801
|
Gonzalez-Quevedo C, Spurgin LG, Illera JC, Richardson DS. Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Mol Ecol 2015; 24:5852-63. [PMID: 26509790 PMCID: PMC4737395 DOI: 10.1111/mec.13437] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 01/21/2023]
Abstract
Understanding the relative role of different evolutionary forces in shaping the level and distribution of functional genetic diversity among natural populations is a key issue in evolutionary and conservation biology. To do so accurately genetic data must be analysed in conjunction with an unambiguous understanding of the historical processes that have acted upon the populations. Here, we focused on diversity at toll‐like receptor (TLR) loci, which play a key role in the vertebrate innate immune system and, therefore, are expected to be under pathogen‐mediated selection. We assessed TLR variation within and among 13 island populations (grouped into three archipelagos) of Berthelot's pipit, Anthus berthelotii, for which detailed population history has previously been ascertained. We also compared the variation observed with that found in its widespread sister species, the tawny pipit, Anthus campestris. We found strong evidence for positive selection at specific codons in TLR1LA, TLR3 and TLR4. Despite this, we found that at the allele frequency level, demographic history has played the major role in shaping patterns of TLR variation in Berthelot's pipit. Levels of diversity and differentiation within and across archipelagos at all TLR loci corresponded very closely with neutral microsatellite variation and with the severity of the bottlenecks that occurred during colonization. Our study shows that despite the importance of TLRs in combating pathogens, demography can be the main driver of immune gene variation within and across populations, resulting in patterns of functional variation that can persist over evolutionary timescales.
Collapse
Affiliation(s)
- Catalina Gonzalez-Quevedo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Campus of Mieres, Research Building, 5th Floor. C/Gonzalo Gutiérrez Quirós, s/n, 33600 Mieres, Asturias, Spain
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
802
|
Williams DT, Diviney SM, Niazi AUR, Durr PA, Chua BH, Herring B, Pyke A, Doggett SL, Johansen CA, Mackenzie JS. The Molecular Epidemiology and Evolution of Murray Valley Encephalitis Virus: Recent Emergence of Distinct Sub-lineages of the Dominant Genotype 1. PLoS Negl Trop Dis 2015; 9:e0004240. [PMID: 26600318 PMCID: PMC4657991 DOI: 10.1371/journal.pntd.0004240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV) in Australia has renewed concerns regarding its potential to spread and cause disease. Methodology/Principal Findings To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM) and Envelope (Env) genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951–2011). Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B). Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G) was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994. Conclusions/Significance The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus. Murray Valley encephalitis virus is the most significant cause of mosquito-borne encephalitis in humans in Australia, and can also cause neurological disease in horses. This study reports an expanded phylogenetic study of this virus and the first molecular evolutionary analysis. Of the four recognized genotypes of Murray Valley encephalitis virus, only two were found to be actively circulating (genotypes 1 and 2), and genotype 1 was dominant. Distinct genetic sub-lineages within genotype 1 were found to have recently emerged. Molecular clock analysis indicated that genotype 2 viruses are the oldest genetic lineage while genotype 1 viruses are the most recent to diverge. The co-circulation of distinct genetic lineages of this virus in northwestern Australia, comprising the oldest and youngest lineages, supports previous findings that MVEV circulates endemically in this region.
Collapse
Affiliation(s)
- David T. Williams
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail: (DW); (SMD)
| | - Sinéad M. Diviney
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail: (DW); (SMD)
| | - Aziz-ur-Rahman Niazi
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Peter A. Durr
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Beng Hooi Chua
- Office of Research and Development, Curtin University, Perth, Western Australia, Australia
| | - Belinda Herring
- Infectious Diseases and Immunology, University of Sydney, New South Wales, Australia
| | - Alyssa Pyke
- Public Health Virology, Queensland Health Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, Westmead Hospital, University of Sydney and Institute for Clinical Pathology and Medical Research, New South Wales, Australia
| | - Cheryl A. Johansen
- Arbovirus Surveillance and Research Laboratory, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
803
|
Wang J, Zhang Z, Fu H, Zhang S, Liu J, Chang F, Li F, Zhao J, Yin D. Structural and evolutionary characteristics of fish-specific TLR19. FISH & SHELLFISH IMMUNOLOGY 2015; 47:271-279. [PMID: 26363234 DOI: 10.1016/j.fsi.2015.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) are important pattern recognition receptors in the innate immune system of fish. Although ten years have passed since the first identification, the systematic knowledge about fish-specific TLR19 is still far insufficient. In present study, a phylogenetic analysis showed that TLR19 belonged to family 11, and clustered with TLR20 and TLR11/12 on the evolutionary tree. TLR20 is the closest paralogue of TLR19. The ectodomain of TLR19 contains 24 leucine-rich repeat (LRR) modules. The electrostatic surface potential analysis indicated that the modeled structure of TLR19 ectodomain showed much stronger polarity on the ascending lateral surface than on the descending lateral surface. The ascending lateral surface with strong electrostatic surface potential possibly mainly participates in the ligand binding of TLR19 ectodomain. The quite small dN/dS value at the TLR19 locus showed that TLR19 was very conserved. Approximately one third codons in the coding sequence of TLR19 were subjected to significantly negative selection, whereas only 5 codons underwent significantly positive selection. Overall, these findings possibly help in deepening the understanding to fish-specific TLR19.
Collapse
Affiliation(s)
- Jinlan Wang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, PR China.
| | - Hui Fu
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Shangli Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Jing Liu
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Fen Chang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Fang Li
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
804
|
Fluid Spatial Dynamics of West Nile Virus in the United States: Rapid Spread in a Permissive Host Environment. J Virol 2015; 90:862-72. [PMID: 26512086 DOI: 10.1128/jvi.02305-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/24/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The introduction of West Nile virus (WNV) into North America in 1999 is a classic example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics, and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology, we sequenced the complete genomes of approximately 300 avian isolates sampled across the United States between 2001 and 2012. Phylogenetic analysis revealed a relatively star-like tree structure, indicative of explosive viral spread in the United States, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well-sampled avian species. The genome sequence data analyzed here also contain relatively little evidence for adaptive evolution, particularly of structural proteins, suggesting that most viral lineages are of similar fitness and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the United States. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers. IMPORTANCE How viruses spread in new host and geographic environments is central to understanding the emergence and evolution of novel infectious diseases and for predicting their likely impact. The emergence of the vector-borne West Nile virus (WNV) in North America in 1999 represents a classic example of this process. Using approximately 300 new viral genomes sampled from wild birds, we show that WNV experienced an explosive spread with little geographical or host constraints within birds and relatively low levels of adaptive evolution. From its introduction into the state of New York, WNV spread across the United States, reaching California and Florida within 4 years, a migration that is clearly reflected in our genomic sequence data, and with a general absence of distinct geographical clusters of bird viruses. However, some geographically distinct viral lineages were found to circulate in mosquitoes, likely reflecting their limited long-distance movement compared to avian species.
Collapse
|
805
|
Choi JY, Aquadro CF. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes. Genome Biol Evol 2015; 7:3097-114. [PMID: 26507797 PMCID: PMC4994752 DOI: 10.1093/gbe/evv207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Molecular Biology and Genetics, Cornell University
| | | |
Collapse
|
806
|
Vassilakos N, Simon V, Tzima A, Johansen E, Moury B. Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus. Mol Biol Evol 2015; 33:541-53. [PMID: 26503941 DOI: 10.1093/molbev/msv222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses.
Collapse
Affiliation(s)
- Nikon Vassilakos
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Aliki Tzima
- Laboratory of Virology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Elisabeth Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | - Benoît Moury
- INRA, UR407 Pathologie Végétale, Montfavet, France
| |
Collapse
|
807
|
Sunagar K, Moran Y. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals. PLoS Genet 2015; 11:e1005596. [PMID: 26492532 PMCID: PMC4619613 DOI: 10.1371/journal.pgen.1005596] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a ‘two-speed’ mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species–the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia–the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms. While the influence of positive selection in diversifying animal venoms is widely recognized, the role of purifying selection that conserves the amino acid sequence of venom components such as peptide toxins has never been considered. In addition to unraveling the unique strategies of evolution of toxin gene families in centipedes and spiders, which are amongst the first terrestrial venomous lineages, we highlight the significant role of purifying selection in shaping the composition of animal venoms. Analysis of numerous toxin families, spanning the breadth of the animal kingdom, has revealed a striking contrast between the evolution of venom in ancient and evolutionarily young animal groups. Our findings enable the postulation of a new theory of venom evolution. The proposed ‘two-speed’ mode of evolution of venom captures the fascinating evolutionary history and the dynamics of this complex biochemical cocktail.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (KS); (YM)
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (KS); (YM)
| |
Collapse
|
808
|
Dungan SZ, Kosyakov A, Chang BS. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment. Mol Biol Evol 2015; 33:323-36. [DOI: 10.1093/molbev/msv217] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
809
|
Zhang Y, Jalan N, Zhou X, Goss E, Jones JB, Setubal JC, Deng X, Wang N. Positive selection is the main driving force for evolution of citrus canker-causing Xanthomonas. THE ISME JOURNAL 2015; 9:2128-38. [PMID: 25689023 PMCID: PMC4579464 DOI: 10.1038/ismej.2015.15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
Understanding the evolutionary history and potential of bacterial pathogens is critical to prevent the emergence of new infectious bacterial diseases. Xanthomonas axonopodis subsp. citri (Xac) (synonym X. citri subsp. citri), which causes citrus canker, is one of the hardest-fought plant bacterial pathogens in US history. Here, we sequenced 21 Xac strains (14 XacA, 3 XacA* and 4 XacA(w)) with different host ranges from North America and Asia and conducted comparative genomic and evolutionary analyses. Our analyses suggest that acquisition of beneficial genes and loss of detrimental genes most likely allowed XacA to infect a broader range of hosts as compared with XacA(w) and XacA*. Recombination was found to have occurred frequently on the relative ancient branches, but rarely on the young branches of the clonal genealogy. The ratio of recombination/mutation ρ/θ was 0.0790±0.0005, implying that the Xac population was clonal in structure. Positive selection has affected 14% (395 out of 2822) of core genes of the citrus canker-causing Xanthomonas. The genes affected are enriched in 'carbohydrate transport and metabolism' and 'DNA replication, recombination and repair' genes (P<0.05). Many genes related to virulence, especially genes involved in the type III secretion system and effectors, are affected by positive selection, further highlighting the contribution of positive selection to the evolution of citrus canker-causing Xanthomonas. Our results suggest that both metabolism and virulence genes provide advantages to endow XacA with higher virulence and a wider host range. Our analysis advances our understanding of the genomic basis of specialization by positive selection in bacterial evolution.
Collapse
Affiliation(s)
- Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Neha Jalan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Xiaofeng Zhou
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| | - Erica Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Xiaoling Deng
- Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
810
|
Wright DJ, Brouwer L, Mannarelli ME, Burke T, Komdeur J, Richardson DS. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age. Behav Ecol 2015; 27:295-303. [PMID: 26792973 PMCID: PMC4718175 DOI: 10.1093/beheco/arv150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male-male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues.
Collapse
Affiliation(s)
- David J Wright
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK,; Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield, Sheffield S10 2TN, UK
| | - Lyanne Brouwer
- Evolution, Ecology & Genetics, Research School of Biology, The Australian National University , Canberra, Australian Capital Territory 0200 , Australia
| | - Maria-Elena Mannarelli
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield , Sheffield S10 2TN , UK
| | - Terry Burke
- Department of Animal and Plant Sciences, NERC Biomolecular Analysis Facility, University of Sheffield , Sheffield S10 2TN , UK
| | - Jan Komdeur
- Behavioural Ecology and Self-organization Group, Centre for Ecological and Evolutionary Studies, University of Groningen , PO Box 11103, 9700 CC Groningen , The Netherlands , and
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK,; Nature Seychelles, Centre for Environment and Education, The Sanctuary, PO Box 1310, Roche Caiman, Victoria, Mahé, Republic of Seychelles
| |
Collapse
|
811
|
Ujvari B, Casewell NR, Sunagar K, Arbuckle K, Wüster W, Lo N, O'Meally D, Beckmann C, King GF, Deplazes E, Madsen T. Widespread convergence in toxin resistance by predictable molecular evolution. Proc Natl Acad Sci U S A 2015; 112:11911-6. [PMID: 26372961 PMCID: PMC4586833 DOI: 10.1073/pnas.1511706112] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na(+)/K(+)-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na(+)/K(+)-ATPase H1-H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na(+)/K(+)-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom;
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Kevin Arbuckle
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Nathan Lo
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Evelyne Deplazes
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Madsen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia; School of Molecular Biosciences, University of Sydney, Sydney, NSW 2006, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
812
|
Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW. Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol 2015; 15:188. [PMID: 26373713 PMCID: PMC4571063 DOI: 10.1186/s12862-015-0465-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background β-defensins and cathelicidins are two families of cationic antimicrobial peptides (AMPs) with a broad range of antimicrobial activities that are key components of the innate immune system. Due to their important roles in host defense against rapidly evolving pathogens, the two gene families provide an ideal system for studying adaptive gene evolution. In this study we performed phylogenetic and selection analyses on β-defensins and cathelicidins from 53 avian species representing 32 orders to examine the evolutionary dynamics of these peptides in birds. Results and conclusions Avian β-defensins are found in a gene cluster consisting of 13 subfamiles. Nine of these are conserved as one to one orthologs in all birds, while the others (AvBD1, AvBD3, AvBD7 and AvBD14) are more subject to gene duplication or pseudogenisation events in specific avian lineages. Avian cathelicidins are found in a gene cluster consisting of three subfamilies with species-specific duplications and gene loss. Evidence suggested that the propiece and mature peptide domains of avian cathelicidins are possibly co-evolving in such a way that the cationicity of the mature peptide is partially neutralised by the negative charge of the propiece prior to peptide secretion (further evidence obtained by repeating the analyses on primate cathelicidins). Negative selection (overall mean dN < dS) was detected in most of the gene domains examined, conserving certain amino acid residues that may be functionally crucial for the avian β-defensins and cathelicidins, while episodic positive selection was also involved in driving the diversification of specific codon sites of certain AMPs in avian evolutionary history. These findings have greatly improved our understanding of the molecular evolution of avian AMPs and will be useful to understand their role in the avian innate immune response. Additionally, the large dataset of β-defensin and cathelicidin peptides may also provide a valuable resource for translational research and development of novel antimicrobial agents in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0465-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- RMC Gunn Building B19, Faculty of Veterinary Science, University of Sydney, Camperdown, 2006, NSW, Australia.
| | - Michael Dennis Prickett
- Dipartimento di Scienze della Vita-Edif. C11, Università di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
| | - Weronika Gutowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Katherine Belov
- RMC Gunn Building B19, Faculty of Veterinary Science, University of Sydney, Camperdown, 2006, NSW, Australia.
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
813
|
Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages. J Virol 2015; 89:11275-83. [PMID: 26311880 DOI: 10.1128/jvi.01571-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/23/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. IMPORTANCE There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal models and are associated with decreased symptoms in humans, no studies have proven with statistical significance that influenza virus evolves under positive selection to escape T cells. Here we use comparisons of human and swine influenza viruses to rigorously demonstrate that human influenza virus evolves under pressure to fix mutations in the nucleoprotein that promote escape from T cells. We further show that viruses with these mutations have a selective advantage since they are preferentially located on the "trunk" of the phylogenetic tree. Overall, our results show that CD8(+) T cells targeting nucleoprotein play an important role in shaping influenza virus evolution.
Collapse
|
814
|
Magalhães V, Abrantes J, Munõz-Pajares AJ, Esteves PJ. Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations. Immunogenetics 2015; 67:579-90. [PMID: 26307416 DOI: 10.1007/s00251-015-0866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) natural populations within the species native region, the Iberian Peninsula, are considered a reservoir of genetic diversity. Indeed, the Iberia was a Pleistocene refuge to the species and currently two subspecies are found in the peninsula (Oryctolagus cuniculus cuniculus and Oryctolagus cuniculus algirus). The genes of the major histocompatibility complex (MHC) have been substantially studied in wild populations due to their exceptional variability, believed to be pathogen driven. They play an important function as part of the adaptive immune system affecting the individual fitness and population viability. In this study, the MHC variability was assessed by analysing the exon 2 of the DQA gene in several European rabbit populations from Portugal, Spain and France and in domestic breeds. Twenty-eight DQA alleles were detected, among which 18 are described for the first time. The Iberian rabbit populations are well differentiated from the French population and domestic breeds. The Iberian populations retained the higher allelic diversity with the domestic breeds harbouring the lowest; in contrast, the DQA nucleotide diversity was higher in the French population. Signatures of positive selection were detected in four codons which are putative peptide-binding sites and have been previously detected in other mammals. The evolutionary relationships showed instances of trans-species polymorphism. Overall, our results suggest that the DQA in European rabbits is evolving under selection and genetic drift.
Collapse
Affiliation(s)
- Vanessa Magalhães
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Antonio Jesús Munõz-Pajares
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Centro de Investigação em Tecnologias da Saúde (CITS), ISPN, CESPU, Gandra, Portugal.
| |
Collapse
|
815
|
Rhoptry Proteins ROP5 and ROP18 Are Major Murine Virulence Factors in Genetically Divergent South American Strains of Toxoplasma gondii. PLoS Genet 2015; 11:e1005434. [PMID: 26291965 PMCID: PMC4546408 DOI: 10.1371/journal.pgen.1005434] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg) in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL) analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5 and ROP18 are conserved virulence factors in genetically diverse strains from North and South America, suggesting they evolved to resist innate immune defenses in ancestral T. gondii strains, and they have subsequently diversified under positive selection. Parasites and the hosts they infect are in constant struggle with each other for survival. On the one hand, the host needs to control parasite growth, while the parasite needs to evade the host response long enough to allow for efficient transmission. The parasite Toxoplasma gondii has evolved virulence factors ROP5 and ROP18 to evade innate immune mechanisms of its natural intermediate host, small rodents. These genes were initially identified in clonal parasite types isolated from Europe and North America, but the factors that contribute to virulence in genetically divergent South American strains have not been tested. Here we used forward and reverse genetic analyses to show that ROP5 and ROP18 are also major virulence factors in genetically distinct virulent South American strains. Given that ROP5 and ROP18 function as virulence factors in strains from North America, Europe, and South America they likely acquired their functions before Toxoplasma gondii radiated into its present global population structure.
Collapse
|
816
|
Stewart M, Hardy A, Barry G, Pinto RM, Caporale M, Melzi E, Hughes J, Taggart A, Janowicz A, Varela M, Ratinier M, Palmarini M. Characterization of a second open reading frame in genome segment 10 of bluetongue virus. J Gen Virol 2015; 96:3280-3293. [PMID: 26290332 PMCID: PMC4806581 DOI: 10.1099/jgv.0.000267] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses have often evolved overlapping reading frames in order to maximize their coding capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1 position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV, this ORF (named S10-ORF2 in this study) encodes a putative protein 50–59 residues in length and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2 expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not RNA translation, in transient transfection reporter assays. In both mammalian and insect cells, BTV S10-ORF2 deletion mutants (BTV8ΔS10-ORF2) displayed similar replication kinetics to wt virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease. Although further evidence is required for S10-ORF2 expression during infection, the data presented provide an initial characterization of this ORF.
Collapse
Affiliation(s)
- Meredith Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alexandra Hardy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Gerald Barry
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marco Caporale
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.,Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Teramo, Italy
| | - Eleonora Melzi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Anna Janowicz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Maxime Ratinier
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | |
Collapse
|
817
|
Berardi L, Battisti A, Negrisolo E. The allergenic protein Tha p 2 of processionary moths of the genus Thaumetopoea (Thaumetopoeinae, Notodontidae, Lepidoptera): Characterization and evolution. Gene 2015; 574:317-24. [PMID: 26275941 DOI: 10.1016/j.gene.2015.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/16/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The allergenic Tha p 2 protein has been extracted recently from the urticating setae of the pine processionary moth Thaumetopoea pityocampa. In the present paper, we test for the occurrence of this protein in other Thaumetopoeinae, with a particular focus on members of the genus Thaumetopoea, as well as unrelated moth species, to better understand the physicochemical properties of the protein, the nature of encoding genes and their evolutionary history. Tha p 2 is encoded by the intronless gene Tha p 2 that is restricted to the processionary moths (Thaumetopoeinae, Notodontidae, Lepidoptera). Most of the species present two isoforms of Tha p 2 that can be interpreted as the result of heterozygosity in the single gene. The only exception is represented by Thaumetopoea wilkinsoni, in which 20 different isoforms occur in a single specimen, leading to the conclusion that, at least in this species, multiple copies of Tha p 2 exist. Serine, glycine, cysteine and leucine are abundant in Tha p 2, a protein well conserved among processionary moths. The predicted secondary structures of Tha p 2 indicate the presence of 3 α-helices and six β-barrels. Finally, the evolution of the gene and the protein was characterized by a combination of positive and negative selection, with the latter being more evident.
Collapse
Affiliation(s)
- Laura Berardi
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, PD, Italy.
| | - Andrea Battisti
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, PD, Italy.
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Agripolis, 35020 Legnaro, PD, Italy.
| |
Collapse
|
818
|
Smith J, Smith N, Yu L, Paton IR, Gutowska MW, Forrest HL, Danner AF, Seiler JP, Digard P, Webster RG, Burt DW. A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance. BMC Genomics 2015; 16:574. [PMID: 26238195 PMCID: PMC4523026 DOI: 10.1186/s12864-015-1778-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 07/14/2015] [Indexed: 12/02/2022] Open
Abstract
Background Chickens are susceptible to infection with a limited number of Influenza A viruses and are a potential source of a human influenza pandemic. In particular, H5 and H7 haemagglutinin subtypes can evolve from low to highly pathogenic strains in gallinaceous poultry. Ducks on the other hand are a natural reservoir for these viruses and are able to withstand most avian influenza strains. Results Transcriptomic sequencing of lung and ileum tissue samples from birds infected with high (H5N1) and low (H5N2) pathogenic influenza viruses has allowed us to compare the early host response to these infections in both these species. Chickens (but not ducks) lack the intracellular receptor for viral ssRNA, RIG-I and the gene for an important RIG-I binding protein, RNF135. These differences in gene content partly explain the differences in host responses to low pathogenic and highly pathogenic avian influenza virus in chicken and ducks. We reveal very different patterns of expression of members of the interferon-induced transmembrane protein (IFITM) gene family in ducks and chickens. In ducks, IFITM1, 2 and 3 are strongly up regulated in response to highly pathogenic avian influenza, where little response is seen in chickens. Clustering of gene expression profiles suggests IFITM1 and 2 have an anti-viral response and IFITM3 may restrict avian influenza virus through cell membrane fusion. We also show, through molecular phylogenetic analyses, that avian IFITM1 and IFITM3 genes have been subject to both episodic and pervasive positive selection at specific codons. In particular, avian IFITM1 showed evidence of positive selection in the duck lineage at sites known to restrict influenza virus infection. Conclusions Taken together these results support a model where the IFITM123 protein family and RIG-I all play a crucial role in the tolerance of ducks to highly pathogenic and low pathogenic strains of avian influenza viruses when compared to the chicken. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1778-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Nikki Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Le Yu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Ian R Paton
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Maria Weronika Gutowska
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Heather L Forrest
- St. Jude Children's Research Hospital, Virology Division, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Angela F Danner
- St. Jude Children's Research Hospital, Virology Division, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - J Patrick Seiler
- St. Jude Children's Research Hospital, Virology Division, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Paul Digard
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Robert G Webster
- St. Jude Children's Research Hospital, Virology Division, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - David W Burt
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
819
|
Galipienso L, Martínez C, Willemsen A, Alfaro-Férnandez A, Ambrosio IFS, Davino S, Rubio L. Genetic variability and evolutionary analysis of parietaria mottle virus: role of selection and genetic exchange. Arch Virol 2015; 160:2611-6. [PMID: 26234185 DOI: 10.1007/s00705-015-2550-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
The genetic variability and evolution of parietaria mottle virus (PMoV) of the genus Ilarvirus was studied by analyzing nucleotide sequences of 2b and CP genes from isolates collected in different countries. Phylogenetic analysis showed that PMoV isolates clustered in different clades: one (clade I) composed of only Italian isolates and three clades (clades II-IV) including the Spanish isolates. The Greek isolate GrT-1 used in this study was in clade IV for the CP phylogenetic tree whereas it formed a separate branch in the 2b phylogenetic tree. The nucleotide sequence diversity of both the 2b and CP genes was low (0.062 ± 0.006 and 0.063 ± 0.006 for 2b and CP, respectively) but higher than those of other ilarviruses. Distribution of synonymous and nonsynonymous substitutions revealed that 2b and CP proteins are under purifying selection, with some positions under diversifying selection. Genetic exchange among Spanish isolates was also detected.
Collapse
Affiliation(s)
- Luis Galipienso
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain. .,Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139, Palermo, Italy.
| | - Carolina Martínez
- Programa de Biología y Biotecnología Vegetal, Universidad Autónoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Ana Alfaro-Férnandez
- Grupo de Virología, Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Isabel Font-San Ambrosio
- Grupo de Virología, Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Salvatore Davino
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139, Palermo, Italy.,Department of Agricultural and Forestry Science, University of Palermo, 90128, Palermo, Italy
| | - Luis Rubio
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.,Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139, Palermo, Italy
| |
Collapse
|
820
|
Thompson JR, Langenhan JL, Fuchs M, Perry KL. Genotyping of Cucumber mosaic virus isolates in western New York State during epidemic years: Characterization of an emergent plant virus population. Virus Res 2015; 210:169-77. [PMID: 26254084 DOI: 10.1016/j.virusres.2015.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
In the early 2000s an epidemic of cucumber mosaic virus (CMV) spread within the Midwestern and Eastern US affecting snap and dry bean (Phaseolus vulgaris L.) cultivation. Fifty one CMV isolates from this period were partially characterized from varied hosts by sequencing a section from each of the three genomic RNAs. Aside from one subgroup II strain from pepper, all isolates, including those from snap bean, fell within the IA subgroup. The nucleotide sequence diversity of virus populations sampled at multiple sites and at different years was significantly higher than that of a population from single site in a single year, although in general the number of polymorphisms was low (<11%). Complementary DNA (cDNA) clones of Bn57, a representative isolate from snap bean, were engineered for the production of infectious in vitro RNA transcripts initiated from a T7 promoter. Infections from these cDNAs resulted in symptoms consistent with those of the original field isolate, indicating that a satellite RNA is not involved in symptom expression in snap bean. These infectious clones were used to assess symptom determinants and the effects of virus infection on plant growth. Inoculations with pseudorecombinants derived from Bn57 and the non-bean infecting strain Fny confirmed RNA2 as a specific determinant for snap bean infection. Bn57, along with almost all isolates identified in this study contained the Y631 locus in the 2a protein, a determinant for systemic infection in bean. The presence of this locus extended to all non-bean hosts except two pepper infecting isolates. Infection by Bn57 in snap bean had a significant effect on pod number and mass with a 55 and 41 percent reduction in greenhouse assays, respectively. To our knowledge Bn57 is the first CMV strain isolated from P. vulgaris to be fully sequenced and cloned, providing a useful tool for analyses of CMV-host interactions.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA.
| | - Jamie L Langenhan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
| |
Collapse
|
821
|
Wang J, Zhang Z, Liu J, Li F, Chang F, Fu H, Zhao J, Yin D. Structural characterization and evolutionary analysis of fish-specific TLR27. FISH & SHELLFISH IMMUNOLOGY 2015; 45:940-945. [PMID: 26093204 DOI: 10.1016/j.fsi.2015.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/02/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
Toll-like receptors (TLRs) are critical components of the innate immune response of fish. In a phylogenetic analysis, TLR27 from three fish species, which belongs to TLR family 1, clustered with TLR14/18 and TLR25 on the evolutionary tree. The ectodomain of TLR27 is predicted to include 19 leucine-rich repeat (LRR) modules. Structural modeling showed that the TLR27 ectodomain can be divided into three distinctive sections. The lack of conserved asparagines on the concave surface of the central subdomain causes a structural transition in the middle of the ectodomain, forming a distinct hydrophobic pocket at the border between the central subdomain and the C-terminal subdomain. We infer that, like other functionally characterized TLRs in family 1, the hydrophobic pocket located between LRR11 and LRR12 participates in ligand recognition by TLR27. An evolutionary analysis showed that the dN/dS value at the TLR27 locus was very low. Approximately one quarter of the total number of TLR27 sites are under significant negatively selection pressure, whereas only two sites are under positive selection. Consequently, TLR27 is highly evolutionarily conserved and probably plays an extremely important role in the innate immune systems of fishes.
Collapse
Affiliation(s)
- Jinlan Wang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, PR China.
| | - Jing Liu
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Fang Li
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Fen Chang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Hui Fu
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, PR China
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
822
|
Khan I, Yang Z, Maldonado E, Li C, Zhang G, Gilbert MTP, Jarvis ED, O’Brien SJ, Johnson WE, Antunes A. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida. Mol Biol Evol 2015. [DOI: 10.1093/molbev/msv155] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
823
|
Torres-Dowdall J, Henning F, Elmer KR, Meyer A. Ecological and Lineage-Specific Factors Drive the Molecular Evolution of Rhodopsin in Cichlid Fishes. Mol Biol Evol 2015; 32:2876-82. [DOI: 10.1093/molbev/msv159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
824
|
Oellermann M, Strugnell JM, Lieb B, Mark FC. Positive selection in octopus haemocyanin indicates functional links to temperature adaptation. BMC Evol Biol 2015; 15:133. [PMID: 26142723 PMCID: PMC4491423 DOI: 10.1186/s12862-015-0411-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/04/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. RESULTS Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. CONCLUSIONS This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.
Collapse
Affiliation(s)
- Michael Oellermann
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Jan M Strugnell
- Department of Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Bernhard Lieb
- Institute of Zoology, Johannes Gutenberg-Universität, Müllerweg 6, 55099, Mainz, Germany.
| | - Felix C Mark
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| |
Collapse
|
825
|
Consuegra S, John E, Verspoor E, de Leaniz CG. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 2015; 47:58. [PMID: 26138253 PMCID: PMC4490732 DOI: 10.1186/s12711-015-0138-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) is frequently used in population genetic studies and is usually considered as a neutral marker. However, given the functional importance of the proteins encoded by the mitochondrial genome, and the prominent role of mitochondria in cellular energy production, the assumption of neutrality is increasingly being questioned. Results We tested for evidence of selection on the mitochondrial genome of the Atlantic salmon, which is a locally adapted and widely farmed species and is distributed across a large latitudinal cline. We analysed 20 independent regions of the salmon mtDNA that represented nine genes (ND1, ND2, ND3, COX1, COX2, ATP6, ND4, ND5, and CYTB). These 20 mtDNA regions were sequenced using a 454 approach from samples collected across the entire European range of this species. We found evidence of positive selection at the ND1, ND3 and ND4 genes, which is supported by at least two different codon-based methods and also by differences in the chemical properties of the amino acids involved. The geographical distribution of some of the mutations indicated to be under selection was not random, and some mutations were private to artic populations. We discuss the possibility that selection acting on the Atlantic salmon mtDNA genome might be related to the need for increased metabolic efficiency at low temperatures. Conclusions The analysis of sequences representing nine mitochondrial genes that are involved in the OXPHOS pathway revealed signatures of positive selection in the mitochondrial genome of the Atlantic salmon. The properties of the amino acids involved suggest that some of the mutations that were identified to be under positive selection might have functional implications, possibly in relation to metabolic efficiency. Experimental evidence, and better understanding of regional phylogeographic structuring, are needed to clarify the potential role of selection acting on the mitochondrial genome of Atlantic salmon and other locally adapted fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0138-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Consuegra
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, UK.
| | - Elgan John
- Department of BioSciences, Swansea University, Swansea, SA2 8PP, UK.
| | - Eric Verspoor
- Inverness College, University of Highlands and Islands, Inverness, IV1 1SA, Scotland, UK.
| | | |
Collapse
|
826
|
Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, Quintana JF, Brouqui JM, Bayne EH, Longdon B, Buck AH, Lazzaro BP, Akorli J, Haddrill PR, Obbard DJ. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster. PLoS Biol 2015; 13:e1002210. [PMID: 26172158 PMCID: PMC4501690 DOI: 10.1371/journal.pbio.1002210] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.
Collapse
Affiliation(s)
- Claire L. Webster
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Fergal M. Waldron
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Shaun Robertson
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Daisy Crowson
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Giada Ferrari
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Institute of Immunity and Infection Research, and the Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean-Michel Brouqui
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth H. Bayne
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Longdon
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy H. Buck
- Institute of Immunity and Infection Research, and the Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Penelope R. Haddrill
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Darren J. Obbard
- Institute of Evolutionary Biology and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
827
|
Wu NC, Olson CA, Du Y, Le S, Tran K, Remenyi R, Gong D, Al-Mawsawi LQ, Qi H, Wu TT, Sun R. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality. PLoS Genet 2015; 11:e1005310. [PMID: 26132554 PMCID: PMC4489113 DOI: 10.1371/journal.pgen.1005310] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. The analysis of sequence conservation is a common approach to identify functional residues within a protein. However, not all functional residues are conserved as natural evolution and species diversification permit continuous innovation of protein functionality through the retention of advantageous mutations. Non-conserved functional residues, which are often species-specific, may not be identified by conventional analysis of sequence conservation despite being biologically important. Here we described a novel approach to identify functional residues within a protein by coupling a high-throughput experimental fitness profiling approach with computational protein modeling. Our methodology is independent of sequence conservation and is applicable to any protein where structural information is available. In this study, we systematically mapped the functional residues on the influenza A PA protein and revealed that non-conserved functional residues are prevalent. Our results not only have significant implication on how functionality evolves during natural evolution, but also highlight the caveats when applying conservation-based approaches to identify functional residues within a protein.
Collapse
Affiliation(s)
- Nicholas C. Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - C. Anders Olson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Kevin Tran
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Roland Remenyi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Laith Q. Al-Mawsawi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
- AIDS Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
828
|
Fourment M, Holmes EC. Avian influenza virus exhibits distinct evolutionary dynamics in wild birds and poultry. BMC Evol Biol 2015; 15:120. [PMID: 26111936 PMCID: PMC4481119 DOI: 10.1186/s12862-015-0410-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Wild birds are the major reservoir hosts for influenza A viruses, occasionally transmitting to other species such as domesticated poultry. Despite an abundance of genomic data from avian influenza virus (AIV), little is known about whether AIV evolves differently in wild birds and poultry, although this is critical to revealing the dynamics and time-scale of viral evolution. In particular, because environmental (water-borne) transmission is more common in wild birds, which may reduce the number of replications per unit time, it is possible that evolutionary rates are systematically lower in wild birds than in poultry. RESULTS We estimated rates of nucleotide substitution in two AIV subtypes that are strongly associated with infections in wild birds - H4 and H6 - and compared these to rates in the H5N1 subtype that has circulated in poultry for almost two decades. Our analyses of three internal genes confirm that H4 and H6 viruses are evolving significantly more slowly than H5N1 viruses, suggesting that evolutionary rates of AIV are reduced in wild birds. This result was verified by the analysis of a poultry-associated H6 lineage that exhibited a markedly higher substitution rate than those H6 viruses circulating in wild birds. Interestingly, we also observed a significant difference in evolutionary rate between H4 and H6, despite frequent reassortment rate among them. CONCLUSIONS AIV experiences markedly different evolutionary dynamics between wild birds and poultry. These results suggest that rate heterogeneity among viral subtypes and ecological groupings should be taken into account when estimating evolutionary rates and divergence times.
Collapse
Affiliation(s)
- Mathieu Fourment
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
829
|
Bioinformatics-Aided Venomics. Toxins (Basel) 2015; 7:2159-87. [PMID: 26110505 PMCID: PMC4488696 DOI: 10.3390/toxins7062159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.
Collapse
|
830
|
Tracking the Emergence of Host-Specific Simian Immunodeficiency Virus env and nef Populations Reveals nef Early Adaptation and Convergent Evolution in Brain of Naturally Progressing Rhesus Macaques. J Virol 2015; 89:8484-96. [PMID: 26041280 DOI: 10.1128/jvi.01010-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED While a clear understanding of the events leading to successful establishment of host-specific viral populations and productive infection in the central nervous system (CNS) has not yet been reached, the simian immunodeficiency virus (SIV)-infected rhesus macaque provides a powerful model for the study of human immunodeficiency virus (HIV) intrahost evolution and neuropathogenesis. The evolution of the gp120 and nef genes, which encode two key proteins required for the establishment and maintenance of infection, was assessed in macaques that were intravenously inoculated with the same viral swarm and allowed to naturally progress to simian AIDS and potential SIV-associated encephalitis (SIVE). Longitudinal plasma samples and immune markers were monitored until terminal illness. Single-genome sequencing was employed to amplify full-length env through nef transcripts from plasma over time and from brain tissues at necropsy. nef sequences diverged from the founder virus faster than gp120 diverged. Host-specific sequence populations were detected in nef (~92 days) before they were detected in gp120 (~182 days). At necropsy, similar brain nef sequences were found in different macaques, indicating convergent evolution, while gp120 brain sequences remained largely host specific. Molecular clock and selection analyses showed weaker clock-like behavior and stronger selection pressure in nef than in gp120, with the strongest nef selection in the macaque with SIVE. Rapid nef diversification, occurring prior to gp120 diversification, indicates that early adaptation of nef in the new host is essential for successful infection. Moreover, the convergent evolution of nef sequences in the CNS suggests a significant role for nef in establishing neurotropic strains. IMPORTANCE The SIV-infected rhesus macaque model closely resembles HIV-1 immunopathogenesis, neuropathogenesis, and disease progression in humans. Macaques were intravenously infected with identical viral swarms to investigate evolutionary patterns in the gp120 and nef genes leading to the emergence of host-specific viral populations and potentially linked to disease progression. Although each macaque exhibited unique immune profiles, macaque-specific nef sequences evolving under selection were consistently detected in plasma samples at 3 months postinfection, significantly earlier than in gp120 macaque-specific sequences. On the other hand, nef sequences in brain tissues, collected at necropsy of two animals with detectable infection in the central nervous system (CNS), revealed convergent evolution. The results not only indicate that early adaptation of nef in the new host may be essential for successful infection, but also suggest that specific nef variants may be required for SIV to efficiently invade CNS macrophages and/or enhance macrophage migration, resulting in HIV neuropathology.
Collapse
|
831
|
Kyriakopoulou Z, Bletsa M, Tsakogiannis D, Dimitriou TG, Amoutzias GD, Gartzonika C, Levidiotou-Stefanou S, Markoulatos P. Molecular epidemiology and evolutionary dynamics of Echovirus 3 serotype. INFECTION GENETICS AND EVOLUTION 2015; 32:305-12. [DOI: 10.1016/j.meegid.2015.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 01/06/2023]
|
832
|
Global Diversity within and between Human Herpesvirus 1 and 2 Glycoproteins. J Virol 2015; 89:8206-18. [PMID: 26018161 DOI: 10.1128/jvi.01302-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are large-genome DNA viruses that establish a persistent infection in sensory neurons and commonly manifest with recurring oral or genital erosions that transmit virus. HSV encodes 12 predicted glycoproteins that serve various functions, including cellular attachment, entry, and egress. Glycoprotein G is currently the target of an antibody test to differentiate HSV-1 from HSV-2; however, this test has shown reduced capacity to differentiate HSV strains in East Africa. Until the recent availability of 26 full-length HSV-1 and 36 full-length HSV-2 sequences, minimal comparative information was available for these viruses. In this study, we use a variety of sequence analysis methods to compare all available sequence data for HSV-1 and HSV-2 glycoproteins, using viruses isolated in Europe, Asia, North America, the Republic of South Africa, and East Africa. We found numerous differences in diversity, nonsynonymous/synonymous substitution rates, and recombination rates between HSV-1 glycoproteins and their HSV-2 counterparts. Phylogenetic analysis revealed that while most global HSV-2 glycoprotein G sequences did not form clusters within or between continents, one clade (supported at 60.5%) contained 37% of the African sequences analyzed. Accordingly, sequences from this African subset contained unique amino acid signatures, not only in glycoprotein G, but also in glycoproteins I and E, which may account for the failure of sensitive antibody tests to distinguish HSV-1 from HSV-2 in some African individuals. Consensus sequences generated in the study can be used to improve diagnostic assays that differentiate HSV-1 from HSV-2 in global populations. IMPORTANCE Human herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are large DNA viruses associated with recurring oral or genital erosions that transmit virus. Up to 12 HSV-1 and HSV-2 glycoproteins are involved in HSV cell entry or are required for viral spread in animals, albeit some are dispensable for replication in vitro. The recent availability of comparable numbers of full-length HSV-1 and HSV-2 sequences enabled comparative analysis of gene diversity of glycoproteins within and between HSV types. Overall, we found less glycoprotein sequence diversity within HSV-2 than within the HSV-1 strains studied, while at the same time, several HSV-2 glycoproteins were evolving under less selective pressure. Because HSV glycoproteins are the focus of antibody tests to detect and differentiate between infections with the two strains and are constituents of vaccines in clinical-stage development, these findings will aid in refining the targets for diagnostic tests and vaccines.
Collapse
|
833
|
Lauber C, Kazem S, Kravchenko AA, Feltkamp MCW, Gorbalenya AE. Interspecific adaptation by binary choice at de novo polyomavirus T antigen site through accelerated codon-constrained Val-Ala toggling within an intrinsically disordered region. Nucleic Acids Res 2015; 43:4800-13. [PMID: 25904630 PMCID: PMC4446436 DOI: 10.1093/nar/gkv378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 11/30/2022] Open
Abstract
It is common knowledge that conserved residues evolve slowly. We challenge generality of this central tenet of molecular biology by describing the fast evolution of a conserved nucleotide position that is located in the overlap of two open reading frames (ORFs) of polyomaviruses. The de novo ORF is expressed through either the ALTO protein or the Middle T antigen (MT/ALTO), while the ancestral ORF encodes the N-terminal domain of helicase-containing Large T (LT) antigen. In the latter domain the conserved Cys codon of the LXCXE pRB-binding motif constrains codon evolution in the overlapping MT/ALTO ORF to a binary choice between Val and Ala codons, termed here as codon-constrained Val-Ala (COCO-VA) toggling. We found the rate of COCO-VA toggling to approach the speciation rate and to be significantly accelerated compared to the baseline rate of chance substitution in a large monophyletic lineage including all viruses encoding MT/ALTO and three others. Importantly, the COCO-VA site is located in a short linear motif (SLiM) of an intrinsically disordered region, a typical characteristic of adaptive responders. These findings provide evidence that the COCO-VA toggling is under positive selection in many polyomaviruses, implying its critical role in interspecific adaptation, which is unprecedented for conserved residues.
Collapse
Affiliation(s)
- Chris Lauber
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Siamaque Kazem
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands
| | - Alexander A Kravchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899 Moscow, Russia
| |
Collapse
|
834
|
Halldórsdóttir K, Árnason E. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species. PeerJ 2015; 3:e976. [PMID: 26038731 PMCID: PMC4451034 DOI: 10.7717/peerj.976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/05/2015] [Indexed: 12/27/2022] Open
Abstract
Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host's apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of balancing selection maintaining the variation. Using Bayesian and likelihood methods positive and negative selection is evident at sites in the conserved part of the genes and, to a larger extent, in the active part which also shows episodic diversifying selection, further supporting the argument for balancing selection.
Collapse
Affiliation(s)
- Katrín Halldórsdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Einar Árnason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
835
|
Fusaro A, Tassoni L, Hughes J, Milani A, Salviato A, Schivo A, Murcia PR, Bonfanti L, Cattoli G, Monne I. Evolutionary trajectories of two distinct avian influenza epidemics: Parallelisms and divergences. INFECTION GENETICS AND EVOLUTION 2015; 34:457-66. [PMID: 26003682 DOI: 10.1016/j.meegid.2015.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 11/27/2022]
Abstract
Influenza A virus can quickly acquire genetic mutations that may be associated with increased virulence, host switching or antigenic changes. To provide new insights into the evolutionary dynamics and the adaptive strategies of distinct avian influenza lineages in response to environmental and host factors, we compared two distinct avian influenza epidemics caused by the H7N1 and H7N3 subtypes that circulated under similar epidemiological conditions, including the same domestic species reared in the same densely populated poultry area for similar periods of time. The two strains appear to have experienced largely divergent evolution: the H7N1 viruses evolved into a highly pathogenic form, while the H7N3 did not. However, a more detailed molecular and evolutionary analysis revealed several common features: (i) the independent acquisition of 32 identical mutations throughout the entire genome; (ii) the evolution and persistence of two sole genetic groups with similar genetic characteristics; (iii) a comparable pattern of amino acid variability of the HA proteins during the low pathogenic epidemics; and (iv) similar rates of nucleotide substitutions. These findings suggest that the evolutionary trajectories of viruses with the same virulence level circulating in analogous epidemiological conditions may be similar. In addition, our deep sequencing analysis of 15 samples revealed that 17 of the 32 parallel mutations were already present at the beginning of the two epidemics, suggesting that fixation of these mutations may occur with different mechanisms, which may depend on the fitness gain provided by each mutation. This highlighted the difficulties in predicting the acquisition of mutations that can be correlated to viral adaptation to specific epidemiological conditions or to changes in virus virulence.
Collapse
Affiliation(s)
- Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy.
| | - Luca Tassoni
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Joseph Hughes
- MRC-University of Glasgow Center for Virus Research, 464 Bearsden Road, Glasgow, United Kingdom
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Annalisa Salviato
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Pablo R Murcia
- MRC-University of Glasgow Center for Virus Research, 464 Bearsden Road, Glasgow, United Kingdom
| | - Lebana Bonfanti
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'Università, 10, Legnaro (PD), Italy
| |
Collapse
|
836
|
Morales HE, Pavlova A, Joseph L, Sunnucks P. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 2015; 24:2820-37. [DOI: 10.1111/mec.13203] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Hernán E. Morales
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Alexandra Pavlova
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Leo Joseph
- Australian National Wildlife Collection; CSIRO National Facilities and Collections; GPO Box 1700 Canberra ACT 2601 Australia
| | - Paul Sunnucks
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| |
Collapse
|
837
|
Lin YC, Lu PL, Lin KH, Chu PY, Wang CF, Lin JH, Liu HF. Molecular Epidemiology and Phylogenetic Analysis of Human Adenovirus Caused an Outbreak in Taiwan during 2011. PLoS One 2015; 10:e0127377. [PMID: 25992619 PMCID: PMC4436380 DOI: 10.1371/journal.pone.0127377] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/15/2015] [Indexed: 12/19/2022] Open
Abstract
An outbreak of adenovirus has been surveyed in Taiwan in 2011. To better understand the evolution and epidemiology of adenovirus in Taiwan, full-length sequence of hexon and fiber coapsid protein was analyzed using series of phylogenetic and dynamic evolution tools. Six different serotypes were identified in this outbreak and the species B was predominant (HAdV-3, 71.50%; HAdV-7, 15.46%). The most frequent diagnosis was acute tonsillitis (54.59%) and bronchitis (47.83%). Phylogenetic analysis revealed that hexon protein gene sequences were highly conserved for HAdV-3 and HAdV-7 circulation in Taiwan. However, comparison of restriction fragment length polymorphism (RFLP) analysis and phylogenetic trees of fiber gene in HAdV-7 clearly indicated that the predominant genotype in Taiwan has shifted from 7b to 7d. Several positive selection sites were observed in hexon protein. The estimated nucleotide substitution rates of hexon protein of HAdV-3 and HAdV-7 were 0.234×10-3 substitutions/site/year (95% HPD: 0.387~0.095×10-3) and 1.107×10-3 (95% HPD: 0. 541~1.604) respectively; those of the fiber protein of HAdV-3 and HAdV-7 were 1.085×10-3 (95% HPD: 1.767~0.486) and 0.132×10-3 (95% HPD: 0.283~0.014) respectively. Phylodynamic analysis by Bayesian skyline plot (BSP) suggested that using individual gene to evaluate the effective population size might possibly cause miscalculation. In summary, the virus evolution is ongoing, and continuous surveillance of this virus evolution will contribute to the control of the epidemic.
Collapse
Affiliation(s)
- Yung-Cheng Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuei-Hsiang Lin
- Department of Clinical Laboratory, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Feng Wang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Hui Lin
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
- * E-mail: (HFL); (JHL)
| | - Hsin-Fu Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Center for General Education, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- * E-mail: (HFL); (JHL)
| |
Collapse
|
838
|
Azarian T, Lo Presti A, Giovanetti M, Cella E, Rife B, Lai A, Zehender G, Ciccozzi M, Salemi M. Impact of spatial dispersion, evolution, and selection on Ebola Zaire Virus epidemic waves. Sci Rep 2015; 5:10170. [PMID: 25973685 PMCID: PMC4431419 DOI: 10.1038/srep10170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/01/2015] [Indexed: 01/22/2023] Open
Abstract
Ebola virus Zaire (EBOV) has reemerged in Africa, emphasizing the global importance of this pathogen. Amidst the response to the current epidemic, several gaps in our knowledge of EBOV evolution are evident. Specifically, uncertainty has been raised regarding the potential emergence of more virulent viral variants through amino acid substitutions. Glycoprotein (GP), an essential component of the EBOV genome, is highly variable and a potential site for the occurrence of advantageous mutations. For this study, we reconstructed the evolutionary history of EBOV by analyzing 65 GP sequences from humans and great apes over diverse locations across epidemic waves between 1976 and 2014. We show that, although patterns of spatial dispersion throughout Africa varied, the evolution of the virus has largely been characterized by neutral genetic drift. Therefore, the radical emergence of more transmissible variants is unlikely, a positive finding, which is increasingly important on the verge of vaccine deployment.
Collapse
Affiliation(s)
- Taj Azarian
- College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Alessandra Lo Presti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Giovanetti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Cella
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Brittany Rife
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Alessia Lai
- Department of Biomedical and Clinical Science, Infectious Diseases and Immunopathology Section, ‘L. Sacco’ Hospital, University of Milan, Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Science, Infectious Diseases and Immunopathology Section, ‘L. Sacco’ Hospital, University of Milan, Milan, Italy
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- University Hospital Campus Bio-Medico, Italy
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
839
|
High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J Virol 2015; 89:7673-7695. [PMID: 25972543 DOI: 10.1128/jvi.00578-15] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human cytomegalovirus is a widespread pathogen of major medical importance. It causes significant morbidity and mortality in the immunocompromised and congenital infections can result in severe disabilities or stillbirth. Development of a vaccine is prioritized, but no candidate is close to release. Although correlations of viral genetic variability with pathogenicity are suspected, knowledge about strain diversity of the 235kb genome is still limited. In this study, 96 full-length human cytomegalovirus genomes from clinical isolates were characterized, quadrupling the available information for full-genome analysis. These data provide the first high-resolution map of human cytomegalovirus interhost diversity and evolution. We show that cytomegalovirus is significantly more divergent than all other human herpesviruses and highlight hotspots of diversity in the genome. Importantly, 75% of strains are not genetically intact, but contain disruptive mutations in a diverse set of 26 genes, including immunomodulative genes UL40 and UL111A. These mutants are independent from culture passaging artifacts and circulate in natural populations. Pervasive recombination, which is linked to the widespread occurrence of multiple infections, was found throughout the genome. Recombination density was significantly higher than in other human herpesviruses and correlated with strain diversity. While the overall effects of strong purifying selection on virus evolution are apparent, evidence of diversifying selection was found in several genes encoding proteins that interact with the host immune system, including UL18, UL40, UL142 and UL147. These residues may present phylogenetic signatures of past and ongoing virus-host interactions. IMPORTANCE Human cytomegalovirus has the largest genome of all viruses that infect humans. Currently, there is a great interest in establishing associations between genetic variants and strain pathogenicity of this herpesvirus. Since the number of publicly available full-genome sequences is limited, knowledge about strain diversity is highly fragmented and biased towards a small set of loci. Combined with our previous work, we have now contributed 101 complete genome sequences. We have used these data to conduct the first high-resolution analysis of interhost genome diversity, providing an unbiased and comprehensive overview of cytomegalovirus variability. These data are of major value to the development of novel antivirals and a vaccine and to identify potential targets for genotype-phenotype experiments. Furthermore, they have enabled a thorough study of the evolutionary processes that have shaped cytomegalovirus diversity.
Collapse
|
840
|
Silva G, Lima FP, Martel P, Castilho R. Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proc Biol Sci 2015; 281:rspb.2014.1093. [PMID: 25143035 DOI: 10.1098/rspb.2014.1093] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural populations of widely distributed organisms often exhibit genetic clinal variation over their geographical ranges. The European anchovy, Engraulis encrasicolus, illustrates this by displaying a two-clade mitochondrial structure clinally arranged along the eastern Atlantic. One clade has low frequencies at higher latitudes, whereas the other has an anti-tropical distribution, with frequencies decreasing towards the tropics. The distribution pattern of these clades has been explained as a consequence of secondary contact after an ancient geographical isolation. However, it is not unlikely that selection acts on mitochondria whose genes are involved in relevant oxidative phosphorylation processes. In this study, we performed selection tests on a fragment of 1044 bp of the mitochondrial cytochrome b gene using 455 individuals from 18 locations. We also tested correlations of six environmental features: temperature, salinity, apparent oxygen utilization and nutrient concentrations of phosphate, nitrate and silicate, on a compilation of mitochondrial clade frequencies from 66 sampling sites comprising 2776 specimens from previously published studies. Positive selection in a single codon was detected predominantly (99%) in the anti-tropical clade and temperature was the most relevant environmental predictor, contributing with 59% of the variance in the geographical distribution of clade frequencies. These findings strongly suggest that temperature is shaping the contemporary distribution of mitochondrial DNA clade frequencies in the European anchovy.
Collapse
Affiliation(s)
- Gonçalo Silva
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Fernando P Lima
- CIBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Paulo Martel
- Centro de Biomedicina Molecular e Estrutural Instituto de Biotecnologia e Bioengenharia (CBME-Associate Laboratory), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Rita Castilho
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
841
|
Jagadeeshan S, Coppard SE, Lessios HA. Evolution of gamete attraction molecules: evidence for purifying selection in speract and its receptor, in the pantropical sea urchin Diadema. Evol Dev 2015; 17:92-108. [PMID: 25627716 DOI: 10.1111/ede.12108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many free-spawning marine invertebrates, such as sea urchins, lack any courtship or assortative mating behavior. Mate recognition in such cases occur at the gametic level, and molecules present on the sperm and egg are major determinants of species-specific fertilization. These molecules must also coevolve in relation to each other in order to preserve functional integrity. When sea urchins release their gametes in seawater, diffusible molecules from the egg, termed sperm-activating peptides, activate and attract the sperm to swim toward the egg, initiating a series of interactions between the gametes. Although the compositions and diversity of such sperm-activating peptides have been characterized in a variety of sea urchins, little is known about the evolution of their genes. Here we characterize the genes encoding the sperm-activating peptide of the egg (speract) and its receptor on the sperm, and examine their evolutionary dynamics in the sea urchin genus Diadema, in the interest of determining whether they are involved in reproductive isolation between the species. We found evidence of purifying selection on several codon sites in both molecules and of selectively neutral evolution in others. The diffusible speract peptide that activates sperm is invariant across species, indicating that Diadema egg peptides do not discriminate between con- and hetero-specific sperm at this stage of the process. Speract and its receptor do not contribute to reproductive isolation in Diadema.
Collapse
|
842
|
Palser AL, Grayson NE, White RE, Corton C, Correia S, Ba Abdullah MM, Watson SJ, Cotten M, Arrand JR, Murray PG, Allday MJ, Rickinson AB, Young LS, Farrell PJ, Kellam P. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J Virol 2015; 89:5222-37. [PMID: 25787276 PMCID: PMC4442510 DOI: 10.1128/jvi.03614-14] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/08/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) infects most of the world's population and is causally associated with several human cancers, but little is known about how EBV genetic variation might influence infection or EBV-associated disease. There are currently no published wild-type EBV genome sequences from a healthy individual and very few genomes from EBV-associated diseases. We have sequenced 71 geographically distinct EBV strains from cell lines, multiple types of primary tumor, and blood samples and the first EBV genome from the saliva of a healthy carrier. We show that the established genome map of EBV accurately represents all strains sequenced, but novel deletions are present in a few isolates. We have increased the number of type 2 EBV genomes sequenced from one to 12 and establish that the type 1/type 2 classification is a major feature of EBV genome variation, defined almost exclusively by variation of EBNA2 and EBNA3 genes, but geographic variation is also present. Single nucleotide polymorphism (SNP) density varies substantially across all known open reading frames and is highest in latency-associated genes. Some T-cell epitope sequences in EBNA3 genes show extensive variation across strains, and we identify codons under positive selection, both important considerations for the development of vaccines and T-cell therapy. We also provide new evidence for recombination between strains, which provides a further mechanism for the generation of diversity. Our results provide the first global view of EBV sequence variation and demonstrate an effective method for sequencing large numbers of genomes to further understand the genetics of EBV infection. IMPORTANCE Most people in the world are infected by Epstein-Barr virus (EBV), and it causes several human diseases, which occur at very different rates in different parts of the world and are linked to host immune system variation. Natural variation in EBV DNA sequence may be important for normal infection and for causing disease. Here we used rapid, cost-effective sequencing to determine 71 new EBV sequences from different sample types and locations worldwide. We showed geographic variation in EBV genomes and identified the most variable parts of the genome. We identified protein sequences that seem to have been selected by the host immune system and detected variability in known immune epitopes. This gives the first overview of EBV genome variation, important for designing vaccines and immune therapy for EBV, and provides techniques to investigate relationships between viral sequence variation and EBV-associated diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/genetics
- Carrier State/virology
- Cell Line, Tumor
- DNA, Viral/genetics
- Epitopes, T-Lymphocyte/genetics
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/genetics
- Genetic Variation
- Genome, Viral
- Herpesvirus 4, Human/classification
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Phylogeny
- Polymorphism, Single Nucleotide
- Recombination, Genetic
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- Anne L Palser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Robert E White
- Section of Virology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Craig Corton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Samantha Correia
- Section of Virology, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Simon J Watson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Matthew Cotten
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - John R Arrand
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin J Allday
- Section of Virology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Alan B Rickinson
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lawrence S Young
- University of Warwick, University House, Coventry, United Kingdom
| | - Paul J Farrell
- Section of Virology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom Division of Infection and Immunity, UCL, London, United Kingdom
| |
Collapse
|
843
|
Melillo D, Varriale S, Giacomelli S, Natale L, Bargelloni L, Oreste U, Pinto MR, Coscia MR. Evolution of the complement system C3 gene in Antarctic teleosts. Mol Immunol 2015; 66:299-309. [PMID: 25909494 DOI: 10.1016/j.molimm.2015.03.247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Notothenioidei are typical Antarctic teleosts evolved to adapt to the very low temperatures of the Antarctic seas. Aim of the present paper is to investigate sequence and structure of C3, the third component of the complement system of the notothenioid Trematomus bernacchii and Chionodraco hamatus. We determined the complete nucleotide sequence of two C3 isoforms of T. bernacchii and a single C3 isoform of C. hamatus. These sequences were aligned against other homologous teleost sequences to check for the presence of diversifying selection. Evidence for positive selection was observed in the evolutionary lineage of Antarctic teleost C3 sequences, especially in that of C. hamatus, the most recently diverged species. Adaptive selection affected numerous amino acid positions including three residues located in the anaphylatoxin domain. In an attempt to evaluate the link between sequence variants and specific structural features, we constructed molecular models of Antarctic teleost C3s, of their proteolytic fragments C3b and C3a, and of the corresponding molecules of the phylogenetically related temperate species Epinephelus coioides, using human crystallographic structures as templates. Subsequently, we compared dynamic features of these models by molecular dynamics simulations and found that the Antarctic C3s models show higher flexibility, which likely allows for more pronounced movements of both the TED domain in C3b and the carboxyl-terminal region of C3a. As such dynamic features are associated to positively selected sites, it appears that Antarctic teleost C3 molecules positively evolved toward an increased flexibility, to cope with low kinetic energy levels of the Antarctic marine environment.
Collapse
Affiliation(s)
- Daniela Melillo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (SZN), Italy
| | - Sonia Varriale
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Stefano Giacomelli
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Lenina Natale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (SZN), Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Umberto Oreste
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Rosaria Pinto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (SZN), Italy
| | - Maria Rosaria Coscia
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
844
|
Tracy KE, Kiemnec-Tyburczy KM, DeWoody JA, Parra-Olea G, Zamudio KR. Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex. Immunogenetics 2015; 67:323-35. [PMID: 25846208 DOI: 10.1007/s00251-015-0835-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host's acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.
Collapse
Affiliation(s)
- Karen E Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA,
| | | | | | | | | |
Collapse
|
845
|
Abstract
Numerous computational methods exist to assess the mode and strength of natural selection in protein-coding sequences, yet how distinct methods relate to one another remains largely unknown. Here, we elucidate the relationship between two widely used phylogenetic modeling frameworks: dN/dS models and mutation-selection (MutSel) models. We derive a mathematical relationship between dN/dS and scaled selection coefficients, the focal parameters of MutSel models, and use this relationship to gain deeper insight into the behaviors, limitations, and applicabilities of these two modeling frameworks. We prove that, if all synonymous changes are neutral, standard MutSel models correspond to dN/dS ≤ 1. However, if synonymous codons differ in fitness, dN/dS can take on arbitrarily high values even if all selection is purifying. Thus, the MutSel modeling framework cannot necessarily accommodate positive, diversifying selection, while dN/dS cannot distinguish between purifying selection on synonymous codons and positive selection on amino acids. We further propose a new benchmarking strategy of dN/dS inferences against MutSel simulations and demonstrate that the widely used Goldman-Yang-style dN/dS models yield substantially biased dN/dS estimates on realistic sequence data. In contrast, the less frequently used Muse-Gaut-style models display much less bias. Strikingly, the least-biased and most precise dN/dS estimates are never found in the models with the best fit to the data, measured through both AIC and BIC scores. Thus, selecting models based on goodness-of-fit criteria can yield poor parameter estimates if the models considered do not precisely correspond to the underlying mechanism that generated the data. In conclusion, establishing mathematical links among modeling frameworks represents a novel, powerful strategy to pinpoint previously unrecognized model limitations and strengths.
Collapse
Affiliation(s)
- Stephanie J Spielman
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute of Cellular and Molecular Biology, The University of Texas at Austin
| | - Claus O Wilke
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute of Cellular and Molecular Biology, The University of Texas at Austin
| |
Collapse
|
846
|
Neves F, Abrantes J, Lissovsky AA, Esteves PJ. Pseudogenization of CCL14 in the Ochotonidae (pika) family. Innate Immun 2015; 21:647-54. [PMID: 25817712 DOI: 10.1177/1753425915577455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/23/2015] [Indexed: 12/15/2022] Open
Abstract
The interaction between chemokines and their receptors is crucial for inflammatory cell trafficking. CCL14 binds with high affinity to CCR5. In leporids, CCR5 underwent gene conversion with CCR2. The study of CCR5 ligands in leporid species showed that CCL8 is pseudogenized, while CCL3, CCL4 and CCL5 are functional. Here, we study the evolution of CCL14 in mammals with emphasis in the order Lagomorpha. By employing maximum likelihood methods we detected six sites under positive selection. Some of these sites are located in regions crucial for CCL14 activation and binding to receptors. Sequencing of CCL14 in Ochotona species showed that O. princeps, O. pallasi, O. alpina and O. turuchanensis have a mutation at the start codon (Met > Thr), while O. hoffmanni, O. mantchurica, O. dauurica and O. rufescens present the mammalian conserved Met. Ochotona hyperborea has the two alleles. In O. pusilla, CCL14 is a pseudogene due to a seven base pair insertion. Like CCL3, CCL4 and CCL5, CCL14 is functional in all leporids but in the Ochotonidae family it underwent a pseudogenization process. This suggests that CCL14 has an important biological role in other mammals by evolving under positive selection that has been lost in Ochotonidae (subgenera Pika and Lagotona).
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Vairão, Portugal UMIB - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - UPorto, Porto, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Vairão, Portugal
| | - Andrey A Lissovsky
- Zoological Museum of Moscow State University, B. Nikitskaya, 6, Moscow 125009, Russia
| | - Pedro José Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Vairão, Portugal CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
847
|
Padhi A, Ma L. Time-dependent selection pressure on two arthropod-borne RNA viruses in the same serogroup. INFECTION GENETICS AND EVOLUTION 2015; 32:255-64. [PMID: 25801608 DOI: 10.1016/j.meegid.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/11/2015] [Accepted: 03/15/2015] [Indexed: 12/20/2022]
Abstract
Understanding the genetic basis of viral adaptation to taxonomically diverse groups of host species inhabiting different eco-climatic zones is crucial for the discovery of factors underpinning the successful establishment of these infectious pathogens in new hosts/environments. To gain insights into the dynamics of nonsynonymous (dN) and synonymous substitutions (dS) and the ratio between the two (ω=dN/dS), we analyzed the complete nucleotide coding sequence data of the M segment, which encodes glycoproteins of two negative-sense RNA viruses, Akabane virus (AKV) and Schmallenberg virus (SBV) that belong to the same serogroup. While AKV is relatively older and has been circulating in ruminant populations since 1970s, SBV was first reported in 2011. The ω was estimated to be 1.67 and 0.09 for SBV and AKV, respectively, and the estimated mutation rate of SBV is at least 25 times higher than that of AKV. Given the different evolutionary stages of the two viruses, most of the slightly deleterious mutations were likely purged out or kept in low frequency in the AKV genome, whereas positive selection together with the accumulation of slightly deleterious mutations might contribute to such an inflated mutation rate of SBV. The evolutionary distance (d) is nonlinearly and negatively correlated with ω, but is positively correlated with dN and dS. Collectively, the different patterns in ω, dN, dS, and d between AKV and SBV identified in this study provide empirical evidence for a time-dependent selection pressure.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
848
|
Sequencing and analysis of globally obtained human respiratory syncytial virus A and B genomes. PLoS One 2015; 10:e0120098. [PMID: 25793751 PMCID: PMC4368745 DOI: 10.1371/journal.pone.0120098] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level. Methods We collected RSV samples and isolates from Mexico, Argentina, Belgium, Italy, Germany, Australia, South Africa, and the USA from the years 1998-2010. Both Sanger and next-generation sequencing with the Illumina and 454 platforms were used to sequence the whole genomes of RSV A and B. Phylogenetic analyses were performed using the Bayesian and maximum likelihood methods of phylogenetic inference. Results We sequenced the genomes of 34 RSVA and 23 RSVB viruses. Phylogenetic analysis showed that the RSVA genome evolves at an estimated rate of 6.72 × 10-4 substitutions/site/year (95% HPD 5.61 × 10-4 to 7.6 × 10-4) and for RSVB the evolutionary rate was 7.69 × 10-4 substitutions/site/year (95% HPD 6.81 × 10-4 to 8.62 × 10-4). We found multiple clades co-circulating globally for both RSV A and B. The predominant clades were GA2 and GA5 for RSVA and BA for RSVB. Conclusions Our analyses showed that RSV circulates on a global scale with the same predominant clades of viruses being found in countries around the world. However, the distribution of clades can change rapidly as new strains emerge. We did not observe a strong spatial structure in our trees, with the same three main clades of RSV co-circulating globally, suggesting that the evolution of RSV is not strongly regionalized.
Collapse
|
849
|
Jouiaei M, Sunagar K, Federman Gross A, Scheib H, Alewood PF, Moran Y, Fry BG. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. Mol Biol Evol 2015; 32:1598-610. [PMID: 25757852 DOI: 10.1093/molbev/msv050] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically characterized cnidarian toxin families, including peptide neurotoxins (voltage-gated Na(+) and K(+) channel-targeting toxins: NaTxs and KTxs, respectively), pore-forming toxins (actinoporins, aerolysin-related toxins, and jellyfish toxins), and the newly discovered small cysteine-rich peptides (SCRiPs). We show that despite long evolutionary histories, most cnidarian toxins remain conserved under the strong influence of negative selection-a finding that is in striking contrast to the rapid evolution of toxin families in evolutionarily younger lineages, such as cone snails and advanced snakes. In contrast to the previous suggestions that implicated SCRiPs in the biomineralization process in corals, we demonstrate that they are potent neurotoxins that are likely involved in the envenoming function, and thus represent the first family of neurotoxins from corals. We also demonstrate the common evolutionary origin of type III KTxs and NaTxs in sea anemones. We show that type III KTxs have evolved from NaTxs under the regime of positive selection, and likely represent a unique evolutionary innovation of the Actinioidea lineage. We report a correlation between the accumulation of episodically adaptive sites and the emergence of novel pharmacological activities in this rapidly evolving neurotoxic clade.
Collapse
Affiliation(s)
- Mahdokht Jouiaei
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aya Federman Gross
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Holger Scheib
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bryan G Fry
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
850
|
Abstract
Hepatitis C virus (HCV) infects over 170 million people worldwide and is a leading cause of liver disease and cancer. The virus has a 9,650-nt, single-stranded, messenger-sense RNA genome that is infectious as an independent entity. The RNA genome has evolved in response to complex selection pressures, including the need to maintain structures that facilitate replication and to avoid clearance by cell-intrinsic immune processes. Here we used high-throughput, single-nucleotide resolution information to generate and functionally test data-driven structural models for three diverse HCV RNA genomes. We identified, de novo, multiple regions of conserved RNA structure, including all previously characterized cis-acting regulatory elements and also multiple novel structures required for optimal viral fitness. Well-defined RNA structures in the central regions of HCV genomes appear to facilitate persistent infection by masking the genome from RNase L and double-stranded RNA-induced innate immune sensors. This work shows how structure-first comparative analysis of entire genomes of a pathogenic RNA virus enables comprehensive and concise identification of regulatory elements and emphasizes the extensive interrelationships among RNA genome structure, viral biology, and innate immune responses.
Collapse
|