751
|
Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0396-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
752
|
Tran CT, Williard PG, Kim E. Nitric Oxide Reactivity of [2Fe-2S] Clusters Leading to H2S Generation. J Am Chem Soc 2014; 136:11874-7. [DOI: 10.1021/ja505415c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Camly T. Tran
- Department
of Chemistry, Brown University, 324 Brook Street, Box H, Providence, Rhode Island 02912, United States
| | - Paul G. Williard
- Department
of Chemistry, Brown University, 324 Brook Street, Box H, Providence, Rhode Island 02912, United States
| | - Eunsuk Kim
- Department
of Chemistry, Brown University, 324 Brook Street, Box H, Providence, Rhode Island 02912, United States
| |
Collapse
|
753
|
Majtan T, Pey AL, Fernández R, Fernández JA, Martínez-Cruz LA, Kraus JP. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases. PLoS One 2014; 9:e105290. [PMID: 25122507 PMCID: PMC4133348 DOI: 10.1371/journal.pone.0105290] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023] Open
Abstract
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
754
|
Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology 2014; 147:303-13. [PMID: 24798417 PMCID: PMC4106980 DOI: 10.1053/j.gastro.2014.04.041] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022]
Abstract
Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for H2S) smelly gaseous molecules; now they are known to have important signaling functions in the gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric nerves, and can regulate the immune system. The pathways that produce nitric oxide, H2S, and CO interact; each can inhibit and potentiate the level and activity of the other. However, there are significant differences between these molecules, such as in half-lives; CO is more stable and therefore able to have effects distal to the site of production, whereas nitric oxide and H2S are short lived and act only close to sites of production. We review their signaling functions in the luminal gastrointestinal tract and discuss how their pathways interact. We also describe other physiological functions of CO and H2S and how they might be used as therapeutic agents.
Collapse
Affiliation(s)
- Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| | | |
Collapse
|
755
|
Revsbech IG, Shen X, Chakravarti R, Jensen FB, Thiel B, Evans AL, Kindberg J, Fröbert O, Stuehr DJ, Kevil CG, Fago A. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radic Biol Med 2014; 73:349-57. [PMID: 24909614 PMCID: PMC4413933 DOI: 10.1016/j.freeradbiomed.2014.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 02/08/2023]
Abstract
During winter hibernation, brown bears (Ursus arctos) lie in dens for half a year without eating while their basal metabolism is largely suppressed. To understand the underlying mechanisms of metabolic depression in hibernation, we measured type and content of blood metabolites of two ubiquitous inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood cells of hibernating bears. In contrast, circulating nitrite and erythrocytic S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase, taken as markers of NO metabolism, did not change appreciably. Our findings reveal that remodeling of H2S metabolism and enhanced intracellular GSH levels are hallmarks of the aerobic metabolic suppression of hibernating bears.
Collapse
Affiliation(s)
- Inge G Revsbech
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Ritu Chakravarti
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Bonnie Thiel
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Hedmark University College, Campus Evenstad, 2418 Elverum, Norway
| | - Jonas Kindberg
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Ole Fröbert
- Department of Cardiology, Örebro University Hospital, 70362 Örebro, Sweden
| | - Dennis J Stuehr
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Angela Fago
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
756
|
Chen A, Zeng G, Chen G, Zhang C, Yan M, Shang C, Hu X, Lu L, Chen M, Guo Z, Zuo Y. Hydrogen sulfide alleviates 2,4-dichlorophenol toxicity and promotes its degradation in Phanerochaete chrysosporium. CHEMOSPHERE 2014; 109:208-212. [PMID: 24530160 DOI: 10.1016/j.chemosphere.2014.01.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
In this study, the H2S donor, sodium hydrosulfide (NaHS) was used to pretreat Phanerochaete chrysosporium in order to improve its ability to degrade 2,4-dichlorophenol (2,4-DCP). When pretreated with 100μM NaHS, P. chrysosporium was able to degrade 2,4-DCP completely in 24h, whereas the degradation efficiency of the untreated control was only 57%. The 2,4-DCP-induced oxidative stress was alleviated by NaHS, and the percentage of surviving cells increased by 32%. H2S or HS(-), rather than other compounds derived from NaHS, were responsible for promoting 2,4-DCP degradation by P. chrysosporium. The results of this study suggest that H2S treatment is a potential strategy to alleviate environmental stress and improve the efficiency of the biological removal of pollutants from wastewater.
Collapse
Affiliation(s)
- Anwei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Cui Shang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lunhui Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanan Zuo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
757
|
Pei X, Tian H, Zhang W, Brouwer AM, Qian J. Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination. Analyst 2014; 139:5290-6. [DOI: 10.1039/c4an01086h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
758
|
Orabi EA, Lamoureux G. Simulation of Liquid and Supercritical Hydrogen Sulfide and of Alkali Ions in the Pure and Aqueous Liquid. J Chem Theory Comput 2014; 10:3221-35. [DOI: 10.1021/ct5002335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esam A. Orabi
- Department of Chemistry and Biochemistry
and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Guillaume Lamoureux
- Department of Chemistry and Biochemistry
and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
759
|
Xie YH, Zhang N, Li LF, Zhang QZ, Xie LJ, Jiang H, Li LP, Hao N, Zhang JX. Hydrogen sulfide reduces regional myocardial ischemia injury through protection of mitochondrial function. Mol Med Rep 2014; 10:1907-14. [PMID: 25198340 DOI: 10.3892/mmr.2014.2391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) is a signaling gasotransmitter, involved in various physiological and pathological processes. H2S-donating drugs have been tested to conjugate the beneficial effects of H2S with other pharmaceutical properties. It has been shown that the endogenous cystathionine-γ-lyase (CSE)/H2S pathway participates in myocardial ischemia injury in isolated hearts in rats. The present study aimed to investigate the cytoprotective action of H2S against acute myocardial ischemia injury in rats. Isolated rat hearts were perfused and subjected to ischemic conditions for 4 h. The hearts were assigned to five groups: Sham, model, infarct plus low-dose (5 µmol/l) NaHS, infarct plus middle-dose (10 µmol/l) NaHS and infarct plus high-dose (20 µmol/l) NaHS. The administration of NaHS enhanced the activity of CSE, increased the content of H2S and reduced infarct volumes following myocardial ischemia injury. Furthermore, the administration of NaHS attenuated the injury to organelles (including the mitochondria, nucleus and myofilaments) by reducing lactate dehydrogenase activity, decreasing the level of mitochondrial malondialdehyde and increasing the activities of superoxide dismutase and glutathione peroxidase in the ischemic myocardial mitochondria. These protective effects of H2S against myocardial ischemia injury appeared to be mediated by its antioxidant activities and the preservation of mitochondrial function.
Collapse
Affiliation(s)
- Ying-Hua Xie
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Nan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lan-Fang Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Qin-Zeng Zhang
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Li-Jun Xie
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Hong Jiang
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Li-Ping Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Na Hao
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Jian-Xin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
760
|
Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suárez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Martí MA, Doctorovich F, Högestätt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR. H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 2014; 5:4381. [PMID: 25023795 PMCID: PMC4104458 DOI: 10.1038/ncomms5381] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/12/2014] [Indexed: 02/08/2023] Open
Abstract
Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO–TRPA1–CGRP pathway. We propose that this neuroendocrine HNO–TRPA1–CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system. Nitric oxide (NO) and hydrogen sulphide (H2S) are two gaseous signalling molecules produced in tissues. Here the authors propose that NO and H2S react with each other to form nitroxyl (HNO), which activates the TRPA1 channel in nerve cells and triggers the release of the vasoactive peptide CGRP.
Collapse
Affiliation(s)
- Mirjam Eberhardt
- 1] Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany [2] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [3] Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Maria Dux
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Barbara Namer
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Jan Miljkovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Christine Will
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Tatjana I Kichko
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Jeanne de la Roche
- Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Fischer
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
| | - Sebastián A Suárez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Damian Bikiel
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Karola Dorsch
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070 Ulm, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Alexandru Babes
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Angelika Lampert
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2]
| | - Jochen K Lennerz
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070 Ulm, Germany
| | - Johannes Jacobi
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Marcelo A Martí
- 1] Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina [2] Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Edward D Högestätt
- Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Peter M Zygmunt
- Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Peter Reeh
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2]
| | - Milos R Filipovic
- 1] Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany [2]
| |
Collapse
|
761
|
Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 2014; 15:66-78. [PMID: 24726192 PMCID: PMC4082757 DOI: 10.1016/j.stem.2014.03.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
Abstract
Gaseous signaling molecules such as hydrogen sulfide (H2S) are produced endogenously and mediate effects through diverse mechanisms. H2S is one such gasotransmitters that regulates multiple signaling pathways in mammalian cells, and abnormal H2S metabolism has been linked to defects in bone homeostasis. Here, we demonstrate that bone marrow mesenchymal stem cells (BMMSCs) produce H2S in order to regulate their self-renewal and osteogenic differentiation, and H2S deficiency results in defects in BMMSC differentiation. H2S deficiency causes aberrant intracellular Ca(2+) influx because of reduced sulfhydration of cysteine residues on multiple Ca(2+) TRP channels. This decreased Ca(2+) flux downregulates PKC/Erk-mediated Wnt/β-catenin signaling which controls osteogenic differentiation of BMMSCs. Consistently, H2S-deficient mice display an osteoporotic phenotype that can be rescued by small molecules that release H2S. These results demonstrate that H2S regulates BMMSCs and that restoring H2S levels via nontoxic donors may provide treatments for diseases such as osteoporosis that can arise from H2S deficiencies.
Collapse
Affiliation(s)
- Yi Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China.
| | - Ruili Yang
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Yu Zhou
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Cunye Qu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Takashi Kikuiri
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Songlin Wang
- Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China
| | - Ebrahim Zandi
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
762
|
|
763
|
Lee ZW, Teo XY, Tay EYW, Tan CH, Hagen T, Moore PK, Deng LW. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance. Br J Pharmacol 2014; 171:4322-36. [PMID: 24827113 DOI: 10.1111/bph.12773] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/31/2014] [Accepted: 05/07/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2 S) in cell survival. The present study investigated the effect of H2 S on the viability of cancer and non-cancer cells. EXPERIMENTAL APPROACH Cancer and non-cancer cells were exposed to H2 S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi ) was determined by ratiometric pHi measurement using BCECF staining. KEY RESULTS Continuous, but not a single, exposure to H2 S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2 S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2 S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. CONCLUSIONS AND IMPLICATIONS Low and continuous exposure to H2 S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy.
Collapse
Affiliation(s)
- Z-W Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
764
|
Liu HY, Zhao M, Qiao QL, Lang HJ, Xu JZ, Xu ZC. Fluorescein-derived fluorescent probe for cellular hydrogen sulfide imaging. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
765
|
Kumai Y, Porteus CS, Kwong RWM, Perry SF. Hydrogen sulfide inhibits Na+ uptake in larval zebrafish, Danio rerio. Pflugers Arch 2014; 467:651-64. [PMID: 24939700 DOI: 10.1007/s00424-014-1550-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/28/2022]
Abstract
The present study investigated the role of hydrogen sulfide (H2S) in regulating Na(+) uptake in larval zebrafish, Danio rerio. Waterborne treatment of larvae at 4 days post-fertilization (dpf) with Na2S or GYY-4137 (chemicals known to generate H2S) significantly reduced Na(+) uptake. Exposure of larvae to water enriched with NaCl (1 mM NaCl) caused a pronounced reduction in Na(+) uptake which was prevented by pharmacological inhibition of cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE), two key enzymes involved in the endogenous synthesis of H2S. Furthermore, translational gene knockdown of CSE and CBSb significantly increased the basal rate of Na(+) uptake. Waterborne treatment with Na2S significantly decreased whole-body acid excretion and reduced Na(+) uptake in larval zebrafish preexposed to acidic (pH 4.0) water (a condition shown to promote Na(+) uptake via Na(+)-H(+)-exchanger 3b, NHE3b). However, Na2S did not affect Na(+) uptake in larvae depleted of NHE3b-containing ionocytes (HR cells) after knockdown of transcription factor glial cell missing 2 (gcm2) in which Na(+) uptake occurs predominantly via Na(+)-Cl(-) co-transporter (NCC)-containing cells. These observations suggest that Na(+) uptake via NHE3b, but not NCC, is regulated by H2S. Whole-mount immunohistochemistry demonstrated that ionocytes expressing NHE3b also express CSE. These data suggests a physiologically relevant role of H2S as a mechanism to lower Na(+) uptake in zebrafish larvae, probably through its inhibitory action on NHE3b.
Collapse
Affiliation(s)
- Yusuke Kumai
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | | | | | | |
Collapse
|
766
|
Fang T, Li J, Cao Z, Chen M, Shen W, Huang L. Heme oxygenase-1 is involved in sodium hydrosulfide-induced lateral root formation in tomato seedlings. PLANT CELL REPORTS 2014; 33:969-78. [PMID: 24556961 DOI: 10.1007/s00299-014-1577-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 05/09/2023]
Abstract
By using pharmacological and molecular approaches, we discovered the involvement of HO-1 in NaHS-induced lateral root formation in tomato seedlings. Heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) regulate various responses to abiotic stress and root development, but their involvement in the simultaneous regulation of plant lateral root (LR) formation is poorly understood. In this report, we observed that the exogenously applied H2S donor sodium hydrosulfide (NaHS) and the HO-1 inducer hemin induce LR formation in tomato seedlings by triggering intracellular signaling events involving the induction of tomato HO-1 (SlHO-1), and the modulation of cell cycle regulatory genes, including the up-regulation of SlCDKA;1 and SlCYCA2;1, and simultaneous down-regulation of SlKRP2. The response of NaHS in the induction of LR formation was impaired by the potent inhibition of HO-1, which was further blocked when 50 % saturation of carbon monoxide (CO) aqueous solution, one of the catalytic by-products of HO-1, was added. Further molecular evidence revealed that the NaHS-modulated gene expression of cell cycle regulatory genes was sensitive to the inhibition of HO-1 and reversed by cotreatment with CO. The impairment of LR density and length as well as lateral root primordia number, the decreased tomato HO-1 gene expression and HO activity caused by an H2S scavenger hypotaurine were partially rescued by the addition of NaHS, hemin and CO (in particular). Together, these results revealed that at least in our experimental conditions, HO-1 might be involved in NaHS-induced tomato LR formation. Additionally, the use of NaHS and hemin compounds in crop root organogenesis should be explored.
Collapse
Affiliation(s)
- Tao Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
767
|
Hydrogen sulfide in hemostasis: Friend or foe? Chem Biol Interact 2014; 217:49-56. [DOI: 10.1016/j.cbi.2014.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/02/2014] [Accepted: 04/06/2014] [Indexed: 11/19/2022]
|
768
|
Benedetti F, Davinelli S, Krishnan S, Gallo RC, Scapagnini G, Zella D, Curreli S. Sulfur compounds block MCP-1 production by Mycoplasma fermentans-infected macrophages through NF-κB inhibition. J Transl Med 2014; 12:145. [PMID: 24886588 PMCID: PMC4046042 DOI: 10.1186/1479-5876-12-145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/22/2014] [Indexed: 12/04/2022] Open
Abstract
Background and aims Hydrogen sulfide (H2S), together with nitric oxide (NO) and carbon monoxide (CO), belongs to a family of endogenous signaling mediators termed “gasotransmitters”. Recent studies suggest that H2S modulates many cellular processes and it has been recognized to play a central role in inflammation, in the cardiovascular and nervous systems. By infecting monocytes/macrophages with Mycoplasma fermentans (M.F.), a well-known pro-inflammatory agent, we evaluated the effects of H2S. Methods M.F.-infected cells were analyzed by ELISA and real time RT-PCR to detect the M.F. effects on MCP-1 and on MMP-12 expression. The role of two different H2S donors (NaHS and GYY4137) on MF-infected cells was determined by treating infected cells with H2S and then testing the culture supernatants for MCP-1 and on MMP-12 production by ELISA assay. In order to identify the pathway/s mediating H2S- anti-inflammatory activity, cells were also treated with specific pharmaceutical inhibitors. Cytoplasmic and nuclear accumulation of NF-κB heterodimers was analyzed. Results We show that H2S was able to reduce the production of pro-inflammatory cytokine MCP-1, that was induced in monocytes/macrophages during M.F. infection. Moreover, MCP-1 was induced by M.F. through Toll-like receptor (TLR)-mediated nuclear factor-κB (NF-κB) activation, as demonstrated by the fact that TLR inhibitors TIRAP and MyD88 and NF-κB inhibitor IKK were able to block the cytokine production. In contrast H2S treatment of M.F. infected macrophages reduced nuclear accumulation of NF-κB heterodimer p65/p52. Conclusions Our data demonstrate that under the present conditions H2S is effective in reducing Mycoplasma-induced inflammation by targeting the NF-κB pathway. This supports further studies for possible clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sabrina Curreli
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
769
|
Liu C, Chen W, Shi W, Peng B, Zhao Y, Ma H, Xian M. Rational design and bioimaging applications of highly selective fluorescence probes for hydrogen polysulfides. J Am Chem Soc 2014; 136:7257-60. [PMID: 24809803 PMCID: PMC4046760 DOI: 10.1021/ja502968x] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 02/07/2023]
Abstract
Reactive sulfur species have received considerable attention due to their various biological functions. Among these molecules, hydrogen polysulfides (H2S(n), n > 1) are recently suggested to be the actual signaling molecules derived from hydrogen sulfide (H2S). Hydrogen polysulfides may also have their own biosynthetic pathways. The research on H2S(n) is rapidly growing. However, the detection of H2S(n) is still challenging. In this work we report a H2S(n)-mediated benzodithiolone formation under mild conditions. Based on this reaction, specific fluorescent probes for H2S(n) are prepared and evaluated. The probe DSP-3 shows good selectivity and sensitivity for H2S(n).
Collapse
Affiliation(s)
- Chunrong Liu
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wei Chen
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wen Shi
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Peng
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Yu Zhao
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Huimin Ma
- Key
Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Xian
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
770
|
Huang L, Applegate PM, Gatling JW, Mangus DB, Zhang J, Applegate RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection). Med Gas Res 2014; 4:10. [PMID: 25671079 PMCID: PMC4322492 DOI: 10.1186/2045-9912-4-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 11/10/2022] Open
Abstract
Neurocognitive deficits remain a significant source of morbidity in survivors of cardiac arrest. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following global cerebral ischemia associated with cardiac arrest. The search was limited to investigational therapies that were implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation in studies that included assessment of impact on neurologic outcome. Given that complex pathophysiology underlies global brain hypoxic ischemia following cardiac arrest, neuroprotective strategies targeting multiple stages of neuropathologic cascades should promise to improve survival and neurologic outcomes in cardiac arrest victims. In Part II of this review, we discuss several approaches that can provide comprehensive protection against global brain injury associated with cardiac arrest, by modulating multiple targets of neuropathologic cascades. Pharmaceutical approaches include adenosine and growth factors/hormones including brain-derived neurotrophic factor, insulin-like growth factor-1 and glycine-proline-glutamate, granulocyte colony stimulating factor and estrogen. Preclinical studies of these showed some benefit but were inconclusive in models of global brain injury involving systemic ischemia. Several medical gases that can mediate neuroprotection have been evaluated in experimental settings. These include hydrogen sulfide, hyperbaric oxygen and molecular hydrogen. Hyperbaric oxygen and molecular hydrogen showed promising results; however, further investigation is required prior to clinical application of these agents in cardiac arrest patients.
Collapse
Affiliation(s)
- Lei Huang
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA ; Department of Basic Sciences, Division of Physiology and Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA
| | - Patricia M Applegate
- Department of Cardiology, Loma Linda University School of Medicine, 11201 Benton St, Loma Linda, CA 92354, USA
| | - Jason W Gatling
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| | - Dustin B Mangus
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| | - John Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA ; Department of Basic Sciences, Division of Physiology and Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA ; Department of Neurosurgery, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA
| | - Richard L Applegate
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| |
Collapse
|
771
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
772
|
Tobler M, Henpita C, Bassett B, Kelley JL, Shaw JH. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:7-14. [PMID: 24813672 DOI: 10.1016/j.cbpa.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits.
Collapse
Affiliation(s)
- Michael Tobler
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Chathurika Henpita
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Brandon Bassett
- Center for Veterinary Health Sciences, Oklahoma State University, 205 McElroy Hall, Stillwater, OK 74078, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | - Jennifer H Shaw
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA.
| |
Collapse
|
773
|
Hao J, Xiong B, Cheng X, He Y, Yeung ES. High-throughput sulfide sensing with colorimetric analysis of single Au-Ag core-shell nanoparticles. Anal Chem 2014; 86:4663-7. [PMID: 24809220 DOI: 10.1021/ac500376e] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a high-throughput strategy for sensitive detection of H2S by using individual spherical Au-Ag core-shell plasmonic nanoparticles (PNPs) as molecular probes. This method is based on quantification of color variation of the single PNPs resulting from formation of Ag2S on the particle surface. The spectral response range of the 51 nm PNP was specifically designed to match the most sensitive region of color cameras. A high density of immobilized PNPs and rapid color RGB (red/green/blue) analysis allow a large number of individual PNPs to be monitored simultaneously, leading to reliable quantification of color change of the PNPs. A linear logarithmic dependence on sulfide concentrations from 50 nM to 100 μM was demonstrated by using this colorimetric assay. By designing PNPs with various surface chemistries, similar strategies could be developed to detect other chemically or biologically important molecules.
Collapse
Affiliation(s)
- Jinrui Hao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University , Changsha, Hunan 410082, P. R. China
| | | | | | | | | |
Collapse
|
774
|
Hancock JT, Whiteman M. Hydrogen sulfide and cell signaling: team player or referee? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 78:37-42. [PMID: 24607577 DOI: 10.1016/j.plaphy.2014.02.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/16/2014] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2S) has been postulated to be the third gasotransmitter, and along with other reactive compounds such as reactive oxygen species (ROS) and nitric oxide (NO) it is thought to be a key signalling molecule. Enzymes which generate H2S, and remove it, have been characterised in both plants and animals and although it is inherently toxic to cells - inhibiting cytochrome oxidase for example - H2S is now being thought of as part of signal transduction pathways. But is it working as a signal in the sense usually seen for small signalling molecules, that is, produced when needed, perceived and leading to dedicated responses in cells? A look through the literature shows that H2S is involved in many stress responses, and in animals is implicated in the onset of many diseases, in both cases where ROS and NO are often involved. It is suggested here that H2S is not acting as a true signal, but through its interaction with NO and ROS metabolism is modulating such activity, keeping it in check unless strictly needed, and that H2S is acting as a referee to ensure NO and ROS metabolism is working properly.
Collapse
Affiliation(s)
- J T Hancock
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - M Whiteman
- University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
775
|
Pogge DJ, Lonergan SM, Hansen SL. Influence of supplementing vitamin C to yearling steers fed a high sulfur diet during the finishing period on meat color, tenderness and protein degradation, and fatty acid profile of the longissimus muscle. Meat Sci 2014; 97:419-27. [PMID: 24769141 DOI: 10.1016/j.meatsci.2014.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/22/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
The objective was to determine the influence of vitamin C (VC) supplemented for approximately 102 d during the finishing period on color, tenderness, and fatty acid profile of longissimus thoracis (LT; n=136) from steers fed a 0.55% sulfur diet. Treatments included 4 supplemental VC concentrations: 1) 0 (CON), 2) 5 (5VC), 3) 10 (10VC), or 4) 20 (20VC) gVC·h(-1)∙d(-1) in a common diet. Increasing supplemental VC decreased (P<0.01) L*, but increased (P<0.01) vitamin E and tended to increase (P≤0.07) calcium and iron content of steaks. No VC (P≥0.25) effect was noted for WBSF, calpain-1 autolysis, troponin T degradation, or most fatty acid profiles. A quadratic effect (P≤0.03) was observed for cholesterol and CLA content of LT. Under the conditions of our study, supplementing VC to steers fed a 0.55% sulfur diet late in the finishing period did not influence color or tenderness, but increased the vitamin E content.
Collapse
Affiliation(s)
- Danielle J Pogge
- Department of Animal Science and Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011, United States
| | - Steven M Lonergan
- Department of Animal Science and Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011, United States
| | - Stephanie L Hansen
- Department of Animal Science and Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
776
|
Zhao K, Ju Y, Li S, Altaany Z, Wang R, Yang G. S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep 2014; 15:792-800. [PMID: 24778456 DOI: 10.1002/embr.201338213] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The repair of DNA damage is fundamental to normal cell development and replication. Hydrogen sulfide (H2S) is a novel gasotransmitter that has been reported to protect cellular aging. Here, we show that H2S attenuates DNA damage in human endothelial cells and fibroblasts by S-sulfhydrating MEK1 at cysteine 341, which leads to PARP-1 activation. H2S-induced MEK1 S-sulfhydration facilitates the translocation of phosphorylated ERK1/2 into nucleus, where it activates PARP-1 through direct interaction. Mutation of MEK1 cysteine 341 inhibits ERK phosphorylation and PARP-1 activation. In the presence of H2S, activated PARP-1 recruits XRCC1 and DNA ligase III to DNA breaks to mediate DNA damage repair, and cells are protected from senescence.
Collapse
Affiliation(s)
- Kexin Zhao
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada The School of Kinesiology Lakehead University, Thunder Bay, ON, Canada
| | - YoungJun Ju
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada The School of Kinesiology Lakehead University, Thunder Bay, ON, Canada
| | - Shuangshuang Li
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada The School of Kinesiology Lakehead University, Thunder Bay, ON, Canada
| | - Zaid Altaany
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, ON, Canada The School of Kinesiology Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
777
|
Metformin raises hydrogen sulfide tissue concentrations in various mouse organs. Pharmacol Rep 2014; 65:737-42. [PMID: 23950598 DOI: 10.1016/s1734-1140(13)71053-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 12/11/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND The epidemic of diabetes mellitus type 2 forces to intensive work on the disease medication. Metformin, the most widely prescribed insulin sensitizer, exerts pleiotropic actions on different tissues by not fully recognized mechanisms. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals and is perceived as a potential agent in the treatment of different disorders. The interaction between biguanides and H2S is unknown. The aim of the study is to assess the influence of metformin on the H2S tissue concentrations in different mouse organs. METHODS Adult SJL female mice were administered intraperitoneally 100 mg/kg b.w. per day of metformin (group D1, n = 6) or 200 mg/kg b.w. per day of metformin (group D2, n = 7). The control group (n = 6) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with Siegel spectrophotometric modified method. RESULTS There was a significant progressive increase in the H2S concentration along with the rising metformin doses as compared to the control group in the brain (D1 by 103.6%, D2 by 113.5%), in the heart (D1 by 11.7%, D2 by 27.5%) and in the kidney (D1 by 7.1%, D2 by 9.6%). In the liver, massive H2S accumulation was observed in the group D1 (increase by 420.4%), while in the D2 group only slight H2S level enhancement was noted (by 12.5%). CONCLUSION Our experiment has shown that metformin administration is followed by H2S tissue concentrations increase in mouse brain, heart, kidney and liver.
Collapse
|
778
|
Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 2014; 114:730-7. [PMID: 24526678 DOI: 10.1161/circresaha.114.300505] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long recognized as a malodorous and highly toxic gas, recent experimental studies have revealed that hydrogen sulfide (H2S) is produced enzymatically in all mammalian species including man and exerts several critical actions to promote cardiovascular homeostasis and health. During the past 15 years, scientists have determined that H2S is produced by 3 endogenous enzymes and exerts powerful effects on endothelial cells, smooth muscle cells, inflammatory cells, mitochondria, endoplasmic reticulum, and nuclear transcription factors. These effects have been reported in multiple organ systems, and the majority of data clearly indicate that H2S produced by the endogenous enzymes exerts cytoprotective actions. Recent preclinical studies investigating cardiovascular diseases have demonstrated that the administration of physiological or pharmacological levels of H2S attenuates myocardial injury, protects blood vessels, limits inflammation, and regulates blood pressure. H2S has emerged as a critical cardiovascular signaling molecule similar to nitric oxide and carbon monoxide with a profound effect on the heart and circulation. Our improved understanding of how H2S elicits protective actions, coupled with the rapid development of novel H2S-releasing agents, has resulted in heightened enthusiasm for the clinical translation of this ephemeral gaseous molecule. This review will examine our current state of knowledge about the actions of H2S within the cardiovascular system with an emphasis on the therapeutic potential and molecular cross talk between H2S, nitric oxide, and carbon monoxide.
Collapse
Affiliation(s)
- David J Polhemus
- From the Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA (D.J.P., D.J.L.); and the LSU Cardiovascular Center of Excellence, New Orleans, LA (D.J.P., D.J.L.)
| | | |
Collapse
|
779
|
Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochem J 2014; 458:203-11. [PMID: 24328859 DOI: 10.1042/bj20131350] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increased catalytic activity of CBS (cystathionine β-synthase) was recently shown to mediate vasodilation of the cerebral microcirculation, which is initiated within minutes of the onset of acute hypoxia. To test whether chronic hypoxia was a stimulus for increased CBS expression, U87-MG human glioblastoma and PC12 rat phaeochromocytoma cells were exposed to 1% or 20% O2 for 24-72 h. CBS mRNA and protein expression were increased in hypoxic cells. Hypoxic induction of CBS expression was abrogated in cells transfected with vector encoding shRNA targeting HIF (hypoxia-inducible factor) 1α or 2α. Exposure of rats to hypobaric hypoxia (0.35 atm; 1 atm=101.325 kPa) for 3 days induced increased CBS mRNA, protein and catalytic activity in the cerebral cortex and cerebellum, which was blocked by administration of the HIF inhibitor digoxin. HIF-binding sites, located 0.8 and 1.2 kb 5' to the transcription start site of the human CBS and rat Cbs genes respectively, were identified by ChIP assays. A 49-bp human sequence, which encompassed an inverted repeat of the core HIF-binding site, functioned as a hypoxia-response element in luciferase reporter transcription assays. Thus HIFs mediate tissue-specific CBS expression, which may augment cerebral vasodilation as an adaptive response to chronic hypoxia.
Collapse
|
780
|
Jiang Y, Wu Q, Chang X. A ratiometric fluorescent probe for hydrogen sulfide imaging in living cells. Talanta 2014; 121:122-6. [DOI: 10.1016/j.talanta.2014.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 02/02/2023]
|
781
|
Lippert AR. Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. J Inorg Biochem 2014; 133:136-42. [DOI: 10.1016/j.jinorgbio.2013.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/05/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023]
|
782
|
FRET ratiometric probes reveal the chiral-sensitive cysteine-dependent H2S production and regulation in living cells. Sci Rep 2014. [DOI: 10.1038/srep04521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
783
|
Yuan L, Zuo QP. FRET-Based Mitochondria-Targetable Dual-Excitation Ratiometric Fluorescent Probe for Monitoring Hydrogen Sulfide in Living Cells. Chem Asian J 2014; 9:1544-9. [DOI: 10.1002/asia.201400131] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/17/2014] [Indexed: 01/06/2023]
|
784
|
Park CM, Zhao Y, Zhu Z, Pacheco A, Peng B, Devarie-Baez NO, Bagdon P, Zhang H, Xian M. Synthesis and evaluation of phosphorodithioate-based hydrogen sulfide donors. MOLECULAR BIOSYSTEMS 2014; 9:2430-4. [PMID: 23917226 DOI: 10.1039/c3mb70145j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of O-aryl- and alkyl-substituted phosphorodithioates were designed and synthesized as hydrogen sulfide (H2S) donors. H2S releasing capability of these compounds was evaluated using fluorescence methods. O-aryl substituted donors showed slow and sustained H2S release while O-alkylated compounds showed very weak H2S releasing capability. We also evaluated donors' protective effects against hydrogen peroxide (H2O2)-induced oxidative damage in myocytes and donors' toxicity toward B16BL6 mouse melanoma cells.
Collapse
Affiliation(s)
- Chung-Min Park
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
785
|
Peh MT, Anwar AB, Ng DSW, Atan MSBM, Kumar SD, Moore PK. Effect of feeding a high fat diet on hydrogen sulfide (H2S) metabolism in the mouse. Nitric Oxide 2014; 41:138-45. [PMID: 24637018 DOI: 10.1016/j.niox.2014.03.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide (H2S) has complex effects in inflammation with both pro- and anti-inflammatory actions of this gas reported. Recent work suggests that a deficiency of H2S occurs in, and may contribute to, the chronic inflammation which underpins ongoing atherosclerotic disease. However, whether a high fat diet, predisposing to atherosclerosis, affects H2S metabolism is not known. In this study we assessed H2S metabolism in different tissues of mice fed a high fat diet for up to 16 weeks. Ex vivo biosynthesis of H2S was reduced in liver, kidney and lung of high fat fed mice. Western blotting revealed deficiency of cystathionine γ lyase (CSE) in liver and lung with increased expression of cystathionine β synthetase (CBS) in liver and kidney. Expression of 3-mercaptopyruvate sulfurtransferase (3-MST) was reduced in liver but not other tissues. Aortic endothelial cell CSE was also reduced in high fat fed animals as determined immunohistochemically. Plasma H2S concentration was not changed in these animals. No evidence of lipid deposition was apparent in aortae from high fat fed animals and plasma serum amyloid A (SAA) and C-reactive protein (CRP) were also unchanged suggesting lack of frank atherosclerotic disease. Plasma IL-6, IL12p40 and G-CSF levels were increased by high fat feeding whilst other cytokines including IL-1α, IL-1b and TNF-α were not altered. These results suggest that deficiency of tissue CSE and H2S occurs in mice fed a high fat diet and that this change takes place prior to development of frank atherosclerotic disease.
Collapse
Affiliation(s)
- Meng Teng Peh
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Azzahra Binti Anwar
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - David S W Ng
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mohamed Shirhan Bin Mohamed Atan
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Srinivasan Dinesh Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore
| | - Philip K Moore
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
786
|
Song P, Zou MH. Redox regulation of endothelial cell fate. Cell Mol Life Sci 2014; 71:3219-39. [PMID: 24633153 DOI: 10.1007/s00018-014-1598-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions.
Collapse
Affiliation(s)
- Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L Young Blvd., Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
787
|
Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int J Cardiol 2014; 172:313-7. [DOI: 10.1016/j.ijcard.2014.01.068] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/02/2014] [Accepted: 01/18/2014] [Indexed: 11/18/2022]
|
788
|
Fang T, Cao Z, Li J, Shen W, Huang L. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 76:44-51. [PMID: 24463534 DOI: 10.1016/j.plaphy.2013.12.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/30/2013] [Indexed: 05/21/2023]
Abstract
Similar to auxin, hydrogen sulfide (H2S), mainly produced by l-cysteine desulfhydrase (DES; EC 4.4.1.1) in plants, could induce lateral root formation. The objective of this study was to test whether H2S is also involved in auxin-induced lateral root development in tomato (Solanum lycopersicum L.) seedlings. We observed that auxin depletion-induced down-regulation of transcripts of SlDES1, decreased DES activity and endogenous H2S contents, and the inhibition of lateral root formation were rescued by sodium hydrosulfide (NaHS, an H2S donor). However, No additive effects were observed when naphthalene acetic acid (NAA) was co-treated with NaHS (lower than 10 mM) in the induction of lateral root formation. Subsequent work revealed that a treatment with NAA or NaHS could simultaneously induce transcripts of SlDES1, DES activity and endogenous H2S contents, and thereafter the stimulation of lateral root formation. It was further confirmed that H2S or HS(-), not the other sulfur-containing components derived from NaHS, was attributed to the stimulative action. The inhibition of lateral root formation and decreased of H2S metabolism caused by an H2S scavenger hypotaurine (HT) were reversed by NaHS, but not NAA. Molecular evidence revealed that both NaHS- or NAA-induced modulation of some cell cycle regulatory genes, including the up-regulation of SlCDKA;1, SlCYCA2;1, together with simultaneous down-regulation of SlKRP2, were differentially reversed by HT pretreatment. To summarize, above results clearly suggested that H2S might, at least partially, act as a downstream component of auxin signaling to trigger lateral root formation.
Collapse
Affiliation(s)
- Tao Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zeyu Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liqin Huang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
789
|
Li YJ, Chen J, Xian M, Zhou LG, Han FX, Gan LJ, Shi ZQ. In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation. PLoS One 2014; 9:e90340. [PMID: 24587333 PMCID: PMC3937356 DOI: 10.1371/journal.pone.0090340] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter in mammals. Despite physiological changes induced by exogenous H2S donor NaHS to plants, whether and how H2S works as a true cellular signal in plants need to be examined. A self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in tomato (Solanum lycopersicum) roots in site. Bioimaging combined with pharmacological and biochemical approaches were used to investigate the cross-talk among H2S, nitric oxide (NO), and Ca2+ in regulating lateral root formation. Endogenous H2S accumulation was clearly associated with primordium initiation and lateral root emergence. NO donor SNP stimulated the generation of endogenous H2S and the expression of the gene coding for the enzyme responsible for endogenous H2S synthesis. Scavenging H2S or inhibiting H2S synthesis partially blocked SNP-induced lateral root formation and the expression of lateral root-related genes. The stimulatory effect of SNP on Ca2+ accumulation and CaM1 (calmodulin 1) expression could be abolished by inhibiting H2S synthesis. Ca2+ chelator or Ca2+ channel blocker attenuated NaHS-induced lateral root formation. Our study confirmed the role of H2S as a cellular signal in plants being a mediator between NO and Ca2+ in regulating lateral root formation.
Collapse
Affiliation(s)
- Yan-Jun Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (JC); (Z-QS); (L-JG)
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Li-Gang Zhou
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fengxiang X. Han
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, United States of America
| | - Li-Jun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (JC); (Z-QS); (L-JG)
| | - Zhi-Qi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (JC); (Z-QS); (L-JG)
| |
Collapse
|
790
|
A hypothesis: hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury. ScientificWorldJournal 2014; 2014:432318. [PMID: 24707204 PMCID: PMC3953624 DOI: 10.1155/2014/432318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/15/2014] [Indexed: 12/21/2022] Open
Abstract
Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S) protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS) induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH). Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH.
Collapse
|
791
|
Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu M, Liu J, Chen SX, Bu D, Tang C, Jin H. Hydrogen sulfide suppresses oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κB (NF-κB) pathway. J Biol Chem 2014; 289:9741-53. [PMID: 24550391 DOI: 10.1074/jbc.m113.517995] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation.
Collapse
Affiliation(s)
- Junbao Du
- From the Department of Pediatrics and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
792
|
Nagpure BV, Bian JS. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One 2014; 9:e88508. [PMID: 24523906 PMCID: PMC3921165 DOI: 10.1371/journal.pone.0088508] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 01/11/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM) attenuated HENECA (a selective A2A receptor agonist, 10-200 nM) induced β-amyloid (1-42) (Aβ42) production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP) by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1) showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB). NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist) alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor), but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.
Collapse
Affiliation(s)
- Bhushan Vijay Nagpure
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
793
|
Moustafa A, Habara Y. Hydrogen sulfide regulates Ca(2+) homeostasis mediated by concomitantly produced nitric oxide via a novel synergistic pathway in exocrine pancreas. Antioxid Redox Signal 2014; 20:747-58. [PMID: 24138560 PMCID: PMC3910447 DOI: 10.1089/ars.2012.5108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca(2+) homeostasis in rat pancreatic acini. RESULTS Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca(2+) concentration ([Ca(2+)]i) in a dose-dependent manner. The NaHS-induced [Ca(2+)]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca(2+) but was abolished by thapsigargin, indicating that both Ca(2+) entry and Ca(2+) release contributed to the increase. The [Ca(2+)]i increase was markedly inhibited in the presence of NG-monomethyl L-arginine or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), and diaminofluorescein-2/diaminofluorescein-2 triazole (DAF-2/DAF-2T) fluorometry demonstrated that nitric oxide (NO) was also produced by H2S in a dose-dependent manner with an EC50 of 64.8 μM, indicating that NO was involved in the H2S effect. The H2S-induced [Ca(2+)]i increase was inhibited by pretreatment with U73122, xestospongin C, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, KT5823, and GP2A, indicating that phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, soluble guanylate cyclase (sGC), protein kinase G (PKG), and Gq-protein play roles as intermediate components in the H2S-triggered intracellular signaling. INNOVATION To our knowledge, our study is the first one highlighting the effect of H2S on intracellular Ca(2+) dynamics in pancreatic acinar cells. Moreover, a novel cascade was presumed to function via the synergistic interaction between H2S and NO. CONCLUSION We conclude that H2S affects [Ca(2+)]i homeostasis that is mediated by H2S-evoked NO production via an endothelial nitric oxide synthase (eNOS)-NO-sGC-cyclic guanosine monophosphate-PKG-Gq-protein-PLC-IP3 pathway to induce Ca(2+) release, and this pathway is identical to the one we recently proposed for a sole effect of NO and the two gaseous molecules synergistically function to regulate Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Amira Moustafa
- 1 Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University , Sapporo, Japan
| | | |
Collapse
|
794
|
Madurga A, Mižíková I, Ruiz-Camp J, Vadász I, Herold S, Mayer K, Fehrenbach H, Seeger W, Morty RE. Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2014; 306:L684-97. [PMID: 24508731 DOI: 10.1152/ajplung.00361.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arrested alveolarization is the pathological hallmark of bronchopulmonary dysplasia (BPD), a complication of premature birth. Here, the impact of systemic application of hydrogen sulfide (H2S) on postnatal alveolarization was assessed in a mouse BPD model. Exposure of newborn mice to 85% O2 for 10 days reduced the total lung alveoli number by 56% and increased alveolar septal wall thickness by 29%, as assessed by state-of-the-art stereological analysis. Systemic application of H2S via the slow-release H2S donor GYY4137 for 10 days resulted in pronounced improvement in lung alveolarization in pups breathing 85% O2, compared with vehicle-treated littermates. Although without impact on lung oxidative status, systemic H2S blunted leukocyte infiltration into alveolar air spaces provoked by hyperoxia, and restored normal lung interleukin 10 levels that were otherwise depressed by 85% O2. Treatment of primary mouse alveolar type II (ATII) cells with the rapid-release H2S donor NaHS had no impact on cell viability; however, NaHS promoted ATII cell migration. Although exposure of ATII cells to 85% O2 caused dramatic changes in mRNA expression, exposure to either GYY4137 or NaHS had no impact on ATII cell mRNA expression, as assessed by microarray, suggesting that the effects observed were independent of changes in gene expression. The impact of NaHS on ATII cell migration was attenuated by glibenclamide, implicating ion channels, and was accompanied by activation of Akt, hinting at two possible mechanisms of H2S action. These data support further investigation of H2S as a candidate interventional strategy to limit the arrested alveolarization associated with BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
795
|
Bruzzese L, Fromonot J, By Y, Durand-Gorde JM, Condo J, Kipson N, Guieu R, Fenouillet E, Ruf J. NF-κB enhances hypoxia-driven T-cell immunosuppression via upregulation of adenosine A(2A) receptors. Cell Signal 2014; 26:1060-7. [PMID: 24486403 DOI: 10.1016/j.cellsig.2014.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Hypoxia affects inflammation by modulating T-cell activation via the adenosinergic system. We supposed that, in turn, inflammation influences cell hypoxic behavior and that stimulation of T-cells in inflammatory conditions involves the concerted action of the nuclear factor κB (NF-κB) and the related hypoxia-inducible factor 1α (HIF-1α) on the adenosinergic system. We addressed this hypothesis by monitoring both transcription factors and four adenosinergic signaling parameters - namely adenosine, adenosine deaminase (ADA), adenosine A2A receptor (A2AR) and cAMP - in T-cells stimulated using phorbol myristate acetate and phytohemagglutinin and submitted to hypoxic conditions which were mimicked using CoCl2 treatment. We found that cell viability was more altered in stimulated than in resting cells under hypoxia. Detailed analysis showed that: i) NF-κB activation remained at basal level in resting hypoxic cells but greatly increased following stimulation, stimulated hypoxic cells exhibiting the higher level; ii) HIF-1α production induced by hypoxia was boosted via NF-κB activation in stimulated cells whereas hypoxia increased HIF-1α production in resting cells without further activating NF-κB; iii) A2AR expression and cAMP production increased in stimulated hypoxic cells whereas adenosine level remained unchanged due to ADA regulation; and iv) the presence of H2S, an endogenous signaling molecule in inflammation, reversed the effect of stimulation on cell viability by down-regulating the activity of transcription factors and adenosinergic immunosuppression. We also found that: i) the specific A2AR agonist CGS-21680 increased the suppressive effect of hypoxia on stimulated T-cells, the antagonist ZM-241385 exhibiting the opposite effect; and ii) Rolipram, a selective inhibitor of cAMP-specific phosphodiesterase 4, and 8-Br-cAMP, a cAMP analog which preferentially activates cAMP-dependent protein kinase A (PKA), increased T-cell immunosuppression whereas H-89, a potent and selective inhibitor of cAMP-dependent PKA, restored cell viability. Together, these data indicate that inflammation enhances T-cell sensitivity to hypoxia via NF-κB activation. This process upregulates A2AR expression and enhances cAMP production and PKA activation, resulting in adenosinergic T-cell immunosuppression that can be modulated via H2S.
Collapse
Affiliation(s)
- Laurie Bruzzese
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France
| | - Julien Fromonot
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France
| | - Youlet By
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France
| | - Josée-Martine Durand-Gorde
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France
| | - Jocelyne Condo
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France
| | - Nathalie Kipson
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France
| | - Régis Guieu
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France
| | - Emmanuel Fenouillet
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France; Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Biologiques, France
| | - Jean Ruf
- Aix-Marseille Université (AMU) and Institut de Recherche Biomédicale des Armées (IRBA), UMR MD2, Faculté de Médecine Nord, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), France.
| |
Collapse
|
796
|
Santos-Figueroa LE, de laTorre C, El Sayed S, Sancenón F, Martínez-Máñez R, Costero AM, Gil S, Parra M. A Chemosensor Bearing Sulfonyl Azide Moieties for Selective Chromo-Fluorogenic Hydrogen Sulfide Recognition in Aqueous Media and in Living Cells. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
797
|
Riahi S, Rowley CN. Solvation of Hydrogen Sulfide in Liquid Water and at the Water–Vapor Interface Using a Polarizable Force Field. J Phys Chem B 2014; 118:1373-80. [DOI: 10.1021/jp4096198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saleh Riahi
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - Christopher N. Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| |
Collapse
|
798
|
Takashima I, Kinoshita M, Kawagoe R, Nakagawa S, Sugimoto M, Hamachi I, Ojida A. Design of Ratiometric Fluorescent Probes Based on Arene-Metal-Ion Interactions and Their Application to CdIIand Hydrogen Sulfide Imaging in Living Cells. Chemistry 2014; 20:2184-92. [DOI: 10.1002/chem.201304181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Indexed: 01/23/2023]
|
799
|
Cortese-Krott MM, Fernandez BO, Santos JLT, Mergia E, Grman M, Nagy P, Kelm M, Butler A, Feelisch M. Nitrosopersulfide (SSNO(-)) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biol 2014; 2:234-44. [PMID: 24494198 PMCID: PMC3909780 DOI: 10.1016/j.redox.2013.12.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 11/16/2022] Open
Abstract
Sulfide salts are known to promote the release of nitric oxide (NO) from S-nitrosothiols and potentiate their vasorelaxant activity, but much of the cross-talk between hydrogen sulfide and NO is believed to occur via functional interactions of cell regulatory elements such as phosphodiesterases. Using RFL-6 cells as an NO reporter system we sought to investigate whether sulfide can also modulate nitrosothiol-mediated soluble guanylyl cyclase (sGC) activation following direct chemical interaction. We find a U-shaped dose response relationship where low sulfide concentrations attenuate sGC stimulation by S-nitrosopenicillamine (SNAP) and cyclic GMP levels are restored at equimolar ratios. Similar results are observed when intracellular sulfide levels are raised by pre-incubation with the sulfide donor, GYY4137. The outcome of direct sulfide/nitrosothiol interactions also critically depends on molar reactant ratios and is accompanied by oxygen consumption. With sulfide in excess, a ‘yellow compound’ accumulates that is indistinguishable from the product of solid-phase transnitrosation of either hydrosulfide or hydrodisulfide and assigned to be nitrosopersulfide (perthionitrite, SSNO−; λmax 412 nm in aqueous buffers, pH 7.4; 448 nm in DMF). Time-resolved chemiluminescence and UV–visible spectroscopy analyses suggest that its generation is preceded by formation of the short-lived NO-donor, thionitrite (SNO−). In contrast to the latter, SSNO− is rather stable at physiological pH and generates both NO and polysulfides on decomposition, resulting in sustained potentiation of SNAP-induced sGC stimulation. Thus, sulfide reacts with nitrosothiols to form multiple bioactive products; SSNO− rather than SNO− may account for some of the longer-lived effects of nitrosothiols and contribute to sulfide and NO signaling. Sulfide modulates the bioactivity of nitrosothiols in a concentration-dependent manner. Nitrosopersulfide anions (SSNO−) accumulate at high sulfide/RSNO ratios. SSNO− releases NO and is surprisingly stable in the presence of reduced thiols. SSNO− is a potent activator of soluble guanylyl cyclase. SSNO− is likely to contribute to NO and hydrogen sulfide/polysulfide signaling.
Collapse
Key Words
- CysNO, S-nitrosocysteine
- DMF, dimetylformamide
- DMSO, dimethylsulfoxide
- GSNO, S-nitrosoglutathione
- HSNO
- Hydrogen sulfide
- IPN, isopentyl nitrite
- NO+, nitrosonium
- NO, nitric oxide
- Nitric oxide
- Nitroxyl
- Polysulfides
- RFL-6, rat fibroblastoid-like cell line
- SNAP, S-nitrosopenicillamine
- SNO−, thionitrite
- SSNO−, nitrosopersulfide, perthionitrite, PDE, phopsphodiesterase
- cGMP
- sGC, soluble guanylyl cyclase
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Bernadette O Fernandez
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK
| | - José L T Santos
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Evanthia Mergia
- Institute for Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Marian Grman
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest, Hungary
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Anthony Butler
- Medical School, University of St-Andrews, St-Andrews, Fife, Scotland
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK
| |
Collapse
|
800
|
Li X, Gong Y, Wu K, Liang SH, Cao J, Yang B, Hu Y, Han Y. A highly sensitive and water soluble fluorescent probe for rapid detection of hydrogen sulfide in living cells. RSC Adv 2014. [DOI: 10.1039/c4ra05430j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly water soluble fluorescent probe has been exploited for the rapid detection of hydrogen sulfide in live cells.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Yanling Gong
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Kai Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou, China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging
- Massachusetts General Hospital and Department of Radiology
- Harvard Medical School
- Boston, USA
| | - Ji Cao
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Bo Yang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Yongzhou Hu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Yifeng Han
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou, China
| |
Collapse
|