751
|
Mendez R, Kesh K, Arora N, Di Martino L, McAllister F, Merchant N, Banerjee S, Banerjee S. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis 2020; 41:561-570. [PMID: 31369062 DOI: 10.1093/carcin/bgz116] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The lack of tools for early detection of pancreatic ductal adenocarcinoma (PDAC) is directly correlated with the abysmal survival rates in patients. In addition to several potential detection tools under active investigation, we tested the gut microbiome and its metabolic complement as one of the earliest detection tools that could be useful in patients at high risk for PDAC. We used a combination of 16s rRNA pyrosequencing and whole-genome sequencing of gut fecal microbiota in a genetically engineered PDAC murine model (KRASG12DTP53R172HPdxCre or KPC). Metabolic reconstruction of microbiome was done using the HUMAnN2 pipeline. Serum polyamine levels were measured from murine and patient samples using chromogenic assay. Our results showed a Proteobacterial and Firmicutes dominance in gut microbiota in early stages of PDAC development. Upon in silico reconstruction of active metabolic pathways within the altered microbial flora, polyamine and nucleotide biosynthetic pathways were significantly elevated. These metabolic products are known to be actively assimilated by the host and eventually utilized by rapidly dividing cells for proliferation validating their importance in the context of tumorigenesis. In KPC mice, as well as PDAC patients, we show significantly elevated serum polyamine concentrations. Therefore, at the early stages of tumorigenesis, there is a strong correlation between microbial changes and release of metabolites that foster host tumorigenesis, thereby fulfilling the 'vicious cycle hypothesis' of the role of microbiome in health and disease states. Our results provide a potential, precise, noninvasive tool for early detection of PDAC, which may result in improved outcomes.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Kousik Kesh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Nivedita Arora
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Leá Di Martino
- Department of Surgery, University of Miami, Miami, FL, USA.,Université Grenoble Alpes, Isère, France
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Miami, FL, USA
| | - Nipun Merchant
- Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sulagna Banerjee
- Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Santanu Banerjee
- Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
752
|
Shrader HR, Miller AM, Tomanek-Chalkley A, McCarthy A, Coleman KL, Ear PH, Mangalam AK, Salem AK, Chan CHF. Effect of bacterial contamination in bile on pancreatic cancer cell survival. Surgery 2020; 169:617-622. [PMID: 33268071 DOI: 10.1016/j.surg.2020.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Introduction of gut flora into the biliary system is common owing to biliary stenting in patients with obstructing pancreatic head cancer. We hypothesize that alteration of biliary microbiome modifies bile content that modulates pancreatic cancer cell survival. METHODS Human bile samples were collected during pancreaticoduodenectomy. Bacterial strains were isolated from contaminated (stented) bile and identified using 16S ribosomal RNA sequencing. Human pancreatic cancer cells (AsPC1, CFPAC, Panc1) were treated for 24 hours with sterile (nonstented) bile, contaminated (stented) bile, and sterile bile preincubated with 106 colony forming unit of live bacteria isolated from contaminated bile or a panel of bile acids for 24 hours at 37°C, and evaluated using CellTiter-Blue Cell Viability Assay (Promega Corp. Madison, WI). Human bile (30-50 μl/mouse) was coinjected intraperitoneally with 105 Panc02 mouse pancreatic cancer cells in C57BL6/N mice to evaluate the impact of bile on peritoneal metastasis 3 to 4 weeks after tumor challenge. RESULTS While all bile samples significantly reduced peritoneal metastasis of Panc02 cells in mice, some contaminated bile samples had diminished antitumor effect. All sterile bile (n = 4) reduced pancreatic cancer cell survival in vitro. Only 40% (2/5) of contaminated bile samples had significant effect. Preincubation of sterile bile with live Enterococcus faecalis or Streptococcus oralis modified the antitumor effect of sterile bile. These changes were not observed with culture media preincubated with live bacteria, suggesting live gut bacteria can modify the antitumor components present in bile. Conjugated bile acids were more potent than unconjugated cholic acid in reducing pancreatic cancer cell survival. CONCLUSION Alteration of bile microbiome from biliary stenting has a direct impact on pancreatic cancer cell survival. Further study is warranted to determine if this microbiome shift alters tumor microenvironment.
Collapse
Affiliation(s)
| | - Ann M Miller
- Department of Surgery, University of Iowa, Iowa City, IA
| | | | - Ashley McCarthy
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Kristen L Coleman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Po Hien Ear
- Department of Surgery, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Carlos H F Chan
- Department of Surgery, University of Iowa, Iowa City, IA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA.
| |
Collapse
|
753
|
Wang F, Wang S, Zhou Q. The Resistance Mechanisms of Lung Cancer Immunotherapy. Front Oncol 2020; 10:568059. [PMID: 33194652 PMCID: PMC7606919 DOI: 10.3389/fonc.2020.568059] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has revolutionized lung cancer treatment in the past decade. By reactivating the host’s immune system, immunotherapy significantly prolongs survival in some advanced lung cancer patients. However, resistance to immunotherapy is frequent, which manifests as a lack of initial response or clinical benefit to therapy (primary resistance) or tumor progression after the initial period of response (acquired resistance). Overcoming immunotherapy resistance is challenging owing to the complex and dynamic interplay among malignant cells and the defense system. This review aims to discuss the mechanisms that drive immunotherapy resistance and the innovative strategies implemented to overcome it in lung cancer.
Collapse
Affiliation(s)
- Fen Wang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shubin Wang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing Zhou
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China
| |
Collapse
|
754
|
Zhang Q, Chen Y, Bai X, Liang T. Immune Checkpoint Blockade Therapy for Hepatocellular Carcinoma: Clinical Challenges and Considerations. Front Oncol 2020; 10:590058. [PMID: 33178615 PMCID: PMC7593704 DOI: 10.3389/fonc.2020.590058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Although many approaches have been developed for the treatment of hepatocellular carcinoma (HCC) that has both high incidence and high mortality especially in Asian countries, the prognosis of HCC patients is still dismal. Immunotherapy, particularly immune checkpoint inhibitors show encouraging efficacy and have already been widely applied in clinic. However, in contrast to traditional therapies, immunotherapy brings many challenges when using in a real world, including biomarker discovery, response evaluation, adverse event treatment, etc. In this review, we proposed some important and intractable issues in current clinical practice regarding the strategy of immune checkpoint blockade, collected current evidence, and discuss the critical challenges and possible approaches to a bright future.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
755
|
Chronopoulos A, Kalluri R. Emerging role of bacterial extracellular vesicles in cancer. Oncogene 2020; 39:6951-6960. [PMID: 33060855 PMCID: PMC7557313 DOI: 10.1038/s41388-020-01509-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/20/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Shedding of microbial extracellular vesicles constitutes a universal mechanism for inter-kingdom and intra-kingdom communication that is conserved among prokaryotic and eukaryotic microbes. In this review we delineate fundamental aspects of bacterial extracellular vesicles (BEVs) including their biogenesis, cargo composition, and interactions with host cells. We critically examine the evidence that BEVs from the host gut microbiome can enter the circulatory system to disseminate to distant organs and tissues. The potential involvement of BEVs in carcinogenesis is evaluated and future research ideas explored. We further discuss the potential of BEVs in microbiome-based liquid biopsies for cancer diagnostics and bioengineering strategies for cancer therapy.
Collapse
Affiliation(s)
- Antonios Chronopoulos
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
756
|
Li Q, Jin M, Liu Y, Jin L. Gut Microbiota: Its Potential Roles in Pancreatic Cancer. Front Cell Infect Microbiol 2020; 10:572492. [PMID: 33117731 PMCID: PMC7575684 DOI: 10.3389/fcimb.2020.572492] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is considered a lethal disease with a low survival rate due to its late-stage diagnosis, few opportunities for resection and lack of effective therapeutic strategies. Multiple, highly complex effects of gut microbiota on pancreatic cancer have been recognized as potential strategies for targeting tumorigenesis, development and treatment in recent decades; some of the treatments include antibiotics, probiotics, and fecal microbiota transplantation. Several bacterial species are associated with carcinogenesis of the pancreas, while some bacterial metabolites contribute to tumor-associated low-grade inflammation and immune responses via several proinflammatory factors and signaling pathways. Given the limited evidence on the interplay between gut microbiota and pancreatic cancer, risk factors associated with pancreatic cancer, such as diabetes, chronic pancreatitis and obesity, should also be taken into consideration. In terms of treatment of pancreatic cancer, gut microbiota has exhibited multiple effects on both traditional chemotherapy and the recently successful immunotherapy. Therefore, in this review, we summarize the latest developments and advancements in gut microbiota in relation to pancreatic cancer to elucidate its potential value.
Collapse
Affiliation(s)
- Quanxiao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Meng Jin
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Limin Jin
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
757
|
Hwang SR, Higgins A, Castillo Almeida NE, LaPlant B, Maurer MJ, Ansell SM, Witzig TE, Thanarajasingam G, Bennani NN. Effect of antibiotic use on outcomes in patients with Hodgkin lymphoma treated with immune checkpoint inhibitors. Leuk Lymphoma 2020; 62:247-251. [PMID: 33021136 DOI: 10.1080/10428194.2020.1827250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | - Betsy LaPlant
- Department of Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
758
|
Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, Pogge von Strandmann E, Slater EP, Bartsch JW, Bauer C, Lauth M. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci 2020; 21:E7307. [PMID: 33022971 PMCID: PMC7583843 DOI: 10.3390/ijms21197307] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
The biology of solid tumors is strongly determined by the interactions of cancer cells with their surrounding microenvironment. In this regard, pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) represents a paradigmatic example for the multitude of possible tumor-stroma interactions. PDAC has proven particularly refractory to novel immunotherapies, which is a fact that is mediated by a unique assemblage of various immune cells creating a strongly immunosuppressive environment in which this cancer type thrives. In this review, we outline currently available knowledge on the cross-talk between tumor cells and the cellular immune microenvironment, highlighting the physiological and pathological cellular interactions, as well as the resulting therapeutic approaches derived thereof. Hopefully a better understanding of the complex tumor-stroma interactions will one day lead to a significant advancement in patient care.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University Marburg, 35043 Marburg, Germany;
| | - Corinna U. Brehm
- Institute of Pathology, University Hospital Giessen-Marburg, 35043 Marburg, Germany;
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| |
Collapse
|
759
|
Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut 2020; 69:1867-1876. [PMID: 32759302 PMCID: PMC7497589 DOI: 10.1136/gutjnl-2020-321153] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
The gut microbiota has been implicated in cancer and shown to modulate anticancer drug efficacy. Altered gut microbiota is associated with resistance to chemo drugs or immune checkpoint inhibitors (ICIs), whereas supplementation of distinct bacterial species restores responses to the anticancer drugs. Accumulating evidence has revealed the potential of modulating the gut microbiota to enhance the efficacy of anticancer drugs. Regardless of the valuable findings by preclinical models and clinical data of patients with cancer, a more thorough understanding of the interactions of the microbiota with cancer therapy helps researchers identify novel strategy for cancer prevention, stratify patients for more effective treatment and reduce treatment complication. In this review, we discuss the scientific evidence on the role of gut microbiota in cancer treatment, and highlight the latest knowledge and technologies leveraged to target specific bacteria that contribute to tumourigenesis. First, we provide an overview of the role of the gut microbiota in cancer, establishing the links between bacteria, inflammation and cancer treatment. Second, we highlight the mechanisms used by distinct bacterial species to modulate cancer growth, immune responses, as well as the efficacy of chemotherapeutic drugs and ICIs. Third, we demonstrate various approaches to modulate the gut microbiota and their potential in translational research. Finally, we discuss the limitations of current microbiome research in the context of cancer treatment, ongoing efforts to overcome these challenges and future perspectives.
Collapse
Affiliation(s)
- Wing Yin Cheng
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Ying Wu
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biomedical Bioinformatics and School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Public Health and Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
760
|
Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, Gasbarrini A, Tortora G. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol 2020; 17:635-648. [PMID: 32647386 DOI: 10.1038/s41575-020-0327-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiome has been implicated in cancer in several ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability and efficacy of therapies. The 'omics' technologies used for microbiome analysis continuously evolve and, although much of the research is still at an early stage, large-scale datasets of ever increasing size and complexity are being produced. However, there are varying levels of difficulty in realizing the full potential of these new tools, which limit our ability to critically analyse much of the available data. In this Perspective, we provide a brief overview on the role of gut microbiome in cancer and focus on the need, role and limitations of a machine learning-driven approach to analyse large amounts of complex health-care information in the era of big data. We also discuss the potential application of microbiome-based big data aimed at promoting precision medicine in cancer.
Collapse
Affiliation(s)
- Giovanni Cammarota
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gianluca Ianiro
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Ahern
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carmine Carbone
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andriy Temko
- School of Engineering, University College Cork, Cork, Ireland.,Qualcomm ML R&D, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonio Gasbarrini
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
761
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
762
|
Huang JY, Luu HN, Butler LM, Midttun Ø, Ulvik A, Wang R, Jin A, Gao YT, Tan Y, Ueland PM, Koh WP, Yuan JM. A prospective evaluation of serum methionine-related metabolites in relation to pancreatic cancer risk in two prospective cohort studies. Int J Cancer 2020; 147:1917-1927. [PMID: 32222976 PMCID: PMC11537248 DOI: 10.1002/ijc.32994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
Deficiencies in methyl donor status may render DNA methylation changes and DNA damage, leading to carcinogenesis. Epidemiological studies reported that higher dietary intake of choline is associated with lower risk of pancreatic cancer, but no study has examined the association of serum choline and its metabolites with risk of pancreatic cancer. Two parallel case-control studies, one nested within the Shanghai Cohort Study (129 cases and 258 controls) and the other within the Singapore Chinese Health Study (58 cases and 104 controls), were conducted to evaluate the associations of baseline serum concentrations of choline, betaine, methionine, total methyl donors (i.e., sum of choline, betaine and methionine), dimethylglycine and trimethylamine N-oxide (TMAO) with pancreatic cancer risk. In the Shanghai cohort, odds ratios and 95% confidence intervals of pancreatic cancer for the highest quartile of choline, betaine, methionine, total methyl donors and TMAO were 0.27 (0.11-0.69), 0.57 (0.31-1.05), 0.50 (0.26-0.96), 0.37 (0.19-0.73) and 2.81 (1.37-5.76), respectively, compared to the lowest quartile. The corresponding figures in the Singapore cohort were 0.85 (0.23-3.17), 0.50 (0.17-1.45), 0.17 (0.04-0.68), 0.33 (0.10-1.16) and 1.42 (0.50-4.04). The inverse associations of methionine and total methyl donors including choline, betaine and methionine with pancreatic cancer risk in both cohorts support that DNA repair and methylation play an important role against the development of pancreatic cancer. In the Shanghai cohort, TMAO, a gut microbiota-derived metabolite of dietary phosphatidylcholine, may contribute to higher risk of pancreatic cancer, suggesting a modifying role of gut microbiota in the dietary choline-pancreatic cancer risk association.
Collapse
Affiliation(s)
- Joyce Y. Huang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Hung N. Luu
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Lesley M. Butler
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Arve Ulvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Renwei Wang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Aizhen Jin
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Yuting Tan
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Per M. Ueland
- Bevital A/S, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Woon-Puay Koh
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
763
|
Wang H, Capula M, Krom BP, Yee D, Giovannetti E, Deng D. Of fungi and men: role of fungi in pancreatic cancer carcinogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1257. [PMID: 33178789 PMCID: PMC7607088 DOI: 10.21037/atm-20-2723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/20/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Heling Wang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dicky Yee
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Fondazione Pisana per la Scienza, Pisa, Italy
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
764
|
Sabihi M, Böttcher M, Pelczar P, Huber S. Microbiota-Dependent Effects of IL-22. Cells 2020; 9:E2205. [PMID: 33003458 PMCID: PMC7599675 DOI: 10.3390/cells9102205] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines are important contributors to immune responses against microbial and environmental threats and are of particular importance at epithelial barriers. These interfaces are continuously exposed to external factors and thus require immune components to both protect the host from pathogen invasion and to regulate overt inflammation. Recently, substantial efforts have been devoted to understanding how cytokines act on certain cells at barrier sites, and why the dysregulation of immune responses may lead to pathogenesis. In particular, the cytokine IL-22 is involved in preserving an intact epithelium, maintaining a balanced microbiota and a functioning defense system against external threats. However, a tight regulation of IL-22 is generally needed, since uncontrolled IL-22 production can lead to the progression of autoimmunity and cancer. Our aim in this review is to summarize novel findings on IL-22 and its interactions with specific microbial stimuli, and subsequently, to understand their contributions to the function of IL-22 and the clinical outcome. We particularly focus on understanding the detrimental effects of dysregulated control of IL-22 in certain disease contexts.
Collapse
Affiliation(s)
| | | | | | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (M.S.); (M.B.); (P.P.)
| |
Collapse
|
765
|
Nakano S, Komatsu Y, Kawamoto Y, Saito R, Ito K, Nakatsumi H, Yuki S, Sakamoto N. Association between the use of antibiotics and efficacy of gemcitabine plus nab-paclitaxel in advanced pancreatic cancer. Medicine (Baltimore) 2020; 99:e22250. [PMID: 32991420 PMCID: PMC7523777 DOI: 10.1097/md.0000000000022250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 01/12/2023] Open
Abstract
It is unclear whether the use of antibiotics is related to the efficacy of gemcitabine plus nab-paclitaxel (GnP). Therefore, we investigated the association between the use of antibiotics and efficacy of GnP.We conducted a retrospective single center study from January 2014 to December 2018 in Hokkaido University Hospital.Ninety-nine patients were eligible for the study. Thirty-seven used antibiotics (U) and 62 did not use antibiotics (NU) during GnP therapy. In the U group, 15 patients used β-lactam antibiotics, 21 used new quinolones, and 1 used carbapenem. The median progression-free survival was 5.8 and 2.7 months (hazards ratio [HR] .602, 95% confidence interval [CI] .391-.928, P = .022) and the median overall survival was 11.0 and 8.4 months (HR .768, 95% CI .491-1.202, P = .248) in the U and not use antibiotics groups, respectively. Antibiotic use (HR .489, 95% CI .287-.832, P = .008) and locally advanced pancreatic cancer (HR 1.808, 95% CI 1.051-3.112, P = .032) were independent prognostic factors for progression-free survival.Antibiotic use was associated with a higher efficacy of GnP, and therefore, it may be employed as a novel treatment strategy.
Collapse
Affiliation(s)
- Shintaro Nakano
- Department of Gastroenterology and Hepatology
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshito Komatsu
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | | | - Rika Saito
- Department of Gastroenterology and Hepatology
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Ken Ito
- Department of Gastroenterology and Hepatology
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Nakatsumi
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | | | | |
Collapse
|
766
|
Li T, Wu B, Yang T, Zhang L, Jin K. The outstanding antitumor capacity of CD4 + T helper lymphocytes. Biochim Biophys Acta Rev Cancer 2020; 1874:188439. [PMID: 32980465 DOI: 10.1016/j.bbcan.2020.188439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Over the past decades, tumor-resident immune cells have been extensively studied to dissect their biological functions and clinical roles. Tumor-infiltrating CD8+ T cells, because of their cytotoxic and killing ability, have been under the spotlight for a long time, whereas CD4+ T cells are considered just a supporting actor in the field of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the ability of CD4+ T cells in eradicating solid tumors, and their functions in mediating antitumor immunity have been investigated in various orientations. In this review, we highlight the pivotal role of CD4+ T cells in eliciting vigorous antitumor immune responses, summarize key signaling axes and molecular networks behind these antitumor functions, and also propose possible targets and promising strategies which might translate into more efficient immunotherapies against human cancers.
Collapse
Affiliation(s)
- Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Wu
- School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
767
|
The Pancreatic Microbiome is Associated with Carcinogenesis and Worse Prognosis in Males and Smokers. Cancers (Basel) 2020; 12:cancers12092672. [PMID: 32962112 PMCID: PMC7565819 DOI: 10.3390/cancers12092672] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The cancer microbiome has been suggested to be closely involved in the immune dysregulation that leads to carcinogenesis. Given that pancreatic adenocarcinoma (PAAD) is one of the most lethal cancers, it is important to identify features of the microbiome that may contribute to more deadly PAAD tumors. In this study, we analyzed PAAD patient RNA-sequencing data from The Cancer Genome Atlas (TCGA) to correlate abundance of intra-pancreatic microbes to dysregulation of immune and cancer-associated genes and pathways. We discovered that the presence of several bacteria species within PAAD tumors is linked to metastasis and immune suppression. Furthermore, we found that the increased prevalence and poorer prognosis of PAAD in males and smokers are linked to the presence of potentially cancer-promoting or immune-inhibiting microbes. Further study into the roles of these microbes in PAAD is imperative for understanding how a pro-tumor microenvironment may be treated to limit cancer progression. Abstract An intra-pancreatic microbiota was recently discovered in several prominent studies. Since pancreatic adenocarcinoma (PAAD) is one of the most lethal cancers worldwide, and the intratumor microbiome was found to be a significant contributor to carcinogenesis in other cancers, this study aims to characterize the PAAD microbiome and elucidate how it may be associated with PAAD prognosis. We further explored the association between the intra-pancreatic microbiome and smoking and gender, which are both risk factors for PAAD. RNA-sequencing data from The Cancer Genome Atlas (TCGA) were used to infer microbial abundance, which was correlated to clinical variables and to cancer and immune-associated gene expression, to determine how microbes may contribute to cancer progression. We discovered that the presence of several bacteria species within PAAD tumors is linked to metastasis and immune suppression. This is the first large-scale study to report microbiome-immune correlations in human pancreatic cancer samples. Furthermore, we found that the increased prevalence and poorer prognosis of PAAD in males and smokers are linked to the presence of potentially cancer-promoting or immune-inhibiting microbes. Further study into the roles of these microbes in PAAD is imperative for understanding how a pro-tumor microenvironment may be treated to limit cancer progression.
Collapse
|
768
|
Abstract
Recent work by Kadosh et al. (2020) suggests that mutant p53 activity in gut epithelia is influenced by local production of microbial metabolites. The switch of p53 from tumor suppressor to oncogene is location-dependent and is impacted by microbially derived gallic acid.
Collapse
Affiliation(s)
- Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
769
|
Abstract
Worldwide, approximately half a million people are diagnosed with pancreatic cancer every year, with mortality rates of more than 90%. T cells within pancreatic tumors are generally infrequent and incapable of eliciting antitumor immunity. Thus, pancreatic cancer is considered an "immunologically cold" tumor. However, recent studies clearly show that when T-cell immunity in pancreatic cancer is sufficiently induced, T cells become effective weapons. This fact suggests that to improve pancreatic cancer patients' clinical outcomes, we need to unveil the complex immune biology of this disease. In this review, we discuss the elements of tumor immunogenicity in the specific context of pancreatic malignancy.
Collapse
|
770
|
Mukherji R, Weinberg BA. The gut microbiome and potential implications for early-onset colorectal cancer. COLORECTAL CANCER 2020. [DOI: 10.2217/crc-2020-0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, there has been an unexpected trend toward increased incidence of colorectal cancer in younger individuals, particularly distal colon and rectal cancer in those under age 50. There is evidence to suggest that the human gut microbiome may play a role in carcinogenesis. The microbiome is dynamic and varies with age, geography, ethnicity and diet. Certain bacteria such as Fusobacterium nucleatum have been implicated in the development of colorectal and other gastrointestinal cancers. Recent data suggest that bacteria can alter the inflammatory and immune environment, influencing carcinogenesis, lack of treatment response and prognosis. Studies to date focus on older patients. Because the microbiome varies with age, it could be a potential explanation for the rise in early-onset colorectal cancer.
Collapse
Affiliation(s)
- Reetu Mukherji
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Benjamin A Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| |
Collapse
|
771
|
Huang YW, Pan P, Echeveste CE, Wang HT, Oshima K, Lin CW, Yearsley M, Xiao J, Chen J, Sun C, Yu J, Wang LS. Transplanting fecal material from wild-type mice fed black raspberries alters the immune system of recipient mice. FOOD FRONTIERS 2020; 1:253-259. [PMID: 34308364 PMCID: PMC8301209 DOI: 10.1002/fft2.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
By constantly stimulating intestinal immunity, gut microbes play important regulatory roles, and their possible involvement in human physical and mental disorders beyond intestinal diseases suggests the importance of maintaining homeostasis in the gut microbiota. Both transplantation of fecal microbiota and dietary interventions have been shown to restore microbial homeostasis in recipients. In the current study with wild-type mice, we combined these two approaches to determine if transplanting fecal material from mice fed black raspberries (BRB, 5%) altered recipients' immune system. The donors received a control or 5% BRB diet, and fecal transplantation was performed every other day 15 times into recipients fed control diet. Afterward, we used flow cytometry to analyze populations of CD3+ T, CD4+ T, CD8+ T cells, and NK cells among bone marrow cells, splenocytes, and peripheral blood mononuclear cells (PBMCs) collected from the recipients. We found that BRB-fecal material that contained both fecal microbiota and their metabolites increased NK cell populations among bone marrow cells, splenocytes, and PBMCs, and raised levels of CD8+ T cells in splenocytes. Our findings suggest that fecal transplantation can modulate the immune system and might therefore be valuable for managing a range of physical and mental disorders.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Wauwatosa, Wisconsin
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, Wisconsin
| |
Collapse
|
772
|
Laborda-Illanes A, Sanchez-Alcoholado L, Dominguez-Recio ME, Jimenez-Rodriguez B, Lavado R, Comino-Méndez I, Alba E, Queipo-Ortuño MI. Breast and Gut Microbiota Action Mechanisms in Breast Cancer Pathogenesis and Treatment. Cancers (Basel) 2020; 12:E2465. [PMID: 32878124 PMCID: PMC7565530 DOI: 10.3390/cancers12092465] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
In breast cancer (BC) the employment of sequencing technologies for metagenomic analyses has allowed not only the description of the overall metagenomic landscape but also the specific microbial changes and their functional implications. Most of the available data suggest that BC is related to bacterial dysbiosis in both the gut microenvironment and breast tissue. It is hypothesized that changes in the composition and functions of several breast and gut bacterial taxa may contribute to BC development and progression through several pathways. One of the most prominent roles of gut microbiota is the regulation of steroid-hormone metabolism, such as estrogens, a component playing an important role as risk factor in BC development, especially in postmenopausal women. On the other hand, breast and gut resident microbiota are the link in the reciprocal interactions between cancer cells and their local environment, since microbiota are capable of modulating mucosal and systemic immune responses. Several in vivo and in vitro studies show remarkable evidence that diet, probiotics and prebiotics could exert important anticarcinogenic effects in BC. Moreover, gut microbiota have an important role in the metabolism of chemotherapeutic drugs and in the activity of immunogenic chemotherapies since they are a potential dominant mediator in the response to cancer therapy. Then, the microbiome impact in BC is multi-factorial, and the gut and breast tissue bacteria population could be important in regulating the local immune system, in tumor formation and progression and in therapy response and/or resistance.
Collapse
Affiliation(s)
- Aurora Laborda-Illanes
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
- Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Lidia Sanchez-Alcoholado
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
- Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - María Emilia Dominguez-Recio
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
| | - Begoña Jimenez-Rodriguez
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
| | - Rocío Lavado
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
| | - Iñaki Comino-Méndez
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
| | - Emilio Alba
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain; (A.L.-I.); (L.S.-A.); (M.E.D.-R.); (B.J.-R.); (R.L.); (I.C.-M.)
| |
Collapse
|
773
|
Alkharaan H, Lu L, Gabarrini G, Halimi A, Ateeb Z, Sobkowiak MJ, Davanian H, Fernández Moro C, Jansson L, Del Chiaro M, Özenci V, Sällberg Chen M. Circulating and Salivary Antibodies to Fusobacterium nucleatum Are Associated With Cystic Pancreatic Neoplasm Malignancy. Front Immunol 2020; 11:2003. [PMID: 32983143 PMCID: PMC7484485 DOI: 10.3389/fimmu.2020.02003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives Intraductal papillary mucinous neoplasms (IPMNs) are cystic precursor lesions to pancreatic cancer. The presence of oral microbes in pancreatic tissue or cyst fluid has been associated with high-grade dysplasia (HGD) and cancer. The present study aims at investigating if humoral immunity to pancreas-associated oral microbes reflects IPMN severity. Design Paired plasma (n = 109) and saliva (n = 65) samples were obtained from IPMN pancreatic cystic tumor cases and controls, for anti-bacterial antibody analysis and DNA quantification by enzyme-linked immunosorbent assay (ELISA) and qPCR, respectively. Tumor severity was graded by histopathology, laboratory, and clinical data. Circulating plasma and salivary antibody reactivity to a pancreas-associated oral microbe panel were measured by ELISA and correlated to tumor severity. Results The patient group with high-risk cystic tumors (HGD and/or associated invasive cancer) shows ample circulating IgG reactivity to Fusobacterium nucleatum (F. nucleatum) but not to Granulicatella adiacens (G. adiacens), which is independent of the salivary bacteria DNA levels. This group also shows higher salivary IgA reactivity to F. nucleatum, Fap2 of F. nucleatum, and Streptococcus gordonii (S. gordonii) compared to low-risk IPMN and controls. The salivary antibody reactivity to F. nucleatum and Fap2 are found to be highly correlated, and cross-competition assays further confirm that these antibodies appear cross-reactive. Conclusion Our findings indicate that humoral reactivity against pancreas-associated oral microbes may reflect IPMN severity. These findings are beneficial for biomarker development.
Collapse
Affiliation(s)
- Hassan Alkharaan
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Liyan Lu
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Asif Halimi
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Sweden
| | - Zeeshan Ateeb
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Sweden
| | | | - Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carlos Fernández Moro
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Huddinge, Sweden
| | - Leif Jansson
- Clinic of Endodontics and Periodontology, Eastman Institute Stockholm, Stockholm, Sweden
| | - Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado, Aurora, CO, United States
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
774
|
Langheinrich M, Wirtz S, Kneis B, Gittler MM, Tyc O, Schierwagen R, Brunner M, Krautz C, Weber GF, Pilarsky C, Trebicka J, Agaimy A, Grützmann R, Kersting S. Microbiome Patterns in Matched Bile, Duodenal, Pancreatic Tumor Tissue, Drainage, and Stool Samples: Association with Preoperative Stenting and Postoperative Pancreatic Fistula Development. J Clin Med 2020; 9:jcm9092785. [PMID: 32872220 PMCID: PMC7563524 DOI: 10.3390/jcm9092785] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Postoperative complications after pancreatic surgery are still a significant problem in clinical practice. The aim of this study was to characterize and compare the microbiomes of different body compartments (bile duct, duodenal mucosa, pancreatic tumor lesion, postoperative drainage fluid, and stool samples; preoperative and postoperative) in patients undergoing pancreatic surgery for suspected pancreatic cancer, and their association with relevant clinical factors (stent placement, pancreatic fistula, and gland texture). For this, solid (duodenal mucosa, pancreatic tumor tissue, stool) and liquid (bile, drainage fluid) biopsy samples of 10 patients were analyzed using 16s rRNA gene next-generation sequencing. Our analysis revealed: (i) a distinct microbiome in the different compartments, (ii) markedly higher abundance of Enterococcus in patients undergoing preoperative stent placement in the common bile duct, (iii) significant differences in the beta diversity between patients who developed a postoperative pancreatic fistula (POPF B/C), (iv) patients with POPF B/C were more likely to have bacteria belonging to the genus Enterococcus, and (v) differences in microbiome composition with regard to the pancreatic gland texture. The structure of the microbiome is distinctive in different compartments, and can be associated with the development of a postoperative pancreatic fistula.
Collapse
Affiliation(s)
- Melanie Langheinrich
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
- Correspondence:
| | - Stefan Wirtz
- Department of Internal Medicine 1, University Hospital of Erlangen, 91054 Erlangen, Germany;
| | - Barbara Kneis
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| | - Matthias M. Gittler
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| | - Olaf Tyc
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, 60590 Frankfurt, Germany; (O.T.); (R.S.); (J.T.)
| | - Robert Schierwagen
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, 60590 Frankfurt, Germany; (O.T.); (R.S.); (J.T.)
| | - Maximilian Brunner
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| | - Christian Krautz
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| | - Georg F. Weber
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| | - Christian Pilarsky
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, 60590 Frankfurt, Germany; (O.T.); (R.S.); (J.T.)
| | - Abbas Agaimy
- Department of Pathology, University Hospital of Erlangen, 91054 Erlangen, Germany;
| | - Robert Grützmann
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| | - Stephan Kersting
- Department of Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany; (B.K.); (M.M.G.); (M.B.); (C.K.); (G.F.W.); (C.P.); (R.G.); (S.K.)
| |
Collapse
|
775
|
Aykut B, Chen R, Kim JI, Wu D, Shadaloey SAA, Abengozar R, Preiss P, Saxena A, Pushalkar S, Leinwand J, Diskin B, Wang W, Werba G, Berman M, Lee SKB, Khodadadi-Jamayran A, Saxena D, Coetzee WA, Miller G. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Sci Immunol 2020; 5:5/50/eabb5168. [PMID: 32826342 DOI: 10.1126/sciimmunol.abb5168] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Piezo1 is a mechanosensitive ion channel that has gained recognition for its role in regulating diverse physiological processes. However, the influence of Piezo1 in inflammatory disease, including infection and tumor immunity, is not well studied. We postulated that Piezo1 links physical forces to immune regulation in myeloid cells. We found signal transduction via Piezo1 in myeloid cells and established this channel as the primary sensor of mechanical stress in these cells. Global inhibition of Piezo1 with a peptide inhibitor was protective against both cancer and septic shock and resulted in a diminution in suppressive myeloid cells. Moreover, deletion of Piezo1 in myeloid cells protected against cancer and increased survival in polymicrobial sepsis. Mechanistically, we show that mechanical stimulation promotes Piezo1-dependent myeloid cell expansion by suppressing the retinoblastoma gene Rb1 We further show that Piezo1-mediated silencing of Rb1 is regulated via up-regulation of histone deacetylase 2. Collectively, our work uncovers Piezo1 as a targetable immune checkpoint that drives immunosuppressive myelopoiesis in cancer and infectious disease.
Collapse
Affiliation(s)
- Berk Aykut
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Ruonan Chen
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Jacqueline I Kim
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Dongling Wu
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Sorin A A Shadaloey
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Raquel Abengozar
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Pamela Preiss
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Anjana Saxena
- Biology Department, Brooklyn College, New York, NY 11210, USA.,Biology/Biochemistry Programs, Graduate Center (CUNY), New York, NY 10016, USA
| | - Smruti Pushalkar
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, NY 10010, USA
| | - Joshua Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Brian Diskin
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Gregor Werba
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Matthew Berman
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Steve Ki Buom Lee
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | | | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, NY 10010, USA.,Department of Microbiology and Immunology, New York University School of Medicine, New York, NY 10016, USA
| | - William A Coetzee
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA. .,Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
776
|
Jeong JY, Kim TB, Kim J, Choi HW, Kim EJ, Yoo HJ, Lee S, Jun HR, Yoo W, Kim S, Kim SC, Jun E. Diversity in the Extracellular Vesicle-Derived Microbiome of Tissues According to Tumor Progression in Pancreatic Cancer. Cancers (Basel) 2020; 12:2346. [PMID: 32825137 PMCID: PMC7563179 DOI: 10.3390/cancers12092346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to identify the composition and diversity of the microbiome in tissues of pancreatic cancer and to determine its role. First, extracellular vesicles (EVs) were obtained from the paired tumor and normal tissues, and 16s rRNA gene sequencing was performed. We identified the microbiomes, compared the diversity between groups, and found that Tepidimonas was more abundant in tumors. Second, larger tumors resulted in lower levels of Leuconostoc and Sutterella, and increased lymph node metastasis resulted in higher levels of Comamonas and Turicibacter in tumor tissues. Moreover, in the case of tumor recurrence, the levels of Streptococcus and Akkermansia were decreased in tumor tissues. Finally, with the supernatant of Tepidimonasfonticaldi, proliferation and migration of cells increased, and epithelial-mesenchymal transition and the Tricarboxylic Acid (TCA) cycle-related metabolites were enhanced. The composition and diversity of EV-derived microbiomes are important for providing novel insights into theragnostic approaches in pancreatic cancer.
Collapse
Affiliation(s)
- Jin-Yong Jeong
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (J.-Y.J.); (J.K.); (H.W.C.); (E.J.K.); (H.J.Y.)
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jinju Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (J.-Y.J.); (J.K.); (H.W.C.); (E.J.K.); (H.J.Y.)
| | - Hwi Wan Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (J.-Y.J.); (J.K.); (H.W.C.); (E.J.K.); (H.J.Y.)
| | - Eo Jin Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (J.-Y.J.); (J.K.); (H.W.C.); (E.J.K.); (H.J.Y.)
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (J.-Y.J.); (J.K.); (H.W.C.); (E.J.K.); (H.J.Y.)
| | - Song Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.L.); (H.R.J.)
| | - Hye Ryeong Jun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.L.); (H.R.J.)
| | - Wonbeak Yoo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Seokho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea;
| | - Song Cheol Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.L.); (H.R.J.)
- Biomedical Engineering Research Center, Asan Institute of Life Science, AMIST, Asan Medical Center, Seoul 05505, Korea
| | - Eunsung Jun
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (J.-Y.J.); (J.K.); (H.W.C.); (E.J.K.); (H.J.Y.)
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.L.); (H.R.J.)
| |
Collapse
|
777
|
Gnanasekaran J, Binder Gallimidi A, Saba E, Pandi K, Eli Berchoer L, Hermano E, Angabo S, Makkawi H, Khashan A, Daoud A, Elkin M, Nussbaum G. Intracellular Porphyromonas gingivalis Promotes the Tumorigenic Behavior of Pancreatic Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12082331. [PMID: 32824786 PMCID: PMC7465784 DOI: 10.3390/cancers12082331] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a member of the dysbiotic oral microbiome associated with oral inflammation and periodontal disease. Intriguingly, epidemiological studies link P. gingivalis to an increased risk of pancreatic cancer. Given that oral bacteria are detected in human pancreatic cancer, and both mouse and human pancreata harbor microbiota, we explored the involvement of P. gingivalis in pancreatic tumorigenesis using cell lines and a xenograft model. Live P. gingivalis induced proliferation of pancreatic cancer cells; however, surprisingly, this effect was independent of Toll-like receptor 2, the innate immune receptor that is engaged in response to P. gingivalis on other cancer and immune cells, and is required for P. gingivalis to induce alveolar bone resorption. Instead, we found that P. gingivalis survives inside pancreatic cancer cells, a trait that can be enhanced in vitro and is increased by hypoxia, a central characteristic of pancreatic cancer. Increased tumor cell proliferation was related to the degree of intracellular persistence, and infection of tumor cells with P. gingivalis led to enhanced growth in vivo. To the best of our knowledge, this study is the first to demonstrate the direct effect of exposure to P. gingivalis on the tumorigenic behavior of pancreatic cancer cell lines. Our findings shed light on potential mechanisms underlying the pancreatic cancer–periodontitis link.
Collapse
Affiliation(s)
- JebaMercy Gnanasekaran
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Adi Binder Gallimidi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Elias Saba
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Karthikeyan Pandi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Luba Eli Berchoer
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Esther Hermano
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Sarah Angabo
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Hasna′a Makkawi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Arin Khashan
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Alaa Daoud
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| | - Gabriel Nussbaum
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| |
Collapse
|
778
|
Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 2020; 21:1152-1159. [PMID: 32807942 DOI: 10.1038/s41590-020-0761-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma carries a dismal prognosis, and outcomes have improved little with modern therapeutics. Checkpoint-based immunotherapy has failed to elicit responses in the vast majority of patients with pancreatic cancer. Alongside tumor cell-intrinsic mechanisms associated with oncogenic KRAS-induced inflammation, the tolerogenic myeloid cell infiltrate has emerged as a critical impediment to adaptive antitumor immune responses. Furthermore, the discovery of an intratumoral microbiome and the elucidation of host-microbe interactions that curtail antitumor immunity also present opportunities for intervention. Here we review the mechanisms of immunotherapy resistance in pancreatic ductal adenocarcinoma and discuss strategies to directly augment T cell responses in parallel with myeloid cell- and microbiome-targeted approaches that may enable immune-mediated control of this malignancy.
Collapse
|
779
|
Bidirectional interaction between intestinal microbiome and cancer: opportunities for therapeutic interventions. Biomark Res 2020; 8:31. [PMID: 32817793 PMCID: PMC7424681 DOI: 10.1186/s40364-020-00211-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota composition influences the balance between human health and disease. Increasing evidence suggests the involvement of microbial factors in regulating cancer development, progression, and therapeutic response. Distinct microbial species have been implicated in modulating gut environment and architecture that affects cancer therapy outcomes. While some microbial species offer enhanced cancer therapy response, others diminish cancer treatment efficacy. In addition, use of antibiotics, often to minimize infection risks in cancer, causes intestinal dysbiosis and proves detrimental. In this review we discuss the role of gut microbiota in cancer development and therapy. We also provide insights into future strategies to manipulate the microbiome and gut epithelial barrier to augment therapeutic responses while minimizing toxicity or infection risks.
Collapse
|
780
|
Li H, Van Herck S, Liu Y, Hao Y, Ding X, Nuhn L, Zhong Z, Combes F, Sanders NN, Lienenklaus S, Koker SD, David SA, Wang Y, De Geest BG, Zhang Z. Imidazoquinoline-Conjugated Degradable Coacervate Conjugate for Local Cancer Immunotherapy. ACS Biomater Sci Eng 2020; 6:4993-5000. [PMID: 33455292 DOI: 10.1021/acsbiomaterials.0c00485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strategies that can reduce the harmful side effects of potent immunomodulatory drugs are in high demand to facilitate clinical translation of the newest generation of immunotherapy. Indeed, uncontrolled triggering of the immune system can lead to life-threatening cascade reactions, such as e.g. cytokine storm. In particular, drug formulations that combine simplicity and degradability are of formidable relevance. Imidazoquinolines are an excellent example of such small molecule immunomodulatory drugs that exhibit in unformulated form a highly undesirable pharmacokinetic profile. Imidazoquinolines are potent inducers of type I interferons that are of great interest in the context of anticancer and antiviral therapy through triggering of Toll like receptors 7 and 8. In this work we aimed to alter the pharmacokinetic profile of imidazoquinolines using a simple, yet efficient, strategy that holds high potential for clinical translation. Hereto, we conjugated an imidazoquinoline to the backbone of poly(aspartate) and further formulated this into a degradable coacervate through complex coacervation with a nontoxic degradable polycation. The intrinsic TLR activity of the imidazoquinoline was well preserved and our formulation strategy offered spatial control over its biological activity in vivo.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, P. R. China
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, P. R. China
| | - Yanyun Hao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, P. R. China
| | - Xiaochu Ding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, New York 14853, United States
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zifu Zhong
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9000 Ghent, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Stefaan D Koker
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Sunil A David
- ViroVax, LLC 5950 Research Parkway, Lawrence, Kansas 66047, United States
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, New York 14853, United States
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, P. R. China
| |
Collapse
|
781
|
Ianiro G, Segal JP, Mullish BH, Quraishi MN, Porcari S, Fabiani G, Gasbarrini A, Cammarota G. Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders. Future Microbiol 2020; 15:1173-1183. [PMID: 32954843 DOI: 10.2217/fmb-2020-0061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is the infusion of feces from a healthy donor into the gut of a recipient to treat a dysbiosis-related disease. FMT has been proven to be a safe and effective treatment for Clostridioides difficile infection, but increasing evidence supports the role of FMT in other gastrointestinal and extraintestinal diseases. The aim of this review is to paint the landscape of current evidence of FMT in different fields of application (including irritable bowel syndrome, inflammatory bowel disease, liver disorders, decolonization of multidrug-resistant bacteria, metabolic disorders and neurological disorders), as well as to discuss the current regulatory scenario of FMT, and hypothesize future directions of FMT.
Collapse
Affiliation(s)
- Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, Italy
| | | | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Mohammed N Quraishi
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK.,Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, Italy
| | - Ginevra Fabiani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, Italy
| |
Collapse
|
782
|
Cheung MK, Yue GGL, Tsui KY, Gomes AJ, Kwan HS, Chiu PWY, Lau CBS. Discovery of an interplay between the gut microbiota and esophageal squamous cell carcinoma in mice. Am J Cancer Res 2020; 10:2409-2427. [PMID: 32905484 PMCID: PMC7471341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main type of esophageal cancer (EC) worldwide, causing half a million deaths each year. Recent evidence has demonstrated the role of the gut microbiota in health and disease. However, our current understanding of the gut microbiome in EC remains scarce. Here, we characterized the gut and esophageal microbiome in a metastatic mouse model of ESCC and examined the functional roles of the gut microbiota in EC development in fecal microbiota transplantation (FMT) experiments. Nude mice intraperitoneally xenografted with human EC-109 cells showed significant alterations in the overall structure, but not alpha diversity, of the gut and esophageal microbiome as compared to naïve control mice. Xenograft of EC cells depleted the order Pasteurellales in the gut microbiome, and enriched multiple predicted metabolic pathways, including those involved in carbohydrate and lipid metabolism, in the esophageal microbiome. FMT of stool from healthy mice to antibiotic-treated xenograft-bearing mice significantly attenuated liver metastasis, suggesting a protective role of the commensal gut microbiota in EC. Moreover, we showed that combination chemotherapy with cisplatin and 5-fluorouracil, and the anti-EC medicinal herb Andrographis paniculata (AP) differentially affected the gut and esophageal microbiome in EC. FMT experiment revealed a reduced anti-metastatic efficacy of AP on liver metastasis in antibiotic-treated xenograft-bearing mice, suggesting a role of the commensal gut microbiota in the anti-metastatic efficacy of the herb. In conclusion, our findings reveal for the first time an interplay between the gut microbiota and EC and provide insights into the treatment strategies for EC.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Grace Gar Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong KongShatin, New Territories, Hong Kong
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Kei Yin Tsui
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Adele Joyce Gomes
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Philip Wai Yan Chiu
- Department of Surgery, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong KongShatin, New Territories, Hong Kong
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong KongShatin, New Territories, Hong Kong
| |
Collapse
|
783
|
Park R, Umar S, Kasi A. Immunotherapy in Colorectal Cancer: Potential of Fecal Transplant and Microbiota-augmented Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2020; 16:81-88. [PMID: 32607098 PMCID: PMC7325521 DOI: 10.1007/s11888-020-00456-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the role of the microbiome in colorectal cancer (CRC) in the setting of immunotherapy and emphasizes the potential of microbiota-influencing strategies with a focus on the use of fecal microbiota transplant (FMT). RECENT FINDINGS Observations from preclinical and clinical studies suggest that the human gut microbiome is implicated in the CRC carcinogenesis and is integral in determining the clinical response and toxicity to immunotherapy. Among the therapeutic methods devised to exploit the microbiome, FMT is the most direct method and is backed by the highest level of evidence of efficacy in nonneoplastic disease settings. Furthermore, a favorable microbiome has the potential to overcome immunotherapy resistance and ameliorate immune-related adverse events (irAEs). To this end, clinical trials are underway to evaluate the potential of FMT and microbiota-augmented methods in the setting of immunotherapy in CRC. SUMMARY Evidence from animal studies, retrospective studies, and smaller-scale prospective human studies have led to initiation of a number of microbiota-augmented clinical trials in CRC. Given the intimate relationship between the gut microbiota and the immune system as well as antitumor immune responses, potentiating immunotherapy and managing its toxicity are major areas of research in microbiota-augmented therapies in cancer. Therefore, evaluation of the patient microbiome as a routine part of clinical outcome analysis is warranted in future clinical trials.
Collapse
Affiliation(s)
- Robin Park
- Department of Medicine, MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA, U.S.A
| | - Shahid Umar
- Department of Medicine, Division of Surgery, Kansas University Medical Center, Kansas City, KS, U.S.A
| | - Anup Kasi
- Department of Medicine, Division of Medical Oncology, Kansas University Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
784
|
Zambirinis CP, Jarnagin WR. Letter to the editor regarding "Variant anatomy of the biliary system as a cause of pancreatic and peri-ampullary cancers.". HPB (Oxford) 2020; 22:1224. [PMID: 32563595 DOI: 10.1016/j.hpb.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
We suggest two potential theories that could explain how low union of the cystic and common hepatic duct may be related to heightened risk for pancreatic ductal adenocarcinoma, as observed by the study by Muraki et al.
Collapse
Affiliation(s)
| | - William R Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
785
|
Arteta AA, Sánchez-Jiménez M, Dávila DF, Palacios OG, Cardona-Castro N. Biliary Tract Carcinogenesis Model Based on Bile Metaproteomics. Front Oncol 2020; 10:1032. [PMID: 32793466 PMCID: PMC7394022 DOI: 10.3389/fonc.2020.01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: To analyze human and bacteria proteomic profiles in bile, exposed to a tumor vs. non-tumor microenvironment, in order to identify differences between these conditions, which may contribute to a better understanding of pancreatic carcinogenesis. Patients and Methods: Using liquid chromatography and mass spectrometry, human and bacterial proteomic profiles of a total of 20 bile samples (7 from gallstone (GS) patients, and 13 from pancreatic head ductal adenocarcinoma (PDAC) patients) that were collected during surgery and taken directly from the gallbladder, were compared. g:Profiler and KEGG (Kyoto Encyclopedia of Genes and Genomes) Mapper Reconstruct Pathway were used as the main comparative platform focusing on over-represented biological pathways among human proteins and interaction pathways among bacterial proteins. Results: Three bacterial infection pathways were over-represented in the human PDAC group of proteins. IL-8 is the only human protein that coincides in the three pathways and this protein is only present in the PDAC group. Quantitative and qualitative differences in bacterial proteins suggest a dysbiotic microenvironment in the PDAC group, supported by significant participation of antibiotic biosynthesis enzymes. Prokaryotes interaction signaling pathways highlight the presence of zeatin in the GS group and surfactin in the PDAC group, the former in the metabolism of terpenoids and polyketides, and the latter in both metabolisms of terpenoids, polyketides and quorum sensing. Based on our findings, we propose a bacterial-induced carcinogenesis model for the biliary tract. Conclusion: To the best of our knowledge this is the first study with the aim of comparing human and bacterial bile proteins in a tumor vs. non-tumor microenvironment. We proposed a new carcinogenesis model for the biliary tract based on bile metaproteomic findings. Our results suggest that bacteria may be key players in biliary tract carcinogenesis, in a long-lasting dysbiotic and epithelially harmful microenvironment, in which specific bacterial species' biofilm formation is of utmost importance. Our finding should be further explored in future using in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Ariel A Arteta
- School of Graduate Studies, CES University, Medellín, Colombia.,Basic Science Research Group, School of Medicine, CES University, Medellín, Colombia.,Associated Professor Department of Pathology, University of Antioquia, Medellín, Colombia
| | | | - Diego F Dávila
- Department of Hepatobiliary and Pancreatic Surgery, CES Clinic, Medellín, Colombia
| | - Oscar G Palacios
- Department of Hepatobiliary and Pancreatic Surgery, CES Clinic, Medellín, Colombia
| | - Nora Cardona-Castro
- School of Graduate Studies, CES University, Medellín, Colombia.,Basic Science Research Group, School of Medicine, CES University, Medellín, Colombia.,Colombian Institute of Tropical Medicine (ICMT), Sabaneta, Colombia
| |
Collapse
|
786
|
Ammer-Herrmenau C, Pfisterer N, Weingarten MF, Neesse A. The microbiome in pancreatic diseases: Recent advances and future perspectives. United European Gastroenterol J 2020; 8:878-885. [PMID: 32703080 PMCID: PMC7707879 DOI: 10.1177/2050640620944720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human microbiota exerts multiple physiological functions such as the regulation of metabolic and inflammatory processes. High-throughput sequencing techniques such as next-generation sequencing have become widely available in preclinical and clinical settings and have exponentially increased our knowledge about the microbiome and its interaction with host cells and organisms. There is now emerging evidence that microorganisms also contribute to inflammatory and neoplastic diseases of the pancreas. This review summarizes current clinical and translational microbiome studies in acute and chronic pancreatitis as well as pancreatic cancer and provides evidence that the microbiome has a high potential for biomarker discovery. Furthermore, the intestinal and pancreas-specific microbiome may also become an integrative part of diagnostic and therapeutic approaches of pancreatic diseases in the near future.
Collapse
Affiliation(s)
- Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Nina Pfisterer
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Mark Fj Weingarten
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Centre Goettingen, Goettingen, Germany
| |
Collapse
|
787
|
Daillère R, Routy B, Goubet AG, Cogdill A, Ferrere G, Alves-Costa Silva C, Fluckiger A, Ly P, Haddad Y, Pizzato E, Thelemaque C, Fidelle M, Mazzenga M, Roberti MP, Melenotte C, Liu P, Terrisse S, Kepp O, Kroemer G, Zitvogel L, Derosa L. Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncoimmunology 2020; 9:1794423. [PMID: 32934888 PMCID: PMC7466864 DOI: 10.1080/2162402x.2020.1794423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence from preclinical studies and human trials demonstrated the crucial role of the gut microbiota in determining the effectiveness of anticancer therapeutics such as immunogenic chemotherapy or immune checkpoint blockade. In summary, it appears that a diverse intestinal microbiota supports therapeutic anticancer responses, while a dysbiotic microbiota composition that lacks immunostimulatory bacteria or contains overabundant immunosuppressive species causes treatment failure. In this review, we explore preclinical and translational studies highlighting how eubiotic and dysbiotic microbiota composition can affect progression-free survival in cancer patients.
Collapse
Affiliation(s)
| | - Bertrand Routy
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier De l'Université De Montréal (CHUM), Montréal.,Centre De Recherche Du Centre Hospitalier De l'Université De Montréal (CRCHUM), Montréal, Canada
| | - Anne-Gaëlle Goubet
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Alexandria Cogdill
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Gladys Ferrere
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | | | - Aurélie Fluckiger
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Pierre Ly
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Yacine Haddad
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Eugenie Pizzato
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Cassandra Thelemaque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Marine Fidelle
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Marine Mazzenga
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Cléa Melenotte
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Peng Liu
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Safae Terrisse
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Oliver Kepp
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle De Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Lisa Derosa
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| |
Collapse
|
788
|
Can we harness the microbiota to enhance the efficacy of cancer immunotherapy? Nat Rev Immunol 2020; 20:522-528. [PMID: 32661409 DOI: 10.1038/s41577-020-0374-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
There is currently much interest in defining how the microbiota shapes immune responses in the context of cancer. Various studies in both mice and humans have associated particular commensal species with better (or worse) outcomes in different cancer types and following treatment with cancer immunotherapies. However, the mechanisms involved remain ill-defined and even controversial. In this Viewpoint, Nature Reviews Immunology has invited six eminent scientists in the field to share their thoughts on the key questions and challenges for the field.
Collapse
|
789
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:jem.20190297. [PMID: 31727782 PMCID: PMC7037244 DOI: 10.1084/jem.20190297] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
790
|
Takeda Y, Kobayashi S, Kitakaze M, Yamada D, Akita H, Asai A, Konno M, Arai T, Kitagawa T, Ofusa K, Yabumoto M, Hirotsu T, Vecchione A, Taniguchi M, Doki Y, Eguchi H, Ishii H. Immuno-Surgical Management of Pancreatic Cancer with Analysis of Cancer Exosomes. Cells 2020; 9:cells9071645. [PMID: 32659892 PMCID: PMC7408222 DOI: 10.3390/cells9071645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides, every component of which plays a role in the transmission of genetic and/or epigenetic information in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction. Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis, processes that are associated with patient survival. Because several solid tumors secrete immune checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully understood, we provide an update on the recent advances in this field and evidence that EXs will be useful for maximizing patient benefit in precision medicine.
Collapse
Affiliation(s)
- Yu Takeda
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Masatoshi Kitakaze
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Ayumu Asai
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Masamitsu Konno
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Takahiro Arai
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Unitech Co., Ltd., Kashiwa 277-0005, Japan
| | - Toru Kitagawa
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Kyowa-kai Medical Corporation, Osaka 540-0008, Japan
| | - Ken Ofusa
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka 559-8519, Japan
| | - Masami Yabumoto
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Kinshu-kai Medical Corporation, Osaka 558-0041, Japan
| | - Takaaki Hirotsu
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Hirotsu Bio Science Inc., Tokyo 107-0062, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Santo Andrea Hospital, via di Grottarossa, 1035-00189 Rome, Italy;
| | - Masateru Taniguchi
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Yuichiro Doki
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hidetoshi Eguchi
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Correspondence: ; Tel.: +81-(0)6-6210-8406 (ext. 8405); Fax: +81-(0)6-6210-8407
| |
Collapse
|
791
|
Kita A, Fujiya M, Konishi H, Tanaka H, Kashima S, Iwama T, Ijiri M, Murakami Y, Takauji S, Goto T, Sakatani A, Ando K, Ueno N, Ogawa N, Okumura T. Probiotic‑derived ferrichrome inhibits the growth of refractory pancreatic cancer cells. Int J Oncol 2020; 57:721-732. [PMID: 32705165 PMCID: PMC7384844 DOI: 10.3892/ijo.2020.5096] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is associated with a poor prognosis due to challenges in early detection, severe progression of the primary tumor, metastatic lesions, and resistance to antitumor agents. However, previous studies have indicated a relationship between the microbiome and pancreatic cancer outcomes. Our previous study demonstrated that ferrichrome derived from Lactobacillus casei, a probiotic bacteria, exhibited tumor‑suppressive effects in colorectal and gastric cancer, and that the suppressive effects were stronger than conventional antitumor agents, such as 5‑fluorouracil (5‑FU) and cisplatin, suggesting that certain probiotics exert antitumorigenic effects. However, whether or not probiotic‑derived molecules, including ferrichrome, exert a tumor‑suppressive effect in other gastrointestinal tumors, such as pancreatic cancer, remains unclear. In the present study, it was demonstrated that probiotic‑derived ferrichrome inhibited the growth of pancreatic cancer cells, and its tumor‑suppressive effects were further revealed in 5‑FU‑resistant pancreatic cancer cells in vitro and in vivo in a mouse xenograft model. Ferrichrome inhibited the progression of cancer cells via dysregulation of the cell cycle by activating p53. DNA fragmentation and cleavage of poly (ADP‑ribose) polymerase were induced by ferrichrome treatment, suggesting that ferrichrome induced apoptosis in pancreatic cancer cells. A transcriptome analysis revealed that the expression p53‑associated mRNAs was significantly altered by ferrichrome treatment. Thus, the tumor‑suppressive effects of probiotics may mediated by probiotic‑derived molecules, such as ferrichrome, which may have applications as an antitumor drug, even in refractory and 5‑FU‑resistant pancreatic cancer.
Collapse
Affiliation(s)
- Akemi Kita
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Shin Kashima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Takuya Iwama
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Masami Ijiri
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Yuki Murakami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Shuhei Takauji
- Asahikawa Medical University Hospital Emergency Unit, Asahikawa 078‑8510, Japan
| | - Takuma Goto
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Aki Sakatani
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Katsuyoshi Ando
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Naoki Ogawa
- Center for Advanced Research and Education, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078‑8510, Japan
| |
Collapse
|
792
|
Xiaoyu P, Chao G, Lihua D, Pengyu C. Gut bacteria affect the tumoral immune milieu: distorting the efficacy of immunotherapy or not?. Gut Microbes 2020; 11:691-705. [PMID: 32216675 PMCID: PMC7524336 DOI: 10.1080/19490976.2020.1739794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy using immune-checkpoint inhibitors is revolutionizing oncotherapy. However, the application of immunotherapy may be restricted because of the lack of proper biomarkers in a portion of cancer patients. Recently, emerging evidence has revealed that gut commensal bacteria can impact the therapeutic efficacy of immune-checkpoint inhibitors in several cancer models. In addition, testing the composition of gut bacteria provides context for prediction of the efficacy and toxicity of immunotherapy. In this review, we discuss the impacts of gut commensal bacteria on the tumoral immune milieu, highlighting some typical bacteria and their associations with immunotherapy.
Collapse
Affiliation(s)
- Pu Xiaoyu
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Ge Chao
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Dong Lihua
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chang Pengyu
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
793
|
Toker J, Arora R, Wargo JA. The Microbiome in Immuno-oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:325-334. [PMID: 32301026 DOI: 10.1007/978-3-030-41008-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of cancer therapy has been revolutionized through the use of immunotherapy, and treatment with these therapies now spans from early to late stage, and even into prevention. However, there are still a significant proportion of patients who do not derive long-term benefit from monotherapy and even combined therapy regimens, and novel approaches are needed to enhance therapeutic responses. Additionally, ideal biomarkers of response to immunotherapy are lacking and are critically needed. An emerging area of interest in immuno-oncology (IO) is the microbiome, which refers to the collection of microbes (and their genomes) that inhabit an individual and live in symbiosis. There is now evidence that these microbes (particularly those within the gut) impact host physiology and can impact responses to immunotherapy. The field of microbiome research in immuno-oncology is quickly emerging, with the potential use of the microbiome (in the gut as well as in the tumor) as a biomarker for response to IO as well as a therapeutic target. Notably, the microbiome may even have a role in toxicity to therapy. The state of the science in microbiome and IO are discussed and caveats and future directions are outlined to provide insights as we move forward as a field.
Collapse
Affiliation(s)
- Joseph Toker
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
794
|
Sommariva M, Le Noci V, Bianchi F, Camelliti S, Balsari A, Tagliabue E, Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci 2020; 77:2739-2749. [PMID: 31974656 PMCID: PMC7326824 DOI: 10.1007/s00018-020-03452-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Like other body districts, lungs present a complex bacteria community. An emerging function of lung microbiota is to promote and maintain a state of immune tolerance, to prevent uncontrolled and not desirable inflammatory response caused by inhalation of harmless environmental stimuli. This effect is mediated by a continuous dialog between commensal bacteria and immune cells resident in lungs, which express a repertoire of sensors able to detect microorganisms. The same receptors are also involved in the recognition of pathogens and in mounting a proper immune response. Due to its important role in preserving lung homeostasis, the lung microbiota can be also considered a mirror of lung health status. Indeed, several studies indicate that lung bacterial composition drastically changes during the occurrence of pulmonary pathologies, such as lung cancer, and the available data suggest that the modifications of lung microbiota can be part of the etiology of tumors in lungs and can influence their progression and response to therapy. These results provide the scientific rationale to analyze lung microbiota composition as biomarker for lung cancer and to consider lung microbiota a new potential target for therapeutic intervention to reprogram the antitumor immune microenvironment. In the present review, we discussed about the role of lung microbiota in lung physiology and summarized the most relevant data about the relationship between lung microbiota and cancer.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Valentino Le Noci
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Simone Camelliti
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
| | - Andrea Balsari
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS, Istituto Nazionale Dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Lucia Sfondrini
- Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, via Mangiagalli 31, 20133, Milano, Italy.
| |
Collapse
|
795
|
McQuade JL, Ologun GO, Arora R, Wargo JA. Gut Microbiome Modulation Via Fecal Microbiota Transplant to Augment Immunotherapy in Patients with Melanoma or Other Cancers. Curr Oncol Rep 2020; 22:74. [PMID: 32577835 PMCID: PMC7685568 DOI: 10.1007/s11912-020-00913-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review emerging evidence regarding the impact of gut microbes on antitumor immunity, and ongoing efforts to translate this in clinical trials. RECENT FINDINGS Pre-clinical models and human cohort studies support a role for gut microbes in modulating overall immunity and immunotherapy response, and numerous trials are now underway exploring strategies to modulate gut microbes to enhance responses to cancer therapy. This includes the use of fecal microbiota transplant (FMT), which is being used to treat patients with Clostridium difficile infection among other non-cancer indications. The use of FMT is now being extended to modulate gut microbes in patients being treated with cancer immunotherapy, with the goal of enhancing responses and/or to ameliorate toxicity. However, significant complexities exist with such an approach and will be discussed herein. Data from ongoing studies of FMT in cancer will provide critical insights for optimization of this approach.
Collapse
Affiliation(s)
- Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0430, Houston, 77030, TX, USA.
| | - Gabriel O Ologun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit Number 1484, Houston, TX, 77030, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit Number 1484, Houston, TX, 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit Number 1484, Houston, TX, 77030, USA
| |
Collapse
|
796
|
Pancreatic ductal adenocarcinomas from Mexican patients present a distinct genomic mutational pattern. Mol Biol Rep 2020; 47:5175-5184. [PMID: 32583281 DOI: 10.1007/s11033-020-05592-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in humans, with less than 5% 5-year survival rate. PDAC is characterized by a small number of recurrent mutations, including KRAS, CDKN2A, TP53, and SMAD4 and a long "tail" of infrequent mutated genes. Most of the studies have been performed in US and European populations, so new studies are needed to describe the mutational landscape of these tumors in other cohorts. The present study analyzed the exome and transcriptome of four PDAC tumors from Mexican patients. We found a paucity of the previously described recurrent mutations, with mutations in only three genes (HERC2, CNTNAP2 and HMCN1) previously reported in PDAC with a frequency > 1%. In addition, we discovered several recurrent putative copy number aberrations in SKP2, BRAF, CSSF1R, FOXE1, JAK2 and MET genes and in genes previously reported as putative drivers in PDAC, including KRAS, SF3B1, BRAF, MYC and MET. Although a larger cohort is needed to validate these findings, our results could be pointing toward potential differences in contributing factors for PDAC in Latin-American populations.
Collapse
|
797
|
Emerging role of microbiota in immunomodulation and cancer immunotherapy. Semin Cancer Biol 2020; 70:37-52. [PMID: 32580024 DOI: 10.1016/j.semcancer.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Gut microbiota is emerging as a key modulator of the immune system. Alteration of gut microbiota impacts functioning of the immune system and pathophysiology of several diseases, including cancer. Growing evidence indicates that gut microbiota is not only involved in carcinogenesis but also has an impact on the efficacy and toxicity of cancer therapy. Recently, several pre-clinical and clinical studies across diverse cancer types reported the influence of gut microbiota on the host immune response to immunotherapy. Advancement in our understanding of the mechanism behind microbiota-mediated modulation of immune response is paramount for their utilization as cancer therapeutics. These microbial therapies in combination with conventional immunotherapeutic methods have the potential to transform the pre-existing treatment strategies to personalized cancer therapy. In this review, we have summarized the current status of research in the field and discussed the role of microbiota as an immune system modulator in context of cancer and their impact on immunotherapy.
Collapse
|
798
|
Inamura K. Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Semin Cancer Biol 2020; 70:11-23. [PMID: 32580023 DOI: 10.1016/j.semcancer.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
The microbiota influences human health and the development of diverse diseases, including cancer. Microbes can influence tumor initiation and development in either a positive or negative manner. In addition, the composition of the gut microbiota affects the efficacy and toxicity of cancer therapeutics as well as therapeutic resistance. The striking impact of microbiota on oncogenesis and cancer therapy provides compelling evidence to support the notion that manipulating microbial networks represents a promising strategy for treating and preventing cancer. Specific microbes or the microbial ecosystem can be modified via a multiplicity of processes, and therapeutic methods and approaches have been evolving. Microbial manipulation can be applied as an adjunct to traditional cancer therapies such as chemotherapy and immunotherapy. Furthermore, this approach displays great promise as a stand-alone therapy following the failure of standard therapy. Moreover, such strategies may also benefit patients by avoiding the emergence of toxic side effects that result in treatment discontinuation. A better understanding of the host-microbial ecosystem in patients with cancer, together with the development of methodologies for manipulating the microbiome, will help expand the frontiers of precision cancer therapeutics, thereby improving patient care. This review discusses the roles of the microbiota in oncogenesis and cancer therapy, with a focus on efforts to harness the microbiota to fight cancer.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
799
|
Chakladar J, Wong LM, Kuo SZ, Li WT, Yu MA, Chang EY, Wang XQ, Ongkeko WM. The Liver Microbiome Is Implicated in Cancer Prognosis and Modulated by Alcohol and Hepatitis B. Cancers (Basel) 2020; 12:cancers12061642. [PMID: 32575865 PMCID: PMC7353057 DOI: 10.3390/cancers12061642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world. Previous studies have identified the importance of alcohol and hepatitis B (HBV) infection on HCC carcinogenesis, indicating synergy in the methods by which these etiologies advance cancer. However, the specific molecular mechanism behind alcohol and HBV-mediated carcinogenesis remains unknown. Because the microbiome is emerging as a potentially important regulator of cancer development, this study aims to classify the effects of HBV and alcohol on the intratumoral liver microbiome. RNA-sequencing data from The Cancer Genome Atlas (TCGA) were used to infer microbial abundance. This abundance was then correlated to clinical variables and to cancer and immune-associated gene expression, in order to determine how microbial abundance may contribute to differing cancer progression between etiologies. We discovered that the liver microbiome is likely oncogenic after exposure to alcohol or HBV, although these etiological factors could decrease the abundance of a few oncogenic microbes, which would lead to a tumor suppressive effect. In HBV-induced tumors, this tumor suppressive effect was inferred based on the downregulation of microbes that induce cancer and stem cell pathways. Alcohol-induced tumors were observed to have distinct microbial profiles from HBV-induced tumors, and different microbes are clinically relevant in each cohort, suggesting that the effects of the liver microbiome may be different in response to different etiological factors. Collectively, our data suggest that HBV and alcohol operate within a normally oncogenic microbiome to promote tumor development, but are also able to downregulate certain oncogenic microbes. Insight into why these microbes are downregulated following exposure to HBV or alcohol, and why the majority of oncogenic microbes are not downregulated, may be critical for understanding whether a pro-tumor liver microbiome could be suppressed or reversed to limit cancer progression.
Collapse
Affiliation(s)
- Jaideep Chakladar
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; (J.C.); (L.M.W.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Lindsay M. Wong
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; (J.C.); (L.M.W.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Selena Z. Kuo
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Wei Tse Li
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; (J.C.); (L.M.W.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Michael Andrew Yu
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA;
- Radiology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Xiao Qi Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Weg M. Ongkeko
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; (J.C.); (L.M.W.); (W.T.L.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Correspondence: ; Tel.: +1-(858)-552-8585 (ext. 7165)
| |
Collapse
|
800
|
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, Meltser A, Douglas GM, Kamer I, Gopalakrishnan V, Dadosh T, Levin-Zaidman S, Avnet S, Atlan T, Cooper ZA, Arora R, Cogdill AP, Khan MAW, Ologun G, Bussi Y, Weinberger A, Lotan-Pompan M, Golani O, Perry G, Rokah M, Bahar-Shany K, Rozeman EA, Blank CU, Ronai A, Shaoul R, Amit A, Dorfman T, Kremer R, Cohen ZR, Harnof S, Siegal T, Yehuda-Shnaidman E, Gal-Yam EN, Shapira H, Baldini N, Langille MGI, Ben-Nun A, Kaufman B, Nissan A, Golan T, Dadiani M, Levanon K, Bar J, Yust-Katz S, Barshack I, Peeper DS, Raz DJ, Segal E, Wargo JA, Sandbank J, Shental N, Straussman R. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020; 368:973-980. [PMID: 32467386 DOI: 10.1126/science.aay9189] [Citation(s) in RCA: 1377] [Impact Index Per Article: 275.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a particularly rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted functions with tumor types and subtypes, patients' smoking status, and the response to immunotherapy.
Collapse
Affiliation(s)
- Deborah Nejman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Livyatan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Garold Fuks
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaara Zwang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leore T Geller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Roi Weiser
- Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Giuseppe Mallel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elinor Gigi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Arnon Meltser
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | | | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tehila Atlan
- Department of Bioinformatics, Jerusalem College of Technology, Jerusalem, Israel
| | - Zachary A Cooper
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Md Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Ologun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuval Bussi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Perry
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Merav Rokah
- Department of Thoracic Surgery, Sheba Medical Center, Ramat Gan, Israel
| | | | - Elisa A Rozeman
- Department of Medical Oncology and Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Christian U Blank
- Department of Medical Oncology and Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anat Ronai
- Pediatric Gastroenterology Institute, Rambam Medical Center, Haifa, Israel
| | - Ron Shaoul
- Pediatric Gastroenterology Institute, Rambam Medical Center, Haifa, Israel
| | - Amnon Amit
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Tatiana Dorfman
- Division of General Surgery, Rambam Health Care Campus, Haifa, Israel.,Ambulatory and Breast Surgery Service, Rambam Health Care Campus, Haifa, Israel
| | - Ran Kremer
- Department of Thoracic Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Zvi R Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Neurosurgery, Sheba Medical Center, Ramat Gan, Israel
| | - Sagi Harnof
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Tali Siegal
- Neuro-Oncology Unit, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | | | | | - Hagit Shapira
- Institute of Pathology, Megalab, Maccabi Healthcare Services, Rehovot, Israel
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alon Ben-Nun
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Thoracic Surgery, Sheba Medical Center, Ramat Gan, Israel
| | - Bella Kaufman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Aviram Nissan
- Department of Surgical Oncology (Surgery C), Sheba Medical Center, Ramat Gan, Israel
| | - Talia Golan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Keren Levanon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Jair Bar
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Shlomit Yust-Katz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neuro-Oncology Unit, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA, USA
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith Sandbank
- Institute of Pathology, Megalab, Maccabi Healthcare Services, Rehovot, Israel
| | - Noam Shental
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|