751
|
Shang LH, Li CM, Yang ZY, Che DH, Cao JY, Yu Y. Luffa echinata Roxb. induces human colon cancer cell (HT-29) death by triggering the mitochondrial apoptosis pathway. Molecules 2012; 17:5780-94. [PMID: 22592084 PMCID: PMC6268999 DOI: 10.3390/molecules17055780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 01/27/2023] Open
Abstract
The antiproliferative properties and cell death mechanism induced by the extract of the fruits of Luffa echinata Roxb. (LER) were investigated. The methanolic extract of LER inhibited the proliferation of human colon cancer cells (HT-29) in both dose-dependent and time-dependent manners and caused a significant increase in the population of apoptotic cells. In addition, obvious shrinkage and destruction of the monolayer were observed in LER-treated cells, but not in untreated cells. Analysis of the cell cycle after treatment of HT-29 cells with various concentrations indicated that LER extracts inhibited the cellular proliferation of HT-29 cells via G2/M phase arrest of the cell cycle. The Reactive oxygen species (ROS) level determination revealed that LER extracts induced apoptotic cell death via ROS generation. In addition, LER treatment led to a rapid drop in mitochondrial membrane potential (MMP) as a decrease in fluorescence. The transcripts of several apoptosis-related genes were investigated by RT-PCR analysis. The caspase-3 transcripts of HT-29 cells significantly accumulated and the level of Bcl-XL mRNA was decreased after treatment with LER extract. Furthermore, the ratio of mitochondria-dependent apoptosis genes (Bax and Bcl-2) was sharply increased from 1.6 to 54.1. These experiments suggest that LER has anticancer properties via inducing the apoptosis in colon cancer cells, which provided the impetus for further studies on the therapeutic potential of LER against human colon carcinoma.
Collapse
Affiliation(s)
- Li-Hua Shang
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin 150081, China
| | - Chun-Mei Li
- Department of Medical Biotechnology, Kangwon National University, Chuncheon, Gangwon 200-701, Korea
| | - Zhao-Yang Yang
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin 150081, China
| | - De-Hai Che
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin 150081, China
| | - Jing-Yan Cao
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin 150081, China
| | - Yan Yu
- Department of Internal Medicine, The Third Affiliated Hospital of Harbin Medical University, Haping Road 150 of Nangang District, Harbin 150081, China
- Author to whom correspondence should be addressed; ; Tel./Fax: +86-451-8629-8727
| |
Collapse
|
752
|
Solanum lyratum Extracts Induce Extrinsic and Intrinsic Pathways of Apoptosis in WEHI-3 Murine Leukemia Cells and Inhibit Allograft Tumor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:254960. [PMID: 22611426 PMCID: PMC3352350 DOI: 10.1155/2012/254960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/08/2012] [Accepted: 02/16/2012] [Indexed: 12/15/2022]
Abstract
We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced by Solanum lyratum extracts (SLE) or diosgenin in WEHI-3 murine leukemia cells in vitro and antitumor activity in vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and induced G0/G1 phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. The in vivo study demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-induced G0/G1 phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activity in vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future.
Collapse
|
753
|
Kim SY, Lee JH, Kim HJ, Park MK, Huh JW, Ro JY, Oh YM, Lee SD, Lee YS. Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Physiol Lung Cell Mol Physiol 2012; 302:L891-908. [PMID: 22307909 DOI: 10.1152/ajplung.00288.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoking causes apoptotic death, senescence, and impairment of repair functions in lung fibroblasts, which maintain the integrity of alveolar structure by producing extracellular matrix (ECM) proteins. Therefore, recovery of lung fibroblasts from cigarette smoke-induced damage may be crucial in regeneration of emphysematous lung resulting from degradation of ECM proteins and subsequent loss of alveolar cells. Recently, we reported that bone marrow-derived mesenchymal stem cell-conditioned media (MSC-CM) led to angiogenesis and regeneration of lung damaged by cigarette smoke. In this study, to further investigate reparative mechanisms for MSC-CM-mediated lung repair, we attempted to determine whether MSC-CM can recover lung fibroblasts from cigarette smoke-induced damage. In lung fibroblasts exposed to cigarette smoke extract (CSE), MSC-CM, not only inhibited apoptotic death, but also induced cell proliferation and reversed CSE-induced changes in the levels of caspase-3, p53, p21, p27, Akt, and p-Akt. MSC-CM also restored expression of ECM proteins and collagen gel contraction while suppressing CSE-induced expression of cyclooxygenase-2 and microsomal PGE(2) synthase-2. The CSE-opposing effects of MSC-CM on cell fate, expression of ECM proteins, and collagen gel contraction were partially inhibited by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. In rats, MSC-CM administration also resulted in elevation of p-Akt and restored proliferation of lung fibroblasts, which was suppressed by exposure to cigarette smoke. Taken together, these data suggest that MSC-CM may recover lung fibroblasts from cigarette smoke-induced damage, possibly through inhibition of apoptosis, induction of proliferation, and restoration of lung fibroblast repair function, which are mediated in part by the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Division of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon
| | | | | | | | | | | | | | | | | |
Collapse
|
754
|
Kwiecińska P, Taubøll E, Gregoraszczuk EŁ. Comparison of the effects of valproic acid and levetiracetam on apoptosis in the human ovarian cancer cell line OVCAR-3. Pharmacol Rep 2012; 64:603-14. [DOI: 10.1016/s1734-1140(12)70856-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/28/2011] [Indexed: 12/23/2022]
|
755
|
Sun B, Sun GB, Xiao J, Chen RC, Wang X, Wu Y, Cao L, Yang ZH, Sun XB. Isorhamnetin inhibits H₂O₂-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem 2012; 113:473-85. [PMID: 21948481 DOI: 10.1002/jcb.23371] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.
Collapse
Affiliation(s)
- Bing Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
756
|
Abstract
Vitiligo is an acquired depigmentary disorder of the skin that results from the loss of functioning epidermal melanocytes. Most studies on vitiligo have concentrated on the abnormality of melanocytes rather than the abnormality of keratinocytes; however, epidermal melanocytes form a functional and structural unit with neighboring keratinocytes. In fact, direct cell-to cell contact stimulates in vitro proliferation of melanocytes, and growth factors produced by adjacent keratinocytes regulate the proliferation and differentiation of melanocytes. The potential role of keratinocyte-derived cytokines has also been presented. We focused on the structural changes in vitiliginous keratinocytes, which may result in loss of melanocytes, to examine the pathomechanism of vitiligo. The results of a comparison between depigmented and normally pigmented epidermis in patients with vitiligo showed that the keratinocytes in the depigmented epidermis were more vulnerable to apoptosis. Impaired Phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt) activation followed by reduced nuclear factor-κB activation under increased tumor necrosis factor-α levels was demonstrated as a mechanism for keratinocyte apoptosis. The role of aquaporin 3 in keratinocyte apoptosis was addressed based on the relationship between the PI3K/AKT pathway and the E-cadherin-catenin complex. Apoptotic keratinocytes induced a lower expression of keratinocyte-derived factors, including stem cell factor, in depigmented epidermis, resulting in passive melanocyte death.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Dongguk University Graduate School of Medicine, Goyang, Korea.
| |
Collapse
|
757
|
Sun Y, Dong Z, Khodabakhsh H, Chatterjee S, Guo S. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides. PLoS One 2012; 7:e35645. [PMID: 22563390 PMCID: PMC3338518 DOI: 10.1371/journal.pone.0035645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/19/2012] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA) neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+)/K(+) ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+)/K(+) ATPase α3 subunit (ATP1A3). Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.
Collapse
Affiliation(s)
- Yaping Sun
- Department of Bioengineering and Therapeutic Sciences, Programs of Human Genetics and Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Zhiqiang Dong
- Department of Bioengineering and Therapeutic Sciences, Programs of Human Genetics and Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Hadie Khodabakhsh
- Department of Bioengineering and Therapeutic Sciences, Programs of Human Genetics and Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
- The George Washington University School of Medicine, Washington, D.C., United States of America
| | - Sandip Chatterjee
- Department of Bioengineering and Therapeutic Sciences, Programs of Human Genetics and Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs of Human Genetics and Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
758
|
Tousson E, Beltagy DM, Gazia MA, Al-Behbehani B. Expressions of P53 and CD68 in mouse liver with Schistosoma mansoni infection and the protective role of silymarin. Toxicol Ind Health 2012; 29:761-70. [DOI: 10.1177/0748233712442733] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schistosomiasis is one of the major human parasitic diseases in many developing countries and is one of the causes of morbidity and mortality in the human population. The present work has been planned to study the histopathological and immunohistochemical expression of P53 and CD68 in mouse liver tissues experimentally infected with Schistosoma mansoni, in addition to the ameliorating role of silymarin. A total of 50 adult male mice were divided into 5 groups (10 animals each). Groups 1 and 2 were the control and silymarin groups, respectively, while group 3 was the infected group in which the mice were infected with S. mansoni live cercariae for 6 weeks. Groups 4 and 5 were the cotreated and posttreated groups, respectively, in which mice were infected with cercariae of S. mansoni and treated with silymarin during and after Schistosoma infection, respectively. The major histopathological lesions were variable numbers of perioval granulomas, diffuse infiltration of inflammatory cells, mainly eosinophils and small mononuclear cells, and fibrosis of portal areas and interlobular septa. Treatment with silymarin led to a significant reduction in granuloma area in all treated infected mice compared with nontreated infected mice. Immunohistochemical observations of the liver tissues showed a significant increase in the apoptotic proteins P53 and CD68 after the infection with the cercariae of Schistosoma, compared with the control group. The expression of the cytoplasmic P53 and CD68 was very low in the control liver sections. A significant decrease in the expression of the cytoplasmic P53 and CD68 was observed after silymarin treatment.
Collapse
Affiliation(s)
| | - Doha M Beltagy
- Division of Biochemistry, Department of Chemistry, Damanhour University, Egypt
| | | | | |
Collapse
|
759
|
Magnussen GI, Ree Rosnes AK, Shahzidi S, Dong HP, Emilsen E, Engesæter B, Flørenes VA. Synthetic retinoid CD437 induces apoptosis and acts synergistically with TRAIL receptor-2 agonist in malignant melanoma. Biochem Biophys Res Commun 2012; 420:516-22. [PMID: 22446330 DOI: 10.1016/j.bbrc.2012.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/09/2022]
Abstract
The novel synthetic retinoid, CD437, shows potent anti-tumor activity in a range of different cancer cell lines and now serves as a prototype for development of new retinoid related molecules (RRMs). The purpose of this study was to examine the effect and cellular targets of CD437 in the human metastatic melanoma cell lines FEMX-1 and WM239. We showed that treatment with CD437 led to cell cycle arrest and induced apoptosis through both the extrinsic- and intrinsic pathways (caspase 8, -9 and PARP cleavage) in both cell lines. Interestingly, apoptosis was induced independently of DNA-fragmentation in FEMX-1 cells, and appeared partially caspase-independent in the WM239 cells. Additionally, up-regulation of CHOP mRNA and cathepsin D protein expression, following retinoid treatment, suggests involvement of the endoplasmatic reticulum (ER) and lysosomes, respectively. Combination of suboptimal concentrations of CD437 and lexatumumab, a TRAIL death receptor-2 agonist, resulted in synergistic reduction of viable cells, along with increased PARP cleavage. These results indicate that CD437 has a strong anti-neoplastic effect alone and in combination with lexatumumab in melanoma cell lines.
Collapse
Affiliation(s)
- Gry Irene Magnussen
- Department of Pathology, Institute for Cancer Research, The Norwegian Radium Hospital, 0424 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
760
|
Yerlikaya A, Okur E, Ulukaya E. The p53-independent induction of apoptosis in breast cancer cells in response to proteasome inhibitor bortezomib. Tumour Biol 2012; 33:1385-92. [PMID: 22477712 DOI: 10.1007/s13277-012-0386-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022] Open
Abstract
An important hallmark of cancer cells is acquired resistance toward apoptosis. The apoptotic pathway is the most well-defined cell death program and is characterized by several morphological and biochemical features. The tumor suppressor protein p53 is a critical regulator of apoptosis in many cell types. p53 stimulates a wide network of signals that act through either extrinsic or intrinsic pathways of apoptosis. However, a number of studies have shown that apoptosis can be induced in a p53-independent manner as well. In this study, we examined the mechanism of apoptosis in p53-null breast cancer cells in response to the proteasome inhibitor bortezomib. Initially, we determined the p53 status of 4T1 breast carcinoma and 4THMpc (a highly mestatic derivative of 4T1) cells and verified that both cells are p53 deficient. It was subsequently shown that apoptosis can be induced in both cells in a dose-dependent manner in response to bortezomib treatment, based on DNA fragmentation evidence. Western blot analyses of ubiquitin-protein conjugates additionally showed that the proteasome is potently inhibited by bortezomib in p53-null 4T1 and 4THMpc cells. The results presented in the current study also show that caspase-3 is significantly activated in response to the treatment with bortezomib, implying that induction of apoptosis in these p53-deficient cells is occurring via caspase-3. The additional results presented here suggest that the pro-apoptotic proteins Bad, Noxa, and Puma are not critical regulators of apoptosis induction in p53-null 4T1 and 4THMpc cells. Similarly, there was no difference in the expression level of Mcl-1 in treated cells, suggesting that this anti-apoptotic protein is also uninvolved in the apoptotic response resulting from bortezomib treatment. In contrast, a very significant upregulation of the anti-apoptotic protein Hsp25/27 was detected in these p53-deficient cells after treatment with bortezomib. If the increased expression of Hsp25/27 protein levels are muting the apoptotic effects of the bortezomib treatment, then the apoptosis-inducing effects of such proteasome inhibitors might be increased with approaches simultaneously inhibiting Hsp25/27 protein in p53-deficient cells.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Art and Science Faculty, Department of Biology, Dumlupınar University, Kütahya, Turkey.
| | | | | |
Collapse
|
761
|
Mondal S, Bhattacharya K, Mallick A, Sangwan R, Mandal C. Bak compensated for Bax in p53-null cells to release cytochrome c for the initiation of mitochondrial signaling during Withanolide D-induced apoptosis. PLoS One 2012; 7:e34277. [PMID: 22479585 PMCID: PMC3315518 DOI: 10.1371/journal.pone.0034277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/25/2012] [Indexed: 12/02/2022] Open
Abstract
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53−/− cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53−/− over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53−/− cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax−Bak−) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax−Bak+/HCT116Bax+Bak−) was only marginally effective after WithaD treatment. In HCT116p53−/− cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.
Collapse
Affiliation(s)
- Susmita Mondal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Kaushik Bhattacharya
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Asish Mallick
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Rajender Sangwan
- Metabolic and Structural Biology Division, Council of Scientific and Industrial Research - Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Chitra Mandal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
762
|
Liao XH, Chen GT, Li Y, Zhang L, Liu Q, Sun H, Guo H. Augmenter of liver regeneration attenuates tubular cell apoptosis in acute kidney injury in rats: the possible mechanisms. Ren Fail 2012; 34:590-599. [PMID: 22417144 DOI: 10.3109/0886022x.2012.664470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Augmenter of liver regeneration (ALR), the expression of which increased in rat kidneys after renal ischemia/reperfusion (I/R) injury, enhances renal tubular cell regeneration in vivo and in vitro. We aimed to investigate the effects of ALR on apoptosis of renal tubular cells after renal I/R injury in vivo and consider the possible mechanisms. Rats that were subjected to bilateral renal ischemia for 60 min followed by reperfusion were administered with either vehicle or recombinant human ALR (rhALR). Renal dysfunction and histologic injury were assessed by the measurement of serum biochemical markers and histological grading. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL). Caspase-3 activity was measured using a colorimetric protease assay. Expression of Bcl-2, Bax Fas, phosphorylated-Akt (p-Akt), and phosphorylated-p53 (p-p53) was determined by western blotting. Compared with vehicle-treated rats, renal dysfunction and histologic injury were significantly attenuated by administration of rhALR. The number of TUNEL-positive tubular cells and caspase-3 activity were decreased, Bcl-2 and p-Akt expression was up-regulated, and Bax and p-p53 expression was down-regulated by administration of rhALR. However, administration of rhALR had no effect on Fas protein expression. These results indicate that the protective effect of rhALR on renal I/R injury is associated with its anti-apoptotic action in renal tubular cells. RhALR inhibits apoptosis by increasing the ratio of Bcl-2 to Bax and by decreasing the activity of caspase-3. The activation of Akt and inactivation of p53 are involved in the rhALR anti-apoptosis process.
Collapse
Affiliation(s)
- Xiao-hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
763
|
Song MK, Kim YJ, Song M, Choi HS, Park YK, Ryu JC. Formation of a 3,4-diol-1,2-epoxide metabolite of benz[a]anthracene with cytotoxicity and genotoxicity in a human in vitro hepatocyte culture system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:212-225. [PMID: 22236718 DOI: 10.1016/j.etap.2011.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that require metabolic activation to exert their carcinogenic effects. This study investigated the 3,4-diol-1,2-epoxide formation of benz[a]anthracene (BA) and its toxic effects in a human in vitro hepatocyte culture system. Both mRNA and protein expression of metabolic enzymes which can activate PAHs to carcinogenic forms increased after BA exposure in HepG2 cells and our quantitative analysis showed that the formation of BA-3,4-diol-1,2-epoxide in medium extracts increased in a time-dependent manner. We also performed several comparative studies which show that much lower concentrations of BA-3,4-diol-1,2-epoxide had stronger cytotoxicity and genotoxicity than higher doses of BA. These results suggest that BA is activated as the major carcinogenic metabolite 3,4-diol-1,2-epoxide, in human in vitro culture systems by metabolic enzymes and that this metabolite has stronger cytotoxic and genotoxic effects than its parent compound.
Collapse
Affiliation(s)
- Mi-Kyung Song
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology, PO Box 131, Cheongryang, Seoul, 130-650, Republic of Korea
| | | | | | | | | | | |
Collapse
|
764
|
Montenarh M, Saidu NEB. The Effect of Diallyl Polysulfanes on Cellular Signaling Cascades. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Diallyl polysulfanes, such as diallyl trisulfide and diallyl tetrasulfide, are regarded as a group of potential chemopreventive compounds as they have been proven to be effective inhibitors of cancer cells. These agents have been implicated in signal transductions, including the generation of Reactive Oxygen Species (ROS), Endoplasmic Reticulum (ER) stress, mitogen-activated protein kinase (MAPK) signaling, regulation of cell cycle progression, and induction of apoptosis. Nonetheless, certain aspects of the diallyl polysulfane triggered inhibitory effects on cancer cells are still not clear. Understanding the targeted signaling pathways may help to develop new strategies to treat cancer and other diseases. This review is therefore aimed at addressing the targeting of specific intracellular signal transduction cascades by these diallyl polysulfanes in order to shed some light on possible mechanisms of action of these compounds.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medizinische Biochemie und Molekularbiologie und Kompetenzzentrum Molekulare Medizin (KOMM) Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| | - Nathaniel E. B. Saidu
- Medizinische Biochemie und Molekularbiologie und Kompetenzzentrum Molekulare Medizin (KOMM) Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| |
Collapse
|
765
|
Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:178178. [PMID: 22474491 PMCID: PMC3303801 DOI: 10.1155/2012/178178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 12/23/2022]
Abstract
Emilia sonchifolia (L.) DC (Compositae), an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE) on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%). ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic) were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer.
Collapse
|
766
|
Aoyama I, Yaegaki K, Calenic B, Ii H, Ishkitiev N, Imai T. The role of p53 in an apoptotic process caused by an oral malodorous compound in periodontal tissues: a review. J Breath Res 2012; 6:017104. [DOI: 10.1088/1752-7155/6/1/017104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
767
|
Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ, Li L, Lotze MT, Tang D. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 2012; 72:1996-2005. [PMID: 22345153 DOI: 10.1158/0008-5472.can-11-2291] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The balance between apoptosis ("programmed cell death") and autophagy ("programmed cell survival") is important in tumor development and response to therapy. Here, we show that high mobility group box 1 (HMGB1) and p53 form a complex that regulates the balance between tumor cell death and survival. We show that knockout of p53 in HCT116 cells increases expression of cytosolic HMGB1 and induces autophagy. Conversely, knockout of HMGB1 in mouse embryonic fibroblasts increases p53 cytosolic localization and decreases autophagy. p53 is thus a negative regulator of the HMGB1/Beclin 1 complex, and HMGB1 promotes autophagy in the setting of diminished p53. HMGB1-mediated autophagy promotes tumor cell survival in the setting of p53-dependent processes. The HMGB1/p53 complex affects the cytoplasmic localization of the reciprocal binding partner, thereby regulating subsequent levels of autophagy and apoptosis. These insights provide a novel link between HMGB1 and p53 in the cross-regulation of apoptosis and autophagy in the setting of cell stress, providing insights into their reciprocal roles in carcinogenesis.
Collapse
Affiliation(s)
- Kristen M Livesey
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
768
|
Murakami Y, Takada S. Rigor of cell fate decision by variable p53 pulses and roles of cooperative gene expression by p53. Biophysics (Nagoya-shi) 2012; 8:41-50. [PMID: 27857606 PMCID: PMC5070454 DOI: 10.2142/biophysics.8.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/28/2011] [Indexed: 12/01/2022] Open
Abstract
Upon DNA damage, the cell fate decision between survival and apoptosis is largely regulated by p53-related networks. Recent experiments found a series of discrete p53 pulses in individual cells, which led to the hypothesis that the cell fate decision upon DNA damage is controlled by counting the number of p53 pulses. Under this hypothesis, Sun et al. (2009) modeled the Bax activation switch in the apoptosis signal transduction pathway that can rigorously "count" the number of uniform p53 pulses. Based on experimental evidence, here we use variable p53 pulses with Sun et al.'s model to investigate how the variability in p53 pulses affects the rigor of the cell fate decision by the pulse number. Our calculations showed that the experimentally anticipated variability in the pulse sizes reduces the rigor of the cell fate decision. In addition, we tested the roles of the cooperativity in PUMA expression by p53, finding that lower cooperativity is plausible for more rigorous cell fate decision. This is because the variability in the p53 pulse height is more amplified in PUMA expressions with more cooperative cases.
Collapse
Affiliation(s)
- Yohei Murakami
- Department of Biophysics, Division of Biology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Division of Biology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
769
|
Xu K, Liang X, Wang F, Xie L, Xu Y, Liu J, Qian X. Induction of G2/M phase arrest and apoptosis by potent antitumor APCA in human cervix carcinoma cells. Anticancer Drugs 2012; 22:875-85. [PMID: 21808189 DOI: 10.1097/cad.0b013e328349597d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
3-(dimethylamino-ethylamino)-8-oxo-8H-acenaphthol[1, 2-b]pyrrole-9-carboxylic acid (APCA), as a potent antitumor compound, showed anticancer activity on a series of established cancer cells. Meanwhile, the cytotoxic effects of APCA were much smaller on normal human cells than that on cancer cells. This study investigated the molecular mechanisms underlying APCA-induced growth inhibition in HeLa cells. The results showed that the APCA-induced cell cycle arrest at G(2)/M phase correlated with cyclinB1 and cyclin-dependent kinase 1 expression downregulation in a p53-independent manner, and also caused an increase in apoptosis, which was confirmed by characteristic morphological changes and increased apoptotic sub-G(1) population. Furthermore, translocation inhibition of nuclear factor-κB, upregulation of Bax, and downregulation of Bcl-2, caspase-3 and caspase-9 activation, and poly-(ADP-ribose) polymerase cleavage were observed in HeLa cells treated with APCA, which indicated that the mitochondrial pathway was involved in the apoptosis signal pathway. In summary, APCA displayed an antitumor effect through cell cycle arrest and apoptotic induction in HeLa cells, which suggested that APCA might have therapeutic potential against cervix carcinoma as an effective lead compound.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
770
|
Huang MC, Chen FY, Chou MT, Su JGJ. Fluoranthene enhances p53 expression and decreases mutagenesis induced by benzo[a]pyrene. Toxicol Lett 2012; 208:214-24. [DOI: 10.1016/j.toxlet.2011.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/23/2011] [Accepted: 11/09/2011] [Indexed: 12/15/2022]
|
771
|
Bowen AR, Burt L, Boucher K, Tristani-Firouzi P, Florell SR. Use of proliferation rate, p53 staining and perforating elastic fibers in distinguishing keratoacanthoma from hypertrophic lichen planus: a pilot study. J Cutan Pathol 2012; 39:243-50. [PMID: 22236162 DOI: 10.1111/j.1600-0560.2011.01834.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
772
|
Vehniäinen ER, Vähäkangas K, Oikari A. UV-B exposure causes DNA damage and changes in protein expression in northern pike (Esox lucius) posthatched embryos. Photochem Photobiol 2012; 88:363-70. [PMID: 22145705 DOI: 10.1111/j.1751-1097.2011.01058.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and caused plausible p53 activation in the brain and epidermis of some individuals. Also at a fluence rate occurring in nature, the DNA damage in the brain and eyes of pike and changes in protein expression were followed by severe behavioral disorders, suggesting that neural molecular changes were associated with functional consequences.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- University of Jyväskylä, Department of Biological and Environmental Science, University of Jyväskylä, Finland.
| | | | | |
Collapse
|
773
|
Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc Natl Acad Sci U S A 2012; 109:E481-9. [PMID: 22223663 DOI: 10.1073/pnas.1118403109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dramatic changes in chromatin structure and histone modification occur during oocyte growth, as well as a global cessation of transcription. The role of histone modifications in these processes is poorly understood. We report the effect of conditionally deleting Hdac1 and Hdac2 on oocyte development. Deleting either gene has little or no effect on oocyte development, whereas deleting both genes results in follicle development arrest at the secondary follicle stage. This developmental arrest is accompanied by substantial perturbation of the transcriptome and a global reduction in transcription even though histone acetylation is markedly increased. There is no apparent change in histone repressive marks, but there is a pronounced decrease in histone H3K4 methylation, an activating mark. The decrease in H3K4 methylation is likely a result of increased expression of Kdm5b because RNAi-mediated targeting of Kdm5b in double-mutant oocytes results in an increase in H3K4 methylation. An increase in TRP53 acetylation also occurs in mutant oocytes and may contribute to the observed increased incidence of apoptosis. Taken together, these results suggest seminal roles of acetylation of histone and nonhistone proteins in oocyte development.
Collapse
|
774
|
Kabolizadeh P, Engelmann BJ, Pullen N, Stewart JK, Ryan JJ, Farrell NP. Platinum anticancer agents and antidepressants: desipramine enhances platinum-based cytotoxicity in human colon cancer cells. J Biol Inorg Chem 2012; 17:123-32. [PMID: 21918844 PMCID: PMC3250067 DOI: 10.1007/s00775-011-0836-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/08/2011] [Indexed: 01/11/2023]
Abstract
A unique synergistic effect on platinum drug cytotoxicity is noted in the presence of the tricyclic antidepressant desipramine. Desipramine is used for treating neuropathic pain, particularly in prostate cancer patients. The clinically used drugs cisplatin (cis-[PtCl(2)(NH(3))(2)]), oxaliplatin [1,2-diaminocyclohexaneoxalatoplatinum(II)], and the cationic trinuclear agent BBR3464 [{trans-PtCl(NH(3))(2)}(2)-μ-(trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2))](4+), which has undergone evaluation in phase II clinical trials for activity in lung and ovarian cancers, were evaluated. Surprisingly, desipramine greatly augments the cytotoxicity of all the platinum-based chemotherapeutics in HCT116 colorectal carcinoma cell lines. Desipramine enhanced cellular accumulation of cisplatin, but had no effect on the accumulation of oxaliplatin or BBR3464, suggesting that enhanced accumulation could not be a consistent means by which desipramine altered the platinum-drug-mediated cytotoxicity. The desipramine/cisplatin combination resulted in increased levels of p53 as well as mitochondrial damage, caspase activation, and poly(ADP ribose) polymerase cleavage, suggesting that desipramine may synergize with cisplatin more than with other platinum chemotherapeutics partly by activating distinct apoptotic pathways. The study argues that desipramine may be a means of enhancing chemoresponsiveness of platinum drugs and the results warrant further investigation. The results emphasize the importance of understanding the differential pharmacological action of adjuvants employed in combinations with cancer chemotherapeutics.
Collapse
Affiliation(s)
- Peyman Kabolizadeh
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284, USA
| | - Brigitte J. Engelmann
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284, USA
| | - Nicholas Pullen
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas P. Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284, USA
| |
Collapse
|
775
|
Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol 2011; 83:1049-62. [PMID: 22227014 DOI: 10.1016/j.bcp.2011.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/02/2011] [Accepted: 12/19/2011] [Indexed: 01/20/2023]
Abstract
Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ∼50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 "gain-of-resistance" phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers.
Collapse
Affiliation(s)
- Michelle Martinez-Rivera
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 77030, United States
| | | |
Collapse
|
776
|
The antiapoptotic protein Mcl-1 controls the type of cell death in Theiler's virus-infected BHK-21 cells. J Virol 2011; 86:1922-9. [PMID: 22130544 DOI: 10.1128/jvi.06516-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) results in a persistent central nervous system infection (CNS) and immune-mediated demyelination in mice. TMEV largely persists in macrophages (Ms) in the CNS, and infected Ms in vitro undergo apoptosis, whereas the infection of other rodent cells produces necrosis. We have found that necrosis is the dominant form of cell death in BeAn virus-infected BHK-21 cells but that ~20% of cells undergo apoptosis. Mcl-1 was highly expressed in BHK-21 cells, and protein levels decreased upon infection, consistent with onset of apoptosis. In infected BHK-21 cells in which Mcl-1 expression was knocked down using silencing RNAs there was a 3-fold increase in apoptotic cell death compared to parental cells. The apoptotic program switched on by BeAn virus is similar to that in mouse Ms, with hallmarks of activation of the intrinsic apoptotic pathway in a tumor suppressor protein p53-dependent manner. Infection of stable Mcl-1-knockdown cells led to restricted virus titers and increased physical to infectious particle (PFU) ratios, with additional data suggesting that a late step in the viral life cycle after viral RNA replication, protein synthesis, and polyprotein processing is affected by apoptosis. Together, these results indicate that Mcl-1 acts as a critical prosurvival factor that protects against apoptosis and allows high yields of infectious virus in BHK-21 cells.
Collapse
|
777
|
Integration of cell biology, pharmacological modeling and statistical analysis: part I: cell biology and PK/PD in the Oncology paradigm. Crit Rev Oncol Hematol 2011; 83:153-69. [PMID: 22118941 DOI: 10.1016/j.critrevonc.2011.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/01/2011] [Accepted: 10/12/2011] [Indexed: 11/23/2022] Open
Abstract
The motivation of this two-part review article is to provide a comprehensive picture of cancer, cancer drugs and the detection and treatment of cancer. In order to do so, this article integrates the cell biology and biophysics of cancer as well as the modeling of preclinical Oncology drug data and statistical analysis of Oncology clinical trials data. It also discusses novel cancer diagnostic tools and standard and potential treatment options.
Collapse
|
778
|
Van der Vorst S, Dekairelle AF, Weynand B, Hamoir M, Gala JL. Assessment of p53 functional activity in tumor cells and histologically normal mucosa from patients with head and neck squamous cell carcinoma. Head Neck 2011; 34:1542-50. [PMID: 22109999 DOI: 10.1002/hed.21960] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 08/04/2011] [Accepted: 09/06/2011] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the value of p53 functional analysis of separated alleles in yeast (FASAY) as a witness of p53/p21 pathway alteration in head and neck squamous cell carcinoma (HNSCC). METHODS The p53 transcriptional activity was prospectively analyzed in 82 newly diagnosed patients with HNSCC. FASAY and p53 immunostaining were carried out on paired tumoral and histologically normal tissues. The predictive value of FASAY for locoregional recurrence was assessed by Cox survival analysis. RESULTS Loss of p53/p21 transcriptional activity was encountered in 88% tumoral and 18% histologically normal samples, associated with mutations (79%) and insertions/deletions (21%). The p53 overexpression underestimated p53 transcriptional abnormalities. FASAY-positive histologically normal mucosa was significantly associated with locoregional recurrence. CONCLUSION FASAY positivity indicates field cancerization in a subgroup of patients with HNSCC, in which nonfunctional p53 was significantly associated with locoregional recurrence. This prompted us to pursue the study on the p53 functional status of normal mucosa in patients with HNSCC.
Collapse
Affiliation(s)
- Sébastien Van der Vorst
- Center for Applied Molecular Technologies, Institute for Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
779
|
Yu T, Wu Y, Huang Y, Yan C, Liu Y, Wang Z, Wang X, Wen Y, Wang C, Li L. RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and apoptosis. Mol Ther 2011; 20:398-407. [PMID: 22108861 DOI: 10.1038/mt.2011.257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CXC chemokine receptor 4 (CXCR4) is involved in many human malignant tumors and plays an important role in tumor growth and metastasis. To explore the effects of CXCR4 expression on the malignant cells of oral squamous cell carcinoma (OSCC), Tca8113 and SCC-9 cell lines, as well as their xenograft models, of nude mice were used to detect cancer cell proliferation alteration. This study also examined the corresponding molecular mechanism after CXCR4 knockdown using a recombinant lentiviral vector expressing small interference RNA (siRNA) for CXCR4. RNA interference-mediated knockdown of CXCR4 in highly aggressive (Tca8113 and SCC-9) tumor cells significantly inhibited the proliferation of the two cell lines in vitro and in vivo. The expression levels of >1,500 genes involved in cell cycle, apoptosis, and multiple signaling pathways were also altered. These results provide new evidence of CXCR4 as a promising tumor gene therapeutic target.
Collapse
Affiliation(s)
- Tao Yu
- Department of Head and Neck Oncology Surgery, West China College of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
780
|
The NF-Y/p53 liaison: well beyond repression. Biochim Biophys Acta Rev Cancer 2011; 1825:131-9. [PMID: 22138487 DOI: 10.1016/j.bbcan.2011.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 12/15/2022]
Abstract
NF-Y is a sequence-specific transcription factor - TF - targeting the common CCAAT promoter element. p53 is a master TF controlling the response to stress signals endangering genome integrity, often mutated in human cancers. The NF-Y/p53 - and p63, p73 - interaction results in transcriptional repression of a subset of genes within the vast NF-Y regulome under DNA-damage conditions. Recent data shows that NF-Y is also involved in pro-apoptotic activities, either directly, by mediating p53 transcriptional activation, or indirectly, by being targeted by a non coding RNA, PANDA. The picture is subverted in cells carrying Gain-of-function mutant p53, through interactions with TopBP1, a protein also involved in DNA repair and replication. In summary, the connection between p53 and NF-Y is crucial in determining cell survival or death.
Collapse
|
781
|
Aoyama I, Calenic B, Imai T, Ii H, Yaegaki K. Oral malodorous compound causes caspase-8 and -9 mediated programmed cell death in osteoblasts. J Periodontal Res 2011; 47:365-73. [DOI: 10.1111/j.1600-0765.2011.01442.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
782
|
Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis 2011; 16:671-82. [PMID: 21484410 DOI: 10.1007/s10495-011-0600-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite all the progress in cancer treatment, glioblastoma, the most malignant tumor of the central nervous system, remains a terminal disease and new therapeutic approaches are urgently needed. A combination of chemotherapy with modifications that lower the apoptotic threshold of cancer cells could be effective. Cathepsin L inhibition was suggested as one of such modifications but the mechanism of cathepsin L anti-apoptotic activity is largely unknown. In the present study we show that, in U87 glioblastoma cells, cathepsin L is present in the nucleus and regulates the transcription of effector caspases 3 and 7. In cells with low cathepsin L expression, p53 and prohibitin--transcription factors that regulate caspase 7 expression--accumulate in the nuclei. The importance of p53 in this process is highlighted by the fact that in U87 cells with inhibited p53 transcriptional activity or in p53-negative cells U251, cathepsin L inhibition did not influence caspase 7 expression and had minimal effect on the level of apoptosis. Since p53 pathways are often mutated in glioblastoma, the findings of our study need to be considered before using cathepsin L inhibition for glioblastoma therapy and suggest that such adjuvant therapy may be effective only for a subpopulation of p53 wild type glioblastoma patients.
Collapse
Affiliation(s)
- Saša Kenig
- Department of Genetic Toxicology and Cancer Biology, National Institue of Biology, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
783
|
Baquedano E, García-Cáceres C, Diz-Chaves Y, Lagunas N, Calmarza-Font I, Azcoitia I, Garcia-Segura LM, Argente J, Chowen JA, Frago LM. Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats. PLoS One 2011; 6:e27549. [PMID: 22096592 PMCID: PMC3212572 DOI: 10.1371/journal.pone.0027549] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/19/2011] [Indexed: 11/24/2022] Open
Abstract
Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations.
Collapse
Affiliation(s)
- Eva Baquedano
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina García-Cáceres
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Natalia Lagunas
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Calmarza-Font
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cellular Biology, School of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Garcia-Segura
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
784
|
Park MT, Song MJ, Oh ET, Lee H, Choi BH, Jeong SY, Choi EK, Park HJ. The anti-tumour compound, RH1, causes mitochondria-mediated apoptosis by activating c-Jun N-terminal kinase. Br J Pharmacol 2011; 163:567-85. [PMID: 21250978 DOI: 10.1111/j.1476-5381.2011.01233.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone (RH1) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although the cytotoxic efficacy of RH1 against tumours has been studied extensively, the molecular mechanisms underlying this anti-cancer activity have not yet been fully elucidated. EXPERIMENTAL APPROACH 2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone-induced apoptosis and related signalling pathways in NQO1-negative and NQO1-overexpressing cells were evaluated. The role of p53 in RH1-induced cell death was investigated using parental and p53-deficient RKO human colorectal cancer cells by assaying clonogenic cell survival. Specific inhibitors and siRNAs targeting factors involved in RH1-induced apoptosis were used to clarify the roles played by such factors in RH1-activated apoptotic signalling pathways. KEY RESULTS 2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone induced apoptosis and clonogenic death, dependent on NQO1 and p53. Treatment of NQO1-overexpressing cells with RH1 caused rapid disruption of mitochondrial membrane potential, nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (Endo G) from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNA targeting AIF and Endo G effectively attenuated RH1-induced apoptotic cell death. Moreover, RH1 induced cleavage of Bax, which targets mitochondria. RH1 significantly activated the c-Jun N-terminal kinase (JNK) pathway, and inhibition of this pathway suppressed RH1-induced mitochondria-mediated apoptosis. RH1-induced generation and mitochondrial translocation of cleaved Bax were blocked by the JNK inhibitor, SP600125. Inhibition of JNK with SP600125 attenuated the mitochondrial translocation of JNK. CONCLUSIONS AND IMPLICATIONS 2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone activated JNK, resulting in mitochondria-mediated apoptotic cell death that was NQO1-dependent.
Collapse
Affiliation(s)
- Moon-Taek Park
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
785
|
Sen T, Sen N, Huang Y, Sinha D, Luo ZG, Ratovitski EA, Sidransky D. Tumor protein p63/nuclear factor κB feedback loop in regulation of cell death. J Biol Chem 2011; 286:43204-13. [PMID: 22020940 DOI: 10.1074/jbc.m111.257105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor protein (TP)-p53 family members often play proapoptotic roles, whereas nuclear factor κB (NF-κB) functions as a proapoptotic and antiapoptotic regulator depending on the cellular environment. We previously showed that the NF-κB activation leads to the reduction of the TP63 isoform, ΔNp63α, thereby rendering the cells susceptible to cell death upon DNA damage. However, the functional relationship between TP63 isotypes and NF-κB is poorly understood. Here, we report that the TAp63 regulates NF-κB transcription and protein stability subsequently leading to the cell death phenotype. We found that TAp63α induced the expression of the p65 subunit of NF-κB (RELA) and target genes involved in cell cycle arrest or apoptosis, thereby triggering cell death pathways in MCF10A cells. RELA was shown to concomitantly modulate specific cell survival pathways, making it indispensable for the TAp63α-dependent regulation of cell death. We showed that TAp63α and RELA formed protein complexes resulted in their mutual stabilization and inhibition of the RELA ubiquitination. Finally, we showed that TAp63α directly induced RelA transcription by binding to and activating of its promoter and, in turn, leading to activation of the NF-κB-dependent cell death genes. Overall, our data defined the regulatory feedback loop between TAp63α and NF-κB involved in the activation of cell death process of cancer cells.
Collapse
Affiliation(s)
- Tanusree Sen
- Departments of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
786
|
Liu J, Shao C, Tan ML, Mu D, Ferris RL, Ha PK. Molecular biology of adenoid cystic carcinoma. Head Neck 2011; 34:1665-77. [PMID: 22006498 DOI: 10.1002/hed.21849] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is an unusual salivary gland malignancy that remains poorly understood. Standard treatment, including surgery with postoperative radiation therapy, has attained reasonable local control rates, but the propensity for distant metastases has limited any improvement in survival over time. Our understanding of the molecular mechanisms driving ACC is quite rudimentary, due to the infrequent nature of its occurrence. METHODS An extensive literature review was performed on salivary gland ACCs and basic science research findings. RESULTS This review highlights many findings that are emerging about the carcinogenesis of ACC including cytogenetics, tumor suppressor genes, oncogenes, epigenetic alterations, mitochondrial alterations, and biomarker studies. CONCLUSION Although there have been many discoveries, much still remains unknown about this rare malignancy. © 2011 Wiley Periodicals, Inc. Head Neck, 2011.
Collapse
Affiliation(s)
- Jia Liu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
787
|
Genomic profiling of glioblastoma: convergence of fundamental biologic tenets and novel insights. J Neurooncol 2011; 107:1-12. [PMID: 22002595 DOI: 10.1007/s11060-011-0714-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
With advances in genomic profiling and sequencing technology, we are beginning to understand the landscape of the genetic events that accumulated during the neoplastic process. The insights gleamed from these genomic profiling studies with regards to glioblastoma etiology has been particularly satisfying because it cemented the clinical pertinence of major concepts in cancer biology-concepts developed over the past three decades. This article will review how the glioblastoma genomic data set serves as an illustrative platform for the concepts put forward by Hanahan and Weinberg on the cancer phenotype. The picture emerging suggests that most glioblastomas evolve along a multitude of pathways rather than a single defined pathway. In this context, the article will further provide a discussion of the subtypes of glioblastoma as they relate to key principles of developmental neurobiology.
Collapse
|
788
|
Won SH, Lee HJ, Jeong SJ, Lü J, Kim SH. Activation of p53 signaling and inhibition of androgen receptor mediate tanshinone IIA induced G1 arrest in LNCaP prostate cancer cells. Phytother Res 2011; 26:669-74. [PMID: 21997969 DOI: 10.1002/ptr.3616] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 11/05/2022]
Abstract
Our group previously reported that tanshinone IIA induced apoptosis via a mitochondria dependent pathway in LNCaP prostate cancer cells. In the present study, the roles of androgen receptor (AR) and p53 signaling pathways were investigated in tanshinone IIA-induced G1 arrest in LNCaP cells. Tanshinone IIA significantly inhibited the growth and proliferation of LNCaP cells by colony formation and BrdU incorporation assays, respectively. Tanshinone IIA induced cell cycle arrest at G1 phase and down-regulated cyclin D1, CDK2 and CDK4. Furthermore, tanshinone IIA activated the phosphorylation of p53 at Ser 15 residue and its downstream p21 and p27. Additionally, tanshinone IIA suppressed the expression of AR and prostate specific antigen (PSA). Conversely, silencing p53 using its specific siRNA reversed cyclin D1 expression inhibited by tanshinone IIA. However, knockdown of AR had no effect on the p53/p21/p27 signaling pathway activated by tanshinone IIA in LNCaP cells. In AR siRNA-transfected cells, tanshinone IIA did not cause cell cycle arrest and reduce cyclin D1, implying that AR is essential to induce G1 arrest by tanshinone IIA in LNCaP cells. Taken together, the findings suggest that tanshinone IIA induces G1 arrest via activation of p53 signaling and inhibition of AR in LNCaP cells.
Collapse
Affiliation(s)
- Suk-Hyun Won
- College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
789
|
Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S. Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol 2011; 226:2543-54. [PMID: 21792911 DOI: 10.1002/jcp.22599] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiac hypertrophy leading to eventual heart failure is the most common cause of mortality throughout the world. The triggering mechanisms for cardiac hypertrophy are not clear but both apoptosis and cell proliferation have been reported in sections of failing hearts. In this study, we utilized both angiotensin II (AngII) treatment of cardiomyocytes and aortic ligation in rats (Rattus norvegicus, Wistar strain) for induction of hypertrophy to understand the cellular factors responsible for activation of apoptotic or anti-apoptotic pathway. Hypertrophy markers (ANF, β-MHC), apoptotic proteins (Bax, Bad, Fas, p53, caspase-3, PARP), and anti-apoptotic or cell proliferation marker proteins (Bcl2, NF-κB, Ki-67) were induced significantly during hypertrophy, both in vitro as well as in vivo. Co-localization of both active caspase-3 and Ki-67 was observed in hypertrophied myocytes. p53 and NF-κBp65 binding to co-activator p300 was also increased in AngII treated myocytes. Inhibition of p53 resulted in downregulation of apoptosis, NF-κB activation, and NF-κB-p300 binding; however, NF-κB inhibition did not inhibit apoptosis or p53-p300 binding. Blocking of either p53 or NF-κB by specific inhibitors resulted in decrease in cell proliferation and hypertrophy markers, suggesting that p53 initially binds to p300 and then this complex recruits NF-κB. Thus, these results indicate the crucial role of p53 in regulating both apoptotic and cell proliferation during hypertrophy.
Collapse
|
790
|
Park MT, Song MJ, Lee H, Oh ET, Choi BH, Jeong SY, Choi EK, Park HJ. β-lapachone significantly increases the effect of ionizing radiation to cause mitochondrial apoptosis via JNK activation in cancer cells. PLoS One 2011; 6:e25976. [PMID: 21998736 PMCID: PMC3188568 DOI: 10.1371/journal.pone.0025976] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/14/2011] [Indexed: 01/09/2023] Open
Abstract
Background β-lapachone (β-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by β-lap. Methodology/Principal Findings β-lap enhanced the effect of IR to cause clonogenic cells in NQO1+-MDA-MB-231 cells but not in NQO1−-MDA-MB-231 cells. β-lap caused apoptosis only in NQO1+ cells and not in NQO1− cells and it markedly increased IR-induced apoptosis only in NQO1+ cells. Combined treatment of NQO1+ cells induced ROS generation, triggered ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition, combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9 were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase activation played a minor role in the induction of apoptosis. Conclusions/Significance β-lap causes NQO1-dependent radiosensitization of cancer cells. When NQO1+ cells are treated with combination of IR and β-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to translocation of AIF and apoptosis.
Collapse
Affiliation(s)
- Moon-Taek Park
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Min-Jeong Song
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hyemi Lee
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Eun-Taex Oh
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Bo-Hwa Choi
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong-Yun Jeong
- Department of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Eun-Kyung Choi
- Department of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Heon Joo Park
- Department of Microbiology, Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
791
|
Tang W, Fan W, Liu Q, Zhang J, Qin X. The role of p53 in the response of tumor cells to sonodynamic therapy in vitro. ULTRASONICS 2011; 51:777-785. [PMID: 21616517 DOI: 10.1016/j.ultras.2011.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 02/18/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
p53 plays a pivotal role in apoptosis. In addition, p53 is currently extensively investigated as a promising strategy for highly specific anticancer therapy in chemotherapeutics and photodynamic therapy. However, the role of p53 in the response of tumor cells to sonodynamic therapy treatment is still unclear. In this study, we aim to investigate the activation of p53 in sonodynamic therapy. Three murine tumor models with distinct aggressiveness (S180, H-22 and EAC) were treated with 1.75MHz continuous ultrasound at an acoustic intensity (I(SATA)) of 1.4W for 3min in the presence of 20μg/ml hematoporphyrin. The DNA fragment and nuclear damage were observed by TUNEL and single cell gel electrophoresis. Western blotting and RT-PCR were used to analyze the expression of p53, PUMA, Bax and Fas. Then we checked the translocation of p53 by confocal microscopy. DNA sequencing was used to determine the status of p53 gene in three tumor cell lines. Our results indicated that the level of p53 protein and mRNA increased significantly, and p53 activated the expression of its downstream pro-apoptosis gene PUMA, Bax and Fas in the S180 and H-22 cells. Meanwhile, p53 protein translocated onto mitochondria. In the EAC cells, expression and translocation of p53 was not found; the level of PUMA, Bax and Fas remained unaltered. The S180 cells showed most serious DNA fragment and nuclear damage with 77.43% TDNA; H-22 cells in the middle with 58.85% TDNA; whereas EAC cells appeared less nuclear material lost with just 15.82% TDNA. The results of DNA sequencing showed that the sequences of exons 5-8 of the p53 gene of S180, H-22 and EAC cells were the same with the sequences of wild-type p53 provided by NCBI. These results primarily demonstrated that: (1) p53 was activated to promote SDT-induced apoptosis through extrinsic and intrinsic signaling pathways in the S180 and H-22 cells; (2) cellular responses of different cells to SDT were distinct, the aggressive S180 cells were much more sensitive than H-22, whereas EAC cells were relatively less sensitive. The discrepancy among the cell lines may be due to different activation time of p53 protein.
Collapse
Affiliation(s)
- Wei Tang
- College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | | | | | | | | |
Collapse
|
792
|
Hassan MH, Fouad H, Bahashwan S, Al-Hendy A. Towards non-surgical therapy for uterine fibroids: catechol-O-methyl transferase inhibitor shrinks uterine fibroid lesions in the Eker rat model. Hum Reprod 2011; 26:3008-18. [PMID: 21896544 DOI: 10.1093/humrep/der280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Uterine leiomyomas (fibroids) are the most common pelvic tumors in women. We assessed the potential therapeutic utility of Ro 41-0960, a synthetic catechol-O-methyl transferase inhibitor (COMTI), in the Eker rat. METHODS We randomized uterine fibroid-bearing Eker rats for treatment with Ro 41-0960 (150 mg/kg/12 h) versus vehicle for 2 and 4 weeks. The fibroids were measured by caliper and subjected to histological evaluation. Urinary levels of 2-hydroxy estrogen (E(2)), 16-hydroxy E2 and DPD (osteoporosis marker) and serum liver enzymes were evaluated. Expressions of Cyclin D1, proliferating cell nuclear antigen (PCNA), Poly [ADP-ribose] polymerase1 (PARP1), tumor suppressor gene (P53) and transforming growth factor (TGFβ3) were assessed in fibroids using immunohistochemical analysis or RT-PCR. Apoptosis was confirmed using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL). RESULTS Ro 41-0960-treated rats exhibited fibroid volumes of 86 ± 7% and 105 ± 12% of initial burden, at 2 and 4 weeks post-treatment, respectively, significantly lower than control group (240 ± 15% and 300 ± 18%; P< 0.01). Ro 41-0960 increased the urinary 2-hydroxy E2/16-hydroxy E(2) ratio, level of p53 mRNA and TUNEL positivity (P< 0.05) and decreased PARP1, PCNA and cyclin D1 proteins and TGFβ3 mRNA (P< 0.05). Ro 41-0960 did not change normal tissue histology, liver functions or urinary DPD level. CONCLUSIONS Ro 41-0960 (COMTI) arrested growth/shrunk uterine fibroids in Eker rats. This result may be related to modulation of estrogen-dependent genes involved in apoptosis, proliferation and extracellular matrix deposition via accumulation of 2-hydroxy estrogen. The efficacy and safety of Ro 41-0960 in rats suggest its candidacy for treatment of uterine fibroids.
Collapse
Affiliation(s)
- M H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | | |
Collapse
|
793
|
Chiu YJ, Hour MJ, Lu CC, Chung JG, Kuo SC, Huang WW, Chen HJ, Jin YA, Yang JS. Novel quinazoline HMJ-30 induces U-2 OS human osteogenic sarcoma cell apoptosis through induction of oxidative stress and up-regulation of ATM/p53 signaling pathway. J Orthop Res 2011; 29:1448-56. [PMID: 21425328 DOI: 10.1002/jor.21398] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 02/07/2011] [Indexed: 02/04/2023]
Abstract
Human osteogenic sarcoma is the most common primary bone tumor. Despite of the success of frontline therapy, about 40% of patients have disease progression and further therapy is palliative and toxic. In this study, we developed a novel quinazoline HMJ-30 to investigate the cell growth inhibition and apoptotic responses in U-2 OS human osteogenic sarcoma cells. Our results demonstrated that HMJ-30 significantly reduced cell viabilities of U-2 OS, HOS, and 143B cells in a dose-dependent manner, but it exhibited low cytotoxicity in normal hFOB cells. HMJ-30 induced DNA damage and apoptosis in U-2 OS cells as revealed by morphologic changes, comet assay and DAPI staining. Immuno-staining, colorimetric assays, and Western blotting analyses indicated that activities of caspase-8, caspase-9, and caspase-3 and the levels of Bcl-2 family-related proteins (Bcl-2, Mcl-1, Bax, BAD, and t-Bid) were altered in HMJ-30-treated U-2 OS cells. Pretreatment of cells with caspase-8, -9, and -3 specific inhibitors significantly reduced the cell growth inhibition. HMJ-30-induced apoptosis was mediated through both death-receptor and mitochondria-dependent apoptotic pathways in U-2 OS cells. HMJ-30 induced early phosphorylation of p53(Ser18) was through the activation of ataxia telangiectasia mutated (ATM) in U-2 OS cells. The cell growth inhibition by HMJ-30 was substantially attenuated either by the pre-incubation of U-2 OS cells with N-acetylcysteine (NAC, an antioxidant) and caffeine (an ATM kinase inhibitor) or by p53 knockdown via RNAi. In conclusion, ROS dependent-ATM/p53 signaling pathway is involved in HMJ-30-induced apoptosis in U-2 OS cells.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Department of Pharmacology, School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
794
|
Xu L, Liu JT, Liu N, Lu PP, Pang XM. Effects of Panax notoginseng saponins on proliferation and apoptosis of vascular smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:226-230. [PMID: 21619919 DOI: 10.1016/j.jep.2011.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Atherosclerosis is a common cardiovascular disease, and linked with the development of many cardiovascular complications, such as myocardial ischemia and stroke. Although pathogenesis of atherosclerosis is not completely elucidated, increasing evidence has demonstrated that abnormal proliferation of vascular smooth muscle cells (VSMCs) plays an important role in formation of atherosclerosis. Previous studies showed that saponins from Panax notoginseng (PNS) possess anti-atherosclerotic properties. However, the mechanism of PNS against atherosclerosis is not well understood. Therefore, the present study observed the effects of PNS on proliferation and apoptosis of VSMCs. MATERIALS AND METHODS Rat VSMCs were cultured, and platelet-derived growth factor (PDGF) was used to stimulate cell proliferation. The viability of VSMCs was assessed with the MTT method. VSMCs apoptosis was detected by flow cytometry. Expressions of apoptosis related protein p53, Bax, caspase-3 and Bcl-2 were determined using Western blot. RESULTS Pretreatment of the cells with PNS (200, 400, 800 μg/mL) significantly inhibited proliferation of PDGF-stimulated VSMCs, and induced apoptosis of the proliferated VSMCs in a concentration-dependent way. Western blot analysis showed that PNS upregulated expressions of pro-apoptotic protein p53, Bax and caspase-3, downregulated expression of anti-apoptotic protein Bcl-2, and enlarged Bax/Bcl-2 ratio in the proliferated VSMCs induced by PDGF. CONCLUSIONS This study demonstrates that PNS both inhibits VSMCs proliferation and induces VSMCs apoptosis through upregulating p53, Bax, caspase-3 expressions and downregulating Bcl-2 expression, which constitute the pharmacological basis of its anti-atherosclerotic action.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Caspase 3/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Flow Cytometry
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Panax notoginseng/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Platelet-Derived Growth Factor/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Sprague-Dawley
- Saponins/isolation & purification
- Saponins/pharmacology
- Time Factors
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Li Xu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | | | | | | | | |
Collapse
|
795
|
Nagahama K, Eto N, Yamamori K, Nishiyama K, Sakakibara Y, Iwata T, Uchida A, Yoshihara I, Suiko M. Efficient approach for simultaneous estimation of multiple health-promoting effects of foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8575-8588. [PMID: 21744810 DOI: 10.1021/jf201836g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The investigation of new food constituents for purposes of disease prevention or health promotion is an area of increasing interest in food science. This paper proposes a new system that allows for simultaneous estimation of the multiple health-promoting effects of food constituents using informatics. The model utilizes expression data of intracellular marker proteins as descriptors that reply to stimulation of a constituent. To estimate three health-promoting effects, namely, cancer cell growth suppression activity, antiviral activity, and antioxidant stress activity, each model was constructed using expression data of marker proteins as input data and health-promoting effects as the output value. When prediction performances of three types of mathematical models constructed by simple, multiple regressions, or artificial neural network (ANN), were compared, the most adequate model was the one constructed using an ANN. There were no statistically significant differences between the actual data and estimated values calculated by the ANN models. This system was able to simultaneously estimate health-promoting effects with reasonable precision from the same expression data of marker proteins. This novel system should prove to be an interesting platform for evaluation of the health-promoting effects of food.
Collapse
Affiliation(s)
- Kiyoko Nagahama
- Miyazaki Prefectural Industrial Support Foundation, Sadowara-cho, Miyazaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
796
|
Nagoor NH, Shah Jehan Muttiah N, Soon Lim C, In LLA, Mohammad K, Awang K. Regulation of apoptotic effects by erythrocarpine E, a cytotoxic limonoid from Chisocheton erythrocarpus in HSC-4 human oral cancer cells. PLoS One 2011; 6:e23661. [PMID: 21858194 PMCID: PMC3157399 DOI: 10.1371/journal.pone.0023661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/22/2011] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to determine the cytotoxic and apoptotic effects of erythrocarpine E (CEB4), a limonoid extracted from Chisocheton erythrocarpus on human oral squamous cell carcinoma. Based on preliminary dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, CEB4 treated HSC-4 cells demonstrated a cytotoxic effect and inhibited cell proliferation in a time and dose dependent manner with an IC(50) value of 4.0±1.9 µM within 24 h of treatment. CEB4 was also found to have minimal cytotoxic effects on the normal cell line, NHBE with cell viability levels maintained above 80% upon treatment. Annexin V-fluorescein isothiocyanate (FITC), poly-ADP ribose polymerase (PARP) cleavage and DNA fragmentation assay results showed that CEB4 induces apoptosis mediated cell death. Western blotting results demonstrated that the induction of apoptosis by CEB4 appeared to be mediated through regulation of the p53 signalling pathway as there was an increase in p53 phosphorylation levels. CEB4 was also found to up-regulate the pro-apoptotic protein, Bax, while down-regulating the anti-apoptotic protein, Bcl-2, suggesting the involvement of the intrinsic mitochondrial pathway. Reduced levels of initiator procaspase-9 and executioner caspase-3 zymogen were also observed following CEB4 exposure, hence indicating the involvement of cytochrome c mediated apoptosis. These results demonstrate the cytotoxic and apoptotic ability of erythrocarpine E, and suggest its potential development as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Noor Hasima Nagoor
- Faculty of Science, Institute of Biological Science (Genetics and Molecular Biology), University Malaya, Kuala Lumpur, Malaysia
| | - Norliza Shah Jehan Muttiah
- Faculty of Science, Institute of Biological Science (Genetics and Molecular Biology), University Malaya, Kuala Lumpur, Malaysia
| | - Chong Soon Lim
- Department of Chemistry, Faculty of Science, Centre for Natural Product Research and Drug Discovery (CENAR), University Malaya, Kuala Lumpur, Malaysia
| | - Lionel L. A. In
- Faculty of Science, Institute of Biological Science (Genetics and Molecular Biology), University Malaya, Kuala Lumpur, Malaysia
| | - Khalit Mohammad
- Department of Pharmacy, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, Centre for Natural Product Research and Drug Discovery (CENAR), University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
797
|
Ulukaya E, Acilan C, Yilmaz Y. Apoptosis: why and how does it occur in biology? Cell Biochem Funct 2011; 29:468-80. [PMID: 21773978 DOI: 10.1002/cbf.1774] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/30/2011] [Accepted: 05/17/2011] [Indexed: 01/24/2023]
Abstract
The literature on apoptosis has grown tremendously in recent years, and the mechanisms that are involved in this programmed cell death pathway have been enlightened. It is now known that apoptosis takes place starting from early development to adult stage for the homeostasis of multicellular organisms, during disease development and in response to different stimuli in many different systems. In this review, we attempted to summarize the current knowledge on the circumstances and the mechanisms that lead to induction of apoptosis, while going over the molecular details of the modulator and mediators of apoptosis as well as drawing the lines between programmed and non-programmed cell death pathways. The review will particularly focus on Bcl-2 family proteins, the role of different caspases in the process of apoptosis, and their inhibitors as well as the importance of apoptosis during different disease states. Understanding the molecular mechanisms involved in apoptosis better will make a big impact on human diseases, particularly cancer, and its management in the clinics.
Collapse
Affiliation(s)
- Engin Ulukaya
- Medical School of Uludag University, Medical Biochemistry Department, Bursa, Turkey.
| | | | | |
Collapse
|
798
|
Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis. Cancer Lett 2011; 311:57-65. [PMID: 21767909 DOI: 10.1016/j.canlet.2011.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/23/2022]
Abstract
We studied the chemopreventive efficacy of indole-3-carbinol (I3C), a phytochemical found in cruciferous vegetables, to inhibit tobacco carcinogen-induced lung adenocarcinoma in A/J mice when given following post-initiation or progression protocol. Moreover, we assessed the potential mechanisms responsible for the anticancer effects of I3C. Post-initiation administration of I3C decreased the multiplicity of surface tumors as well as all forms of histopathological lesions, including adenocarcinoma, whereas administration of the compound during tumor progression failed to decrease the multiplicity of surface tumors and early forms of microscopic lesions but reduced the frequency of adenocarcinoma. Mechanistic studies in A549 lung adenocarcinoma cells indicated that the lung cancer preventive effects of I3C are mediated, at least in part, via modulation of the receptor tyrosine kinase/PI3K/Akt signaling pathway.
Collapse
|
799
|
Li J, Yin S, Dong Y, Fan L, Hu H. p53 activation inhibits ochratoxin A-induced apoptosis in monkey and human kidney epithelial cells via suppression of JNK activation. Biochem Biophys Res Commun 2011; 411:458-63. [DOI: 10.1016/j.bbrc.2011.06.190] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 06/30/2011] [Indexed: 11/27/2022]
|
800
|
Fukumoto R, Kiang JG. Geldanamycin analog 17-DMAG limits apoptosis in human peripheral blood cells by inhibition of p53 activation and its interaction with heat-shock protein 90 kDa after exposure to ionizing radiation. Radiat Res 2011; 176:333-45. [PMID: 21663398 DOI: 10.1667/rr2534.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50) = 0.93 ± 0.01 µM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1 day after irradiation and enhanced survival at 10 days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.
Collapse
Affiliation(s)
- Risaku Fukumoto
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|