1.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In recent years, as the aging population grows, aging-induced cognitive impairments including dementia and Alzheimer's disease (AD) have become the biggest challenges for global public health and social care. Therefore, the development of potential therapeutic drugs for aging-associated cognitive impairment is essential. Metabolic dysregulation has been considered to be a key factor that affects aging and dementia. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a primary sensor of cellular energy states and regulates cellular energy metabolism. Metformin (1,1-dimethylbiguanide hydrochloride) is a well-known AMPK activator and has been widely prescribed for type 2 diabetes mellitus (T2DM). Since the incidence of T2DM and dementia increases with aging, metformin has been considered to be one of the most promising drugs to target dementia and its related disorders. To that end, here, we tested the efficacy of metformin and HL271, a novel metformin derivative, in aging-induced cognitive decline. Water (control), metformin (100 mg/kg) or HL271 (50 mg/kg) were orally administered to aged mice for two months; then, the mice were subjected to behavioral tests to measure their cognitive function, particularly their contextual, spatial and working memory. AMPK phosphorylation was also measured in the drug-treated mouse brains. Our results show that oral treatment with HL271 (50 mg/kg) but not metformin (100 mg/kg) improved cognitive decline in aged mice. AMPK activation was correlated with behavior recovery after aging-induced cognitive decline. Taken together, these results suggest that the newly synthesized AMPK activator, HL271, could be a potential therapeutic agent to treat age-related cognitive decline.
Collapse
Affiliation(s)
- Eunyoung Bang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34141, Korea.,Basic Science, IBS School, University of Science and Technology, Daejeon 34113, Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34141, Korea
| | - Joon-Oh Park
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Division of Insect Pests, National Institute of Forest Science, Seoul 02455, Korea
| | - Yooncheol Jang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34141, Korea.,Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Aekyong Kim
- ImmunoMet, Texas Medical Center, Houston, TX 77021, USA
| | - Sungwuk Kim
- ImmunoMet, Texas Medical Center, Houston, TX 77021, USA.,Hanall Biopharma Inc., Seoul 06170, Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34141, Korea.,Basic Science, IBS School, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
788
|
Ledonne A, Mango D, Latagliata EC, Chiacchierini G, Nobili A, Nisticò R, D'Amelio M, Puglisi-Allegra S, Mercuri NB. Neuregulin 1/ErbB signalling modulates hippocampal mGluRI-dependent LTD and object recognition memory. Pharmacol Res 2018; 130:12-24. [PMID: 29427771 DOI: 10.1016/j.phrs.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023]
Abstract
The neurotrophic factors neuregulins (NRGs) and their receptors, ErbB tyrosine kinases, regulate neurotransmission, synaptic plasticity and cognitive functions and their alterations have been associated to different neuropsychiatric disorders. Group 1 metabotropic glutamate receptors (mGluRI)-dependent mechanisms are also altered in animal models of neuropsychiatric diseases, especially mGluRI-induced glutamatergic long-term depression (mGluRI-LTD), a form of synaptic plasticity critically involved in learning and memory. Despite this evidence, a potential link between NRGs/ErbB signalling and mGluRI-LTD has never been considered. Here, we aimed to test the hypothesis that NRGs/ErbB signalling regulates mGluRI functions in the hippocampus, thus controlling CA1 pyramidal neurons excitability and synaptic plasticity as well as mGluRI-dependent behaviors. We investigated the functional interaction between NRG1/ErbB signalling and mGluRI in hippocampal CA1 pyramidal neurons, by analyzing the effect of a pharmacological modulation of NRG1/ErbB signalling on the excitation of pyramidal neurons and on the LTD at CA3-CA1 synapses induced by an mGluRI agonist. Furthermore, we verified the involvement of ErbB signalling in mGluRI-dependent learning processes, by evaluating the consequence of an intrahippocampal in vivo injection of a pan-ErbB inhibitor in the object recognition test in mice, a learning task dependent on hippocampal mGluRI. We found that NRG1 potentiates mGluRI-dependent functions on pyramidal neurons excitability and synaptic plasticity at CA3-CA1 synapses. Further, endogenous ErbB signalling per se regulates, through mGluRI, neuronal excitability and LTD in CA1 pyramidal neurons, since ErbB inhibition reduces mGluRI-induced neuronal excitation and mGluRI-LTD. In vivo intrahippocampal injection of the ErbB inhibitor, PD158780, impairs mGluRI-LTD at CA3-CA1 synapses and affects the exploratory behavior in the object recognition test. Thus, our results identify a key role for NRG1/ErbB signalling in the regulation of hippocampal mGluRI-dependent synaptic and cognitive functions, whose alteration might contribute to the pathogenesis of different brain diseases.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.
| | - Dalila Mango
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, Rome, Italy
| | | | - Giulia Chiacchierini
- Department of Psychology and "Daniel Bovet" Center, University "La Sapienza", Rome, Italy
| | - Annalisa Nobili
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Robert Nisticò
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Stefano Puglisi-Allegra
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Psychology and "Daniel Bovet" Center, University "La Sapienza", Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
789
|
Stoppel LJ, Kazdoba TM, Schaffler MD, Preza AR, Heynen A, Crawley JN, Bear MF. R-Baclofen Reverses Cognitive Deficits and Improves Social Interactions in Two Lines of 16p11.2 Deletion Mice. Neuropsychopharmacology 2018; 43:513-524. [PMID: 28984295 PMCID: PMC5770771 DOI: 10.1038/npp.2017.236] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Human chromosome 16p11.2 microdeletion is among the most common gene copy number variations (CNVs) known to confer risk for intellectual disability (ID) and autism spectrum disorder (ASD) and affects an estimated 3 in 10 000 people. Caused by a single copy deletion of ~27 genes, 16p11.2 microdeletion syndrome is characterized by ID, impaired language, communication and socialization skills, and ASD. Studies in animal models where a single copy of the syntenic 16p11.2 region has been deleted have revealed morphological, behavioral, and electrophysiological abnormalities. Previous studies suggested the possibility of some overlap in the mechanisms of pathophysiology in 16p11.2 microdeletion syndrome and fragile X syndrome. Improvements in fragile X phenotypes have been observed following chronic treatment with R-baclofen, a selective agonist of GABAB receptors. We were therefore motivated to investigate the effects of chronic oral R-baclofen administration in two independently generated mouse models of 16p11.2 microdeletion syndrome. In studies performed across two independent laboratories, we found that chronic activation of GABAB receptors improved performance on a series of cognitive and social tasks known to be impaired in two different 16p11.2 deletion mouse models. Our findings suggest that R-baclofen may have clinical utility for some of the core symptoms of human 16p11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Laura J Stoppel
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Melanie D Schaffler
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anthony R Preza
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnold Heynen
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
790
|
Chang PK, Yu L, Chen JC. Dopamine D3 receptor blockade rescues hyper-dopamine activity-induced deficit in novel object recognition memory. Neuropharmacology 2018; 133:216-223. [PMID: 29407766 DOI: 10.1016/j.neuropharm.2018.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
Patients afflicted with bipolar disorder demonstrate significant impairments in recognition and episodic memory during acute depressive and manic episodes. These impairments and the related pathophysiology may result from over-activation of the brain dopamine (DA) system. In order to model overactive DA transmission in a well-established novel object recognition (NOR) memory test, we used DA transporter knockdown (DAT-KD) mice, which exhibit reduced DAT expression and display hyper-dopaminergic phenotypes. DAT-KD mice exhibited impaired NOR memory compared to wild-type (WT) mice. This impairment was prevented by administration of FAUC365, a DA D3 receptor (D3R) selective antagonist, prior to object learning. Similarly, D3R knockout (KO)/DAT-KD double mutant mice displayed performance in the NOR test that was comparable to WT mice, suggesting that deficiencies in NOR performance in DAT-KD mice can be compensated by diminishing D3R signaling. GBR12909, a DAT blocker, also impaired NOR performance in WT mice, but not in D3R KO mice. Impaired NOR performance in GBR12909-treated WT mice was also prevented by pretreatment with FAUC365. Together, these findings indicate that reduced DAT activity can impair recognition memory in the NOR test, and D3R appears to be necessary to mediate this effect.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences and Healthy Ageing Reserch Center, Chang Gung University, Taoyuan City 33302, Taiwan, ROC.
| | - Lung Yu
- Department of Physiology and Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences and Healthy Ageing Reserch Center, Chang Gung University, Taoyuan City 33302, Taiwan, ROC; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan and Chang Gung Memorial Hospital, Keelung 204, Taiwan, ROC.
| |
Collapse
|
791
|
d’Avila JC, Siqueira LD, Mazeraud A, Azevedo EP, Foguel D, Castro-Faria-Neto HC, Sharshar T, Chrétien F, Bozza FA. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation. J Neuroinflammation 2018; 15:28. [PMID: 29382344 PMCID: PMC5791311 DOI: 10.1186/s12974-018-1059-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. METHODS Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. RESULTS Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. CONCLUSIONS Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.
Collapse
Affiliation(s)
- Joana Costa d’Avila
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Domett Siqueira
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aurélien Mazeraud
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Estefania Pereira Azevedo
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tarek Sharshar
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Fabrice Chrétien
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
792
|
Guimarães Marques MJ, Reyes-Garcia SZ, Marques-Carneiro JE, Lopes-Silva LB, Andersen ML, Cavalheiro EA, Scorza FA, Scorza CA. Long-term Potentiation Decay and Poor Long-lasting Memory Process in the Wild Rodents Proechimys from Brazil's Amazon Rainforest. Front Behav Neurosci 2018; 12:2. [PMID: 29410617 PMCID: PMC5787059 DOI: 10.3389/fnbeh.2018.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 11/17/2022] Open
Abstract
Proechimys are small terrestrial rodents from Amazon rainforest. Each animal species is adapted to a specific environment in which the animal evolved therefore without comparative approaches unique characteristics of distinct species cannot be fully recognized. Laboratory rodents are exceedingly inbred strains dissociated from their native habitats and their fundamental ecological aspects are abstracted. Thus, the employment of exotic non-model species can be informative and complement conventional animal models. With the aim of promoting comparative studies between the exotic wildlife populations in the laboratory and traditional rodent model, we surveyed a type of synaptic plasticity intimately related to memory encoding in animals. Using theta-burst paradigm, in vitro long-term potentiation (LTP) in the CA1 subfield of hippocampal slices was assessed in the Amazon rodents Proechimys and Wistar rats. Memory, learning and anxiety were investigated through the plus-maze discriminative avoidance task (PM-DAT) and object recognition test. In PM-DAT, both animal species were submitted to two test sessions (3-h and 24-h) after the conditioning training. Proechimys exhibited higher anxiety-like behavior in the training session but during test sessions both species exhibited similar patterns of anxiety-related behavior. After 3-h of the training, Proechimys and Wistar spent significantly less time in the aversive enclosed arm than in the non-aversive arm. But, at 24-h after training, Wistar rats remained less time in the aversive closed arm in comparison with the non-aversive one, while Proechimys rodents spent the same amount of time in both enclosed arms. In the object recognition test, both species were evaluated at 24-h after the acquisition session and similar findings than those of the PM-DAT (24-h) were obtained, suggesting that long-term memory duration did not persist for 24-h in the Amazon rodent. Field excitatory post-synaptic potentials recordings revealed that LTP decays rapidly over time reaching basal levels at 90 min after theta-burst stimulation in Proechimys, contrasting to the stable LTP found in the Wistar rats which was observed throughout 3-h recording period. These findings suggest a link between the LTP decay and the lack of 24-h long-lasting memory process in Proechimys. Nevertheless, why early-phase LTP in Proechimys decays very rapidly remains to be elucidated.
Collapse
Affiliation(s)
- Marcia J Guimarães Marques
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Selvin Z Reyes-Garcia
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - José E Marques-Carneiro
- Université de Strasbourg-INSERM U-1114-Neuropsychologie Cognitive, Physiopathologie de la Schizophrénie, Strasbourg, France
| | - Leonardo B Lopes-Silva
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esper A Cavalheiro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fulvio A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
793
|
Apicco DJ, Ash PEA, Maziuk B, LeBlang C, Medalla M, Al Abdullatif A, Ferragud A, Botelho E, Ballance HI, Dhawan U, Boudeau S, Cruz AL, Kashy D, Wong A, Goldberg LR, Yazdani N, Zhang C, Ung CY, Tripodis Y, Kanaan NM, Ikezu T, Cottone P, Leszyk J, Li H, Luebke J, Bryant CD, Wolozin B. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci 2018; 21:72-80. [PMID: 29273772 PMCID: PMC5745051 DOI: 10.1038/s41593-017-0022-z] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022]
Abstract
Emerging studies suggest a role for tau in regulating the biology of RNA binding proteins (RBPs). We now show that reducing the RBP T-cell intracellular antigen 1 (TIA1) in vivo protects against neurodegeneration and prolongs survival in transgenic P301S Tau mice. Biochemical fractionation shows co-enrichment and co-localization of tau oligomers and RBPs in transgenic P301S Tau mice. Reducing TIA1 decreased the number and size of granules co-localizing with stress granule markers. Decreasing TIA1 also inhibited the accumulation of tau oligomers at the expense of increasing neurofibrillary tangles. Despite the increase in neurofibrillary tangles, TIA1 reduction increased neuronal survival and rescued behavioral deficits and lifespan. These data provide in vivo evidence that TIA1 plays a key role in mediating toxicity and further suggest that RBPs direct the pathway of tau aggregation and the resulting neurodegeneration. We propose a model in which dysfunction of the translational stress response leads to tau-mediated pathology.
Collapse
Affiliation(s)
- Daniel J Apicco
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Brandon Maziuk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Chelsey LeBlang
- Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Maria Medalla
- Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Ali Al Abdullatif
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Antonio Ferragud
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Emily Botelho
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Heather I Ballance
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Uma Dhawan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Anna Lourdes Cruz
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Aria Wong
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lisa R Goldberg
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Neema Yazdani
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Choong Y Ung
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yorghos Tripodis
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John Leszyk
- Department of Biochemistry and Molecular Pathology, University of Massachusetts Medical Center, Worcester, MA, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Luebke
- Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
794
|
Fluoxetine, not donepezil, reverses anhedonia, cognitive dysfunctions and hippocampal proteome changes during repeated social defeat exposure. Eur Neuropsychopharmacol 2018; 28:195-210. [PMID: 29174946 DOI: 10.1016/j.euroneuro.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/17/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
While anhedonia is considered a core symptom of major depressive disorder (MDD), less attention has been paid to cognitive dysfunctions. We evaluated the behavioural and molecular effects of a selective serotonin re-uptake inhibitor (SSRI, fluoxetine) and an acetylcholinesterase inhibitor (AChEI, donepezil) on emotional-cognitive endophenotypes of depression and the hippocampal proteome. A chronic social defeat (SD) procedure was followed up by "reminder" sessions of direct and indirect SD. Anhedonia-related behaviour was assessed longitudinally by intracranial self-stimulation (ICSS). Cognitive dysfunction was analysed by an object recognition test (ORT) and extinction of fear memory. Tandem mass spectrometry (MSE) and protein-protein-interaction (PPI) network modelling were used to characterise the underlying biological processes of SD and SSRI/AChEI treatment. Independent selected reaction monitoring (SRM) was conducted for molecular validation. Repeated SD resulted in a stable increase of anhedonia-like behaviour as measured by ICSS. Fluoxetine treatment reversed this phenotype, whereas donepezil showed no effect. Fluoxetine improved recognition memory and inhibitory learning in a stressor-related context, whereas donepezil only improved fear extinction. MSE and PPI network analysis highlighted functional SD stress-related hippocampal proteome changes including reduced glutamatergic neurotransmission and learning processes, which were reversed by fluoxetine, but not by donepezil. SRM validation of molecular key players involved in these pathways confirmed the hypothesis that fluoxetine acts via increased AMPA receptor signalling and Ca2+-mediated neuroplasticity in the amelioration of stress-impaired reward processing and memory consolidation. Our study highlights molecular mediators of SD stress reversed by SSRI treatment, identifying potential viable future targets to improve cognitive dysfunctions in MDD patients.
Collapse
|
795
|
Soler JE, Robison AJ, Núñez AA, Yan L. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus). Hippocampus 2017; 28:189-200. [PMID: 29251803 DOI: 10.1002/hipo.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023]
Abstract
The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
796
|
Braun D, Feinstein DL. The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5xFAD transgenic mouse model of Alzheimer's disease. Brain Res 2017; 1702:29-37. [PMID: 29274883 DOI: 10.1016/j.brainres.2017.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Damage to noradrenergic neurons in the Locus coeruleus (LC) occurs contributes to neuropathology and behavioral deficits in Alzheimer's disease (AD); methods to reduce LC damage may therefore be of benefit. We previously showed that vindeburnol, a derivative of the plant alkaloid vincamine, reduced neuroinflammation, amyloid burden, and LC damage in a mouse model of AD; however, effects on behavior were not tested. We now tested the effects of vindeburnol on anxiety-like behavior in 5xFAD mice which develop robust amyloid burden at early ages. During novel object recognition testing, we observed that 5xFAD mice spent more time exploring than wildtype littermates, and that time was reduced by vindeburnol. Vindeburnol also reduced hyperlocomotion in the 5xFAD mice which may have contributed to their increased exploration times. In an open field test, vindeburnol normalized the increase of time spent in the center, and the decrease of time spent near the walls in 5xFAD mice. Vindeburnol reduced amyloid burden in the hippocampus and cortex, areas that contribute to regulation of anxiety-like behavior. In vitro, vindeburnol increased neuronal BDNF expression in a cAMP-dependent manner; and inhibited phosphodiesterase activity with an EC50 near 50 μM. These findings suggest that cAMP-mediated increases in neurotrophic factors contribute to beneficial effects of vindeburnol within the context of LC damage, which may be of value for treatment of some neuropsychiatric symptoms of AD.
Collapse
Affiliation(s)
- David Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60614, United States; Jesse Brown VA Medical Center, Chicago, IL 60614, United States.
| |
Collapse
|
797
|
Role of angiotensin system modulation on progression of cognitive impairment and brain MRI changes in aged hypertensive animals - A randomized double- blind pre-clinical study. Behav Brain Res 2017; 346:29-40. [PMID: 29229547 DOI: 10.1016/j.bbr.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that renin angiotensin system (RAS) modulators support cognitive function in various animal models. However, little is known about their long-term effects on the brain structure in aged hypertensive animals with chronic cerebral hypoperfusion as well as which specific domains of cognition are most affected. Therefore, in the current study we examined the effects of Candesartan and Compound 21 (C21) (RAS modulators) on aspects of cognition known to diminish with advanced age and accelerate with hypertension and vascular disease. Outcome measures for sensorimotor and cognitive function were performed using a sequence of tests, all blindly conducted and assessed at baseline and after 4 and 8 weeks of chronic hypoxic hypoperfusion and treatment. Magnetic resonance imaging (MRI) was performed at the end of the 8 week study period followed by animal sacrifice and tissue collection. Both Candesartan and C21 effectively preserved cognitive function and prevented progression of vascular cognitive impairment (VCI) but only candesartan prevented loss of brain volume in aged hypertensive animals. Collectively, our findings demonstrate that delayed administration of RAS modulators effectively preserve cognitive function and prevent the development / progression of VCI in aged hypertensive animals with chronic cerebral hypoperfusion.
Collapse
|
798
|
Kim S, Lee B, Choi JH, Kim JH, Kim CH, Shin HS. Deficiency of a brain-specific chemokine-like molecule, SAM3, induces cardinal phenotypes of autism spectrum disorders in mice. Sci Rep 2017; 7:16503. [PMID: 29184127 PMCID: PMC5705707 DOI: 10.1038/s41598-017-16769-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/12/2017] [Indexed: 12/29/2022] Open
Abstract
Chemokines are small secreted signaling proteins produced by a broad range of cells, including immune cells. Several studies have recently suggested potential roles of chemokines and their receptors in the pathophysiology of autism spectrum disorders (ASDs). SAM3 is a novel brain-specific chemokine-like molecule with an unknown physiological function. We explored the relevance of chemokines in the development of ASD in mice, with a focus on SAM3. We generated Sam3 gene knockout (KO) mice and characterized their behavioral phenotypes, with a focus on those relevant to ASD. Sam3-deficient mice displayed all three core phenotypes of ASD: impaired responses to social novelty, defects in social communication, and increased repetitive behavior. In addition, they showed increased anxiety. Interestingly, gender differences were identified for several behaviors: only male Sam3 KO mice exhibited increased anxiety and increased repetitive behaviors. Sam3 KO mice did not exhibit changes in other behaviors, including locomotor activities, fear learning and memory, and object recognition memory. These findings indicate that a deficiency of SAM3, a novel brain-specific chemokine-like molecule, may lead to the pathogenesis of ASDs and suggest the possibility that SAM3, a soluble factor, could be a novel therapeutic target for ASD treatment.
Collapse
Affiliation(s)
- Sujin Kim
- Center for Cognition and Sociality, Institute for Basic Science, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Basic Science, IBS School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong-Hyun Kim
- Center for Cognition and Sociality, Institute for Basic Science, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02797, Republic of Korea
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Basic Science, IBS School, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
799
|
Cordeira J, Kolluru SS, Rosenblatt H, Kry J, Strecker RE, McCarley RW. Learning and memory are impaired in the object recognition task during metestrus/diestrus and after sleep deprivation. Behav Brain Res 2017; 339:124-129. [PMID: 29180134 DOI: 10.1016/j.bbr.2017.11.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/25/2023]
Abstract
Females are an under-represented research model and the mechanisms through which sleep loss impairs cognition are not clear. Since levels of reproductive hormones and the estrous cycle are sensitive to sleep loss and necessary for learning and memory, we hypothesized that sleep deprivation impacts learning and memory in female mice by interfering with the estrous cycle. We used the object recognition task to assess learning and memory in female mice during separate phases of the estrous cycle and after sleep loss. Mice in metestrus/diestrus attended to sample objects less than mice in proestrus/estrus during object acquisition, the first phase of the object recognition task. Subsequently, during the recognition phase of the task, only mice in proestrus/estrus displayed a preference for the novel object. Sleep deprivation for 12h immediately before the object recognition task reduced time attending to sample objects and novel object preference for mice in proestrus/estrus, without changing length of the estrous cycle. These results show that sleep deprived mice in proestrus/estrus had learning deficits and memory impairments, like mice in metestrus/diestrus. Since sleep deprivation did not disrupt the estrous cycle, however, results did not support the hypothesis. Cognitive impairments due to acute sleep loss were not due to alterations to the estrous cycle.
Collapse
Affiliation(s)
- Joshua Cordeira
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA.
| | - Sai Saroja Kolluru
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA
| | - Heather Rosenblatt
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA
| | - Jenny Kry
- Department of Biological & EnvironmentalSciences, Western Connecticut State University, Danbury, CT, USA
| | - Robert E Strecker
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Robert W McCarley
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, Brockton, MA 02301, USA
| |
Collapse
|
800
|
Mann A, Gondard E, Tampellini D, Milsted JAT, Marillac D, Hamani C, Kalia SK, Lozano AM. Chronic deep brain stimulation in an Alzheimer's disease mouse model enhances memory and reduces pathological hallmarks. Brain Stimul 2017; 11:435-444. [PMID: 29246746 DOI: 10.1016/j.brs.2017.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/01/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive degenerative disorder that currently remains extremely disabling. Recent work has shown that deep brain stimulation (DBS) has promising effects in AD patients. In parallel to the clinical trials, we investigated the impact of chronic DBS in 3xTg mice, a well-established animal model of AD. METHODS AD mice were assigned to control (Cont), non-stimulation (NS) and stimulation (DBS) groups, along with age matched wild type controls (WT-Cont). Bilateral electrodes were implanted in the entorhinal cortex to deliver chronic high frequency stimulation for 25 days. Animals were tested in memory behavioral tasks, with post-mortem measurements of pathological markers. RESULTS We found that chronic DBS in AD mice normalized their impaired performance in the Morris water maze task to that of the WT group in the probe test. In the novel object and novel place preference tasks, AD-DBS mice spent more time at the novel object and novice location compared to AD-NS mice. These cognitive improvements in AD-DBS mice were associated with DBS induced increased neurogenesis in the dentate gyrus, a significant reduction in β-amyloid plaques, a reduction in CA-1 cellular β-amyloid-42 levels, decreased cortical total-tau and phosphorylated-tau, along with decreased hippocampal total-tau. CONCLUSION Overall, we show that chronic DBS of the entorhinal cortex in AD mice improves both memory and AD specific pathological markers. These results support further testing of DBS as a potential treatment in AD patients.
Collapse
Affiliation(s)
- Amandeep Mann
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Elise Gondard
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Davide Tampellini
- U 1195 Inserm - Université Paris Sud, 80 rue du General Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Jorge A T Milsted
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Desiree Marillac
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada
| | - Clement Hamani
- Neuroimaging Research Section, Centre for Addictions and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andres M Lozano
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, M5T 2S8, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|