901
|
Sivakumar N, Warner HV, Peirce SM, Lazzara MJ. A computational modeling approach for predicting multicell spheroid patterns based on signaling-induced differential adhesion. PLoS Comput Biol 2022; 18:e1010701. [PMID: 36441822 PMCID: PMC9747056 DOI: 10.1371/journal.pcbi.1010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022] Open
Abstract
Physiological and pathological processes including embryogenesis and tumorigenesis rely on the ability of individual cells to work collectively to form multicell patterns. In these heterogeneous multicell systems, cell-cell signaling induces differential adhesion between cells that leads to tissue-level patterning. However, the sensitivity of pattern formation to changes in the strengths of signaling or cell adhesion processes is not well understood. Prior work has explored these issues using synthetically engineered heterogeneous multicell spheroid systems, in which cell subpopulations engage in bidirectional intercellular signaling to regulate the expression of different cadherins. While engineered cell systems provide excellent experimental tools to observe pattern formation in cell populations, computational models of these systems may be leveraged to explore more systematically how specific combinations of signaling and adhesion parameters can drive the emergence of unique patterns. We developed and validated two- and three-dimensional agent-based models (ABMs) of spheroid patterning for previously described cells engineered with a bidirectional signaling circuit that regulates N- and P-cadherin expression. Systematic exploration of model predictions, some of which were experimentally validated, revealed how cell seeding parameters, the order of signaling events, probabilities of induced cadherin expression, and homotypic adhesion strengths affect pattern formation. Unsupervised clustering was also used to map combinations of signaling and adhesion parameters to these unique spheroid patterns predicted by the ABM. Finally, we demonstrated how the model may be deployed to design new synthetic cell signaling circuits based on a desired final multicell pattern.
Collapse
Affiliation(s)
- Nikita Sivakumar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Helen V. Warner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew J. Lazzara
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
902
|
Yan J, Xie B, Zou S, Huang L, Tian Y, Li J, Peng Z, Liu Z, Ma B, Li L. Value of biomarkers in epithelial-mesenchymal transition models of liver cancer under different interventions: a meta-analysis. Future Oncol 2022; 18:4031-4045. [PMID: 36621837 DOI: 10.2217/fon-2022-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: A meta-analysis was conducted to evaluate the effectiveness of crucial biomarkers in HepG2 cells during epithelial-mesenchymal transformation induced by multiple interventions. Methods: PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, Wan Fang Data and VIP databases were systematically searched from inception to 14 June 2020, by two independent reviewers. Results: A total of 58 studies were included in the meta-analysis. E-cadherin, N-cadherin and vimentin performed well under medicinal interventions. E-cadherin worked well under genetic interventions. E-cadherin and N-cadherin also performed significantly well under tumor microenvironment interventions. Under ncRNA interventions, the expression of E-cadherin significantly changed. Conclusion: Different sets of biomarkers should be selected under various interventions based on their performance.
Collapse
Affiliation(s)
- Jing Yan
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.,Evidence-Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.,Department of Clinical Laboratory Center, Gansu Provincial Maternity and Child-care Hospital (Gansu Province Central Hospital), Lanzhou, Gansu, 730000, China
| | - Bei Xie
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Shuli Zou
- Department of medicine, Kingsbrook Jewish Medical Center, 585 Schenectady ave, Brooklyn, NY 11203, USA
| | - Li Huang
- Department of Pediatric Nephrology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ye Tian
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhiheng Peng
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhuan Liu
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Bin Ma
- Evidence-Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Linjing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
903
|
Natural quinazolinones: From a treasure house to promising anticancer leads. Eur J Med Chem 2022; 245:114915. [DOI: 10.1016/j.ejmech.2022.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
904
|
Liu Z, Chen M, Sun Y, Li X, Cao L, Ma X. Transforming growth factor-β receptor type 2 is required for heparin-binding protein-induced acute lung injury and vascular leakage for transforming growth factor-β/Smad/Rho signaling pathway activation. FASEB J 2022; 36:e22580. [PMID: 36189652 DOI: 10.1096/fj.202200228rrrrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Heparin-binding protein (HBP), as a granule protein secreted by polymorphonuclear neutrophils, participates in the pathophysiological process of sepsis. It has been reported that HBP is a biomarker of sepsis related to the severity of septic shock and organ dysfunction. HBP binds to vascular endothelial cells as a primary target site. However, it is still unclear whether HBP-binding protein receptors exist on the surface of endothelial cells. The effect of HBP on vascular permeability in sepsis and its mechanism needs to be explored. We conducted in vivo and in vitro studies and demonstrated that HBP binds to transforming growth factor-β receptor type 2 (TGF-β-R2) as a ligand. Glutathione S-transferase pull-down analysis revealed that HBP mainly interacts with the extracellular domain of TGF-β-R2. HBP induces acute lung injury and vascular leakage via activation of the TGF-β/SMAD2/3 signaling pathway. A permeability assay suggested that TGF-β-R2 is necessary for HBP-induced increased permeability. We also defined the role of HBP and its potential membrane receptor TGF-β-R2 in the blood-gas barrier in the pathogenesis of HBP-related acute lung injury.
Collapse
Affiliation(s)
- Zixuan Liu
- Department of Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China.,Department of Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Mingming Chen
- Department of Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Yini Sun
- Department of Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Xu Li
- Department of Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Liu Cao
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
905
|
Liu W, Xin M, Li Q, Sun L, Han X, Wang J. IL-17A Promotes the Migration, Invasion and the EMT Process of Lung Cancer Accompanied by NLRP3 Activation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7841279. [PMID: 36349316 PMCID: PMC9637470 DOI: 10.1155/2022/7841279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022]
Abstract
Background Lung cancer is a deadly cancer worldwide, and its pathogenesis and treatment methods require continuous research and exploration. As a representative factor of adaptive immunity, the role of interleukin-17A (IL-17A) in lung cancer is still unclear. The purpose of the present study was to investigate the effect of IL-17A on the biological behaviour of lung cancer cells and the relative mechanism. Methods The human lung adenocarcinoma A549 and H1299 cell lines were used for in vitro study. The effects of IL-17A on cell proliferation, migration and invasion were assessed by CCK-8 assay, wound-healing assay, transwell invasion assay and real-time cell analysis (RTCA). The expression levels of marker proteins in the process of epithelial-mesenchymal transition (EMT) were detected by western blot analysis. Caspase-1 activity and the concentration of IL-1β after NLRP3 inflammasome activation were measured by a Caspase-1 Activity Assay Kit and an IL-1β ELISA kit, respectively. Results Compared to the control group, IL-17A treatment did not affect the proliferation of A549 and H1299 cells in vitro, but it promoted cell migration, invasion and the EMT process. IL-17A treatment increased NLRP3 expression, caspase-1 activity and IL-1β level. Blockade of NLRP3 alleviated the cell migration, invasion and the EMT process induced by IL-17A. Conclusions In conclusion, these findings indicated that NLRP3 participates in the migration, invasion and the EMT process of IL-17A-stimulated lung cells in vitro.
Collapse
Affiliation(s)
- Wenping Liu
- Department of Rheumatology & Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miaomiao Xin
- Department of Rheumatology & Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Li
- Department of Rheumatology & Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linqian Sun
- Department of Rheumatology & Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Han
- Department of Rheumatology & Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jibo Wang
- Department of Rheumatology & Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
906
|
Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation. Cell Death Dis 2022; 13:905. [PMID: 36302751 PMCID: PMC9613690 DOI: 10.1038/s41419-022-05317-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022]
Abstract
Cellular senescence is characterized by a tumor-suppressive program as well as a pro-inflammatory secretome. Neutrophils constitute significant compositions of malignancies and play key roles in tumor development. However, the role of senescent neutrophils in cancer progression is presently unexplored. Here, we demonstrate that neutrophils display enhanced senescence in breast cancer patients receiving chemotherapy. The senescent neutrophils produce increased number of exosomes, which confer drug resistance to tumor cells in vitro and in vivo. Mechanistically, senescent neutrophils-derived exosomal piRNA-17560 enhances the expression of fat mass and obesity-associated protein (FTO) in breast cancer cells. The upregulation of FTO further strengthens ZEB1 transcripts stability and expression by decreasing N6-methyladenosine (m6A) RNA methylation, leading to chemoresistance and epithelial-mesenchymal transition (EMT) of tumor cells. Clinically, the level of exosomal piR-17560 correlates with poor chemotherapy response in patients with breast cancer. In addition, YTHDF2 is essential for the posttranscriptional regulation of ZEB1 by piRNA-17560/FTO signaling. Senescent neutrophils secret exosomal piR-17560 in a STAT3-dependent manner. Altogether, this study suggests that senescent neutrophils-derived exosomal piR-17560 confers chemoresistance to tumor cells and senescent neutrophils may serve as a potential therapeutic target in breast cancer.
Collapse
|
907
|
Xin W, Zhang J, Zhang H, Ma X, Zhang Y, Li Y, Wang F. CLCA2 overexpression suppresses epithelial-to-mesenchymal transition in cervical cancer cells through inactivation of ERK/JNK/p38-MAPK signaling pathways. BMC Mol Cell Biol 2022; 23:44. [PMID: 36280802 PMCID: PMC9594891 DOI: 10.1186/s12860-022-00440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is an important malignant tumor threatening the physical and mental health of women in the world. As a new calcium activated chloride channel protein, calcium activated chloride channel (CLCA2) plays an important role in tumorigenesis and development. But its role and exact regulatory mechanism in cervical cancer are still unclear. In our study, we found CLCA2 was significantly decreased in cervical cancer cells, and overexpression of CLCA2 inhibited the proliferation, migration and invasion, and promotes apoptosis of cervical cancer cells, and CLCA2 inhibited EMT (Epithelial-mesenchymal transition) through an p38 / JNK / ERK pathway. The results in vivo were consistent with those in vitro. In conclusion, overexpression of CLCA2 inhibited the progression of cervical cancer in vivo and in vitro. This may provide a theoretical basis for CLCA2 as a new indicator of clinical diagnosis and prognosis of cervical cancer or as a potential target of drug therapy.
Collapse
Affiliation(s)
- Wenhu Xin
- grid.411294.b0000 0004 1798 9345Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, 730030 China ,grid.411294.b0000 0004 1798 9345The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000 China
| | - Jian Zhang
- grid.411294.b0000 0004 1798 9345The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000 China
| | - Haibin Zhang
- grid.411294.b0000 0004 1798 9345Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, 730030 China
| | - Xueyao Ma
- grid.411294.b0000 0004 1798 9345Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, 730030 China
| | - Yunzhong Zhang
- grid.411294.b0000 0004 1798 9345Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, 730030 China
| | - Yufeng Li
- grid.411294.b0000 0004 1798 9345Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, 730030 China
| | - Fang Wang
- grid.411294.b0000 0004 1798 9345The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000 China ,grid.411294.b0000 0004 1798 9345Department of Reproductive Medicine, Lanzhou University Second Hospital, No.82, Cuiying Road, Chengguan District, Lanzhou, 730030 China
| |
Collapse
|
908
|
Choi Y, Park NJY, Le TM, Lee E, Lee D, Nguyen HDT, Cho J, Park JY, Han HS, Chong GO. Immune Pathway and Gene Database (IMPAGT) Revealed the Immune Dysregulation Dynamics and Overactivation of the PI3K/Akt Pathway in Tumor Buddings of Cervical Cancer. Curr Issues Mol Biol 2022; 44:5139-5152. [PMID: 36354662 PMCID: PMC9688570 DOI: 10.3390/cimb44110350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 08/31/2023] Open
Abstract
Tumor budding (TB) is a small cluster of malignant cells at the invasive front of a tumor. Despite being an adverse prognosis marker, little research has been conducted on the tumor immune microenvironment of tumor buddings, especially in cervical cancer. Therefore, RNA sequencing was performed using 21 formalin-fixed, paraffin-embedded slides of cervical tissues, and differentially expressed genes (DEGs) were analyzed. Immune Pathway and Gene Database (IMPAGT) was generated for immune profiling. "Pathway in Cancer" was identified as the most enriched pathway for both up- and downregulated DEGs. Kyoto Encyclopedia of Genes and Genomes Mapper and Gene Ontology further revealed the activation of the PI3K/Akt signaling pathway. An IMPAGT analysis revealed immune dysregulation even at the tumor budding stage, especially in the PI3K/Akt/mTOR axis, with a high efficiency and integrity. These findings emphasized the clinical significance of tumor buddings and the necessity of blocking the overactivation of the PI3K/Akt/mTOR pathway to improve targeted therapy in cervical cancer.
Collapse
Affiliation(s)
- Yeseul Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
| | - Tan Minh Le
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Eunmi Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Donghyeon Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hong Duc Thi Nguyen
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
| | - Ji-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Hyung Soo Han
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| |
Collapse
|
909
|
Tian W, Yang Y, Qin Q, Zhang L, Wang Z, Su L, Zeng L, Chen H, Hu L, Hong J, Huang Y, Zhang Q, Zhao H. Vimentin and tumor-stroma ratio for neoadjuvant chemoradiotherapy response prediction in locally advanced rectal cancer. Cancer Sci 2022; 114:619-629. [PMID: 36221784 PMCID: PMC9899599 DOI: 10.1111/cas.15610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023] Open
Abstract
Vimentin expression in tumor tissues and the tumor-stroma ratio (TSR) have been demonstrated as strong prognostic factors for cancer patients, but whether they are predictive markers of neoadjuvant chemoradiotherapy (nCRT) outcome in locally advanced rectal cancer (LARC) patients is poorly understood. This study aimed to explore the predictive significance of vimentin and TSR combined for nCRT response in LARC patients. Imaging mass cytometry (IMC) was performed to determine the association of vimentin and TSR with nCRT response in six LARC patients [three achieved pathological complete response (pCR), three did not]. Immunohistochemistry (IHC) for vimentin and TSR on biopsy tissues before nCRT and logistic regression analysis were performed to further evaluate their predictive value for treatment responses in a larger patient cohort. A trend of decreased vimentin expression and increased TSR in the pCR group was revealed by IMC. In the validation group, vimentin [odds ratio (OR) 0.260, 95% confidence interval (CI) 0.102-0.602, p = 0.002] and TSR (OR 4.971, 95% CI 1.933-15.431, p = 0.002) were associated with pCR by univariate analysis. Patients in the vimentin-low/TSR-low or vimentin-high/TSR-high (OR 5.211, 95% CI 1.248-35.582, p = 0.042) and vimentin-low/TSR-high groups (OR 11.846, 95% CI 3.197-77.079, p = 0.001) had significantly higher odds of pCR. By multivariate analysis, only the combination of vimentin and TSR was an independent predictor for nCRT response (OR 9.324, 95% CI 2.290-63.623, p = 0.006). Our study suggested that the combined assessment of vimentin and TSR can provide additive significance and may be a promising indicator of nCRT response in LARC patients.
Collapse
Affiliation(s)
- Wenjing Tian
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Yuqin Yang
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina,Department of Pathology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Department of Pathology, School of Basic Medical ScienceSouthern Medical UniversityGuangzhouChina
| | - Qi Qin
- Department of Medical OncologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Liguo Zhang
- Department of Thyroid & Breast Surgery, The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Zheyan Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Liqian Su
- Precision Medicine Center of Harbin Medical University Cancer HospitalHarbinChina
| | - Lirong Zeng
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Hui Chen
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Lingzhi Hu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Jiawei Hong
- Department of Thyroid & Breast Surgery, The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Ying Huang
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Department of Pathology, School of Basic Medical ScienceSouthern Medical UniversityGuangzhouChina
| | - Hong Zhao
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
910
|
[CircPCSK5 is highly expressed in gastric cancer and promotes cancer cell proliferation, invasion and epithelial-mesenchymal transition]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1440-1451. [PMID: 36329577 PMCID: PMC9637502 DOI: 10.12122/j.issn.1673-4254.2022.10.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the expression of circPCSK5 in gastric cancer (GC) and its role in regulation of the proliferation, invasion and epithelial-mesenchymal transition (EMT) of GC cells. METHODS High-throughput sequencing was performed in 3 pairs of GC and adjacent gastric mucosa tissues to obtain the differential expression profile of circRNA. The expression of circPCSK5 was detected in 62 patients undergoing radical surgery for GC using RT-qPCR, and the correlation between circPCSK5 expression level and clinicopathological data of the patients was analyzed. The overall survival and disease-free survival of the patients were assessed with Kaplan-Meier survival analysis, and the independent risk factors affecting the patients' prognosis were analyzed using Cox proportional hazards regression model. The stability and subcellular localization of circPCSK5 were assessed using RNase R and actinomycin D assays, fluorescence in situ hybridization and nucleocytoplasmic separation assay. CCK-8 assay, EdU assay and Transwell assay were employed to examine the changes in proliferation, migration and invasion of GC cells with circPCSK5 knockdown or overexpression; Western blotting and RT-qPCR assays were used to detect the expression levels of EMT markers in the transfected cells. RESULTS The expression of circPCSK5 was significantly upregulated in GC tissues and cells (P < 0.001, P < 0.01). The expression level of circPCSK5 was positively correlated with tumor size, vascular invasion, lymph node metastasis and AJCC stage of GC (P < 0.05). The overall survival and disease-free survival were significantly lower in GC patients with high circPCSK5 expression than in those with low circPCSK5 expression (P < 0.001). High circPCSK5 expression was an independent risk factor for a poor prognosis of GC patients (P < 0.05). Knockdown of circPCSK5 significantly inhibited the proliferation, migration and invasion of HGC27 cells (P < 0.01), increased the expressions of E-cadherin, and decreased the expression of N-cadherin and vimentin (P < 0.01). CircPCSK5 overexpression promoted the proliferation, migration and invasion of MKN45 cells (P < 0.01), reduced E-cadherin expression and increased N-cadherin and vimentin expressions (P < 0.01). CONCLUSION CircPCSK5 is highly expressed in GC and promotes the proliferation, invasion and EMT of GC cells, suggesting its potential as a prognostic biomarker and therapeutic target for GC.
Collapse
|
911
|
Chen G, Li X, Ji C, Liu P, Zhou L, Xu D, Wang D, Li J, Yu J. Early myeloid-derived suppressor cells accelerate epithelial-mesenchymal transition by downregulating ARID1A in luminal A breast cancer. Front Bioeng Biotechnol 2022; 10:973731. [PMID: 36329699 PMCID: PMC9623091 DOI: 10.3389/fbioe.2022.973731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Early myeloid-derived suppressor cells (eMDSCs) are a newly characterized subclass of MDSCs, which exhibit more potent immunosuppressive capacity than classical MDSCs. Previously, we found high eMDSCs infiltration was correlated with poor prognosis of breast cancer, though the regulatory mechanisms have not been fully understood. Here, we constructed a 21-gene signature to evaluate the status of eMDSCs infiltration within breast cancer tissues and found that highly infiltrated eMDSCs affected the prognosis of breast cancer patients, especially in luminal A subtype. We also found that eMDSCs promoted epithelial-mesenchymal transition (EMT) and accelerated cell migration and invasion in vitro. Meanwhile, eMDSCs significantly downregulated ARID1A expression in luminal A breast cancer, which was closely associated with EMT and was an important prognostic factor in breast cancer patients. Moreover, significant changes of EMT-related genes were detected in luminal A breast cancer cells after co-cultured with eMDSCs or ARID1A knock-down and overexpression of ARID1A significantly reversed this procedure. These results implied that eMDSCs might suppress the ARID1A expression to promote EMT in luminal A breast cancer cells, which might provide a new light on developing novel treatment regimens for relapsed luminal A breast cancer after conventional therapies.
Collapse
Affiliation(s)
- Guidong Chen
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xingchen Li
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chenyan Ji
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Li Zhou
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dechen Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
912
|
Identification of Biological Functions and Prognostic Value of NNMT in Oral Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12101487. [PMID: 36291696 PMCID: PMC9599733 DOI: 10.3390/biom12101487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that catalyzes the methylation of nicotinamide (NAM) to generate 1-methyl nicotinamide (MNAM). Although previous studies have shown that NNMT is frequently dysregulated to promote the onset and progression of many malignancies, its expression profile, prognostic value and function in oral squamous cell carcinoma (OSCC) are still unknown. METHODS We used untargeted metabolomics based on mass spectrometry to analyze potential metabolite differences between tumors and matched adjacent normal tissues in 40 OSCC patients. Immunohistochemistry (IHC) was used to analyze the NNMT expression profile in OSCC, and the diagnostic and prognostic values of NNMT were evaluated. Next, qPCR and Western blot were used to compare the expression of NNMT in five OSCC cell lines. Stable transfected cell lines were constructed, and functional experiments were carried out to elucidate the effects of NNMT on the proliferation and migration of OSCC cells. Finally, gene set enrichment analysis (GSEA) was performed using The Cancer Genome Atlas (TCGA) data to investigate the potential functional mechanisms of NNMT in OSCC. RESULTS We found that the nicotinamide metabolic pathway was abnormally activated in OSCC tumor tissues compared with normal tissues. NNMT was expressed ubiquitously in tumor cells (TCs) and fibroblast-like cells (FLCs) but was absent in tumor-infiltrating lymphocytes (TILs). OSCC patients with highly expressed NNMT in TCs had higher risk of lymph node metastasis and showed a worse pattern of invasion (POI). Moreover, patients with highly expressed NNMT were also susceptible to postoperative recurrence. Highly expressed NNMT can independently predict shorter disease-free survival and recurrence-free survival. Functionally, we demonstrated that the ectopic expression of NNMT promoted OSCC tumor cell proliferation and migration in vitro. Conversely, silencing exerted significantly opposite effects in vitro. In addition, GSEA showed that highly expressed NNMT was mainly enriched in the epithelial-mesenchymal transformation (EMT) pathway, which displayed a significant positive correlation with the six classic EMT markers. CONCLUSIONS Our study uncovered that NNMT may be a critical regulator of EMT in OSCC and may serve as a prognostic biomarker for OSCC patients. These findings might provide novel insights for future research in NNMT-targeted OSCC metastasis and recurrence therapy.
Collapse
|
913
|
Li CH, Chen ZM, Chen PF, Meng L, Sui WN, Ying SC, Xu AM, Han WX. Interleukin-34 promotes the proliferation and epithelial-mesenchymal transition of gastric cancer cells. World J Gastrointest Oncol 2022; 14:1968-1980. [PMID: 36310707 PMCID: PMC9611425 DOI: 10.4251/wjgo.v14.i10.1968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Interleukin (IL)-34 is a pro-inflammatory cytokine involved in tumor development. The role of IL-34 in the proliferation and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) remains to be investigated. AIM To investigate whether and how IL-34 affects the proliferation of GC cells and EMT. METHODS Using immunohistochemical staining, the expression of IL-34 protein was detected in 60 paired GC and normal paracancerous tissues and the relationship between IL-34 and clinicopathological factors was analyzed. The expression of IL-34 mRNA and protein in normal gastric epithelial cell lines and GC was detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Stable IL-34 knockdown and overexpression in AGS cell lines were established by lentiviral infection and validated by qRT-PCR and western blotting. The cholecystokinin-8 assay, clone formation assay, cell scratch assay, and transwell system were used to detect GC cell proliferation, clone formation, migration, and invasion capacity, respectively. The effects of IL-34 on the growth of GC transplant tumors were assessed using a subcutaneous transplant tumor assay in nude mice. The effects of IL-34 on the expression level of EMT-associated proteins in AGS cells were examined by western blotting. RESULTS Expression of IL-34 protein and mRNA was higher in GC cell lines than in GES-1 cells. Compared to matched normal paraneoplastic tissues, the expression of IL-34 protein was higher in 60 GC tissues, which was correlated with tumor size, T-stage, N-stage, tumor, node and metastasis stage, and degree of differentiation. Knockdown of IL-34 expression inhibited the proliferation, clone formation, migration, and invasion of AGS cells, while overexpression of IL-34 promoted cell proliferation, clone formation, migration, and invasion. Furthermore, the reduction of IL-34 promoted the expression of E-cadherin in AGS cells but inhibited the expression of vimentin and N-cadherin. Overexpression of IL-34 inhibited E-cadherin expression but promoted expression of vimentin and N-cadherin in AGS cells. Overexpression of IL-34 promoted the growth of subcutaneous transplanted tumors in nude mice. CONCLUSION IL-34 expression is increased in GC tissues and cell lines compared to normal gastric tissues or cell lines. In GC cells, IL-34 promoted proliferation, clone formation, migration, and invasion by regulating EMT-related protein expression cells. Interference with IL-34 may represent a novel strategy for diagnosis and targeted therapy of GC.
Collapse
Affiliation(s)
- Chuan-Hong Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Zhang-Ming Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Pei-Feng Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Lei Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wan-Nian Sui
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Song-Cheng Ying
- Department of Immunology, College of Basic Medicine, Anhui Medical University, Hefei 230022, Anhui Province, China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wen-Xiu Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
914
|
Overexpression of Laminin 5γ2 Chain Correlates with Tumor Cell Proliferation, Invasion, and Poor Prognosis in Laryngeal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7248064. [PMID: 36284634 PMCID: PMC9588344 DOI: 10.1155/2022/7248064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Objective Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor. Laminin 5γ2 chain (LAMC2) was reported to be associated with tumorigenesis. This study explored the role of LAMC2 on LSCC progression by regulating the integrinβ1/FAK/Src/AKT pathway. Methods The level of LAMC2 in 46 LSCC patients was detected by qRT-PCR and western blot. Then the relationship between LAMC2 expression and LSCC malignancy as well as prognosis was analyzed, and the effect of LAMC2 expression on LSCC patient survival was also analyzed using the Kaplan–Meier survival curves. Afterwards, the LSCC cells were transfected with LAMC2 overexpression and knockdown vectors, the effect of LAMC2 on LSCC cell viability, proliferation ability, cell cycle, cell migration, and invasion were detected by CCK-8, colony formation, flow cytometry, wound healing, and Transwell assays. The expression of EMT-related biomarkers and integrin β1/FAK/Src/AKT signaling-related proteins was detected by western blot. Moreover, the effect of LAMC2 on LSCC tumor growth was evaluated by in vivo xenograft experiments and western blot. Results LAMC2 was expressed at high level in LSCC tissues and associated with poor prognosis. LAMC2 overexpression increased TU177 cell viability, proliferation ability, promoted cell cycle, cell migration, and invasion capacity. The expression of N-cadherin, vimentin, and integrinβ1/FAK/Src/AKT related proteins was increased, while the expression of E-cadherin protein was decreased. When the LAMC2 knockdown in AMC-HN-8 cells had opposite effects. Furthermore, shLAMC2 decreased tumor volume and the expression of LAMC2, Ki-67 and integrinβ1, but increased the expression of E-cadherin in LSCC tumor-bearing mice. Conclusion The findings suggested that LAMC2 was overexpressed in LSCC and correlated with poor prognosis. LAMC2 knockdown inhibited LSCC progression by regulating the integrinβ1/FAK/Src/AKT signaling pathway. Therefore, LAMC2 could be a target for LSCC therapy.
Collapse
|
915
|
Tumor Progression, Microenvironments, and Therapeutics. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101599. [PMID: 36295034 PMCID: PMC9605304 DOI: 10.3390/life12101599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
916
|
Zhou Z, Wei B, Liu Y, Liu T, Zeng S, Gan J, Qi G. Depletion of PARP10 inhibits the growth and metastatic potential of oral squamous cell carcinoma. Front Genet 2022; 13:1035638. [PMID: 36313419 PMCID: PMC9608182 DOI: 10.3389/fgene.2022.1035638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Although poly (ADP-ribose) polymerase family member 10 (PARP10) has been implicated in the progression of multiple cancer types, its role in oral squamous cell carcinoma (OSCC) remains unknown. This study aimed to examine the function of PARP10 in OSCC and investigate the underlying mechanisms. Methods: The expression of PARP10 in OSCC was investigated in OSCC patient cohorts. Kaplan-Meier curve analysis was performed to assess the association between PARP10 and prognosis in OSCC. Correlation between PARP10 expression and the related variables was analyzed by χ2 test. CKK-8, transwell assay, western blot, immunohistochemistry, immunofluorescence, and bioinformatic analysis, were applied to clarify the role of PARP10 in OSCC. Results: PARP10 was found to be markedly elevated in OSCC tissues. The upregulation of PARP10 predicted shorter overall survival and disease-specific survival and was significantly correlated with several malignant features. Moreover, depletion of PARP10 markedly inhibited the proliferation, migration, and invasion of OSCC cells, and promoted OSCC cell apoptosis, and resulted in alterations of relevant proteins. Furthermore, a positive correlation was observed between the expression of PARP10 and Ki67, PARP1, MMP2, and VEGF. In addition, depletion of PARP10 impaired the PI3K-AKT and MAPK signaling pathways. Conclusion: PARP10 is involved in the progression of OSCC via regulation of PI3K-AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Zihui Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Bing Wei
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Yu Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Tian Liu
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Sien Zeng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Jinfeng Gan, ; Guangying Qi,
| | - Guangying Qi
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- Department of Pathology, Affiliated Hospital, Guilin Medical University, Guilin, China
- *Correspondence: Jinfeng Gan, ; Guangying Qi,
| |
Collapse
|
917
|
Olascoaga-Caso EM, Tamariz-Domínguez E, Rodríguez-Alba JC, Juárez-Aguilar E. Exogenous growth hormone promotes an epithelial-mesenchymal hybrid phenotype in cancerous HeLa cells but not in non-cancerous HEK293 cells. Mol Cell Biochem 2022; 478:1117-1128. [PMID: 36222986 DOI: 10.1007/s11010-022-04583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.
Collapse
Affiliation(s)
- E M Olascoaga-Caso
- PhD Health Sciences Program. Universidad Veracruzana, Xalapa, Veracruz, Mexico.,Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - E Tamariz-Domínguez
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - J C Rodríguez-Alba
- Flow Cytometry Unity, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Médicos y odontólogos s/n, Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico
| | - E Juárez-Aguilar
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
918
|
Procaine Abrogates the Epithelial-Mesenchymal Transition Process through Modulating c-Met Phosphorylation in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14204978. [PMID: 36291760 PMCID: PMC9599628 DOI: 10.3390/cancers14204978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Epithelial-mesenchymal transition (EMT) is a vital process that leads to the dissemination of tumor cells to distant organs and promotes cancer progression. Aberrant activation of c-Met has been positively correlated with tumor metastasis in hepatocellular carcinoma (HCC). In this report, we have demonstrated the suppressive effect of procaine on the EMT process through the blockade of the c-Met signaling pathway. Procaine downregulated mesenchymal markers and upregulated epithelial markers. Functionally, procaine abrogated cellular migration and invasion. Moreover, procaine suppressed c-Met and its downstream signaling events in HCC models. We report that procaine can function as a novel inhibitor of the EMT process and c-Met-dependent signaling cascades. These results support the consideration of procaine being tested as a potential anti-metastatic agent. Abstract EMT is a critical cellular phenomenon that promotes tumor invasion and metastasis. Procaine is a local anesthetic agent used in oral surgeries and as an inhibitor of DNA methylation in some types of cancers. In this study, we have investigated whether procaine can inhibit the EMT process in HCC cells and the preclinical model. Procaine suppressed the expression of diverse mesenchymal markers but induced the levels of epithelial markers such as E-cadherin and occludin in HGF-stimulated cells. Procaine also significantly reduced the invasion and migration of HCC cells. Moreover, procaine inhibited HGF-induced c-Met and its downstream oncogenic pathways, such as PI3K/Akt/mTOR and MEK/ERK. Additionally, procaine decreased the tumor burden in the HCC mouse model and abrogated lung metastasis. Overall, our study suggests that procaine may inhibit the EMT process through the modulation of a c-Met signaling pathway.
Collapse
|
919
|
Long Noncoding RNA LINC00909 Induces Epithelial-Mesenchymal Transition and Contributes to Osteosarcoma Tumorigenesis and Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:8660965. [PMID: 36262353 PMCID: PMC9576421 DOI: 10.1155/2022/8660965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Background Osteosarcoma (OS) is a malignant tumor that is highly metastatic with a high mortality rate. Although mounting evidence suggests that LINC00909 is strongly associated with the malignant progression of various tumors, the exact role of LINC00909 in OS remains unknown. Therefore, the current study was designed to investigate the relationship between LINC00909 and the malignant progression of OS. Methods LINC00909 expression was measured in OS cell lines and clinical specimens using RT-qPCR assays. The effects of LINC00909 on OS proliferation, invasion, and migration were calculated both in vitro and in vivo. Apart from that, bioinformatics analyses, FISH, RIP, and luciferase reporter assays were carried out to investigate the downstream target of LINC00909. Rescue experiments were also conducted to investigate the potential mechanisms of action of competitive endogenous RNAs (ceRNAs). Results In this study, we found that LINC00909 was highly expressed in OS cell lines and clinical specimens. In vivo and in vitro experiments demonstrated that LINC00909 induces epithelial-to-mesenchymal transition (EMT) and contributes to OS tumorigenesis and metastasis. FISH, RIP, and luciferase assays indicated that miR-875-5p is a direct target of LINC00909. Moreover, HOXD9 was validated as the downstream target of miR-875-5p in a luciferase reporter assay and western blotting experiments. Rescue experiments revealed that HOXD9 reversed the effect of LV-sh-LINC00909 on OS cells by positively regulating the PI3K/AKT/mTOR signaling pathway. Conclusion Collectively, LINC00909 induces EMT and contributes to OS tumorigenesis and metastasis through the PI3K/AKT/mTOR pathway by binding to miR-875-5p to upregulate HOXD9 expression. Targeting the LINC00909/miR-875-5p/HOXD9 axis may have potential in treating OS.
Collapse
|
920
|
Bertrand-Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, Huchedé P, Chassot C, Chauvet V, Cardot-Ruffino V, Morel AP, Subtil F, Mohkam K, Mabrut JY, Tonon L, Viari A, Cassier P, Hervieu V, Castets M, Mauviel A, Sentis S, Bartholin L. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol 2022; 5:1068. [PMID: 36207615 PMCID: PMC9546935 DOI: 10.1038/s42003-022-03994-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
TGF-β signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-β exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-β1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-β-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-β gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects. In pancreatic ductal adenocarcinoma cells and patient tissue, SMAD2/3 is shown to mediate oncogenic effects of TGF-β in the absence of SMAD4.
Collapse
Affiliation(s)
- Adrien Bertrand-Chapel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cassandre Caligaris
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Tanguy Fenouil
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France.,Ribosome, Translation and Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Savary
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Sophie Aires
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvie Martel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Huchedé
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Christelle Chassot
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Chauvet
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Victoire Cardot-Ruffino
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Pierre Morel
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabien Subtil
- Service de Biostatistiques, Hospices Civils de Lyon, Lyon France, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Villeurbanne, France
| | - Kayvan Mohkam
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Jean-Yves Mabrut
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Laurie Tonon
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Philippe Cassier
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Département d'oncologie Médicale, unité de phase 1, Centre Léon Bérard, Lyon, France
| | - Valérie Hervieu
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France
| | - Marie Castets
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France.
| | - Alain Mauviel
- Team "TGF-ß and Oncogenesis", Institut Curie, PSL Research University, INSERM 1021, CNRS 3347, Equipe Labellisée Ligue 2016, 91400, Orsay, France
| | - Stéphanie Sentis
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Bartholin
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
921
|
Overexpression of FAM83A Is Associated with Poor Prognosis of Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8767333. [PMID: 36245969 PMCID: PMC9556212 DOI: 10.1155/2022/8767333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022]
Abstract
Family with sequence similarity 83, member A (FAM83A) plays an essential and fundamental role in the proliferation, progression, and apoptosis of many malignant tumors, including lung cancer. This study aimed to determine the expression pattern of FAM83A in lung adenocarcinoma (LUAD) and its correlation with the prognosis of cancer and the survival of the patients. Bioinformatics analysis, immunohistochemistry, and Western blotting were used to explore and detect the expression of FAM83A in LUAD cells. The mechanism of FAM83A in proliferation and migration was examined. The correlation between FAM83A expression and survival rate was assessed by the Kaplan-Meier and Cox regression. FAM83A expression was elevated in LUAD tissues and was related to shorter overall survival (P < 0.05). A significant increase in FAM83A protein was observed in the LUAD tissue (P < 0.05). Compared with patients with early-stage tumors (stage I-II), those with advanced stage tumors (stage III-IV) had significantly higher FAM83A expression levels (P < 0.05). Downregulation of FAM83A led to a reduction in cell proliferation, a decrease in migration ability, and diminished epithelial-mesenchymal transition (EMT) in the lung cancer cell lines. Overexpression of FAM83A was associated with early lymph node metastasis and poor overall survival among LUAD patients. The findings indicated that FAM83A may play a critical role in promoting the LUAD progression and thus might serve as a novel prognostic marker in LUAD.
Collapse
|
922
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
923
|
Gou Q, Zheng LL, Huang H. Unravelling the roles of Autophagy in OSCC: A renewed perspective from mechanisms to potential applications. Front Pharmacol 2022; 13:994643. [PMID: 36263139 PMCID: PMC9574005 DOI: 10.3389/fphar.2022.994643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is associated with a low survival rate and a high disability rate, making it a serious health burden, particularly in Southeast Asian countries. Therefore, improvements in the diagnosis, treatment, and prognosis prediction of OSCC are highly warranted. Autophagy has a significant impact on cancer development. Studies on autophagy in various human cancers have made outstanding contributions; however, the relationship between autophagy and OSCC remains to be explored. This review highlights the roles of autophagy in OSCC and discusses the relationship between autophagy and Epithelial–mesenchymal transition. Considering the lack of OSCC biomarkers, we focus on the studies involving OSCC-related bioinformatics analysis and molecular targets. Based on some classical targets, we summarize several key autophagy-related biomarkers with a considerable potential for clinical application, which may become the hotspot of OSCC research. In conclusion, we elaborate on the interrelationship between autophagy and OSCC and highlight the shortcomings of current studies to provide insights into the potential clinical strategies.
Collapse
Affiliation(s)
- Qiutong Gou
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Ling-Li Zheng, ; Haixia Huang,
| | - Haixia Huang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Ling-Li Zheng, ; Haixia Huang,
| |
Collapse
|
924
|
TIF1γ inhibits lung adenocarcinoma EMT and metastasis by interacting with the TAF15/TBP complex. Cell Rep 2022; 41:111513. [DOI: 10.1016/j.celrep.2022.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
|
925
|
Wang G, Liu H, An L, Hou S, Zhang Q. CAPG facilitates diffuse large B-cell lymphoma cell progression through PI3K/AKT signaling pathway. Hum Immunol 2022; 83:832-842. [DOI: 10.1016/j.humimm.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
926
|
Wu S, Li X, Yang J, Yang L. PCDH8 participates in the growth process of colorectal cancer cells by regulating the AKT/GSK3β/β-catenin signaling pathway. Tissue Cell 2022; 78:101864. [DOI: 10.1016/j.tice.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
|
927
|
Xie T, Du K, Liu W, Liu C, Wang B, Tian Y, Li R, Huang X, Lin J, Jian H, Zhang J, Yuan Y. LHX2 facilitates the progression of nasopharyngeal carcinoma via activation of the FGF1/FGFR axis. Br J Cancer 2022; 127:1239-1253. [PMID: 35864158 PMCID: PMC9519904 DOI: 10.1038/s41416-022-01902-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Distant metastasis and recurrence remain the main obstacle to nasopharyngeal carcinoma (NPC) treatment. However, the molecular mechanisms underlying NPC growth and metastasis are poorly understood. METHODS LHX2 expression was examined in NPC cell lines and NPC tissues using quantitative reverse transcription-polymerase chain reaction, western blotting and Immunohistochemistry assay. NPC cells overexpressing or silencing LHX2 were used to perform CCK-8 assay, colony-formation assay, EdU assay, wound-healing and invasion assays in vitro. Xenograft tumour models and lung metastasis models were involved for the in vivo assays. The Gene Set Enrichment Analysis (GSEA), ELISA assay, western blot, chromatin immunoprecipitation (ChIP) assay and Luciferase reporter assay were applied for the downstream target mechanism investigation. RESULTS LIM-homeodomain transcription factor 2 (LHX2) was upregulated in NPC tissues and cell lines. Elevated LHX2 was closely associated with poor survival in NPC patients. Ectopic LHX2 overexpression dramatically promoted the growth, migration and invasion of NPC cells both in vitro and in vivo. Mechanistically, LHX2 transcriptionally increased the fibroblast growth factor 1 (FGF1) expression, which in turn activated the phosphorylation of STAT3 (signal transducer and activator of transcription 3), ERK1/2 (extracellular regulated protein kinases 1/2) and AKT signalling pathways in an autocrine and paracrine manner, thereby promoting the growth and metastasis of NPC. Inhibition of FGF1 with siRNA or FGFR inhibitor blocked LHX2-induced nasopharyngeal carcinoma cell growth, migration and invasion. CONCLUSIONS Our study identifies the LHX2-FGF1-FGFR axis plays a key role in NPC progression and provides a potential target for NPC therapy.
Collapse
Affiliation(s)
- Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Wei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Haifeng Jian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China.
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Province, People's Republic of China.
| |
Collapse
|
928
|
Xu X, Lu X, Chen L, Peng K, Ji F. Downregulation of MMP1 functions in preventing perineural invasion of pancreatic cancer through blocking the NT-3/TrkC signaling pathway. J Clin Lab Anal 2022; 36:e24719. [PMID: 36181286 DOI: 10.1002/jcla.24719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a fatal malignancy that frequently involves perineural invasion (PNI). This study aims to investigate the function and underlying mechanisms of matrix metalloproteinase-1 (MMP1) in PNI of PC. METHODS Human pancreatic cancer PANC-1 cells were co-cultured with dorsal root ganglion in vitro. The expression of MMP1, epithelial-mesenchymal transition (EMT) markers, Schwann cell markers, neurotrophic factors, NT-3, and TrkC was measured by qRT-PCR or Western blot. Transwell assay was performed to evaluate cell migration and invasion. In vivo model of PNI was established via inoculating PANC-1 cells into mice. PANC-1 cells and mice were also treated with LM22B-10 (an activator of TrkC) to confirm the mechanisms involving NT-3/TrkC in PNI of PC both in vivo and in vitro. RESULTS The expression of MMP1 was significantly higher in PDAC tissues than non-cancerous tissues, which was positively associated with PNI. MMP1 knockdown repressed the migration and invasion of PANC-1 cells. Except for E-cadherin, the expression of EMT markers, Schwann cell markers, neurotrophic factors, NT-3, and TrkC was inhibited by MMP1 silencing. The same effects of MMP1 knockdown on the above factors were also observed in the PNI model. Moreover, MMP1 knockdown elevated the sciatic nerve function and reduced PNI in the model mice. LM22B-10 partially abolished the effects of MMP1 knockdown both in vivo and in vitro. CONCLUSIONS Silencing of MMP1 prevents PC cells from EMT and Schwann-like cell differentiation via inhibiting the activation of the NT-3/TrkC signaling pathway, thus alleviating the PNI of PC.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Pain Medicine, The Haian Hospital Affiliated to Nantong University, Nantong, China
| | - Xiaomin Lu
- Department of Oncology, The Haian Hospital Affiliated to Nantong University, Nantong, China
| | - Liping Chen
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Peng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fuhai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
929
|
ANGPTL1, Foxo3a-Sox2, and colorectal cancer metastasis. Clin Sci (Lond) 2022; 136:1367-1370. [PMID: 36156125 PMCID: PMC9527825 DOI: 10.1042/cs20220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
Abstract
In the present commentary, we discuss new observations stating that angiopoietin-like protein 1 (ANGPTL1) attenuates cancer metastasis and stemness through Forkhead box O-3a (Foxo3a)–SRY-related HMG-box-2 (Sox2) axis in colorectal cancer (Clin. Sci. (2022) 136, 657–673, https://doi.org/10.1042/CS20220043). ANGPTL1 has been reported to play a critical role in cancer progression and metastasis. However, the underlying mechanisms remain controversial. Here, we integrate the possible mechanisms for ANGPTL1 inhibiting colorectal cancer liver metastasis and discuss the regulation of ANGPTL1 on the Foxo3a–Sox2 pathway. Although ANGPTL1 showed multifunctional potential, there is still a long way to go for ANGPTL1 to be an effective treatment strategy in the clinic.
Collapse
|
930
|
RBM24 Mediates Lymph Node Metastasis and Epithelial-Mesenchymal Transition in Human Hypopharyngeal Squamous Cell Carcinoma by Regulating Twist1. JOURNAL OF ONCOLOGY 2022; 2022:1205353. [PMID: 36213838 PMCID: PMC9536977 DOI: 10.1155/2022/1205353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
Objective Despite the target RNA regulatory action of RBM24 (RNA Binding Motif 24), a protein implicated in multiple carcinomas, its role in HSCC remains unclear. Our study probed to understand the effect of RBM24 on HSCC. Materials and Methods A combination of qRT-PCR, IHC, and western blot was employed to assess the HSCC tissue level of RBM24. The colony formation and CCK-8 assays were performed to estimate cellular proliferative potential, whereas the transwell assay was conducted to examine invasive and metastatic potential. The FaDu cell motility was assessed via the scratch-wound assay and EMT (epithelial-mesenchymal transition) by adopting qRT-PCR in conjunction with western blot and IF (immunofluorescence). The in-vivo effect of RBM24 on HSCC was investigated through modeling metastasis to the popliteal LNs (lymph nodes). Results Among HSCC patients showing metastasis to LNs, prominent RBM24 downregulation was noted, with an intrinsic association between low RBM24 level and poor outcome. Knocking down RBM24 promoted cell multiplication, migration, and infiltration, while overexpression led to the opposite effects and inhibited the EMT. RBM24's suppressive action against the FaDu cell mobility and invasion was reversed by Twist1 overexpression. RBM24's suppressive actions against the tumor evolution and LN metastasis in HSCC in-vivo were also validated. Conclusion As a carcinoma inhibitor gene, RBM24 regulates Twist1 to achieve LN metastasis and EMT suppression in HSCC.
Collapse
|
931
|
Fu Q, Liu X, Xia H, Li Y, Yu Z, Liu B, Xiong X, Chen G. Interferon-γ induces immunosuppression in salivary adenoid cystic carcinoma by regulating programmed death ligand 1 secretion. Int J Oral Sci 2022; 14:47. [PMID: 36167732 PMCID: PMC9515071 DOI: 10.1038/s41368-022-00197-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Interferon-γ (IFN-γ), a key effector molecule in anti-tumor immune response, has been well documented to correlate with the intratumoral infiltration of immune cells. Of interest, however, a high level of IFN-γ has been reported in salivary adenoid cystic carcinoma (SACC), which is actually a type of immunologically cold cancer with few infiltrated immune cells. Investigating the functional significance of IFN-γ in SACC would help to explain such a paradoxical phenomenon. In the present study, we revealed that, compared to oral squamous cell carcinoma cells (a type of immunologically hot cancer), SACC cells were less sensitive to the growth-inhibition effect of IFN-γ. Moreover, the migration and invasion abilities of SACC cells were obviously enhanced upon IFN-γ treatment. In addition, our results revealed that exposure to IFN-γ significantly up-regulated the level of programmed death ligand 1 (PD-L1) on SACC cell-derived small extracellular vesicles (sEVs), which subsequently induced the apoptosis of CD8+ T cells through antagonizing PD-1. Importantly, it was also found that SACC patients with higher levels of plasma IFN-γ also had higher levels of circulating sEVs that carried PD-L1 on their surface. Our study unveils a mechanism that IFN-γ induces immunosuppression in SACC via sEV PD-L1, which would account for the scarce immune cell infiltration and insensitivity to immunotherapy.
Collapse
Affiliation(s)
- Qiuyun Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xingchi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Houfu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yicun Li
- Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zili Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xuepeng Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
932
|
Xie Q, Liu R, Zou Z, Feng Y, Huang Y, Xu G, Sun W, Liang Y, Zhong W. MYPT1 inhibits the metastasis of renal clear cell carcinoma via the MAPK8/N-cadherin pathway. FEBS Open Bio 2022; 12:2083-2095. [PMID: 36106411 PMCID: PMC9623519 DOI: 10.1002/2211-5463.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023] Open
Abstract
Myosin phosphatase target subunit 1 (MYPT1) is a subunit of myosin phosphatase that is capable of regulating smooth muscle contraction. MYPT1 has been reported to be involved in a wide variety of tumours, but its expression and biological functions in renal clear cell carcinoma (ccRCC) remain obscure. Herein, we analysed the relationship between patient clinicopathological characteristics and MYPT1 expression levels in ccRCC patients using a tissue microarray (TMA) and data retrieved from the TCGA-KIRC dataset. MYPT1 was overexpressed or depleted using siRNA in ccRCC cells to assess the effects on migration and invasion in vitro and in vivo. Additionally, RNA-sequencing and bioinformatics analysis were performed to investigate the precise mechanism. MYPT1 expression in ccRCC tissues was observed to be lower than that in nonmalignant tissues (P < 0.05). In addition, MYPT1 downregulation was closely linked to advanced pathological stage (P < 0.05), and poor OS (overall survival; P < 0.05). Functionally, increased expression of MYPT1 suppressed ccRCC migration and invasion in vitro, and inhibited tumour metastasis in vivo. In addition, MYPT1 overexpression exerted its suppressive effects via the MAPK8/N-cadherin pathway in ccRCC.
Collapse
Affiliation(s)
- Qingling Xie
- Guangdong Provincial Institute of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ren Liu
- Guangdong Provincial Institute of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhihao Zou
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yuanfa Feng
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yiqiao Huang
- Department of UrologyThe Fifth Affiliated Hospital of Guangzhou Medical UniversityChina
| | - Guibin Xu
- Department of UrologyThe Fifth Affiliated Hospital of Guangzhou Medical UniversityChina
| | - Wei Sun
- Department of Urology, Huadu District People's HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuxiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Weide Zhong
- Guangdong Provincial Institute of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
933
|
Actomyosin contractility as a mechanical checkpoint for cell state transitions. Sci Rep 2022; 12:16063. [PMID: 36163393 PMCID: PMC9512847 DOI: 10.1038/s41598-022-20089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Cell state transitions induced by mechano-chemical cues result in a heterogeneous population of cell states. While much of the work towards understanding the origins of such heterogeneity has focused on the gene regulatory mechanisms, the contribution of intrinsic mechanical properties of cells remains unknown. In this paper, using a well-defined single cell platform to induce cell-state transitions, we reveal the importance of actomyosin contractile forces in regulating the heterogeneous cell-fate decisions. Temporal analysis of laterally confined growth of fibroblasts revealed sequential changes in the colony morphology which was tightly coupled to the progressive erasure of lineage-specific transcription programs. Pseudo-trajectory constructed using unsupervised diffusion analysis of the colony morphology features revealed a bifurcation event in which some cells undergo successful cell state transitions towards partial reprogramming. Importantly, inhibiting actomyosin contractility before the bifurcation event leads to more efficient dedifferentiation. Taken together, this study highlights the presence of mechanical checkpoints that contribute to the heterogeneity in cell state transitions.
Collapse
|
934
|
Targeting JWA for Cancer Therapy: Functions, Mechanisms and Drug Discovery. Cancers (Basel) 2022; 14:cancers14194655. [PMID: 36230577 PMCID: PMC9564207 DOI: 10.3390/cancers14194655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary JWA has been identified as a potential therapeutic target for several cancers. In this review, we summarize the tumor suppressive functions of the JWA gene and its role in anti-cancer drug development. The focus is on elucidating the key regulatory proteins up and downstream of JWA and their signaling networks. We also discuss current strategies for targeting JWA (JWA peptides, small molecule agonists, and JWA-targeted Pt (IV) prodrugs). Abstract Tumor heterogeneity limits the precision treatment of targeted drugs. It is important to find new tumor targets. JWA, also known as ADP ribosylation factor-like GTPase 6 interacting protein 5 (ARL6IP5, GenBank: AF070523, 1998), is a microtubule-associated protein and an environmental response gene. Substantial evidence shows that JWA is low expressed in a variety of malignancies and is correlated with overall survival. As a tumor suppressor, JWA inhibits tumor progression by suppressing multiple oncogenes or activating tumor suppressor genes. Low levels of JWA expression in tumors have been reported to be associated with multiple aspects of cancer progression, including angiogenesis, proliferation, apoptosis, metastasis, and chemotherapy resistance. In this review, we will discuss the structure and biological functions of JWA in tumors, examine the potential therapeutic strategies for targeting JWA and explore the directions for future investigation.
Collapse
|
935
|
Tan X, Liu Z, Wang Y, Wu Z, Zou Y, Luo S, Tang Y, Chen D, Yuan G, Yao K. miR-138-5p-mediated HOXD11 promotes cell invasion and metastasis by activating the FN1/MMP2/MMP9 pathway and predicts poor prognosis in penile squamous cell carcinoma. Cell Death Dis 2022; 13:816. [PMID: 36151071 PMCID: PMC9508180 DOI: 10.1038/s41419-022-05261-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
The presence and extent of regional lymph node and distant metastasis are the most fatal prognostic factors in penile squamous cell carcinoma (PSCC). However, the available biomarkers and detailed mechanisms underlying the metastasis of PSCC remain elusive. Here, we explored the expression landscape of HOX genes in twelve paired PSCC tissues, including primary tumors, metastatic lymph nodes and corresponding normal tissues, and highlighted that HOXD11 was indispensable in the progression of PSCC. HOXD11 was upregulated in PSCC cell lines and tumors, especially in metastatic lymph nodes. High HOXD11 expression was associated with aggressive features, such as advanced pN stages, extranodal extension, pelvic lymph node and distant metastasis, and predicted poor survival. Furthermore, tumorigenesis assays demonstrated that knockdown of HOXD11 not only inhibited the capability of cell proliferation, invasion and tumor growth but also reduced the burden of metastatic lymph nodes. Further mechanistic studies indicated that miR-138-5p was a tumor suppressor in PSCC by inhibiting the translation of HOXD11 post-transcriptionally through binding to the 3' untranslated region. Furthermore, HOXD11 activated the transcription of FN1 to decompose the extracellular matrix and to promote epithelial mesenchymal transition-like phenotype metastasis via FN1/MMP2/MMP9 pathways. Our study revealed that HOXD11 is a promising prognostic biomarker and predicts advanced disease with poor outcomes, which could serve as a potential therapeutic target for PSCC.
Collapse
Affiliation(s)
- Xingliang Tan
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhenhua Liu
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yanjun Wang
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhiming Wu
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yuantao Zou
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Sihao Luo
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yi Tang
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Dong Chen
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Gangjun Yuan
- grid.190737.b0000 0001 0154 0904Department of Urology Oncological Surgery, Chongqing University Cancer Hospital, Chongqing, China ,grid.190737.b0000 0001 0154 0904Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Kai Yao
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in Southern China, Guangzhou, China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
936
|
Zhu Y, Cui Y, Zheng X, Zhao Y, Sun G. Small-cell lung cancer brain metastasis: From molecular mechanisms to diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166557. [PMID: 36162624 DOI: 10.1016/j.bbadis.2022.166557] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is the most malignant human cancer worldwide, also with the highest incidence rate. However, small-cell lung cancer (SCLC) accounts for 14 % of all lung cancer cases. Approximately 10 % of patients with SCLC have brain metastasis at the time of diagnosis, which is the leading cause of death of patients with SCLC worldwide. The median overall survival is only 4.9 months, and a long-tern cure exists for patients with SCLC brain metastasis due to limited common therapeutic options. Recent studies have enhanced our understanding of the molecular mechanisms leading to meningeal metastasis, and multimodality treatments have brought new hopes for a better cure for the disease. This review aimed to offer an insight into the cellular processes of different metastatic stages of SCLC revealed by the established animal models, and into the major diagnostic methods of SCLC. Additionally, it provided in-depth information on the recent advances in SCLC treatments, and highlighted several new models and biomarkers with promises to improve the prognosis of SCLC.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yishuang Cui
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Xuan Zheng
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yue Zhao
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China.
| |
Collapse
|
937
|
Yao J, Xie M, Ma X, Song J, Wang Y, Xue X. PIWI-interacting RNAs in cancer: Biogenesis, function, and clinical significance. Front Oncol 2022; 12:965684. [PMID: 36212439 PMCID: PMC9539321 DOI: 10.3389/fonc.2022.965684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a less-studied class of small non-coding RNAs approximately 24–31 nucleotides in length. They express in germline and somatic cells and form complexes with PIWI proteins to exert regulatory effects. New studies show that piRNAs are aberrantly expressed in various cancers. In this review, we focus on those piRNAs that are associated with cancer hallmarks such as proliferation, invasion, and chemoresistance and discuss their potential as biomarkers for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mei Xie
- Department of Respiratory and Critical Care, The Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, The Chinese People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Weifang Medical College, Weifang, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Weifang Medical College, Weifang, China
- *Correspondence: Xinying Xue,
| |
Collapse
|
938
|
Evodiamine as an anticancer agent: a comprehensive review on its therapeutic application, pharmacokinetic, toxicity, and metabolism in various cancers. Cell Biol Toxicol 2022; 39:1-31. [PMID: 36138312 DOI: 10.1007/s10565-022-09772-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Evodiamine is a major alkaloid component found in the fruit of Evodia rutaecarpa. It shows the anti-proliferative potential against a wide range of cancers by suppressing cell growth, invasion, and metastasis and inducing apoptosis both in vitro and in vivo. Evodiamine shows its anticancer potential by modulating aberrant signaling pathways. Additionally, the review focuses on several therapeutic implications of evodiamine, such as epigenetic modification, cancer stem cells, and epithelial to mesenchymal transition. Moreover, combinatory drug therapeutics along with evodiamine enhances the anticancer efficacy of chemotherapeutic drugs in various cancers by overcoming the chemo resistance and radio resistance shown by cancer cells. It has been widely used in preclinical trials in animal models, exhibiting very negligible side effects against normal cells and effective against cancer cells. The pharmacokinetic and pharmacodynamics-based collaborations of evodiamine are also included. Due to its poor bioavailability, synthetic analogs of evodiamine and its nano capsule have been formulated to enhance its bioavailability and reduce toxicity. In addition, this review summarizes the ongoing research on the mechanisms behind the antitumor potential of evodiamine, which proposes an exciting future for such interests in cancer biology.
Collapse
|
939
|
Xiao Z, Cai Z, Deng D, Tong S, Zu X. An EMT-based risk score thoroughly predicts the clinical prognosis, tumor immune microenvironment and molecular subtypes of bladder cancer. Front Immunol 2022; 13:1000321. [PMID: 36211349 PMCID: PMC9540509 DOI: 10.3389/fimmu.2022.1000321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 12/09/2022] Open
Abstract
Background Epithelial mesenchymal transition (EMT) is closely related to the occurrence, development, metastasis and antitumor immunity of tumors. However, comprehensive studies correlating EMT and prognosis, tumor microenvironment (TME) and molecular subtypes of bladder cancer (BLCA) are lacking. Methods TCGA-BLCA was chosen as our training cohort, while Xiangya cohort, GSE13507, GSE48075 were selected as our validation cohorts. Prognostic genes were screened out using univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) algorithm. Then we developed an EMT risk score based on these prognostic genes and systematically correlated the risk score with prognosis, TME and molecular subtypes of BLCA. Results Based on EMT related genes, we developed two different EMT patterns, named EMT cluster 1 and cluster 2, and found that cluster 2 showed a worse prognosis and an inflammatory TME phenotype. For personalized prognosis and TME phenotypes predicting, we developed and validated an EMT-based risk score by 7 candidate genes (ANXA10, CNTN1, FAM180A, FN1, IGFL2, KANK4 and TOX3). Patients with high EMT risk scores had lower overall survival (OS) with high predictive accuracy both in the training cohort and validation cohort. In addition, we comprehensively correlated the EMT risk score with TME and molecular subtype, and found that high EMT risk score suggested higher levels of immune cell infiltration and more inclined to present the basal molecular subtype. It was noteworthy that the same results also appeared in the validation of Xiangya cohort. Conclusions EMT related genes play an important role in tumor progression and immunity in BLCA. Our EMT risk score could accurately predict prognosis and immunophenotype of a single patient, which could guide more effective precision medical strategies.
Collapse
Affiliation(s)
- Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dingshan Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
940
|
Li G, Huang J, Chen S, He Y, Wang Z, Peng J. High Expression of ATP6V1C2 Predicts Unfavorable Overall Survival in Patients With Colon Adenocarcinoma. Front Genet 2022; 13:930876. [PMID: 36212133 PMCID: PMC9532742 DOI: 10.3389/fgene.2022.930876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
Aims: Colon adenocarcinoma (COAD) is responsible for 90% of all colorectal cancer cases and is one of the most common causes of cancer-related deaths worldwide. ATP6V1s (cytosolic V1 domain of vacuolar adenosine triphosphatase) participate in the biological process of transporting hydrogen ions and are implicated in tumor growth and metastasis. ATP6V1C2 as a family member has been documented to associate with esophageal carcinoma and renal clear cell carcinoma, while its roles in COAD remain elusive. Methods: The expression status, potential molecular mechanism, and prognostic value of ATP6V1C2 in COAD were investigated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. In addition, its biological roles in COAD were explored through in vitro studies. Results: ATP6V1C2 showed a significantly higher expression level in COAD compared with matched non-cancerous tissues. High expression of ATP6V1C2 predicted a shorter overall survival both in TCGA and GEO COAD datasets, and ATP6V1C2 was identified as an independent factor associated with overall survival in COAD. Bioinformatic analyses showed that high expression of ATP6V1C2 was associated with high epithelial–mesenchymal transition (EMT) score and Wnt signaling pathway was significantly enriched from differentially expressed genes between ATP6V1C2-high and -low group. We also found that high expression of ATP6V1C2 could decrease pathway activity of CD8 T effector implicated in tumor microenvironment (TME). In vitro study revealed that ATP6V1C2 knockdown resulted in aberrant expression of Wnt- and EMT-related genes and inhibited COAD cell proliferation and growth. Conclusion: This is the first study to reveal the molecular functions of ATP6V1C2 in COAD. Our study suggests that overexpressed ATP6V1C2 might promote EMT by activating Wnt signaling pathway, resulting in cancer metastasis and poor prognosis. This study paves the way for understanding potential molecular mechanisms and therapeutic perspectives in COAD.
Collapse
Affiliation(s)
- Guanghua Li
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Jiahua Huang
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Sile Chen
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yulong He
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
- Digestive Medical Center, Sun Yat-sen University Seventh Affiliated Hospital, Shenzhen, China
- *Correspondence: Yulong He, ; Zhixiong Wang, ; Jianjun Peng,
| | - Zhixiong Wang
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
- *Correspondence: Yulong He, ; Zhixiong Wang, ; Jianjun Peng,
| | - Jianjun Peng
- Gastrointestinal Surgery Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
- *Correspondence: Yulong He, ; Zhixiong Wang, ; Jianjun Peng,
| |
Collapse
|
941
|
Insight into LncRNA- and CircRNA-Mediated CeRNAs: Regulatory Network and Implications in Nasopharyngeal Carcinoma—A Narrative Literature Review. Cancers (Basel) 2022; 14:cancers14194564. [PMID: 36230487 PMCID: PMC9559536 DOI: 10.3390/cancers14194564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of head-and-neck malignant tumor, and distant metastasis treatment resistance is the leading cause of patient death. In-depth understanding of NPC progression and treatment failure remains to be explored. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are noncoding RNAs that play key regulatory role in shaping tumor cell activities. Recent studies have revealed that lncRNA and circRNA function as competitive endogenous RNAs (ceRNAs) by regulating the posttranscriptional expression of genes as miRNA baits. The imbalanced ceRNA networks derived from lncRNA/circRNA-miRNA-mRNA interaction are widely found to contribute to NPC development. Herein, we summarize typical examples of lncRNA/circRNA-associated ceRNAs in recent years, which involved the potential molecular mechanisms in the regulation of proliferation, apoptosis, treatment resistance and metastasis of NPC, and discuss their potential clinical significance in the prognosis and treatment of NPC. Interpreting the involvement of ceRNAs networks will provide new insight into the pathogenesis and treatment strategies of NPC. However, ceRNA regulatory mechanism has some limitations currently. Screening the most effective ceRNA targets and the clinical application of ceRNA still has many challenges.
Collapse
|
942
|
Gu Y, Zheng Q, Fan G, Liu R. Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int J Mol Sci 2022; 23:ijms231911042. [PMID: 36232344 PMCID: PMC9570317 DOI: 10.3390/ijms231911042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Despite encouraging progresses in the development of novel therapies, cancer remains the dominant cause of disease-related mortality and has become a leading economic and healthcare burden worldwide. Scutellariae radix (SR, Huangqin in Chinese) is a common herb used in traditional Chinese medicine, with a long history in treating a series of symptoms resulting from cancer, like dysregulated immune response and metabolic abnormalities. As major bioactive ingredients extracted from SR, flavonoids, including baicalein, wogonin, along with their glycosides (baicalin and wogonoside), represent promising pharmacological and anti-tumor activities and deserve extensive research attention. Emerging evidence has made great strides in elucidating the multi-targeting therapeutic mechanisms and key signaling pathways underlying the efficacious potential of flavonoids derived from SR in the field of cancer treatment. In this current review, we aim to summarize the pharmacological actions of flavonoids against various cancers in vivo and in vitro. Moreover, we also make a brief summarization of the endeavor in developing a drug delivery system or structural modification to enhance the bioavailability and biological activities of flavonoid monomers. Taken together, flavonoid components in SR have great potential to be developed as adjuvant or even primary therapies for the clinical management of cancers and have a promising prospect.
Collapse
|
943
|
Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of matricellular protein Mindin. Cell Rep 2022; 40:111390. [PMID: 36130502 DOI: 10.1016/j.celrep.2022.111390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 08/30/2022] [Indexed: 12/22/2022] Open
Abstract
Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.
Collapse
|
944
|
Zhang DD, Sun XL, Liang ZY, Wang XY, Zhang LN. FAM96A and FAM96B function as new tumor suppressor genes in breast cancer through regulation of the Wnt/β-catenin signaling pathway. Life Sci 2022; 308:120983. [PMID: 36165859 DOI: 10.1016/j.lfs.2022.120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022]
Abstract
AIMS Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Some studies have shown that FAM96A and FAM96B are significantly down-regulated in human gastrointestinal stromal tumors, colon cancer, and liver cancer. However, the molecular mechanisms of FAM96A/B in breast cancer are unknown. This work aims to explore the roles of FAM96A/B in breast cancer progression. MAIN METHODS Specific siRNAs were used to down-regulate FAM96A/B expression, and recombinant plasmids were used to up-regulate FAM96A/B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation. Cell cycle and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by wound healing and transwell assays. The relationships among FAM96A/B, EMT and Wnt/β-catenin pathway were determined by analyzing expression changes of classical markers. KEY FINDINGS We found that FAM96A/B expression was down-regulated in breast cancer. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and caused cell cycle arrest. Conversely, FAM96A/B knockdown exhibited the opposite effects. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/β-catenin pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/β-catenin pathway. Furthermore, a Wnt pathway inhibitor, XAV-939 reversed the promoting effects of FAM96A/B knockdown on breast cancer progression. SIGNIFICANCE Our findings suggest that FAM96A/B may function as new tumor suppressor genes and inhibit breast cancer progression via modulating Wnt/β-catenin pathway, which can provide the potential markers for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Di-Di Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiao-Lin Sun
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhao-Yuan Liang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin-Ya Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
945
|
Sivagurunathan S, Vahabikashi A, Yang H, Zhang J, Vazquez K, Rajasundaram D, Politanska Y, Abdala-Valencia H, Notbohm J, Guo M, Adam SA, Goldman RD. Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells. Front Cell Dev Biol 2022; 10:929495. [PMID: 36200046 PMCID: PMC9527304 DOI: 10.3389/fcell.2022.929495] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin is a Type III intermediate filament (VIF) cytoskeletal protein that regulates the mechanical and migratory behavior of cells. Its expression is considered to be a marker for the epithelial to mesenchymal transition (EMT) that takes place in tumor metastasis. However, the molecular mechanisms regulated by the expression of vimentin in the EMT remain largely unexplored. We created MCF7 epithelial cell lines expressing vimentin from a cumate-inducible promoter to address this question. When vimentin expression was induced in these cells, extensive cytoplasmic VIF networks were assembled accompanied by changes in the organization of the endogenous keratin intermediate filament networks and disruption of desmosomes. Significant reductions in intercellular forces by the cells expressing VIFs were measured by quantitative monolayer traction force and stress microscopy. In contrast, laser trapping micro-rheology revealed that the cytoplasm of MCF7 cells expressing VIFs was stiffer than the uninduced cells. Vimentin expression activated transcription of genes involved in pathways responsible for cell migration and locomotion. Importantly, the EMT related transcription factor TWIST1 was upregulated only in wild type vimentin expressing cells and not in cells expressing a mutant non-polymerized form of vimentin, which only formed unit length filaments (ULF). Taken together, our results suggest that vimentin expression induces a hybrid EMT correlated with the upregulation of genes involved in cell migration.
Collapse
Affiliation(s)
- Suganya Sivagurunathan
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haiqian Yang
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Jun Zhang
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Kelly Vazquez
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yuliya Politanska
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hiam Abdala-Valencia
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob Notbohm
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Ming Guo
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , MA, United States
| | - Stephen A Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
946
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
947
|
Zhou DH, Du QC, Fu Z, Wang XY, Zhou L, Wang J, Hu CK, Liu S, Li JM, Ma ML, Yu H. Development and validation of an epithelial–mesenchymal transition-related gene signature for predicting prognosis. World J Clin Cases 2022; 10:9285-9302. [PMID: 36159424 PMCID: PMC9477694 DOI: 10.12998/wjcc.v10.i26.9285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Currently, there are many therapeutic methods for lung adenocarcinoma (LUAD), but the 5-year survival rate is still only 15% at later stages. Epithelial– mesenchymal transition (EMT) has been shown to be closely associated with local dissemination and subsequent metastasis of solid tumors. However, the role of EMT in the occurrence and development of LUAD remains unclear.
AIM To further elucidate the value of EMT-related genes in LUAD prognosis.
METHODS Univariate, least absolute shrinkage and selection operator, and multivariate Cox regression analyses were applied to establish and validate a new EMT-related gene signature for predicting LUAD prognosis. The risk model was evaluated by Kaplan–Meier survival analysis, principal component analysis, and functional enrichment analysis and was used for nomogram construction. The potential structures of drugs to which LUAD is sensitive were discussed with respect to EMT-related genes in this model.
RESULTS Thirty-three differentially expressed genes related to EMT were found to be highly associated with overall survival (OS) by using univariate Cox regression analysis (log2FC ≥ 1, false discovery rate < 0.001). A prognostic signature of 7 EMT-associated genes was developed to divide patients into two risk groups by high or low risk scores. Kaplan–Meier survival analysis showed that the OS of patients in the high-risk group was significantly poorer than that of patients in the low-risk group (P < 0.05). Multivariate Cox regression analysis showed that the risk score was an independent risk factor for OS (HR > 1, P < 0.05). The results of receiver operator characteristic curve analysis suggested that the 7-gene signature had a perfect ability to predict prognosis (all area under the curves > 0.5).
CONCLUSION The EMT-associated gene signature classifier could be used as a feasible indicator for predicting OS.
Collapse
Affiliation(s)
- De-Hua Zhou
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Qian-Cheng Du
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Zheng Fu
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Xin-Yu Wang
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Ling Zhou
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jian Wang
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Cheng-Kai Hu
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Shun Liu
- Department of Thoracic surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Jun-Min Li
- Surgical Intensive Care Unit, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Meng-Li Ma
- Surgical Intensive Care Unit, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Hua Yu
- Department of General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
948
|
Lu K, Pan Y, Huang Z, Liang H, Ding ZY, Zhang B. TRIM proteins in hepatocellular carcinoma. J Biomed Sci 2022; 29:69. [PMID: 36100865 PMCID: PMC9469581 DOI: 10.1186/s12929-022-00854-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
The tripartite motif (TRIM) protein family is a highly conserved group of E3 ligases with 77 members known in the human, most of which consist of a RING-finger domain, one or two B-box domains, and a coiled-coil domain. Generally, TRIM proteins function as E3 ligases to facilitate specific proteasomal degradation of target proteins. In addition, E3 ligase independent functions of TRIM protein were also reported. In hepatocellular carcinoma, expressions of TRIM proteins are both regulated by genetic and epigenetic mechanisms. TRIM proteins regulate multiple biological activities and signaling cascades. And TRIM proteins influence hallmarks of HCC. This review systematically demonstrates the versatile roles of TRIM proteins in HCC and helps us better understand the molecular mechanism of the development and progression of HCC.
Collapse
Affiliation(s)
- Kan Lu
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Yonglong Pan
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Zhao Huang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
949
|
Feng KN, Meng P, Zou XL, Zhang M, Li HK, Yang HL, Li HT, Zhang TT. IL-37 protects against airway remodeling by reversing bronchial epithelial-mesenchymal transition via IL-24 signaling pathway in chronic asthma. Respir Res 2022; 23:244. [PMID: 36100847 PMCID: PMC9472332 DOI: 10.1186/s12931-022-02167-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is one of the mechanisms of airway remodeling in chronic asthma. Interleukin (IL)-24 has been implicated in the promotion of tissue fibrosis, and increased IL-24 levels have been observed in the nasal secretions and sputum of asthmatic patients. However, the role of IL-24 in asthmatic airway remodeling, especially in EMT, remains largely unknown. We aimed to explore the effect and mechanism of IL-24 on EMT and to verify whether IL-37 could alleviate IL-24-induced EMT in chronic asthma. METHODS BEAS-2B cells were exposed to IL-24, and cell migration was assessed by wound healing and Transwell assays. The expression of EMT-related biomarkers (E-cadherin, vimentin, and α-SMA) was evaluated after the cells were stimulated with IL-24 with or without IL-37. A murine asthma model was established by intranasal administration of house dust mite (HDM) extracts for 5 weeks, and the effects of IL-24 and IL-37 on EMT and airway remodeling were investigated by intranasal administration of si-IL-24 and rhIL-37. RESULTS We observed that IL-24 significantly enhanced the migration of BEAS-2B cells in vitro. IL-24 promoted the expression of the EMT biomarkers vimentin and α-SMA via the STAT3 and ERK1/2 pathways. In addition, we found that IL-37 partially reversed IL-24-induced EMT in BEAS-2B cells by blocking the ERK1/2 and STAT3 pathways. Similarly, the in vivo results showed that IL-24 was overexpressed in the airway epithelium of an HDM-induced chronic asthma model, and IL-24 silencing or IL-37 treatment could reverse EMT biomarker expression. CONCLUSIONS Overall, these findings indicated that IL-37 mitigated HDM-induced airway remodeling by inhibiting IL-24-mediated EMT via the ERK1/2 and STAT3 pathways, thereby providing experimental evidence for IL-24 as a novel therapeutic target and IL-37 as a promising agent for treating severe asthma.
Collapse
Affiliation(s)
- Kang-ni Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Ping Meng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Xiao-ling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Min Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Hai-ke Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Hai-ling Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Hong-tao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| | - Tian-tuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630 Guangdong China
| |
Collapse
|
950
|
Characterization of the Lipid Metabolism in Bladder Cancer to Guide Clinical Therapy. JOURNAL OF ONCOLOGY 2022; 2022:7679652. [PMID: 36131793 PMCID: PMC9484922 DOI: 10.1155/2022/7679652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Background Bladder cancer is one of the most common malignancies of the urinary system with an unfavorable prognosis. More and more studies have suggested that lipid metabolism could influence the progression and treatment of tumors. However, there are few studies exploring the relationship between lipid metabolism and bladder cancer. This study aimed to explore the roles that lipid metabolism-related genes play in patients with bladder cancer. Methods TCGA_BLCA cohort and GSE13507 cohort were included in this study, and transcriptional and somatic mutation profiles of 309 lipid metabolism-related genes were analyzed to discover the critical lipid metabolism-related genes in the incurrence and progression of bladder cancer. Furthermore, the TCGA_BLCA cohort was randomly divided into training set and validation set, and the GSE13507 cohort was served as an external independent validation set. We performed the LASSO regression and multivariate Cox regression in training set to develop a prognostic signature and further verified this signature in TCGA_BLCA validation set and GSE13507 external validation set. Finally, we systematically investigated the association between this signature and tumor microenvironment, drug response, and potential functions and then verified the differential expression status of signature genes in the protein level by immunohistochemistry. Results A novel 6-lipidmetabolism-related gene signature was identified and validated, and this risk score model could predict the prognosis of patients with bladder cancer. In addition, the prognostic model was tightly related to immune cell infiltration and tumor mutation burden. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) showed that mTOR signaling pathway, G2M checkpoint, fatty acid metabolism, and hypoxia were enriched in patients in the high-risk score groups. Furthermore, 3 therapies specific for bladder cancer patients in different risk scores were identified. Conclusion s. In conclusion, we investigated the lipid metabolism-related genes in bladder cancer through comprehensive bioinformatic analysis. A novel 6-gene signature associated with lipid metabolism for predicting the outcomes of patients with bladder cancer was conducted and validated. Furthermore, the risk score model could be utilized to indicate the choice of therapy in bladder cancer.
Collapse
|