801
|
Cartledge DM, Colella R, Glazewski L, Lu G, Mason RW. Inhibitors of cathepsins B and L induce autophagy and cell death in neuroblastoma cells. Invest New Drugs 2012; 31:20-9. [PMID: 22549440 DOI: 10.1007/s10637-012-9826-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
This study was designed to test the hypothesis that specific inhibition of cathepsins B and L will cause death of neuroblastoma cells. Five compounds that differ in mode and rate of inhibition of these two enzymes were all shown to cause neuroblastoma cell death. Efficacy of the different compounds was related to their ability to inhibit the activity of the isolated enzymes. A dose- and time-response for induction of cell death was demonstrated for each compound. A proteomic study showed that inhibitor treatment caused an increase of markers of cell stress, including induction of levels of the autophagy marker, LC-3-II. Levels of this marker protein were highest at cytotoxic inhibitor concentrations, implicating autophagy in the cell death process. An in vivo mouse model showed that one of these inhibitors markedly impaired tumor growth. It is concluded that development of drugs to target these two proteases may provide a novel approach to treating neuroblastoma.
Collapse
Affiliation(s)
- Donna M Cartledge
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA
| | | | | | | | | |
Collapse
|
802
|
Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets. PLoS One 2012; 7:e36188. [PMID: 22563482 PMCID: PMC3341371 DOI: 10.1371/journal.pone.0036188] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/29/2012] [Indexed: 12/16/2022] Open
Abstract
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18–24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.
Collapse
|
803
|
Zou M, Lu N, Hu C, Liu W, Sun Y, Wang X, You Q, Gu C, Xi T, Guo Q. Beclin 1-mediated autophagy in hepatocellular carcinoma cells: implication in anticancer efficiency of oroxylin A via inhibition of mTOR signaling. Cell Signal 2012; 24:1722-32. [PMID: 22560876 DOI: 10.1016/j.cellsig.2012.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/17/2012] [Indexed: 12/12/2022]
Abstract
Autophagy is a tightly-regulated catabolic process that involves the degradation of intracellular components via lysosomes. Although the pivotal role of autophagy in cell growth, development, and homeostasis has been well understood, its function in cancer prevention and intervention remains to be delineated. The aim of this study was to investigate the function and mechanism of autophagy induced by oroxylin A, a natural mono-flavonoid extracted from Scutellariae radix. We found for the first time that oroxylin A induced Beclin 1-mediated autophagy in human hepatocellular carcinoma HepG2 cells. Time-lapse video microscopy and western blotting studies showed that treatment of cells with 80 μM oroxylin A resulted in the conversion of water soluble MAP-LC3 (LC3-I) to the lipidated and autophagosome-associated form (LC3-II) after 12hours; then autophagosome-lysosome fusion and lysosome degradation after 24 hours was required in oroxylin A-mediated cell death. This induction was associated with the suppressing of PI3K-PTEN-Akt-mTOR signaling pathway by oroxylin A. Our results also showed that autophagy took place before noticeable apoptosis can be observed. It was further demonstrated that oroxylin A-triggered autophagy contributed to cell death using over-expression of autophagy-related gene (Atg5 and Atg7) and inhibition of autophagy by siBeclin 1 and 3-methyladenine (3-MA). In vivo study, oroxylin A inhibited xenograft tumor growth and induced obvious autophagy in tumors. Taken together, we conclude that oroxylin A exhibits autophagy-mediated antitumor activity in a dose and time-dependent manner in vivo and in vitro. These findings define and support a novel function of autophagy in promoting death of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Meijuan Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention (China Pharmaceutical University), Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
804
|
Differential regulation of cutaneous oncoprotein HPVE6 by wtp53, mutant p53R248W and ΔNp63α is HPV type dependent. PLoS One 2012; 7:e35540. [PMID: 22530045 PMCID: PMC3329482 DOI: 10.1371/journal.pone.0035540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/19/2012] [Indexed: 11/19/2022] Open
Abstract
UV exposure and p53 mutations are major factors in non-melanoma skin cancer, whereas a role for HPV infections has not been defined. Previous data demonstrated the wtp53-mediated degradation of cutaneous HPV20E6 by caspase-3. ΔNp63α and hot-spot mutant p53R248W conveyed a protective effect on HPV20E6 under these conditions. We demonstrate a differential regulation by wtp53 of the E6 genes of cutaneous types HPV4, HPV5, HPV7, HPV27, HPV38, HPV48, HPV60 and HPV77. Caspase- or proteasome-mediated down-regulation was HPV type dependent. Mutant p53R248W up-regulated expression of all these E6 proteins as did ΔNp63α except for HPV38E6 which was down-regulated by the latter. None of these cellular proteins affected HPV41E6 expression. Ectopic expression of both mutp53R248W and ΔNp63α in the normal NIKS keratinocyte cell line harbouring endogenous p53 and p63however led to a down-regulation of HPV20E6. We demonstrate that HPV20E6 expression in these cells is modulated by additional, yet unidentified, cellular protein(s), which are not necessarily involved in apoptosis or autophagy. We further demonstrate proliferation of HPV20E6-expressing keratinocytes. Levels of proteins involved in cell cycle control, cyclin-D1, cdk6 and p16INK4a, phosphorylated pRB, as well as c-Jun and p-c-Jun, were all increased in these cells. HPV20E6 did not compete for the interaction between p16INK4a with cyclin-D1 or cdk6. Phosphorylation of pRB in the HPV20E6 expressing cells seems to be sufficient to override the cytokenetic block induced by the p16INK4a/pRB pathway. The present study demonstrates the diverse influence of p53 family members on individual cutaneous HPVE6 proteins. HPV20E6 expression also resulted in varying protein levels of factors involved in proliferation and differentiation.
Collapse
|
805
|
Amelioration of glucolipotoxicity-induced endoplasmic reticulum stress by a "chemical chaperone" in human THP-1 monocytes. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:356487. [PMID: 22550476 PMCID: PMC3328920 DOI: 10.1155/2012/356487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a) to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b) to investigate whether 4-Phenyl butyric acid (PBA), a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP) expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics.
Collapse
|
806
|
Lim J, Lee Y, Kim HW, Rhyu IJ, Oh MS, Youdim MBH, Yue Z, Oh YJ. Nigericin-induced impairment of autophagic flux in neuronal cells is inhibited by overexpression of Bak. J Biol Chem 2012; 287:23271-82. [PMID: 22493436 DOI: 10.1074/jbc.m112.364281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bak is a prototypic pro-apoptotic Bcl-2 family protein expressed in a wide variety of tissues and cells. Recent studies have revealed that Bcl-2 family proteins regulate apoptosis as well as autophagy. To investigate whether and how Bak exerts a regulatory role on autophagy-related events, we treated independent cell lines, including MN9D neuronal cells, with nigericin, a K(+)/H(+) ionophore. Treatment of MN9D cells with nigericin led to an increase of LC3-II and p62 levels with concomitant activation of caspase. Ultrastructural examination revealed accumulation of autophagic vacuoles and swollen vacuoles in nigericin-treated cells. We further found that the LC3-II accumulated as a consequence of impaired autophagic flux and the disrupted degradation of LC3-II in nigericin-treated cells. In this cell death paradigm, both transient and stable overexpression of various forms of Bak exerted a protective role, whereas it did not inhibit the extent of nigericin-mediated activation of caspase-3. Subsequent biochemical and electron microscopic studies revealed that overexpressed Bak maintained autophagic flux and reduced the area occupied by swollen vacuoles in nigericin-treated cells. Similar results were obtained in nigericin-treated non-neuronal cells and another proton ionophore-induced cell death paradigm. Taken together, our study indicates that a protective role for Bak during ionophore-induced cell death may be closely associated with its regulatory effect on maintenance of autophagic flux and vacuole homeostasis.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Biology, Yonsei University College of Life Science and Biotechnology, 134 Shinchon-dong Seodaemoon-gu, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
807
|
Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012; 15:545-53. [PMID: 22445600 PMCID: PMC3322248 DOI: 10.1016/j.cmet.2012.01.022] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 11/16/2011] [Accepted: 01/26/2012] [Indexed: 01/22/2023]
Abstract
In advanced atherosclerosis, macrophage apoptosis coupled with defective phagocytic clearance of the apoptotic cells (efferocytosis) promotes plaque necrosis, which precipitates acute atherothrombotic cardiovascular events. Oxidative and endoplasmic reticulum (ER) stress in macrophages are important causes of advanced lesional macrophage apoptosis. We now show that proapoptotic oxidative/ER stress inducers trigger another stress reaction in macrophages, autophagy. Inhibition of autophagy by silencing ATG5 or other autophagy mediators enhances apoptosis and NADPH oxidase-mediated oxidative stress while at the same time rendering the apoptotic cells less well recognized by efferocytes. Most importantly, macrophage ATG5 deficiency in fat-fed Ldlr(-/-) mice increases apoptosis and oxidative stress in advanced lesional macrophages, promotes plaque necrosis, and worsens lesional efferocytosis. These findings reveal a protective process in oxidatively stressed macrophages relevant to plaque necrosis, suggesting a mechanism-based strategy to therapeutically suppress atherosclerosis progression and its clinical sequelae.
Collapse
Affiliation(s)
- Xianghai Liao
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
808
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
809
|
Kobayashi S, Xu X, Chen K, Liang Q. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 2012; 8:577-92. [PMID: 22498478 DOI: 10.4161/auto.18980] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hyperglycemia is linked to increased heart failure among diabetic patients. However, the mechanisms that mediate hyperglycemia-induced cardiac damage remain poorly understood. Autophagy is a cellular degradation pathway that plays important roles in cellular homeostasis. Autophagic activity is altered in the diabetic heart, but its functional role has been unclear. In this study, we determined if mimicking hyperglycemia in cultured cardiomyocytes from neonatal rats and adult mice could affect autophagic activity and myocyte viability. High glucose (17 or 30 mM) reduced autophagic flux compared with normal glucose (5.5 mM) as indicated by the difference in protein levels of LC3-II (microtubule-associated protein 1 light chain 3 form II) or the changes of punctate fluorescence patterns of GFP-LC3 and mRFP-LC3 in the absence and presence of the lysosomal inhibitor bafilomycin A(1). Unexpectedly, the inhibited autophagy turned out to be an adaptive response that functioned to limit high glucose cardiotoxicity. Indeed, suppression of autophagy by 3-methyladenine or short hairpin RNA-mediated silencing of the Becn1 or Atg7 gene attenuated high glucose-induced cardiomyocyte death. Conversely, upregulation of autophagy with rapamycin or overexpression of Becn1 or Atg7 predisposed cardiomyocytes to high glucose toxicity. Mechanistically, the high glucose-induced inhibition of autophagy was mediated at least partly by increased mTOR signaling that likely inactivated ULK1 through phosphorylation at serine 467. Together, these findings demonstrate that high glucose inhibits autophagy, which is a beneficial adaptive response that protects cardiomyocytes against high glucose toxicity. Future studies are warranted to determine if autophagy plays a similar role in diabetic heart in vivo.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Cardiovascular Health Research Center, Sanford Research/ University of South Dakota, Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | | | | | | |
Collapse
|
810
|
Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 2012; 21:1321-32. [PMID: 22356678 DOI: 10.1089/scd.2011.0684] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a complex "self-eating" process and could be utilized for cell survival under stresses. Statins, which could reduce apoptosis in mesenchymal stem cells (MSCs) during both ischemia and hypoxia/serum deprivation (H/SD), have been proved to induce autophagy in some cell lines. We have previously shown that atorvastatin (ATV) could regulate AMP-activated protein kinase (AMPK), a positive modulator of autophagy, in MSCs. Thus, we hypothesized that autophagy activation through AMPK and its downstream molecule mammalian target of rapamycin (mTOR) may be a novel mechanism of ATV to protect MSCs from apoptosis during H/SD. Here, we demonstrated that H/SD induced autophagy in MSCs significantly as identified by increasing acidic vesicular organelle-positive cells, type II of light chain 3 (LC3-II) expression, and autophagosome formation. The levels of H/SD-induced apoptosis were increased by autophagy inhibitor 3-methyladenine (3-MA) while decreased by rapamycin, an autophagic inducer. ATV further enhanced the autophagic activity observed in MSCs exposed to H/SD. Treatment with 3-MA attenuated ATV-induced autophagy and abrogated the protective effects of ATV on MSC apoptosis, while rapamycin failed to cause additional effects on either autophagy or apoptosis compared with ATV alone. The phosphorylation of AMPK was upregulated whereas the phosphorylation of mTOR was downregulated in ATV-treated MSCs, which were both attenuated by AMPK inhibitor compound C. Further, treatment with compound C reduced the ATV-induced autophagy in MSCs under H/SD. These data suggest that autophagy plays a protective role in H/SD-induced apoptosis of MSCs, and ATV could effectively activate autophagy via AMPK/mTOR pathway to enhance MSC survival during H/SD.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
811
|
Novel Insights into the Interplay between Apoptosis and Autophagy. Int J Cell Biol 2012; 2012:317645. [PMID: 22496691 PMCID: PMC3312193 DOI: 10.1155/2012/317645] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/31/2011] [Indexed: 12/19/2022] Open
Abstract
For several decades, apoptosis has taken center stage as the principal mechanism of programmed cell death (type I cell death) in mammalian tissues. Autophagic cell death (type II) is characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells. The autophagic process is activated as an adaptive response to a variety of extracellular and intracellular stresses, including nutrient deprivation, hormonal or therapeutic treatment, pathogenic infection, aggregated and misfolded proteins, and damaged organelles. Increasing evidence indicates that autophagy is associated with a number of pathological processes, including cancer. The regulation of autophagy in cancer cells is complex since it can enhance cancer cell survival in response to certain stresses, while it can also act to suppress the initiation of cancer growth. This paper focused on recent advances regarding autophagy in cancer and the techniques currently available to manipulate autophagy.
Collapse
|
812
|
Huang Y, Guerrero-Preston R, Ratovitski EA. Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 2012; 11:1247-59. [PMID: 22356768 DOI: 10.4161/cc.11.6.19670] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cisplatin was shown to induce the ataxia telangiectasia mutated (ATM)-dependent phosphorylation of tumor protein p63 isoform, (ΔNp63α), leading to a transcriptional regulation of specific genes implicated in the control of cell death of squamous cell carcinoma (SCC) cells. We previously observed that the cisplatin-induced phosphorylated (p)-ΔNp63α transcriptionally regulates the expression of specific microRNAs (miRNAs) in SCC cells. We found here that cisplatin exposure of SCC cells led to modulation of the members of the autophagic pathway, such as Atg1/Ulk1, Atg3, Atg4A, Atg5, Atg6/Becn1, Atg7, Atg9A and Atg10, by a direct p-ΔNp63α-dependent transcriptional regulation. We further found that specific miRNAs (miR-181a, miR-519a, miR-374a and miR-630), which are critical downstream targets of the p-ΔNp63α, modulated the protein levels of ATG5, ATG6/BECN1, ATG10, ATG12, ATG16L1 and UVRAG, adding another level of expression control for autophagic pathways in SCC cells upon cisplatin exposure. Our data support the notion that the cisplatin-induced p-ΔNp63α could regulate key pathways implicated in response of cancer cells to chemotherapeutics.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
813
|
The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 2012; 44:698-709. [PMID: 22152474 DOI: 10.1016/j.molcel.2011.10.014] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 09/07/2011] [Accepted: 10/10/2011] [Indexed: 01/22/2023]
Abstract
Autophagy and apoptosis constitute important determinants of cell fate and engage in a complex interplay in both physiological and pathological settings. The molecular basis of this crosstalk is poorly understood and relies, in part, on "dual-function" proteins that operate in both processes. Here, we identify the essential autophagy protein Atg12 as a positive mediator of mitochondrial apoptosis and show that Atg12 directly regulates the apoptotic pathway by binding and inactivating prosurvival Bcl-2 family members, including Bcl-2 and Mcl-1. The binding occurs independently of Atg5 or Atg3 and requires a unique BH3-like motif in Atg12, characterized by interaction studies and computational docking. In apoptotic cells, knockdown of Atg12 inhibited Bax activation and cytochrome c release, while ectopic expression of Atg12 antagonized the antiapoptotic activity of Mcl-1. The interaction between Atg12 and Bcl-2 family members may thus constitute an important point of convergence between autophagy and apoptosis in response to specific signals.
Collapse
|
814
|
Sishi BJN, Bester DJ, Wergeland A, Loos B, Jonassen AK, van Rooyen J, Engelbrecht AM. Daunorubicin therapy is associated with upregulation of E3 ubiquitin ligases in the heart. Exp Biol Med (Maywood) 2012; 237:219-26. [PMID: 22328594 DOI: 10.1258/ebm.2011.011106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Daunorubicin (DNR) and doxorubicin (DOX) are two of the most effective anthracycline drugs known for the treatment of systemic neoplasms and solid tumors. However, their clinical use is hampered due to profound cardiotoxicity. The mechanism by which DNR injures the heart remains to be fully elucidated. Recent reports have indicated that DOX activates ubiquitin proteasome-mediated degradation of specific transcription factors; however, no reports exist on the effect of DNR on the E3 ubiquitin ligases, MURF-1 (muscle ring finger 1) and MAFbx (muscle atrophy F-box). The aim of this study was to investigate the effect of DNR treatment on the protein and organelle degradation systems in the heart and to elucidate some of the signalling mechanisms involved. Adult rats were divided into two groups where one group received six intraperitoneal injections of 2 mg/kg DNR on alternate days and the other group received saline injections as control. Hearts were excised and perfused on a working heart system the day after the last injection and freeze-clamped for biochemical analysis. DNR treatment significantly attenuated cardiac function and increased apoptosis in the heart. DNR-induced cardiac cytotoxicity was associated with upregulation of the E3 ligases, MURF-1 and MAFbx and also caused significant increases in two markers of autophagy, beclin-1 and LC3. These changes observed in the heart were also associated with attenuation of the phosphoinositide 3-kinase/Akt signalling pathway.
Collapse
Affiliation(s)
- Balindiwe J N Sishi
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | | | | | |
Collapse
|
815
|
Mai TT, Moon J, Song Y, Viet PQ, Phuc PV, Lee JM, Yi TH, Cho M, Cho SK. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett 2012; 321:144-53. [PMID: 22326284 DOI: 10.1016/j.canlet.2012.01.045] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022]
Abstract
Ginsenoside F2 (F2) was assessed for its antiproliferative activity against breast cancer stem cells (CSCs). F2 induced apoptosis in breast CSCs by activating the intrinsic apoptotic pathway and mitochondrial dysfunction. Concomitantly, F2 induced the formation of acidic vesicular organelles, recruitment of GFP-LC3-II to autophagosomes, and elevation of Atg-7 levels, suggesting that F2 initiates an autophagic progression in breast CSCs. Treatment with an inhibitor of autophagy enhanced F2-induced cell death. Our findings provide new insights into the anti-cancer activity of F2 and may contribute to the rational use and pharmacological study of F2.
Collapse
Affiliation(s)
- Trang Thi Mai
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
816
|
Antiapoptotic and antiautophagic effects of eicosapentaenoic acid in cardiac myoblasts exposed to palmitic acid. Nutrients 2012; 4:78-90. [PMID: 22413063 PMCID: PMC3296992 DOI: 10.3390/nu4020078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 01/23/2023] Open
Abstract
Apoptosis is a programmed cell death that plays a critical role in cell homeostasis. In particular, apoptosis in cardiomyocytes is involved in several cardiovascular diseases including heart failure. Recently autophagy has emerged as an important modulator of programmed cell death pathway. Recent evidence indicates that saturated fatty acids induce cell death through apoptosis and this effect is specific for palmitate. On the other hand, n-3 polyunsaturated fatty acids (PUFAs) have been implicated in the protection against cardiovascular diseases, cardiac ischemic damage and myocardial dysfunction. In the present study we show that n-3 PUFA eicosapentaenoic acid (EPA) treatment to culture medium of H9c2 rat cardiomyoblasts protects cells against palmitate-induced apoptosis, as well as counteracts palmitate-mediated increase of autophagy. Further investigation is required to establish whether the antiautophagic effect of EPA may be involved in its cytoprotective outcome and to explore the underlying biochemical mechanisms through which palmitate and EPA control the fate of cardiac cells.
Collapse
|
817
|
Dong XX, Wang YR, Qin S, Liang ZQ, Liu BH, Qin ZH, Wang Y. p53 mediates autophagy activation and mitochondria dysfunction in kainic acid-induced excitotoxicity in primary striatal neurons. Neuroscience 2012; 207:52-64. [PMID: 22330834 DOI: 10.1016/j.neuroscience.2012.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 12/24/2022]
Abstract
The present study sought to investigate if p53 mediates autophagy activation and mitochondria dysfunction in primary striatal neurons in kainic acid (KA)-induced excitotoxicity. The excitotoxic model of primary striatal neurons was established with KA. The levels of p53, microtubule-associated protein 1 light chain 3 (LC3), Beclin1, and p62 were examined by Western blot and immunostaining. Autophagy activation was also determined with electron microscope. To evaluate the contribution of p53 to autophagy activation and mitochondria dysfunction in KA-induced excitotoxicity, the protein levels of LC3, Beclin1, and p62, the mitochondrial transmembrane potential and the mitochondrial Reactive oxygen species (ROS) after pretreatment with the p53 inhibitor pifithrin-alpha (PFT-α) and the autophagy inhibitor 3-methyladenine (3-MA) were analyzed. Excitotoxic neuronal injury was induced after KA treatment as demonstrated by increases in lactate dehydrogenase (LDH) leakage and was significantly inhibited by PFT-α. Western blot and immunostaining showed that the induction of p53 protein occurred in the cytosol and the nucleus. Increases in autophagic proteins LC3 and Beclin1 were observed, whereas the protein levels of p62 decreased after KA treatment. Electron microscope analysis showed increased autophagosomes in the cytoplasm. The changes in LC3, Beclin1, and p62 levels were blocked by PFT-α, PFT-μ, 3-MA, and E64d but not Z-DEVD-FMK. JC-1 staining showed the depolarization of mitochondrial membrane potential after excitotoxic insult. Mito-tracker and RedoxSensor Red CC-1 staining showed an increased production of mitochondrial ROS after excitotoxic insult. These effects were significantly suppressed after pretreatment with PFT-α and 3-MA. This study suggests that p53 mediates KA-induced autophagy activation and mitochondrial dysfunction in striatal neurons.
Collapse
Affiliation(s)
- X X Dong
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University, School of Pharmaceutical Science, Wen Jing Road, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
818
|
Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, Hajjar RJ. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis 2012; 3:265. [PMID: 22297293 PMCID: PMC3288347 DOI: 10.1038/cddis.2012.5] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bcl-2 E1B 19-KDa interacting protein 3 (BNIP3) is a mitochondrial death and mitophagy marker, which is involved in inducing cardiac remodeling post myocardial infarction. In this study, we show that BNIP3 expression increases in stressed cardiomyocytes in vitro and in response to pressure overload in vivo, and that its transcription is directly related to JNK activity. BNIP3 expression gradually increased in the first weeks after pressure overload and peaked at the heart failure stage. Ultrastructurally, the mitochondrial area was inversely proportional to BNIP3 expression. Both JNK and AKT activities increased with pressure overload; however, JNK signaling dominated over AKT signaling for the activation of the transcription factor FOXO3a and for the transcription of its effector, BNIP3. 3-methyladenine attenuated JNK signaling and significantly decreased BNIP3 expression and reversed cardiac remodeling in heart failure. Ultrastructurally, the mitochondrial area was significantly increased in the 3-methyladenine group compared with placebo. Moreover, adenoviral gene delivery of dominant negative JNK in a rat model of pressure overload hypertrophy abolished the increase in BNIP3 expression in response to pressure overload. These results suggest that JNK signaling is a critical modulator of the transcription factor FOXO3a driving the expression of its effector, BNIP3, in heart failure and that JNK, through BNIP3, induces mitochondrial apoptosis and mitophagy.
Collapse
Affiliation(s)
- A H Chaanine
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
819
|
Teng RJ, Du J, Welak S, Guan T, Eis A, Shi Y, Konduri GG. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012; 302:L651-63. [PMID: 22245997 DOI: 10.1152/ajplung.00177.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autophagy is a process for cells to degrade proteins or entire organelles to maintain a balance in the synthesis, degradation, and subsequent recycling of cellular products. Increased reactive oxygen species formation is known to induce autophagy. We previously reported that increased NADPH oxidase (NOX) activity in pulmonary artery endothelial cells (PAEC) from fetal lambs with persistent pulmonary hypertension (PPHN) contributes to impaired angiogenesis in PPHN-PAEC compared with normal PAEC. We hypothesized that increased NOX activity in PPHN-PAEC is associated with increased autophagy, which, in turn, contributes to impaired angiogenesis in PPHN-PAEC. In the present study, we detected increased autophagy in PPHN-PAEC as shown by increased ratio of the microtubule-associated protein 1 light chain (LC3)-II to LC3-I and increased percentage of green fluorescent protein-LC3 punctate positive cells. Inhibiting autophagy by 3-methyladenine, chloroquine, and beclin-1 knockdown in PPHN-PAEC has led to decreased autophagy and increased in vitro angiogenesis. Inhibition of autophagy also decreased the association between gp91(phox) and p47(phox), NOX activity, and superoxide generation. A nonspecific antioxidant N-acetylcysteine and a NOX inhibitor apocynin decreased autophagy in PPHN-PAEC. In conclusion, autophagy may contribute to impaired angiogenesis in PPHN-PAEC through increasing NOX activity. Our results suggest that, in PPHN-PAEC, a positive feedback relationship between autophagy and NOX activity may regulate angiogenesis.
Collapse
Affiliation(s)
- Ru-Jeng Teng
- Div. of Neonatology, Dept. of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
820
|
Abstract
The promyelocytic leukaemia gene PML was originally identified at the t(15;17) translocation of acute promyelocytic leukaemia, which generates the oncogene PML-retinoic acid receptor α. PML epitomises a subnuclear structure called PML nuclear body. Current models propose that PML through its scaffold properties is able to control cell growth and survival at many different levels. Here we discuss the current literature and propose new avenues for investigation.
Collapse
|
821
|
Lack of intestinal epithelial atg7 affects paneth cell granule formation but does not compromise immune homeostasis in the gut. Clin Dev Immunol 2012; 2012:278059. [PMID: 22291845 PMCID: PMC3265132 DOI: 10.1155/2012/278059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
Abstract
Genetic polymorphisms of autophagy-related genes have been associated with an increased risk to develop inflammatory bowel disease (IBD). Autophagy is an elementary process participating in several cellular events such as cellular clearance and nonapoptotic programmed cell death. Furthermore, autophagy may be involved in intestinal immune homeostasis due to its participation in the digestion of intracellular pathogens and in antigen presentation. In the present study, the role of autophagy in the intestinal epithelial layer was investigated. The intestinal epithelium is essential to maintain gut homeostasis, and defects within this barrier have been associated with the pathogenesis of IBD. Therefore, mice with intestinal epithelial deletion of Atg7 were generated and investigated in different mouse models. Knockout mice showed reduced size of granules and decreased levels of lysozyme in Paneth cells. However, this was dispensable for gut immune homeostasis and had no effect on susceptibility in mouse models of experimentally induced colitis.
Collapse
|
822
|
Cook KL, Shajahan AN, Clarke R. Autophagy and endocrine resistance in breast cancer. Expert Rev Anticancer Ther 2012; 11:1283-94. [PMID: 21916582 DOI: 10.1586/era.11.111] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The American Cancer Society estimates that over 200,000 new breast cancer cases are diagnosed annually in the USA alone. Of these cases, the majority are invasive breast cancers and almost 70% are estrogen receptor-α positive. Therapies targeting the estrogen receptor-α are widely applied and include selective estrogen receptor modulators such as tamoxifen, a selective estrogen receptor downregulator such as Fulvestrant (Faslodex; FAS, ICI 182,780), or one of the third-generation aromatase inhibitors including letrozole or anastrozole. While these treatments reduce breast cancer mortality, many estrogen receptor-α-positive tumors eventually recur, highlighting the clinical significance of endocrine therapy resistance. The signaling leading to endocrine therapy resistance is poorly understood; however, preclinical studies have established an important role for autophagy in the acquired resistance phenotype. Autophagy is a cellular degradation process initiated in response to stress or nutrient deprivation, which attempts to restore metabolic homeostasis through the catabolic lysis of aggregated proteins, unfolded/misfolded proteins or damaged subcellular organelles. The duality of autophagy, which can be either pro-survival or pro-death, is well known. However, in the context of endocrine therapy resistance in breast cancer, the inhibition of autophagy can potentiate resensitization of previously antiestrogen resistant breast cancer cells. In this article, we discuss the complex and occasionally contradictory roles of autophagy in cancer and in resistance to endocrine therapies in breast cancer.
Collapse
Affiliation(s)
- Katherine L Cook
- Department of Oncology and Lombardi Comprehensive Cancer Center W405A Research Building, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
823
|
Retinal degeneration and cellular suicide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:207-14. [PMID: 22183335 DOI: 10.1007/978-1-4614-0631-0_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
824
|
Calabretta B, Salomoni P. Suppression of autophagy by BCR/ABL. Front Biosci (Schol Ed) 2012; 4:453-60. [PMID: 22202070 DOI: 10.2741/278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Imatinib and second generation BCR/ABL tyrosine kinase inhibitors (TKIs) serve now as standard therapies for patients with chronic myelogenous leukemia (CML); however, CML stem cells are intrinsically insensitive to the cell death-inducing effects of TKIs, allowing the persistence of a "reservoir" of BCR/ABL-expressing CML-initiating cells potentially responsible for disease relapse and progression. Although it is still controversial whether the "insensitivity" of CML stem cells to treatment with TKI is due to BCR/ABL-dependent or independent mechanisms, treatment with IM appears to suppress BCR/ABL-dependent signaling in CML stem cells with no adverse effects on their survival. Recent evidence indicates that BCR/ABL suppresses and treatment of CML cells with IM/TKIs induces autophagy, a genetically-regulated process of adaptation to metabolic stress which could allow tumor cells to become metabolically inert enabling their survival under conditions that may mimic growth factor/nutrients deprivation. Based on this hypothesis, TKI-induced autophagy may "antagonize" TKI-induced cell death and inhibition of autophagy may eliminate this survival mechanism by restoring "sensitivity" of CML stem cells to treatment with IM/TKI. Consistent with this, phenotypically and functionally defined CML-enriched stem cells insensitive to treatment with TKI are efficiently eliminated by the combination of TKI and chloroquine, an inhibitor of late stage autophagy. Thus, inhibition of autophagy may improve the potent and specific effects of TKIs by rendering CML stem cells sensitive to these targeted therapies.
Collapse
Affiliation(s)
- Bruno Calabretta
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | |
Collapse
|
825
|
Viola G, Bortolozzi R, Hamel E, Moro S, Brun P, Castagliuolo I, Ferlin MG, Basso G. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem Pharmacol 2012; 83:16-26. [PMID: 21964343 PMCID: PMC3234688 DOI: 10.1016/j.bcp.2011.09.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that MG-2477 (3-cyclopropylmethyl-7-phenyl-3H-pyrrolo[3,2-f]quinolin-9(6H)-one) inhibits the growth of several cancer cell lines in vitro. Here we show that MG-2477 inhibited tubulin polymerization and caused cells to arrest in metaphase. The detailed mechanism of action of MG-2477 was investigated in a non-small cell lung carcinoma cell line (A549). Treatment of A549 cells with MG-2477 caused the cells to arrest in the G2/M phase of the cell cycle, with a concomitant accumulation of cyclin B. Moreover, the compound induced autophagy, which was followed at later times by apoptotic cell death. Autophagy was detected as early as 12h by the conversion of microtubule associated protein 1 light chain 3 (LC3-I) to LC3-II, following cleavage and lipid addition to LC3-I. After 48h of MG-2477 exposure, phosphatidylserine externalization on the cell membrane, caspase-3 activation, and PARP cleavage occurred, revealing that apoptotic cell death had begun. Pharmacological inhibition of autophagy with 3-methyladenine or bafilomycin A1 increased apoptotic cell death, suggesting that the autophagy caused by MG-2477 played a protective role and delayed apoptotic cell death. Additional studies revealed that MG-2477 inhibited survival signaling by blocking activation of Akt and its downstream targets, including mTOR, and FHKR. Treatment with MG-2477 also reduced phosphorylation of mTOR downstream targets p70 ribosomal S6 kinase and 4E-BP1. Overexpression of Akt by transfection with a Myr-Akt vector decreased MG-2477 induced autophagy, indicating that Akt is involved. Taken together, these results indicated that the autophagy induced by MG-2477 delayed apoptosis by exerting an adaptive response following microtubule damage.
Collapse
Affiliation(s)
- Giampietro Viola
- Department of Pediatrics, Laboratory of Oncohematology, University of Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
826
|
Francisco R, Pérez-Perarnau A, Cortés C, Gil J, Tauler A, Ambrosio S. Histone deacetylase inhibition induces apoptosis and autophagy in human neuroblastoma cells. Cancer Lett 2011; 318:42-52. [PMID: 22186300 DOI: 10.1016/j.canlet.2011.11.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/24/2022]
Abstract
Neuroblastoma (NB) is the most common solid extracranial tumor in children. Here we showed that trichostatin A, a histone deacetylase inhibitor (HDACi), decreases cell viability in three NB cell lines of different phenotypes. The treatment leads to G2/M-phase arrest, apoptosis and autophagy. Autophagy induction accompanies apoptosis in the most proliferative, N-Myc overexpressing cells. In contrast, autophagy precedes apoptosis and acts as a protective mechanism in the less proliferative, non-N-Myc overexpressing cells. Therefore, the autophagy induction is a relevant event in the NB response to HDACis, and it should be considered in the design of new treatments for this malignancy.
Collapse
Affiliation(s)
- Roser Francisco
- Unitat de Bioquímica, Dep. Ciències Fisiològiques II, Facultat de Medicina, Campus Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, c/Feixa Llarga s/n., Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
827
|
Kuo CC, Liu TW, Chen LT, Shiah HS, Wu CM, Cheng YT, Pan WY, Liu JF, Chen KL, Yang YN, Chen SN, Chang JY. Combination of arsenic trioxide and BCNU synergistically triggers redox-mediated autophagic cell death in human solid tumors. Free Radic Biol Med 2011; 51:2195-209. [PMID: 22001324 DOI: 10.1016/j.freeradbiomed.2011.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022]
Abstract
Arsenic trioxide (As(2)O(3)) is an effective treatment for relapsed or refractory acute promyelocytic leukemia (APL). After the discovery of As(2)O(3) as a promising treatment for APL, several studies investigated the use of As(2)O(3) as a single agent in the treatment of solid tumors; however, its therapeutic efficacy is limited. Thus, the systematic study of the combination of As(2)O(3) with other clinically used chemotherapeutic drugs to improve its therapeutic efficacy in treating human solid tumors is merited. In this study, we demonstrate for the first time, using isobologram analysis, that As(2)O(3) exhibits a synergistic interaction with N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU). The synergistic augmentation of the cytotoxicity of As(2)O(3) with BCNU is in part through the autophagic cell death machinery in human solid tumor cells. As(2)O(3) and BCNU in combination produce enhanced cytotoxicity via the depletion of reduced glutathione (GSH) and augmentation of reaction oxygen species (ROS) production. Further analysis indicated that the extension of GSH depletion by this combined regimen occurs through the inhibition of the catalytic activity of glutathione reductase. Blocking ROS production with antioxidants or ROS scavengers effectively inhibits cell death and autophagy formation, indicating that redox-mediated autophagic cell death involves the synergism of As(2)O(3) with BCNU. Taken together, this is the first evidence that BCNU could help to extend the therapeutic spectrum of As(2)O(3). These findings will be useful in designing future clinical trials of combination chemotherapy with As(2)O(3) and BCNU, with the potential for broad use against a variety of solid tumors.
Collapse
Affiliation(s)
- Ching-Chuan Kuo
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
828
|
Acharya BR, Bhattacharyya S, Choudhury D, Chakrabarti G. The microtubule depolymerizing agent naphthazarin induces both apoptosis and autophagy in A549 lung cancer cells. Apoptosis 2011; 16:924-39. [PMID: 21667044 DOI: 10.1007/s10495-011-0613-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Naphthazarin (DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is a naturally available 1,4-naphthoquinone derivatives. In this study, we focused on elucidating the cytotoxic mechanism of naphthazarin in A549 non-small cell lung carcinoma cells. Naphthazarin reduced the A549 cell viability considerably with an IC(50) of 16.4 ± 1.6 μM. Naphthazarin induced cell death in a dose- and time-dependent manner by activating apoptosis and autophagy pathways. Specifically, we found naphthazarin inhibited the PI3K/Akt cell survival signalling pathway, measured by p53 and caspase-3 activation, and PARP cleavage. It also resulted in an increase in the ratio of Bax/Bcl2 protein levels, indicating activation of the mitochondrial apoptotic pathway. Similarly naphthazarin triggered LC3II expression and induced autophagic flux in A549 cells. We demonstrated further that naphthazarin is a microtubule inhibitor in cell-free system and in A549 cells. Naphthazarin treatment depolymerized interphase microtubules and disorganised spindle microtubules and the majority of cells arrested at the G(2)/M transition. Together, these data suggest that naphthazarin, a microtubule depolymerizer which activates dual cell death machineries, could be a potential novel chemotherapeutic agent.
Collapse
Affiliation(s)
- Bipul R Acharya
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, WB, India
| | | | | | | |
Collapse
|
829
|
Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS One 2011; 6:e28491. [PMID: 22164300 PMCID: PMC3229606 DOI: 10.1371/journal.pone.0028491] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/09/2011] [Indexed: 12/19/2022] Open
Abstract
Anthracycline daunorubicin (DNR) is one of the major antitumor agents widely used in the treatment of myeloid leukemia. Unfortunately, the clinical efficacy of DNR was limited because of its cytotoxity at high dosage. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether DNR can activate to impair the sensitivity of cancer cells remains unknown. Here, we first report that DNR can induce a high level of autophagy, which was associated with the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, cell death induced by DNR was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting Atg5 and Atg7, the most important components for the formation of autophagosome. In conclusion, we found that DNR can induce cytoprotective autophagy by activation of ERK in myeloid leukemia cells. Autophagy inhibition thus represents a promising approach to improve the efficacy of DNR in the treatment of patients with myeloid leukemia.
Collapse
|
830
|
Rasul A, Yu B, Khan M, Zhang K, Iqbal F, Ma T, Yang H. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int J Oncol 2011; 40:1153-61. [PMID: 22139054 PMCID: PMC3584565 DOI: 10.3892/ijo.2011.1277] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/27/2011] [Indexed: 12/05/2022] Open
Abstract
Gastric cancer is the fourth most commonly diagnosed cancer with the second highest mortality rate worldwide. Surgery, chemotherapy and radiation therapy are generally used for the treatment of stomach cancer but only limited clinical response is shown by these therapies and still no effectual therapy for advanced gastric adenocarcinoma patients is available. Therefore, there is a need to identify other therapeutic agents against this life-threatening disease. Plants are considered as one of the most important sources for the development of anticancer drugs. Magnolol, a natural compound possesses anticancer properties. However, effects of Magnolol on human gastric cancer remain unexplored. The effects of Magnolol on the viability of SGC-7901 cells were determined by the MTT assay. Apoptosis, mitochondrial membrane potential and cell cycle were evaluated by flow cytometry. Protein expression of Bcl-2, Bax, caspase-3 and PI3K/Akt was analysed by Western blotting. Magnolol induced morphological changes in SGC-7901 cells and its cytotoxic effects were linked with DNA damage, apoptosis and S-phase arrest in a dose-dependent manner. Magnolol triggered the mitochondrial-mediated apoptosis pathway as shown by an increased ratio of Bax/Bcl-2, dissipation of mitochondrial membrane potential (ΔΨm), and sequential activation of caspase-3 and inhibition of PI3K/Akt. Additionally, Magnolol induced autophagy in SGC-7901 cells at high concentration but was not involved in cell death. Magnolol-induced apoptosis of SGC-7901 cells involves mitochondria and PI3K/Akt-dependent pathways. These findings provide evidence that Magnolol is a promising natural compound for the treatment of gastric cancer and may represent a candidate for in vivo studies of monotherapies or combination antitumor therapies.
Collapse
Affiliation(s)
- Azhar Rasul
- Central Research Laboratory, Jilin University Bethune Second Hospital, Changchun 130041, PR China
| | | | | | | | | | | | | |
Collapse
|
831
|
Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, Deng HM, Cappellozza S, Grimaldi A, Xia Q, Tettamanti G, Cao Y, Feng Q. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 2011; 17:305-24. [DOI: 10.1007/s10495-011-0675-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
832
|
Kreutzer JN, Salvador A, Diana P, Cirrincione G, Vedaldi D, Litchfield DW, Issinger OG, Guerra B. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells. Int J Oncol 2011; 40:914-22. [PMID: 22134789 PMCID: PMC3584806 DOI: 10.3892/ijo.2011.1272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/25/2011] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases.
Collapse
Affiliation(s)
- Jan N Kreutzer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
833
|
Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, Rezzani R, Aleo MF. ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res 2011; 318:238-50. [PMID: 22146761 DOI: 10.1016/j.yexcr.2011.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/27/2011] [Accepted: 11/16/2011] [Indexed: 12/19/2022]
Abstract
Cisplatin (cisPt) use in chemotherapy is limited by the occurrence of a severe nephrotoxicity. Both autophagy and apoptosis seem to contribute in kidney response to cisPt, however their cross-talk is still controversial, since the role played by autophagy (cytoprotective or harmful) and the cellular site driving their switch, are still unclear. Here, we used a multidisciplinary approach to study the correlation between autophagy and apoptosis in renal NRK-52E cells exposed to cisPt. We showed two "sensitivity-thresholds" to cisPt, stating whether apoptosis or autophagy would develop: 10 μM dose of cisPt activated autophagy that preserved cell homeostasis; however 3-methyladenine co-administration affected cell viability and induced apoptosis. In contrast, 50 μM cisPt determined cell death by apoptosis, whereas the pre-conditioning with taurine contributed to cell rescue, delaying apoptosis and maintaining autophagy. Hence, autophagy protects NRK-52E cells from cisPt injury. By studying the expression of ER specific hallmarks, such as GRP78, GRP94 and GADD153/CHOP, we found a possible pivotal role of ER signaling modulation in the crosstalk between autophagy and apoptosis induced by cisPt. To the best of our knowledge, this is the first demonstration that taurine enhances autophagic protection against apoptosis by reducing ER stress, thus making it possible to develop new strategies to reduce severe cisPt-induced side-effects such as nephrotoxicity.
Collapse
Affiliation(s)
- Francesca Rovetta
- Unit of Biochemistry, Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
834
|
Abstract
Autophagy, a process in which cellular components are engulfed and degraded within double-membrane vesicles termed autophagosomes, has an important role in the response to oxidative damage. Here we identify a novel cascade of phosphorylation events, involving a network of protein and lipid kinases, as crucial components of the signaling pathways that regulate the induction of autophagy under oxidative stress. Our findings show that both the tumor-suppressor death-associated protein kinase (DAPk) and protein kinase D (PKD), which we previously showed to be phosphorylated and consequently activated by DAPk, mediate the induction of autophagy in response to oxidative damage. Furthermore, we map the position of PKD within the autophagic network to Vps34, a lipid kinase whose function is indispensable for autophagy, and demonstrate that PKD is found in the same molecular complex with Vps34. PKD phosphorylates Vps34, leading to activation of Vps34, phosphatydilinositol-3-phosphate (PI(3)P) formation, and autophagosome formation. Consistent with its identification as a novel inducer of the autophagic machinery, we show that PKD is recruited to LC3-positive autophagosomes, where it localizes specifically to the autophagosomal membranes. Taken together, our results describe PKD as a novel Vps34 kinase that functions as an effecter of autophagy under oxidative stress.
Collapse
|
835
|
Abstract
Huntington's disease (HD) is a complex and severe disorder characterized by the gradual and the progressive loss of neurons, predominantly in the striatum, which leads to the typical motor and cognitive impairments associated with this pathology. HD is caused by a highly polymorphic CAG trinucleotide repeat expansion in the exon-1 of the gene encoding for huntingtin protein. Since the first discovery of the huntingtin gene, investigations with a consistent number of in-vitro and in-vivo models have provided insights into the toxic events related to the expression of the mutant protein. In this review, we will summarize the progress made in characterizing the signaling pathways that contribute to neuronal degeneration in HD. We will highlight the age-dependent loss of proteostasis that is primarily responsible for the formation of aggregates observed in HD patients. The most promising molecular targets for the development of pharmacological interventions will also be discussed.
Collapse
|
836
|
Abstract
A cell undergoing apoptosis demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the inducer of apoptosis, cell type and the "time window" at which the process of apoptosis is observed. Because the gross majority of apoptotic hallmarks can be revealed by flow and image cytometry, the cytometric methods become a technology of choice in diverse studies of cellular demise. Variety of cytometric methods designed to identify apoptotic cells, detect particular events of apoptosis and probe mechanisms associated with this mode of cell death have been developed during the past two decades. In the present review, we outline commonly used methods that are based on the assessment of mitochondrial transmembrane potential, activation of caspases, DNA fragmentation, and plasma membrane alterations. We also present novel developments in the field such as the use of cyanine SYTO and TO-PRO family of probes. Strategies of selecting the optimal multiparameter approaches, as well as potential difficulties in the experimental procedures, are thoroughly summarized.
Collapse
|
837
|
Abstract
Autophagy (the process of self-digestion by a cell through the action of enzymes originating within the lysosome of the same cell) is a catabolic process that is generally used by the cell as a mechanism for quality control and survival under nutrient stress conditions. As autophagy is often induced under conditions of stress that could also lead to cell death, there has been a propagation of the idea that autophagy can act as a cell death mechanism. Although there is growing evidence of cell death by autophagy, this type of cell death, often called autophagic cell death, remains poorly defined and somewhat controversial. Merely the presence of autophagic markers in a cell undergoing death does not necessarily equate to autophagic cell death. Nevertheless, studies involving genetic manipulation of autophagy in physiological settings provide evidence for a direct role of autophagy in specific scenarios. This article endeavours to summarise these physiological studies where autophagy has a clear role in mediating the death process and discusses the potential significance of cell death by autophagy.
Collapse
|
838
|
Age-related loss of muscle fibres is highly variable amongst mouse skeletal muscles. Biogerontology 2011; 13:157-67. [DOI: 10.1007/s10522-011-9365-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/27/2011] [Indexed: 12/25/2022]
|
839
|
Lépine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S. Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 2011; 286:44380-90. [PMID: 22052905 DOI: 10.1074/jbc.m111.257519] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.
Collapse
Affiliation(s)
- Sandrine Lépine
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
840
|
Gorzalczany Y, Gilad Y, Amihai D, Hammel I, Sagi-Eisenberg R, Merimsky O. Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: A beneficial strategy to combat non-small cell lung cancer. Cancer Lett 2011; 310:207-15. [DOI: 10.1016/j.canlet.2011.07.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 06/21/2011] [Accepted: 07/02/2011] [Indexed: 02/08/2023]
|
841
|
Jing K, Song KS, Shin S, Kim N, Jeong S, Oh HR, Park JH, Seo KS, Heo JY, Han J, Park JI, Han C, Wu T, Kweon GR, Park SK, Yoon WH, Hwang BD, Lim K. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 2011; 7:1348-58. [PMID: 21811093 DOI: 10.4161/auto.7.11.16658] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Docosahexaenoic acid (DHA) has been reported to induce tumor cell death by apoptosis. However, little is known about the effects of DHA on autophagy, another complex well-programmed process characterized by the sequestration of cytoplasmic material within autophagosomes. Here, we show that DHA increased both the level of microtubule-associated protein light-chain 3 and the number of autophagic vacuoles without impairing autophagic vesicle turnover, indicating that DHA induces not only apoptosis but also autophagy. We also observed that DHA-induced autophagy was accompanied by p53 loss. Inhibition of p53 increased DHA-induced autophagy and prevention of p53 degradation significantly led to the attenuation of DHA-induced autophagy, suggesting that DHA-induced autophagy is mediated by p53. Further experiments showed that the mechanism of DHA-induced autophagy associated with p53 attenuation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of rapamycin. In addition, compelling evidence for the interplay between autophagy and apoptosis induced by DHA is supported by the findings that autophagy inhibition suppressed apoptosis and further autophagy induction enhanced apoptosis in response to DHA treatment. Overall, our results demonstrate that autophagy contributes to the cytotoxicity of DHA in cancer cells harboring wild-type p53.
Collapse
Affiliation(s)
- Kaipeng Jing
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
842
|
Li Y, Zhang Q, Tian R, Wang Q, Zhao JJ, Iglehart JD, Wang ZC, Richardson AL. Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells. Cancer Res 2011; 71:7481-9. [PMID: 22037872 DOI: 10.1158/0008-5472.can-11-0940] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amplification of chromosome 8q22, which includes the gene for lysosomal associated transmembrane protein LAPTM4B, has been linked to de novo anthracycline resistance in primary breast cancers with poor prognosis. LAPTM4B overexpression can induce cytosolic retention of anthracyclines and decrease drug-induced DNA damage. In this study, we tested the hypothesis that LAPTM4B may contribute to tumor cell growth or survival in the absence of a chemotherapeutic exposure. In mammary cells, LAPTM4B protein was localized in lysosomes where its depletion increased membrane permeability, pH, cathepsin release, and cellular apoptosis. Loss of LAPTM4B also inhibited later stages of autophagy by blocking maturation of the autophagosome, thereby rendering cells more sensitive to nutrient deprivation or hypoxia. Conversely, enforced overexpression of LAPTM4B promoted autophagic flux and cell survival during in vitro starvation and stimulated more rapid tumor growth in vivo. Together, our results indicate that LAPTM4B is required for lysosome homeostasis, acidification, and function, and that LAPTM4B renders tumor cells resistant to lysosome-mediated cell death triggered by environmental and genotoxic stresses.
Collapse
Affiliation(s)
- Yang Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
843
|
Yosef N, Zalckvar E, Rubinstein AD, Homilius M, Atias N, Vardi L, Berman I, Zur H, Kimchi A, Ruppin E, Sharan R. ANAT: a tool for constructing and analyzing functional protein networks. Sci Signal 2011; 4:pl1. [PMID: 22028466 DOI: 10.1126/scisignal.2001935] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genome-scale screening studies are gradually accumulating a wealth of data on the putative involvement of hundreds of genes in various cellular responses or functions. A fundamental challenge is to chart the molecular pathways that underlie these systems. ANAT is an interactive software tool, implemented as a Cytoscape plug-in, for elucidating functional networks of proteins. It encompasses a number of network inference algorithms and provides access to networks of physical associations in several organisms. In contrast to existing software tools, ANAT can be used to infer subnetworks that connect hundreds of proteins to each other or to a given set of "anchor" proteins, a fundamental step in reconstructing cellular subnetworks. The interactive component of ANAT provides an array of tools for evaluating and exploring the resulting subnetwork models and for iteratively refining them. We demonstrate the utility of ANAT by studying the crosstalk between the autophagic and apoptotic cell death modules in humans, using a network of physical interactions. Relative to published software tools, ANAT is more accurate and provides more features for comprehensive network analysis. The latest version of the software is available at http://www.cs.tau.ac.il/~bnet/ANAT_SI.
Collapse
Affiliation(s)
- Nir Yosef
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
844
|
Emdad L, Qadeer ZA, Bederson LB, Kothari HP, Uzzaman M, Germano IM. Is there a common upstream link for autophagic and apoptotic cell death in human high-grade gliomas? Neuro Oncol 2011; 13:725-35. [PMID: 21727211 DOI: 10.1093/neuonc/nor053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The prognosis of patients with human high-grade gliomas (HGGs) remains dismal despite major advances in their management, due mainly to the high resistance of these infiltrative tumor cells to programmed cell death (PCD). Most therapeutic strategies for HGGs are aimed to maximize PCD type I, apoptosis or type II, autophagy. These are predominantly distinctive processes, but many studies suggest a cross-talk between the two. A better understanding of the link between PCD types I and II might allow development of more effective therapies for HGGs. In this study, we examined whether there is a common upstream signaling event responsible for both apoptotic and autophagic PCD using 3 chemotherapeutic agents in human HGG cells. Our study shows that each agent caused a significant decrease in cell viability in each of the HGG cell lines tested. The increase rate of apoptosis and autophagy varied among cell lines and chemotherapeutic agents used. Increased expression of cytidine-cytidine-adenosine-adenosine-thymidine (C)/enhancer binding protein (EBP) homologous transcription factor C/EBP homologous protein (CHOP)/growth arrest and DNA damage-inducible gene 153 (GADD153) was documented after use of either pro-autophagic or pro-apoptotic agents. The involvement of CHOP/GADD153 in both type I and type II PCD was confirmed by overexpression and gene-silencing studies. Gene silencing by small-interfering RNA-mediated CHOP/GADD153 resulted in increased cell viability, decreased upregulation of microtubule-associated protein light-chain 3' type II (LC3II) and cleaved caspase-3, and inhibition of apoptosis and autophagy. Exogenous expression of CHOP/GADD153 triggered apoptosis and autophagy in the absence of other stimuli. The clinical significance of these findings was supported by the evidence that celecoxib, a nonsteroidal anti-inflammatory drug known to induce GADD153-mediated apoptosis, strongly increases both type I and type II PCD in HGG cells when combined with another inducer of GADD153. These data suggest that CHOP/GADD153 should be investigated as a novel targetable signaling step to improve therapies for HGGs.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
845
|
Fan S, Li L, Chen S, Yu Y, Qi M, Tashiro SI, Onodera S, Ikejima T. Silibinin induced-autophagic and apoptotic death is associated with an increase in reactive oxygen and nitrogen species in HeLa cells. Free Radic Res 2011; 45:1307-24. [PMID: 21875385 DOI: 10.3109/10715762.2011.618186] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC(50) of approximately 80-100 and 40-60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.
Collapse
Affiliation(s)
- Simiao Fan
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | | | | | |
Collapse
|
846
|
Sen T, Sen N, Huang Y, Sinha D, Luo ZG, Ratovitski EA, Sidransky D. Tumor protein p63/nuclear factor κB feedback loop in regulation of cell death. J Biol Chem 2011; 286:43204-13. [PMID: 22020940 DOI: 10.1074/jbc.m111.257105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor protein (TP)-p53 family members often play proapoptotic roles, whereas nuclear factor κB (NF-κB) functions as a proapoptotic and antiapoptotic regulator depending on the cellular environment. We previously showed that the NF-κB activation leads to the reduction of the TP63 isoform, ΔNp63α, thereby rendering the cells susceptible to cell death upon DNA damage. However, the functional relationship between TP63 isotypes and NF-κB is poorly understood. Here, we report that the TAp63 regulates NF-κB transcription and protein stability subsequently leading to the cell death phenotype. We found that TAp63α induced the expression of the p65 subunit of NF-κB (RELA) and target genes involved in cell cycle arrest or apoptosis, thereby triggering cell death pathways in MCF10A cells. RELA was shown to concomitantly modulate specific cell survival pathways, making it indispensable for the TAp63α-dependent regulation of cell death. We showed that TAp63α and RELA formed protein complexes resulted in their mutual stabilization and inhibition of the RELA ubiquitination. Finally, we showed that TAp63α directly induced RelA transcription by binding to and activating of its promoter and, in turn, leading to activation of the NF-κB-dependent cell death genes. Overall, our data defined the regulatory feedback loop between TAp63α and NF-κB involved in the activation of cell death process of cancer cells.
Collapse
Affiliation(s)
- Tanusree Sen
- Departments of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
847
|
Garrison K, Hahn T, Lee WC, Ling LE, Weinberg AD, Akporiaye ET. The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis. Cancer Immunol Immunother 2011; 61:511-21. [PMID: 21971588 DOI: 10.1007/s00262-011-1119-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/22/2011] [Indexed: 12/22/2022]
Abstract
Effective tumor immunotherapy may require not only activation of anti-tumor effector cells, but also abrogation of tumor-mediated immunosuppression. The cytokine TGF-β, is frequently elevated in the tumor microenvironment and is a potent immunosuppressive agent and promoter of tumor metastasis. OX40 (CD134) is a member of the TNF-α receptor superfamily and ligation by agonistic antibody (anti-OX40) enhances effector function, expansion, and survival of activated T cells. In this study, we examined the therapeutic efficacy and anti-tumor immune response induced by the combination of a small molecule TGF-β signaling inhibitor, SM16, plus anti-OX40 in the poorly immunogenic, highly metastatic, TGF-β-secreting 4T1 mammary tumor model. Our data show that SM16 and anti-OX40 mutually enhanced each other to elicit a potent anti-tumor effect against established primary tumors, with a 79% reduction in tumor size, a 95% reduction in the number of metastatic lung nodules, and a cure rate of 38%. This positive treatment outcome was associated with a 3.2-fold increase of tumor-infiltrating, activated CD8+ T cells, an overall accumulation of CD4+ and CD8+ T cells, and an increased tumor-specific effector T cell response. Complete abrogation of the therapeutic effect in vivo following depletion of CD4+ and CD8+ T cells suggests that the anti-tumor efficacy of SM16+ anti-OX40 therapy is T cell dependent. Mice that were cured of their tumors were able to reject tumor re-challenge and manifested a significant tumor-specific peripheral memory IFN-γ response. Taken together, these data suggest that combining a TGF-β signaling inhibitor with anti-OX40 is a viable approach for treating metastatic breast cancer.
Collapse
Affiliation(s)
- Kendra Garrison
- Providence Portland Medical Center, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, 2N85, 4805 NE Glisan St, Portland, OR 97213, USA
| | | | | | | | | | | |
Collapse
|
848
|
Trocoli A, Mathieu J, Priault M, Reiffers J, Souquère S, Pierron G, Besançon F, Djavaheri-Mergny M. ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells. Autophagy 2011; 7:1108-14. [PMID: 21691148 DOI: 10.4161/auto.7.10.16623] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation at the promyelocytic stage. All-trans retinoic acid (ATRA) induces clinical remission in APL patients by enhancing the rapid differentiation of APL cells and the clearance of PML-RARα, APL's hallmark oncoprotein. In the present study, we demonstrated that both autophagy and Beclin 1, an autophagic protein, are upregulated during the course of ATRA-induced neutrophil/granulocyte differentiation of an APL-derived cell line named NB4 cells. This induction of autophagy is associated with downregulation of Bcl-2 and inhibition of mTOR activity. Small interfering RNA-mediated knockdown of BECN1 expression enhances apoptosis triggered by ATRA in NB4 cells but does not affect the differentiation process. These results provide evidence that the upregulation of Beclin 1 by ATRA constitutes an anti-apoptotic signal for maintaining the viability of mature APL cells, but has no crucial effect on the granulocytic differentiation. This finding may help to elucidate the mechanisms involved in ATRA resistance of APL patients, and in the ATRA syndrome caused by an accumulation of mature APL cells.
Collapse
|
849
|
Agostini M, Tucci P, Melino G. Cell death pathology: Perspective for human diseases. Biochem Biophys Res Commun 2011; 414:451-5. [DOI: 10.1016/j.bbrc.2011.09.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 02/06/2023]
|
850
|
Rufini A, Melino G. Cell death pathology: the war against cancer. Biochem Biophys Res Commun 2011; 414:445-50. [PMID: 21971555 DOI: 10.1016/j.bbrc.2011.09.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/21/2011] [Indexed: 12/25/2022]
Abstract
Programmed cell death was a fundamental discovery, awarded with the Nobel price in 2002 to Sulston, Brenner and Horvitz. Since then it has been clear that alteration of apoptotic pathways is a common feature of tumors, enabling cancer cells to survive chemotherapeutic interventions. Thus, apoptosis is an attractive target in cancer therapy, with the aim to revert the cancer-related alterations of the cell death machinery. Here, we overview the fundamental apoptotic pathways and summarize the attempts to target apoptosis to restore cell death in cancer cells with a special focus on the p53-family and autophagy.
Collapse
|